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1 Definition, construction and uniqueness

Definition 1. Fix some natural number n and some group G (abelian if n ≥ 2). Then a connected space X
is called an Eilenberg-MacLane space of type K(G,n), or simply a K(G,n), if

πi(X) ∼=

{
G i = n

0 else.

We actually already know a few examples of K(G,n)’s:

Examples:

(1) S1 is a K(Z, 1), since π1(S1) ∼= Z and all higher homotopy groups vanish.

(2) RP∞ is a K(Z/2, 1), using that the universal cover S∞ is contractible.

(3) CP∞ is a K(Z, 2), using the LES associated to the fiber bundle S1 → S∞ → CP∞ and the fact that
S∞ ≃ ∗.

Next we’re going to give a general construction of K(G,n) spaces in two steps:

Step 1: Construct an (n − 1)-connected CW-complex X with dimension n + 1 and πn(X) ∼= G: we attach
(n+ 1)-cells via basepoint-preserving maps φβ to a wedge of n-spheres, i.e. we define

X :=

(∨
α

Sn
α

)
∪β en+1

β .

This CW-complex is (n+1)-dimensional and from cellular approximation we get that X is (n−1)-connected.
Using Hurewicz we have an isomorphism πn(X) ∼= Hn(X). By viewing X as the pushout of the diagram∨

α S
n
α

∐
β S

n
β

∐
β D

n+1
β

⨿φβ

and by using a Mayer-Vietoris argument, we get that

Hn(X) ∼=

(⊕
α

Z

)
/
〈
[φβ ]

〉
,

where [φβ ] is just the homotopy class of φβ . By choosing suitable indices α and attaching maps φβ , this
quotient group can be seen to be isomorphic to our group G if we choose some presentation G = F/R.

Step 2: Next, we attach higher dimensional cells to kill off the higher homotopy groups, while leaving
the groups below unchanged: choose cellular maps φα : Sn+1 → X generating πn+1(X) and use these to
obtain a CW-complex Y := X ∪α en+2

α . Cellular approximation tells us that the inclusion X ↪→ Y induces
isomorphisms on πi for i ≤ n and moreover πn+1(Y ) ∼= 0, since any element in πn+1(Y ) is essentially a map
Sn+1 → X, so these are null-homotopic by definition of Y . After infinitely many iterations of step 2 we
obtain a space Xn with all the properties of a K(G,n). Define K(G,n) := Xn.
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Proposition 2. If two CW-complexes K,K ′ are both K(G,n) spaces, then K ≃ K ′.

The proof of this proposition will rely on the following technical lemma, which we will not prove (this is
Hatcher, lemma 4.31):

Lemma 3. If a CW-complex X is of the form (
∨

α S
n
α) ∪β en+1

β , for n ≥ 1, then for all homomorphisms
ψ : πn(X)→ πn(Y ), where Y is some path-connected space, there exists a map f : X → Y such that f∗ = ψ.

Proof. (of the Proposition) Since homotopy equivalence is an equivalence relation, we can assume that K
is the K(G,n) constructed from X as in the above lemma. So by the lemma we get that there exists a
map f : X → K ′ such that f∗ is an isomorphism on πn. For each en+2 that we attach, we have that
the composition Sn+1 → X → K ′, where the first map is the attaching map of en+2, is null-homotopic,
since πn+1(K

′) ∼= 0. By a result from Topology I we know that this composition extends to the cell en+2.
Repeating this, we get an extension f̄ : K → K ′ of f . Since f̄∗ is an isomorphism on all homotopy groups,
it follows from Whitehead that f̄ is a homotopy equivalence.

2 Main theorem, connection with cohomology

Now we state the main theorem of todays talk:

Theorem 4. There exists a natural isomorphism T : [X,K(G,n)]∗ → Hn(X;G) for all CW-complexes, G
any abelian group and for all n > 0. Moreover, T has the form T ([f ]) = f∗(α) for some fundamental class
α ∈ Hn(K(G,n);G) which is independent of f .

Definition 5 (Loopspace). The loopspace ΩK of a pointed space (K, k0) is defined as the set {f : I → K |
f(0) = f(1) = k0}. As discussed in the previous talk, it is topologised by the compact-open topology on KI .

Definition 6. An Ω-spectrum is a sequence of CW-complexes K1,K2, . . . together with weak homotopy
equivalences (WHE) Kn → ΩKn+1 for all n.

