
Brown Representability
Analena Kamm

Theorem 1 (Brown Representability). Every reduced cohomology theory on
CW⇤ is of the form h

⇤(X) = [X,Kn] for some ⌦-spectrum {Kn}, which is
unique up to homotopy equivalence, and all pointed CW-complexes X.

Remark. Brown Representability supplies us with another proof that sin-
gular cohomology is representable by maps into Eilenberg-MacLane-spaces:
For {Kn} an ⌦-spectrum representing H

⇤( ;G), we get:

⇡i(Kn) = [Si
,Kn] =

(
H̃

n(Si;G) for i = n,

0 else.

Definition 2. A reduced cohomology theory on CW⇤ is a sequence of functors
h
n : CW⇤ ! Ab with natural isomorphisms h

n(X) ⇠= h
n+1(⌃X) for all X

such that:

• homotopy axiom: f ' g : X ! Y ) f
⇤ = g

⇤ : hn(Y ) ! h
n(X).

• exactness axiom: A ,! X inclusion ) h
n(X�A) ! h

n(X) ! h
n(A) is

exact.

• wedge axiom: Let X =
W

↵X↵ with i↵ : X↵ ! X the inclusions, then
there is an isomorphism ⇧↵i

⇤
↵ : h

n(X) ! ⇧↵h
n(X↵).

Remark. Equivalently, a reduced cohomology theory is a sequence of con-
travariant functors h̃

n : CW⇤ ! Ab together with natural homomorphisms
� : h̃n(A) ! h̃

n+1(X�A) for CW-pairs (X,A) satisfying the homotopy axiom,
the wedge axiom as well as admitting a long exact sequence of cohomology
groups.

You can get a (unreduced) cohomology theory h from a reduced one h̃ via
defining h(X,A) = h̃(X�A).

Lemma 3. Let K be fixed. Then h(X) := [X,K] is a contravariant functor
h : CW⇤ ! sets satisfying the homotopy, exactness and wedge axioms as well
as the Mayer-Vietoris axiom:

Let X = A[B be a CW-complex, where A,B both contain the basepoint.
If there exist a 2 h(A) and b 2 h(B) such that a|A\B = b|A\B 2 h(A \ B),
then there exists an x 2 h(X) with x|A = a and x|B = b.
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Definition 4. LetK be a connected CW-complex, u 2 h(K), where h satisfies
the homotopy, wedge and Mayer-Vietoris axioms. (K,u) is called n-universal
if Tu : ⇡i(K) ! h(Si), Tu(f) = f

⇤(u) is an isomorphism for all i < n and
subjective for i = n.

It is ⇡⇤-universal if it is n-universal for all n.

Lemma 5. Given (Z, z) with Z conn. CW-complex, z 2 h(Z), h as above,
there exists a ⇡⇤-universal (K,U) such that Z ✓ K is a subcomplex and
u|Z = z.

Lemma 6. Let h as above, (K,u) ⇡⇤-universal, (X,A) a CW-pair. Then
for all x 2 h(X) and f : A ! K with f

⇤(u) = x|A, there exists g : X ! K

extending f with g
⇤(u) = x.

Theorem 7. For h : CW⇤ ! sets⇤ a contravariant functor satisfying the
homotopy, Mayer-Vietoris and wedge axioms, there exists a connected CW-
complex K and u 2 h(K) such that Tu : [X,K] ! h(X), Tu(f) = f

⇤(u) is a
bijection for all X. (K,u) is called universal for h.

Remark. We note the following facts:

i) The universal pair is unique up to homotopy.

ii) The wedge axiom implies that h(pt) = 0.

iii) The homotopy, wedge and Mayer-Vietoris axioms together imply the ex-
actness axiom.

iv) We can use the bijection Tu : [⌃Y,K] ! h(⌃Y ) to define a group struc-
ture on h(⌃Y ).
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Proofs

Proof of Theorem 1

As h
n(X) ⇠= h

n+1(⌃X) in any cohomology theory and ⌃X connected, it is
enough to prove that the statement holds true for connected CW-complexes.
In the end, we can then use the properties of an ⌦-spectrum to see the follow-
ing:

h
n(X) ⇠= h

n+1(⌃X) ⇠= [⌃X,Kn+1] ⇠= [X,⌦Kn+1] ⇠= [X,Kn].

As each h
n satisfies the requirements of Theorem 7, we get CW-complexes

Kn with h
n(X) ⇠= [X,Kn]. It remains to show that these CW-complexes

actually form an ⌦-spectrum, i.e. that we get weak homotopy equivalences
Kn ! ⌦Kn+1.

The isomorphism h
n(X) ⇠= h

n+1(⌃X) corresponds to a natural isomor-
phism � : [X,Kn] ! [⌃X,Kn+1] ! [X,⌦Kn+1]. Naturality means that we
get the following commutative diagram for all f : X ! Kn.

