Brown Representability

Analena Kamm

Theorem 1 (Brown Representability). Every reduced cohomology theory on
CW, is of the form h*(X) = [X, K| for some Q-spectrum {K,}, which is
unique up to homotopy equivalence, and all pointed CW-complexes X.

Remark. Brown Representability supplies us with another proof that sin-
gular cohomology is representable by maps into Eilenberg-MacLane-spaces:
For {K,} an Q-spectrum representing H*(_; G), we get:

ri(K) =[S, K] = {gf”(si;a) fori =,

else.

Definition 2. A reduced cohomology theory on CW, is a sequence of functors
h" : CW, — Ab with natural isomorphisms h™(X) = h"*1(XX) for all X
such that:

e homotopy axiom: f~g: X —-Y = f*=g": h"(Y) - h"(X).

o ezactness axiom: A — X inclusion = A" (X /A) — A™(X) — h"(A) is
exact.

o wedge axviom: Let X = \/ X, with in: Xo — X the inclusions, then
there is an isomorphism I1,:},: A" (X) — I A" (X,).

Remark. Fquivalently, a reduced cohomology theory is a sequence of con-
travariant functors h: CW, — Ab together with natural homomorphisms
§: h(A) — h"TY(X /A) for CW-pairs (X, A) satisfying the homotopy aziom,
the wedge axiom as well as admitting a long exact sequence of cohomology
groups.

You can get a (unreduced) cohomology theory h from a reduced one h via
defining h(X, A) = h(X /A).

Lemma 3. Let K be fixed. Then h(X) := [X, K] is a contravariant functor
h: CW, — sets satisfying the homotopy, exactness and wedge axioms as well
as the Mayer-Vietoris axiom:

Let X = AUB be a CW-complex, where A, B both contain the basepoint.
If there exist a € h(A) and b € h(B) such that a|anp = blanp € h(AN B),
then there exists an x € h(X) with z|4 = a and z|g = b.



Definition 4. Let K be a connected CW-complex, u € h(K), where h satisfies
the homotopy, wedge and Mayer-Vietoris axioms. (K, u) is called n-universal
if T,: m(K) — h(S%), Tu(f) = f*(u) is an isomorphism for all i < n and
subjective for i = n.

It is me-universal if it is n-universal for all n.

Lemma 5. Given (Z,z) with Z conn. CW-complex, z € h(Z), h as above,
there exists a m,-universal (K,U) such that Z C K is a subcomplex and
ulz = z.

Lemma 6. Let h as above, (K,u) m.-universal, (X, A) a CW-pair. Then
for all x € h(X) and f: A — K with f*(u) = z|a, there exists g: X — K
extending f with ¢*(u) = «.

Theorem 7. For h: CW, — sets, a contravariant functor satisfying the
homotopy, Mayer-Vietoris and wedge axioms, there exists a connected CW-
complex K and u € h(K) such that T}, : [X, K] — h(X), Tu(f) = f*(u) is a
bijection for all X. (K, u) is called universal for h.

Remark. We note the following facts:
i) The universal pair is unique up to homotopy.
ii) The wedge axiom implies that h(pt) = 0.

ii1) The homotopy, wedge and Mayer-Vietoris axioms together imply the ex-
actness axriom.

iv) We can use the bijection T,,: [£Y, K] — h(XY') to define a group struc-
ture on h(XY).



Proofs

Proof of Theorem 1

As h™(X) = h"TL(XX) in any cohomology theory and XX connected, it is
enough to prove that the statement holds true for connected CW-complexes.
In the end, we can then use the properties of an 2-spectrum to see the follow-
ing:
A(X) = BTN EX) 2 [BX, K] 2 [X, QK] 2 [X, K,

As each h™ satisfies the requirements of Theorem 7, we get CW-complexes
K, with h"(X) = [X, K,]. It remains to show that these CW-complexes
actually form an -spectrum, i.e. that we get weak homotopy equivalences
Kn — QKnJrl.

The isomorphism h™(X) = h"T1(XX) corresponds to a natural isomor-
phism ¢: [X, K] — [2X, Kn+1] — [X, QK,4+1]. Naturality means that we
get the following commutative diagram for all f: X — K.

