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Before we can talk about characteristic classes, we need a few more constructions
in the category of vector bundles.

1 The bundle Hom functor

Let B be any topological space. We denote by Vec the category of finite dimensional
R-vector spaces and by VecB the category of vector bundles over B. The morphisms
in VecB are bundle morphisms covering the identity IdB.
The Hom sets in Vec (respectively Vecop ×Vec) have a natural topology and the
functor HomVec : Vecop×Vec→ Vec is continuous on all Hom sets with respect to
this topology. We can use this to define a corresponding functor Vecop

B ×VecB →
VecB, which agrees with HomVec fibrewise.

Definition 1. Let πi : Ei → B for i = 1,2 be two vector bundles over B. We define
a bundle π : Hom(E1, E2)→ B. For the total space we take (as a set)

Hom(E1, E2) =
∐
b∈B

HomVec((E1)b, (E2)b),

where the projection π to B is the obvious one. To give this the structure of a vector
bundle it suffices to define trivializations such that the transition maps are continu-
ous.
Let U ⊆ B be an open subset over which both Ei are trivial. Let Φi : U × Rni →
π−1
i (U) be trivializations. Let V = HomVec(Rn1 ,Rn2), then we can define a trivial-

ization for Hom(E1, E2) over U by

U × V →
∐
b∈U

HomVec((E1)b, (E2)b) , (b, f) 7→ ((Φ2)b ◦ f ◦ (Φ1)−1
b ).
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Let U ′ be another open subset of B over which both Ei trivialize and let ρi : U∩U ′ →
GLni

be the transition maps of Ei. Then the transition maps of Hom(E1, E2) are
given by the composition

U ∩ U ′ ρ1×ρ2−−−→ GLn1 ×GLn2

(−)−1×Id−−−−−→ GLn1 ×GLn2

HomVec−−−−→ GL(V ).

This composition is continuous because HomVec is continuous on Hom sets. Hom
defines a functor Vecop

B ×VecB → VecB.

Remark 2. Notice that the trivialization map above can also be written as

(b, f) 7→ HomVec((Φ1)−1
b , (Φ2)b)(f).

This removes any reference to what the functor HomVec actually does. Hence the
same construction works for any functor Vecop×Vec→ Vec, as long as it is contin-
uous on Hom sets. In fact, we can generalize this construction to any multifunctor
that is continuous on Hom sets.
In particular, we have tensor products, symmetric powers, dual bundles and exte-
rior powers as functors of vector bundles over a fixed base space. If we apply this
construction to the direct sum, the result agrees with the Whitney sum.

Proposition 3. The Hom functor has the following properties.

1. For any two bundles E and F over B the evaluation map E⊕Hom(E,F )→ F
is continuous.

2. Hom commutes with Whitney sums.

3. Sections of the bundle Hom(E,F ) correspond to bundle morphisms E → F .

4. If E admits a metric 〈−,−〉, then E → Hom(E,R) , v 7→ 〈v,−〉 defines an
isomorphism of bundles.

2 Axiomatic definition and properties of Stiefel-

Whitney classes

From now on H∗(−) will denote cohomology with coefficients in Z/2. We assume all
base spaces of vector bundles to be paracompact and Hausdorff. The most impor-
tant consequence of this is, that all bundles admit metrics and classifying maps. In
particular, every subbundle has an orthogonal complement.

2



Definition 4 (Stiefel-Whitney classes). For any integer i ≥ 0 the i-th Stiefel-
Whitney class wi is a natural transformation between the functor, which assigns
to a space the set of isomorphism classes of vectorbundles, and the i-th cohomology
functor Hi(−,Z/2) with coefficients Z/2.
This means that wi assigns to each vector bundle E → B an element of the coho-
mology of the base space B.

1. (Naturality) If f : B
′ → B is a continuous map, we get wi(f

∗E) = f ∗wi(E).

2. For any vectorbundle E → B, wi(E) = 0 for i > rank(E) and w0(E) = 1. In
particular, we can define the total Stiefel-Whitney class w(E) =

∑
iwi(E) in

the cohomology ring H∗(B,Z/2).

3. (Whitney product theorem) Let E, F be bundles over the same base space,
then w(E ⊕ F ) = w(E) ∪ w(F ).

4. (Normalization) Recall that we have an isomorphism H∗(RP∞,Z/2) ∼= Z/2[x],
where x corresponds to the unique nonzero cohomology class of degree 1. Let
γ1 be the tautological line bundle over RP∞, then w(γ1) = 1 + x .