Before giving the prime example of an Ω-spectrum, let me remind you about the adjoint relation

[ΣX,K]∗ ∼= [X,ΩK]∗,

where X,K are pointed CW-complexes. In class I gave a quick geometric
”
proof“ of this relation.

Example. {K(G,n)}n≥0 is an Ω-spectrum: Using the adjoint relation, we just compute

πk(ΩK(G,n+ 1)) = [Sk,ΩK(G,n+ 1)]∗ ∼= [Sk+1,K(G,n+ 1)]∗ = πk+1(K(G,n+ 1)),

so it follows from our uniqueness statement, that K(G,n) ≃ ΩK(G,n+1) and in particular we have a WHE
between these spaces.

Up to this point it is not entirely clear why the two sets in the adjoint relation are indeed groups, so let me
state the group structure for both:

• [ΣX,K]∗: Addition is defined similar to that of homotopy groups, namely f + g is the compostion

ΣX → ΣX ∨ ΣX
f∨g−−→ K, where the first map collapses the

”
equator“.

• [X,ΩK]∗: Addition is given by composition of loops, i.e. (f + g)(x) := f(x) ∗ g(x).

An axiom of a cohomology theory in Hatcher is that it has values in Ab, so we have to check whether
[X,Kn]∗ is abelian, where Kn := K(G,n). From the previous example we have WHE’s Kn → ΩKn+1 and
Kn+1 → ΩKn+2. Since Ω(−) is a functor, we get a WHE Kn → Ω2Kn+2 and by a result from Topology II

we can write [X,Kn]∗ ∼= [X,Ω2Kn+2]∗. Since Ω2K ⊆ (KI)I ∼= KI2

, we can view Ω2K as maps I2 → K such
that ∂I2 is mapped to k0 and hence [X,Ω2Kn+2]∗ is abelian by a similar proof which shows that π2(K) is
abelian.

Theorem 7. If {Kn} is an Ω-spectrum, then the functor X 7→ hn(X) := [X,Kn]∗, n ∈ Z, defines a reduced
cohomology theory on the category of pointed CW-complexes and basepoint-preserving maps.
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Proof. (1) (Homotopy invariance) A map f : X → Y induces a map f∗ : [Y,Kn]∗ → [X,Kn]∗ which depends
only on the basepoint-preserving homotopy class. It can be checked that f∗ is indeed a homomorphism,
by replacing Kn with ΩKn+1.

(2) (Wedge sum axiom) Let iα : Xα ↪→
∨

αXα be the inclusion. We want to show that the map

∏
α

i∗α : hn

(∨
α

Xα

)
→
∏
α

hn(Xα)

is an isomorphism for all n. But this follows immediately, since a map
∨

αXα → K is the same as a
collection of maps Xα → K.

(3) (LES of a CW-pair (X,A)) Checking this axiom is quite tedious, so the following is only a rough sketch:

• Construct the Puppe sequence A ↪→ X ↠ X/A
⋆−→ ΣA ↪→ ΣX ↠ Σ(X/A)→ Σ2A ↪→ · · · , where the

map ⋆ is given by the composition

X/A→ X ∪ CA ↪→ (X ∪ CA) ∪ CX ↠ SA↠ ΣA

The first map in this composition is a homotopy equivalence which we have since CA is contractible
(a result from Topology I).

• Next, apply the functor [−,K]∗ to the Puppe sequence. We get a LES

[A,K]∗ ← [X,K]∗ ← [X/A,K]∗ ← [ΣA,K]∗ ← [ΣX,K]∗ ← · · ·

It suffices to show exactness at [X,K]∗: the restriction of a map f : X → K to A is equivalent to f
extending to a map X ∪ CA→ K, where we identify [X/A,K]∗ ∼= [X ∪ CA,K]∗.

• For a WHE K → ΩK ′ we can extend the above LES a few terms to the left:

[A,K ′]∗ ← [X,K ′]∗ ← [X/A,K ′]∗ ← [ΣA,K ′]∗
∼=←− [A,ΩK ′]∗

∼=←− [A,K]∗ ← [X,K]∗ ← [X/A,K]∗ ← · · ·
This finishes the proof.

We need one more theorem in order to prove the main theorem for today:

Theorem 8. If h∗ is an unreduced cohomology theory on the category of CW-pairs and if hn(pt) ∼= 0 for
n ̸= 0, then there exists a natural isomorphism hn(X,A) ∼= Hn(X,A;G) for all CW-pairs (X,A) and for all
n, where G := h0(pt). The corresponding statement for such homology theories is also true.