(K, K] —L— [X, K,

[ J#

®

[, K] = [X, QKo
We define ¢, := ¢(id): K, — QK,+1 and calculate:

o(f) = ¢(foid) = ¢o f(id) = f* o ¢(id) = f*(en) = €no f.
Thus ¢: [K,, K] — [Ky, QK,41] is given by composition with e,. We use
X = S* and the fact that ¢ is a bijection to conclude that &, induces isomor-
phisms on all homotopy groups, so it is a weak homotopy equivalence. One
still has to check that we preserve group structure throughout. O

Proof of Lemma 5 (Sketch)

We construct (K, u) from (Z, z) inductively.

We set K1 := Z V (\/,, S'), where the a range over h(S'). Via the wedge
axiom, we get an isomorphism iz x (Iyia): h(K1) — h(Z) x (I15h(S1)). Thus,
there exists u; € h(K1) such that u|z = 2 and u|g1 = a. Then, (Ky,u1) is
1-universal.

We assume now we have constructed (K, u,) n-universal with Z C K,
and u,|z = z. We represent elements in the kernel of T, : m,(K,) — h(S™)
by fo: S™ = K, and define f :=V/_ fo: V, 5S4 = Ky. The reduced mapping
cylinder M f deformation retracts onto K, so we can regard u,, € h(M f), but
then clearly U"‘Va sn = 0 by the definition of f. Via the exactness axiom and
using that C'f = M f,\/, S% the following sequence is exact:

h(Cf) — h(MFf) — h(\/ S7).
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We get w € h(Cf) with w = u, and set Kni1 := Cf V (Vg Sg“), where
B € h(S™1). Using the wedge axiom, we can find u,11 € h(K,;1) that
restricts to w € h(Cf) and B € h(Sg“). We claim that this is (n + 1)-
connected. For this, consider the following commutative diagram:

mi(Ky) y i (Kpt1)
h(S%)

The upper map is an isomorphism for ¢ < n and surjective for ¢ = n, as
we construct K41 from K, by attaching (n + 1)-cells. The same properties
hold for T, , as (K, u,) is n-universal, so by commutativity the same holds
for T, ,,. We can also see that T, ., is injective for ¢ = n: An element in
the kernel of T, ,, pulls back to an element in the kernel of T3, C m;(kK,) via
surjectivity of the upper map and commutativity of the diagram. However,
we have constructed K, by attaching cells for all elements in the kernel of
T, so this is trivial. Also, for i =n + 1, Ty, , is surjective by construction.

We can now define K := J K,,. We use a mapping telescope argument to
show that there exists u € h(K) such that u|x, = u,. Via a similar argument
as above, we see that (K, u) is m-universal. O

Proof of Lemma 6

Wlog we can assume that K is the reduced mapping cylinder, and thus f is
the inclusion of a subcomplex. We define Z := X Uy K. Via Mayer-Vietoris,
we get z € h(Z) such that z|x = = and z|x = u.

We can embed (Z, z) into (K’,u’) which is m.-universal. The inclusion
(K,u) = (K',u) induces isomorphisms on homotopy groups as both are -
universal, so K’ deformation retracts onto K. The deformation retract induces
a homotopy relative A of X «— K’ to g: X — K. By the homotopy, clearly
g*(u) = x holds since v'|x = u and u'|x = x. O

Proof of Theorem 7

It suffices to show that if (K, u) is m.-universal, then (K, u) is already universal,
as we know by Lemma 5 that there exists a m,-universal (K, u), i.e. such that
T,: m(K) — h(S%), f + f*(u) is an isomorphism for all i. We apply Lemma
6 with A = pt and varying = € X to see that T,,: [X, K| — h(X) is surjective.

For injectivity, suppose T, (fo) = Tu(f1), i.e. fi(u) = fi(u). Now, we
apply Lemma 6 with (X x I/(pt x I),X x 61,/ (pt x §I)) with map fo U fi
on X x 01, and z = p* fi(u) = p*f{ (u) where p: X x I /(pt x I) — X is the
reduced projection:



(X x 01/ (pt x 61),2) 2220 (K, )

(X xI/(ptx1I),zx)

The dashed map that we get is exactly the desired homotopy from fy to fi. O