Remark 5. One can also normalize Stiefel-Whitney classes as follows:
Let γ1

1 be the tautological line bundle over RP1 and recall that H∗(RP1) ∼= Z/2[x]/(x2).
Now define w(γ1

1) = 1 + x. It follows from the other axioms, that these normaliza-
tions are equivalent, since γ1

1 is the pullback of γ1 along i : RP1 → RP∞ and the
map i induces an isomorphism in cohomology in degrees 0 and 1.

Theorem 6 (main theorem). Stiefel-Whitney classes exist and are uniquely deter-
mined by the four axioms.

We will prove this theorem later. Let us first look at some calculations of Stiefel-
Whitney classes and see some applications using only the axioms.

Proposition 7. The following are immediate consequences of the axioms:

1. Let Rn be the trivial bundle of rank n over any base space B, then w(Rn) = 1.

2. Stiefel-Whitney classes are invariants of stable bundles, i.e. w(E ⊕R) = w(e).
In particular, since the tangent bundle of the n-sphere TSn is trivial we have
w(TSn) = 1.

3. Let γ1
n → RPn be the tautological line bundle, then w(γ1

n) = 1 + x, where x is
the unique nonzero degree one element of H∗(RPn) ∼= Z/2[x]/(xn+1).
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Proof. 1.The total Stiefel-Whitney class of any bundle over a point must be 1, as all
higher cohomology groups are trivial. Thus the total Stiefel-Whitney class of Rn is
1, because the trivial bundle is the pullback of the rank n bundle over a one point
space along the constant map.
2. This is a direct consequence of 1. and axiom 3.
3. See Remark ??.

Our next goal is to calculate the Stiefel-Whitney class of the tangent bundle
TRPn of RPn.

Lemma 8. Recall that the tautological line bundle γ1
n is a subbundle of the trivial

bundle Rn+1 over RPn. Let

γ⊥ := {(x, v) ∈ RPn × Rn|v ⊥ x}

be its orthogonal complement with respect to the canonical metric on Rn+1. Then

TRPn ∼= Hom(γ1
n, γ

⊥).

Proof. Let p : Sn → RPn be the quotient map. Since p is a local diffeomorphism, so
is its differential dp : TSn → TRPn. In particular, dp is a quotient map. We have
seen the isomorphism TSn ∼= {(x, v) ∈ Sn ×Rn+1|v ⊥ x}.
Under this isomorphism, the equivalence relation associated to dp on TSn corre-
sponds to the relation generated by (x, v) ∼ (−x,−v). Hence we get a homeomor-
phism on the quotients

TRPn ∼= {(x, v) ∈ Sn ×Rn+1|v ⊥ x}/ ∼ .

Using this identification we can explicitly give an isomorphism Hom(γ1
n, γ

⊥) →
TRPn. Let x ∈ Sn be an element and let ϕ : (γ1

n)p(x) → (γ⊥)p(x) be a linear map i.e.
an element of Hom(γ1

n, γ
⊥)p(x). To ϕ we assign the element of TRPn represented by

(x, ϕ(x)). This map is clearly well defined, linear and bijective. Continuity follows
from the fact that for any two bundles E, F the evaluation map E⊕Hom(E,F )→ F
is continuous.

Proposition 9. The Stiefel-Whitney class of TRPn is

w(TRPn) = (1 + x)n+1.
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Proof. The bundle Hom(γ1
n, γ

1
n) is a line bundle that has a nowhere vanishing section

given by the identity. Thus Hom(γ1
n, γ

1
n) ∼= R. Using this and Lemma ?? we get

TRPn ⊕ R ∼= Hom(γ1
n, γ

1
n)⊕ Hom(γ1

n, γ
1
n)

∼= Hom(γ1
n, γ

⊥ ⊕ γ1
n)

∼= Hom(γ1
n,R

n+1)
∼= Hom(γ1

n,R)n+1

∼= (γ1
n)n+1.

This means that w(TRPn) = w(TRPn ⊕ R) = w(γ1
n)n+1 = (1 + x)n+1.

Corollaray 10. The tangent bundle of RP2 does not split as a sum of line bundles.

Proof. Suppose TRP2 = E ⊕ F for two line bundles E and F , then

1+x+x2 = (1+x)2 = w(TRPn) = w(E)w(F ) = 1+(w1(E)+w1(F ))+w1(E)w1(F ).

Thus x = w1(E) + w1(F ) and x2 = w1(E)w1(F ). This is impossible in Z/2[x]/(x3).

