
Characteristic classes II
Tim Brings

The main focus of this talk will be the Chern classes of a complex vector
bundle. Similar to the previous talk, one can define them axiomatically
and indeed many of the ideas we used for Stiefel-Whitney classes can be
used here analogously. But before we get to the definition right away, we
need to recap some definitions.
Throughout this talk all topological spaces are considered to be paracompact
and Hausdorff (in other words, we are considering the category of
paracompact Hausdorff topological spaces).

Recap
Last time we constructed the Thom isomorphism

Φ : H i(B;Z2)→ H i(E;Z2)
^u−→ H i+n(E, Ė;Z2)

for an n-dimensional vector bundle π : E → B, where Ė is the complement
of the zero section in E and u ∈ Hn(E, Ė) is the fundamental class called
the Thom class. Note that we stated the Thom isomorphism for Z2

coeffiecents, though there is a generalization for arbitrary commutative
rings. For our purpose, we only want to consider integer coefficients, where
one needs the bundle to be oriented. The intuition why this is sufficient, is
that we need to fix some choice of the generator in each fiber Hn(F, Ḟ ).
Further details can be found in [1].

Definition 1 (Euler class). Let π : E → B be real n-dimensional oriented
vector bundle, then define the Euler class e(E) ∈ Hn(B) as the image of
the Thom class u ∈ Hn(E, Ė) under the map

Hn(E; Ė)→ Hn(E)
(π∗)−1

−→ Hn(B)

Remark. The Euler class has some very important properties, which are
crucial for the construction of the Chern and the Pontrjagin classes. Here
are two of the most important ones for the talk:

Naturality Given an orientation preserving bundle map

φ∗E E

B′ B

Φ

φ

between two real n-dimensional oriented vector bundles, we have
the relation

e(φ∗E) = φ∗e(E).
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Whitney-sum formula Two oriented vector bundles E1 and E2

over a space B induce a orientation on their Whitney sum
E1 ⊕ E2, such that

e(E1 ⊕ E2) = e(E1) ^ e(E2)

Reversed orientation Reversing the orientation of the vector
bundle changes the sign of the Euler class.

Notation. For a paracompact Hausdorff space B, B denotes the trivial
one dimensional bundle over B.

Remark. Underlying real vectorbundle A complex
n-dimensional vector bundle has an underlying 2n-dimensional
real vector bundle denoted by πR. Moreover, πR has a canonical
induced orientation: For any finite complex vector space V
choose a basis z1, ..., zn with zi = xi + i · yi. Then
z1, i · z1, z2, ..., zn, i · zn forms an ordered basis of the underlying
real vector space, which determines an orientation. In fact to
see that this orientation is independent on the choice of complex
basis, only note, that the linear group Gln(C) is connected. Now
apply this construction to each fiber of the underlying vector
bundle.

Complexification of a real vector bundle One can complexify a
real vector bundle π : E → B via the tensor product E ⊗R C.
Remember that the tensor product of two total spaces over the
same base space is given by taking the tensor product fiberwise.

Hermitian metric Similarly to a real vector bundle, any complex
vector bundle over a paracompact Hausdorff space admits a
hermitian metric, i.e. an euclidean metric on its underlying real
vector bundle with the additional property |v| = |iv| ∀v ∈ V .
Remember that an euclidean metric on a real vector bundle is a
map

µ : E → R,

such that its restriction to any fiber is a positive definite and
quadratic function.

Example The tangent space of a complex manifold is a complex
vector bundle.

Now we are able to define the Chern classes of complex vector bundle (cf.
[3]).

Definition 2 (Chern class). Let π : E → B be a complex vector bundle.
Then the chern classes of this vector bundle are the unique classes
ci(E) ∈ H2i(B) for i ≥ 0 satisfying the following axioms:

2



Naturality Given a complex bundle map

φ∗E E

N M

Φ

φ

between two complex n-dimensional vector bundles, we have the
relation

ci(φ
∗E) = φ∗ci(E).

for any i.

Whitney-sum formula Denote by c(E) :=
∑

i=0 ci(E) ∈ H∗(B)
the total Chern class, then for two complex vector bundles of the
same base space, we have

c(E ⊕ E′) = c(E) ^ c(E′),

where E ⊕ E′ denotes the Whitney sum and c(E) ^ c(E′) the
usual cup product.

Triviality c0(E) = 1 for any complex vector bundle.

Normalization Consider the tautological line bundle over the
complex projective plane L→ CP∞. Then we have

c(L) = 1 + e(L)

Remark. • The Euler class is only defined for real oriented vector
bundles. In the normalization I use implicitely that any
n-dimensional complex vector bundle has a underlying oriented
2n-dimensional real vector bundle. Also note that the Euler class
e(L) is a generator of H2(CP∞).

• From a categorical viewpoint one can think about the i´th chern class
ci as a natural transformation of contravariant functors F ⇒ H2i,
where

F : Top→ Ab

sending a space to the isomorphism classes of complex vector bundles
and

H2i : Top→ Ab

the usual cohomology.