Proof. We will show the theorem only for homology theories. When considering cohomology the main
difference will be that we consider direct products instead of sums, so one has to be careful. To get the idea
of the proof across, it suffices to check the homology case: since we have an isomorphism hn(X,A) ∼= h̃n(X/A)
we only check the absolute case.
We have the two cellular chain complexes

· · · → hn(X
n, Xn−1)

dn−→ hn−1(X
n−1, Xn−2)→ · · ·

and

· · · → Hn(X
n, Xn−1)

∂n−→ Hn−1(X
n−1, Xn−2)→ · · · .

Just as for singular homology, we have hCW
n (X) ∼= hn(X). The individual groups are isomorphic, since

hn(X
n, Xn−1) ∼=

⊕
In

G ∼= Hn(X
n, Xn−1).

So it remains to show that dn = ∂n: In the case that n = 1 we note that Σ2X has no 1-cells, so immediately
d1 = 0 = ∂1, since taking suspension gives an isomorphism in any homology theory. In the case that n > 1,
dn and ∂n are incidence matrices, so each entry is essentially the mapping degree of some map between
spheres. Take some f : Sn → Sn with deg(f) = m (deg in the usual sense) . From an exercise from Topology
I (or Hatcher lemma 4.60) we know that f also induces multiplication by m on hn(S

n) ∼= G, so indeed
dn = ∂n.
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Now we can finally give the proof of the main theorem:

Proof. • From theorem 7 we know that hn(−) := [−,K(G,n)]∗ defines a reduced cohomology theory on
the category of pointed CW-complexes.

• The reduced version of theorem 8 gives a natural isomorphism T : [X,K(G,n)]∗ → Hn(X;G).

• Set α := T (1), where 1 is the identity on K(G,n). Then, using naturality of T , we can write T ([f ]) =
T (f∗(1)) = f∗(T (1)) = f∗(α), as claimed.

Corollary 9. For any space X the map H1(X;Z)→ H2(X;Z), x 7→ x2, is identically zero.

Proof. By taking a CW-approximation of X, we can assume that X is a CW-complex. Now we can use the
main theorem to write x = f∗(α), for some f : X → K(Z, 1) and α ∈ H1(K(Z, 1);Z). Then we have by
naturality of T that x2 = f∗(α)2 = f∗(α2) = f∗(0) = 0, since α2 ∈ H2(K(Z, 1);Z) ∼= H2(S1;Z) ∼= 0.

3 Cross- and cup-product

As in Topology I, we can define a cross-product and afterwards a cup-product for our cohomology theory
hn(−) = [−,K(G,n)]∗. Let R be a ring and set Kn := K(R,n). This just means Kn = K(GR, n) for GR the
underlying abelian group. Consider maps f : X → Km and g : Y → Kn for X,Y pointed CW-complexes.
Define Φf,g as the composition

X × Y Km ×Kn Km ∧Kn Km+n,
(f,g) q µ

where µ is defined as follows: we have isomorphisms

[Km ∧Kn,Km+n]∗ ∼= Hm+n(Km ∧Kn;R)
∼= HomR(Hm+n(Km ∧Kn;R), R)
∼= HomR(R⊗R,R),

where we used the main theorem, the UCT and Künneth in this order. Now simply define µ to be the unique
map Km ∧Kn → Km+n which is mapped to the map (r ⊗ t 7→ rt) under these isomorphisms. We define the
cross product by

[X,Km]∗ × [Y,Kn]∗ → [X × Y,Km+n]∗, ([f ], [g]) 7→ f × g := [Φf,g].

In a similar fashion we define the cup-product as the map

[X,Km]∗ × [X,Kn]∗ → [X,Km+n]∗, ([f ], [g]) 7→ f ∪ g := ∆∗
X(f × g) = [Φf,g ◦∆X ],

where ∆X : X → X×X is the diagonal map. This cup-product satisfies the three properties naturality, graded
commutativity and associativity. We will only show how to check naturality: Take some map φ : X → Y
between pointed CW-complexes. Then we can write

φ∗(f ∪ g) = [µ ◦ q ◦ (f, g) ◦∆Y ◦ φ] = [µ ◦ q ◦ (f ◦ φ, g ◦ φ) ◦∆X ] = φ∗(f) ∪ φ∗(g),

where the second equality follows from a suitable commutative diagram.
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