Recall that an immersion between smooth manifolds is a smooth map for which
the induced map on tangent spaces is fibrewise injective. The Whitney immersion
theorem states that any smooth n dimensional manifold admits an immersion into
R2n−1. A natural question to ask is, whether the dimension of the target 2n − 1 is
optimal. Does there exists a number m(n) < 2n− 1 such that every n manifold has
an immersion into Rm(n).
If n is not a power of two, the answer is yes (immersion conjecture)! But using Stiefel-
Whitney classes, we can show that for n = 2k there does exist a smooth manifold
that does not admit an immersion into Rm for m < 2n− 1.

Theorem 11. For n = 2k, RPn does not immerse into R2n−2.

Proof. Let ϕ : RPn → R2n−2 be an immersion, then dϕ is a bundle morphism
covering ϕ. The morphism dϕ factors through the pullback ϕ∗TR2n−2. Since ϕ is an
immersion, dϕ is fibrewise injective. Thus the induced map TRPn → ϕ∗TR2n−2 is
also fibrewise injective.
Because the tangent bundle of R2n−2 is trivial, we have ϕ∗TR2n−2 ∼= R2n−2. So TRPn

is a subbundle of a trivial bundle of rank 2n− 2.
Now let N → RPn be the orthogonal complement of TRPn in R2n−2. N is called the
normal bundle of the immersion ϕ.
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By definition of N we know that TRPn ⊕N ∼= R2n−2 and rankN = n− 2. The first
property implies that 1 = w(R2n−2 = w(TRPn)w(N), so w(N) is the multiplicative
inverse of w(TRPn). But

w(TRPn) = (1 + x)n = (1 + x)(1 + x)2k = (1 + x)(12k + x2k) = 1 + x+ xn.

The multiplicative inverse of this element in Z/2[x]/(xn+1) is
∑n−1

i=0 x
i. This is a

contradiction to rankN = n− 2.

3 Existence and uniqueness of Stiefel-Whitney classes

Existence of Stiefel-Whitney Classes. There are different methods of explicitly con-
structing Stiefel-Whitney classes. We follow [3] and [1]. A different approach using
the Leray-Hirsch theorem can be found in [2]. We will need the following theorem.

Theorem (Thom Isomorphism). Let E → B be a vector bundle of rank n over a
paracompact space B. We denote by Ė the complement of the zero section in E.
Then H i(E, Ė) = 0 for i < n and Hn(E, Ė) contains a unique element u, such that
for the inclusion of any fibre i : F → E, the element i∗u is the unique generator of
Hn(F, Ḟ ). Here Ḟ denotes the complement of zero in F .
Aditionally the map

H i(E)→ H i+n(E, Ė), x 7→ x ∪ u

is an isomorphism. The composition

Φ : H i(B)→ H i(E)→ H i+n(E, Ė)

is called the Thom isomorphism. The cohomology class u is called the Thom class.

We can now define
wi(E) = Φ−1(Sqi(u)).

Let us check that this definition satisfies the axioms.
1. Naturality:
Consider the following pullback diagram, where E → B is a rank n bundle with
Thom class u, and f is any continuous map.

E ′ E

B′ B

f̂

π′ π

f
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Now we show that the Thom element of E ′ is f̂ ∗u. Let b′ ∈ B′ be any point. Let
F ′ = (π′)−1(b′) and F = π−1(f(b′)). The map f̂ restricts to a homeomorphism
between F ′ and F . We get the following commutative diagram in cohomology.

Hn(E, Ė) Hn(E ′, Ė ′)

Hn(F, Ḟ ) Hn(F ′, Ḟ ′)

f̂∗

f̂�∗F

If we follow the Thom class u ∈ Hn(E, Ė) through the diagram we see that f̂ ∗u maps
to the generator of Hn(F ′, Ḟ ′). Since the fibre F ′ was arbitrary, this means that f̂ ∗u
is the Thom class of E ′. If Φ (respectively Φ′) deontes the Thom isomorphism of E
(respectively E ′), it follows that Φ′ ◦ f ∗ = f̂ ∗ ◦ Φ. Hence

wi(E
′) = (Φ′)−1 Sqi(f̂ ∗u) = (Φ′)−1f̂ ∗ Sqi(u) = f ∗Φ Sqi(u) = f ∗wi(E).

2. Axiom:
This follows immediately from the properties of Steenrod squares.
3. Whitney product formula:
Let πi : Ei → B for i = 1,2 be two bundles over B of rank ni. Recall that we have
the following pullback diagram, where ∆ is the diagonal map.

E1 ⊕ E2 E1 × E2

B B ×B∆

It suffices to show that w(E1 × E2) = w(E1)× w(E2), because then

w(E1⊕E2) = w(∆∗(E1×E2) = ∆∗w(E1×E2) = ∆∗(w(E1)×w(E2)) = w(E1)∪w(E2).