• There are quite a few ways of defining Chern classes axiomatically,
for example one can normalize them differently.
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• We will later see

– c0(E) = 1

– cn(E) = e(E)

– ck(E) = 0 ∀k > n

• For a complex manifold and its tangent bundle TM →M we write
ci(M) and c(M) for ci(TM) and c(TM) respectively.

Example (Chern class of CPn). We want to calculate the total chern
class of CPn. But the computation can be done analogously to the
Stiefel-Whitney class of RPn, so I omit the details and just sketch the idea.
Start with the tautological line bundle L→ CPn. It is a subbundle of
CPn × Cn+1 → CPn, hence using the canonical hermitian metric we can
consider its orthogonal complement L⊥ = {(x, v) ∈ CPn × Cn+1|x ⊥ v}.
Now observe that

TCPn ∼= Hom(L,L⊥)

and CPn ∼= Hom(L,L) to conclude

TCPn ⊕Hom(L,L) ∼= Hom(L,L⊥ ⊕ L) = Hom(L,Cn+1) = L̄,

where L̄ is the dual of L, which satisfies ck(L̄) = (−1)kck(L) (cf [1] 14.9).
Finally we get

c(TCPn) = c(TCPn ⊕Hom(L,L)) = c(L̄)n+1 = (1− e(L))n+1.

Next I want to continue by proving existence. I have essentially found three
different approaches, which all have their advantages and disadvantages. In
this talk I decided to follow Kreck´s construction (cf. [2]).

Existence of the Chern classes

• Remember the cohomology ring of CPN for some N > 0:

H∗(CPN ) = Z[e(L)]
/
e(L)N+1

using e(L) ∈ H2(CPN ) a generator.

• Let π : E → B be a complex n-dimensional vectorbundle. For N > n
consider the space B × CPN .

• Now consider the two pullbacks
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p∗1E E

B × CPN B
p1

p∗2L L

B × CPN CPNp2

where p1 and p2 are the projections.

• Consider their tensor product vector bundle p∗1E ⊗ p∗2L→ B × CPN .
It is a complex n-dimensional vector bundle, hence we can consider
its Euler class e(p∗1E ⊗ p∗2L) ∈ H2n(B × CPN ).

• The Künneth isomorphism yields∑
i+j=k

H i(B)⊗Hj(CPN )→ Hk(B × CPN ).

Now define the Chern classes as the coefficients of the Euler class, i.e.
the chern classes are uniquely determined by

e(p∗1E ⊗ p∗2L) =
k∑
i=0

ci(E)⊗ e(L)k−i

• Note that this construction does not depend on the choice of N > n,
because the pullback of ι : CPN → CPN+1 is precisely the
tautological bundle over CPN .

Theorem 3. This construction defines Chern classes.

Proof. We have to show that the axioms hold.

Naturality Follows almost directly from naturality of the Euler
class. First note that a bundle morphism

φ∗E E

A B

Φ

φ

induces a map

p∗1(φ∗E)⊗ p∗2L p∗1E ⊗ p∗2L

A× CPN B × CPN .

Φ⊗id

φ×id
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Hence we calculate

k∑
i=0

φ∗ci(E)⊗ e(L)k−i = (φ× id)∗

(
k∑
i=0

ci(E)⊗ e(L)k−i

)

= e(p1φ
∗E ⊗ p∗2L) =

k∑
i=0

ci(φ
∗E)⊗ e(L)k−i,

and since e(L) generates the cohomology ring H∗(CPN ) we
conclude φ∗ci(E) = ci(φ

∗E).

Whitney-sum formula Let E and E’ be k- and l-dimensional
complex vector bundles over B respectively and take N > k + l.
Then consider

p∗1(E ⊕ E′)⊗ p∗2L ∼= (p∗1E ⊗ p∗2L)⊕
(
p∗1E

′ ⊗ p∗2L
)
.

Hence the Euler classes agree and moreover comparing its
coefficients yield

ci(E ⊕ E′) =
∑
r+s=i

cr(E) ^ cs(E
′)

and thus

c(E ⊕ E′) = c(E) ^ c(E′).

Triviality For the trivial bundle over a space B one can
immediately see that c(B) = 1. Now consider any complex
vector bundle and pull it back to a point

ι∗E E

∗ B.ι

The pullback bundle is clearly trivial, thus we conclude

ι∗(c(E)) = c(ι∗(E)) = 1

and hence c0(E).

Normalization Pick any point x0 ∈ CP 1 and consider the pullback
bundle of

j0 : CP∞ → CP∞ × CP 1, x 7→ (x, x0)

where we denote the linebundle over CP∞ and CP 1 by E and L
respectively, i.e.
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j∗0 (p∗1E ⊗ p∗2L) p∗1E ⊗ p∗2L

CP∞ CP∞ × CP 1.
j0

Pulling the j0 into the tensor product yields

j∗0 (p∗1E ⊗ p∗2L) = j∗0 (p∗1E)⊗ j∗0 (p∗2L)

and we conclude

e(E) = e(j∗0p
∗
1︸︷︷︸

=id∗

E ⊗ j∗0p∗2︸︷︷︸
=0∗

L) = e(j∗0 (p∗1E ⊗ p∗2L))

= j∗0e(p
∗
1E ⊗ p∗2L) = j∗0(

∑
ci(E)⊗ e(L)k−i)

= j∗0(c1(E)⊗ 1) = c1(E)

Remark. In the last part we actually didn´t use much of the structure of
either complex projective plane. In fact one can analogously show that the
top Chern class of a complex vector bundle is the Euler class.