[Kn,Kn] [X,Kn]

[Kn,⌦Kn+1] [X,⌦Kn+1].

f⇤

� �

f⇤

We define "n := �(id) : Kn ! ⌦Kn+1 and calculate:

�(f) = �(f � id) = � � f⇤(id) = f
⇤ � �(id) = f

⇤("n) = "n � f.

Thus � : [Kn,Kn] ! [Kn,⌦Kn+1] is given by composition with "n. We use
X = S

k and the fact that � is a bijection to conclude that "n induces isomor-
phisms on all homotopy groups, so it is a weak homotopy equivalence. One
still has to check that we preserve group structure throughout.

Proof of Lemma 5 (Sketch)

We construct (K,u) from (Z, z) inductively.
We set K1 := Z _ (

W
↵ S

1), where the ↵ range over h(S1). Via the wedge
axiom, we get an isomorphism iZ⇥(⇧↵i↵) : h(K1) ! h(Z)⇥(⇧↵h(S1)). Thus,
there exists u1 2 h(K1) such that u|Z = z and u|S1

↵
= ↵. Then, (K1, u1) is

1-universal.
We assume now we have constructed (Kn, un) n-universal with Z ✓ Kn

and un|Z = z. We represent elements in the kernel of Tun : ⇡n(Kn) ! h(Sn)
by f↵ : Sn ! Kn and define f :=

W
↵ f↵ :

W
↵ S

n
↵ ! Kn. The reduced mapping

cylinder Mf deformation retracts onto Kn, so we can regard un 2 h(Mf), but
then clearly un|W↵ Sn

↵
= 0 by the definition of f . Via the exactness axiom and

using that Cf = Mf�
W

↵ S
n
↵ the following sequence is exact:

h(Cf) ! h(Mf) ! h(
_

↵

S
n
↵).
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We get ! 2 h(Cf) with ! 7! un and set Kn+1 := Cf _ (
W

� S
n+1
� ), where

� 2 h(Sn+1). Using the wedge axiom, we can find un+1 2 h(Kn+1) that
restricts to ! 2 h(Cf) and � 2 h(Sn+1

� ). We claim that this is (n + 1)-
connected. For this, consider the following commutative diagram:

⇡i(Kn) ⇡i(Kn+1)

h(Si)

Tun Tun+1

The upper map is an isomorphism for i < n and surjective for i = n, as
we construct Kn+1 from Kn by attaching (n + 1)-cells. The same properties
hold for Tun , as (Kn, un) is n-universal, so by commutativity the same holds
for Tun+1 . We can also see that Tun+1 is injective for i = n: An element in
the kernel of Tun+1 pulls back to an element in the kernel of Tun ✓ ⇡i(Kn) via
surjectivity of the upper map and commutativity of the diagram. However,
we have constructed Kn+1 by attaching cells for all elements in the kernel of
Tun , so this is trivial. Also, for i = n+ 1, Tun+1 is surjective by construction.

We can now define K :=
S
Kn. We use a mapping telescope argument to

show that there exists u 2 h(K) such that u|Kn = un. Via a similar argument
as above, we see that (K,u) is ⇡⇤-universal.

Proof of Lemma 6

Wlog we can assume that K is the reduced mapping cylinder, and thus f is
the inclusion of a subcomplex. We define Z := X [A K. Via Mayer-Vietoris,
we get z 2 h(Z) such that z|X = x and z|K = u.

We can embed (Z, z) into (K 0
, u

0) which is ⇡⇤-universal. The inclusion
(K,u) ! (K 0

, u
0) induces isomorphisms on homotopy groups as both are ⇡⇤-

universal, soK 0 deformation retracts ontoK. The deformation retract induces
a homotopy relative A of X ,! K

0 to g : X ! K. By the homotopy, clearly
g
⇤(u) = x holds since u

0|K = u and u
0|X = x.

Proof of Theorem 7

It su�ces to show that if (K,u) is ⇡⇤-universal, then (K,u) is already universal,
as we know by Lemma 5 that there exists a ⇡⇤-universal (K,u), i.e. such that
Tu : ⇡i(K) ! h(Si), f 7! f

⇤(u) is an isomorphism for all i. We apply Lemma
6 with A = pt and varying x 2 X to see that Tu : [X,K] ! h(X) is surjective.

For injectivity, suppose Tu(f0) = Tu(f1), i.e. f
⇤
0 (u) = f

⇤
1 (u). Now, we

apply Lemma 6 with (X ⇥ I�(pt ⇥ I), X ⇥ �I�(pt ⇥ �I)) with map f0 t f1

on X ⇥ �I, and x = p
⇤
f
⇤
0 (u) = p

⇤
f
⇤
1 (u) where p : X ⇥ I�(pt⇥ I) ! X is the

reduced projection:
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(X ⇥ �I�(pt⇥ �I), x) (K,u)

(X ⇥ I�(pt⇥ I), x)

f0tf1

The dashed map that we get is exactly the desired homotopy from f0 to f1.
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