Just like in the proof of naturality, we first consider the Thom elements and show
that uE1×E2 = uE1 × uE2 . Let (b1, b2) ∈ B × B and let Fi be the fibre of Ei over bi.
Then the fibre of E1 × E2 over (b1, b2) is F1 × F2.

Hn1(E1, Ė1)⊗ Hn2(E2, Ė2) Hn1+n2(E1 × E2, (E1 × E2)·)

Hn1(F1, Ḟ1)⊗ Hn2(F2, Ḟ2) Hn1+n2(F1 × F2, (F1 × F2)·)

×

×
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The above diagram commutes, because the cross product is natural. The arrow on
the bottom is an isomorphism by the Künneth theorem. Thus, if we follow uE1⊗uE2

we see that uE1 × uE2 maps to the generator of Hn1+n2(F1 × F2, (F1 × F2)·), which
means that uE1×E2 = uE1 × uE2 . From this it follows that the following diagram
commutes.

Hi(B)× Hj(B) Hi(E1)× Hj(E2) Hi+n1(E1, Ė1)× Hj+n2(E2, Ė2)

Hi+j(B ×B) Hi+j(E1 × E2) Hi+n1+j+n2(E1 × E2, (E1 × E2)·)

×

(−∪uE1
,−∪uE2

)

× ×

−∪uE1×E2

In other words
ΦE1×E2(−×−) = ΦE1(−)× ΦE2(−).

Finally we get

ΦE1×E2w(E1 × E2) = SquE1×E2

= Sq(uE1 × uE2)

= SquE1 × SquE2

= ΦE1w(E1)× ΦE2w(E2)

= ΦE1×E2(w(E1)× w(E2))

and applying ΦE1×E2 gives w(E1 × E2) = w(E1)× w(E2).
4. Normalization:
As explained in Remark ??, it suffices to show that w(γ1

1) = 1 + x ∈ H∗(RP1) ∼=
Z/2[x]/(x2) and by axiom 2. this is eqivalent to w1(γ1

1) = x. By definition we have
w1(γ1

1) = Φ−1 Sq1(u) = Φ−1(u ∪ u), where u ∈ H1(γ1
1 , γ̇

1
1) is the Thom class of γ1

1 .
Since Φ is an isomorphism and there are only two elements in H1(RP1), the assertion
is equivalent to u ∪ u 6= 0 .
The map

I × R→ RP1 × R2 , (α, t) 7→ ([eiπα], teiπα)

descends to a bundle isomorphism from the Moebius bundle

M = (I × R)/(1, t) ∼ (0,−t)

to γ1
1 . Recall from Topology 2, that the Thom space Th(M) is homeomorphic to

RP2. Thus we get the following chain of isomorphisms in cohomology.

H∗(γ1
1 , γ̇

1
1) ∼= H∗(M, Ṁ) ∼= H∗(Th(M), ∗) ∼= H∗(RP2, ∗)
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Notice that each of these isomorphisms is induced by a map and hence the compo-
sition is compatible with the cup product.The map (RP2, ∅) → (RP2, ∗) induces an
injective homomorphism of (non-unital) rings

H∗(RP2, ∗) ↪→ H∗(RP2) ∼= Z/2[x]/(x3).

The Thom class u cannot be zero because it maps to a generator of H1(F, Ḟ ) for any
fibre F . Thus it maps to x in Z/2[x]/(x3). In particular, u2 maps to x2, which is
nonzero, so u2 6= 0.

Uniqueness of Stiefel-Whitney Classes. In order to prove uniquness of Stiefel -Whitney
classes we will need some deeper theorem. One approach is to study the cohomology
ring of the Grassmanian. The details of this approach can be found in [3]. We have
decided to deduce uniqueness from the splitting principle.

Theorem (Splitting principle). Let E → B be a vector bundle. Then there exists a
space F (E) and a map f : F (E)→ B such that

1. f ∗E splits as a sum of line bundles and

2. the induced map f∗ in cohomology is injective.

A proof of the splitting principle can be found in [2].
Let w and w′ be two transformations, that satisfy the axioms of the Stiefel-Whitney
classes. By the normalization axiom w and w′ agree on the universal bundle γ1.
Since any line bundle is a pullback of γ1, it follows from naturality that w and w′

agree on line bundles. By axiom 3. they also agree on any bundle that is the sum of
line bundles.
Now let E → B be any bundle and let f : F (E) → B be the map we get from the
splitting principle. Then

f ∗w(E) = w(f ∗E) = w′(f ∗E) = f ∗w′(E).

Since f ∗ is injective we get w(E) = w′(E).
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