Lemma 4. The Chern classes are unique.

Proof. This can be done analogously to the uniqueness proof of the
Stiefel-Whitney classes. Consider the splitting principle (cf. [3]) for an
n-dimensional complex vector bundle π : E → X, i.e. there exist a map
p : Y → X such that

p∗ : H∗(X)→ H∗(Y ) is injective

p∗(E) ∼= L1 ⊕ ...⊕ Ln,

where the Li are complex line bundles over Y .
Now assume there are two choices of natural transformations for the Chern
classes ci and c′i. Then they agree on the universal line bundle CP∞ and
hence on any line bundle. We compute

p∗c(E) = c(p∗(E)) = c(L1 ⊕ ...⊕ Ln)

= c(L1) ^ ... ^ c(Ln) = c′(L1) ^ ... ^ c′(Ln)

= c′(L1 ⊕ ...⊕ Ln) = c′(p∗(E)) = p∗c′(E).

Now conclude that they agree on each complex vector bundle by noting
that p∗ is injective.

As mentioned before there are some ways on how to construct Chern
classes and I would like to give a quick sketch of the two other
constructions.
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Remark. Here is the construction found in Milnor-Stasheff (cf. [1]).

• Idea: Construct them inductively starting at the top Chern class.

• We already know: cn(E) = e(E) for any n-dimensional complex
vector bundle. Here it is part of the definition.

• Remember the complement of the zero section Ė in E from last talk.
Continue by inductively constructing new vector bundles out of the
previous one via:

B(n) := B,E(n) := E

B(n−1) := Ė

E(n−1) := {(e, v) ⊂ Ė × Cn−2|v ∈ x⊥ ⊂ F, where e = (b, x) ∈ B × F0}

In other words: E(n−1) is the complex (n-1)-dimensional vector
bundle over Ė, with fiber the orthogonal complement of ”the” vector
in the original fiber F. The local trivialization are build up from the
local trivialization of the previous bundle, i.e. given a point e ∈ Ė
consider a trivialization U ⊂ B around π0(e) and consider

π−1
0 (U)× Cn−2 ⊆ E(n−1) E(n)

π−1
0 (U) ⊆ Ė B.

π0

Note: This is not a pullback.

• This defines a bundle map, hence one can define the (n-1)’th Chern
class by cn−1(E) := (π∗0)−1e(E(n−1)).

• For example, naturality follows from the fact, that the inductive
construction as well as the Euler class is natural (in some sense).

Here´s a more ”universal” viewpoint from [4].

• Again let π : E → B a complex n-dimensional vector bundle and
consider its hermitian metric (a priori it depends on choice of
trivializations).

• With that one can reduce the structure group Gln(C) to Un, the
unitary group.

• The classificiation of G-prinicpal bundles gives us a unique bundle
map
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E EUn ∼= colim
k→∞

Vn(Ck)

B BUn∼= colim
k→∞

Grn(Ck).

with Vn(Ck) and Grn(Ck) the Stiefel and Grassmannian manifold
respectively.

• This construction is stable, meaning that the inclusion

ι : Un → Un+1, A 7→
(
A 0
0 1

)
gives rise to a map Bι : BUn → BUn+1 via functoriality, such that
the composition of the lower maps is again the classifying map

E ⊕B EUn EUn+1

B BUn BUn+1.
ι

• Consider the directed system

BU1 ↪→ BU2 ↪→ ...

• Stability implies that we get a well-behaved map into the colimit of
this directed system, denoted by BU := colim

n→∞
BUn.

• At last we use the following fact:

H∗(BU) ∼= Z[c1, c2, ...],

where |ci| = 2i.

• Define the Chern classes of BU to be the ci.

• For any other complex vector bundle we can define the Chern classes
to be the pullbacks from BU using the classifying map.

Remark. The fact about the cohomology ring of BU is highly non-trivial.
In fact its proof usually uses Chern classes (see for example [5]).

To finish the talk, I want to define Pontrjagin classes of a real vector
bundle.
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Definition 5. Let π : E → B be a real vector bundle and consider its
complexification E ⊗R C→ B. Define the i’th Pontryagin class by

pi(E) := (−1)ic2i(E ⊗ C) ∈ H4i(B)

Remark. Some properties of the Pontrjagin classes.

• For a 2n-dimensional real oriented bundle E, we have

pn(E) = e(E) ^ e(E)

• Let π : E → B a real vector bundle. Then pi(E) maps to w2i(E)2

under coefficient homomorphism H4i(B;Z)→ H4i(B;Z2). A proof of
this can be found in [3].

• Similar to the remark on how to define Chern classes using the uni-
versal bundle BUn, one can define the Pontrjagin classes using the
unversal bundle BOn. In fact pk is the pullback of c2k under the com-
plexification inclusion BOn → BUn.
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