Brown Representability

Analena Kamm

Theorem 1 (Brown Representability). Every reduced cohomology theory on $\mathbf{C W}_{*}$ is of the form $h^{*}(X)=\left[X, K_{n}\right]$ for some Ω-spectrum $\left\{K_{n}\right\}$, which is unique up to homotopy equivalence, and all pointed CW-complexes X.

Remark. Brown Representability supplies us with another proof that singular cohomology is representable by maps into Eilenberg-MacLane-spaces: For $\left\{K_{n}\right\}$ an Ω-spectrum representing $H^{*}(-; G)$, we get:

$$
\pi_{i}\left(K_{n}\right)=\left[S^{i}, K_{n}\right]= \begin{cases}\tilde{H}^{n}\left(S^{i} ; G\right) & \text { for } i=n \\ 0 & \text { else }\end{cases}
$$

Definition 2. A reduced cohomology theory on $\mathbf{C W}_{*}$ is a sequence of functors $h^{n}: \mathbf{C W}_{*} \rightarrow \mathbf{A b}$ with natural isomorphisms $h^{n}(X) \cong h^{n+1}(\Sigma X)$ for all X such that:

- homotopy axiom: $f \simeq g: X \rightarrow Y \Rightarrow f^{*}=g^{*}: h^{n}(Y) \rightarrow h^{n}(X)$.
- exactness axiom: $A \hookrightarrow X$ inclusion $\Rightarrow h^{n}(X / A) \rightarrow h^{n}(X) \rightarrow h^{n}(A)$ is exact.
- wedge axiom: Let $X=\bigvee_{\alpha} X_{\alpha}$ with $i_{\alpha}: X_{\alpha} \rightarrow X$ the inclusions, then there is an isomorphism $\Pi_{\alpha} i_{\alpha}^{*}: h^{n}(X) \rightarrow \Pi_{\alpha} h^{n}\left(X_{\alpha}\right)$.

Remark. Equivalently, a reduced cohomology theory is a sequence of contravariant functors $\tilde{h}^{n}: \boldsymbol{C} \boldsymbol{W}_{*} \rightarrow \boldsymbol{A} \boldsymbol{b}$ together with natural homomorphisms $\delta: \tilde{h}^{n}(A) \rightarrow \tilde{h}^{n+1}(X / A)$ for $C W$-pairs (X, A) satisfying the homotopy axiom, the wedge axiom as well as admitting a long exact sequence of cohomology groups.

You can get a (unreduced) cohomology theory h from a reduced one \tilde{h} via defining $h(X, A)=\tilde{h}(X / A)$.

Lemma 3. Let K be fixed. Then $h(X):=[X, K]$ is a contravariant functor $h: \mathbf{C W}_{*} \rightarrow$ sets satisfying the homotopy, exactness and wedge axioms as well as the Mayer-Vietoris axiom:

Let $X=A \cup B$ be a CW-complex, where A, B both contain the basepoint. If there exist $a \in h(A)$ and $b \in h(B)$ such that $\left.a\right|_{A \cap B}=\left.b\right|_{A \cap B} \in h(A \cap B)$, then there exists an $x \in h(X)$ with $\left.x\right|_{A}=a$ and $\left.x\right|_{B}=b$.

Definition 4. Let K be a connected CW-complex, $u \in h(K)$, where h satisfies the homotopy, wedge and Mayer-Vietoris axioms. (K, u) is called n-universal if $T_{u}: \pi_{i}(K) \rightarrow h\left(S^{i}\right), T_{u}(f)=f^{*}(u)$ is an isomorphism for all $i<n$ and subjective for $i=n$.

It is π_{*}-universal if it is n-universal for all n.
Lemma 5. Given (Z, z) with Z conn. CW-complex, $z \in h(Z), h$ as above, there exists a π_{*}-universal (K, U) such that $Z \subseteq K$ is a subcomplex and $\left.u\right|_{Z}=z$.

Lemma 6. Let h as above, $(K, u) \pi_{*}$-universal, (X, A) a CW-pair. Then for all $x \in h(X)$ and $f: A \rightarrow K$ with $f^{*}(u)=\left.x\right|_{A}$, there exists $g: X \rightarrow K$ extending f with $g^{*}(u)=x$.

Theorem 7. For $h: \mathbf{C W}_{*} \rightarrow$ sets $_{*}$ a contravariant functor satisfying the homotopy, Mayer-Vietoris and wedge axioms, there exists a connected CWcomplex K and $u \in h(K)$ such that $T_{u}:[X, K] \rightarrow h(X), T_{u}(f)=f^{*}(u)$ is a bijection for all $X .(K, u)$ is called universal for h.

Remark. We note the following facts:
i) The universal pair is unique up to homotopy.
ii) The wedge axiom implies that $h(p t)=0$.
iii) The homotopy, wedge and Mayer-Vietoris axioms together imply the exactness axiom.
iv) We can use the bijection $T_{u}:[\Sigma Y, K] \rightarrow h(\Sigma Y)$ to define a group structure on $h(\Sigma Y)$.

Proofs

Proof of Theorem 1

As $h^{n}(X) \cong h^{n+1}(\Sigma X)$ in any cohomology theory and ΣX connected, it is enough to prove that the statement holds true for connected CW-complexes. In the end, we can then use the properties of an Ω-spectrum to see the following:

$$
h^{n}(X) \cong h^{n+1}(\Sigma X) \cong\left[\Sigma X, K_{n+1}\right] \cong\left[X, \Omega K_{n+1}\right] \cong\left[X, K_{n}\right] .
$$

As each h^{n} satisfies the requirements of Theorem 7, we get CW-complexes K_{n} with $h^{n}(X) \cong\left[X, K_{n}\right]$. It remains to show that these CW-complexes actually form an Ω-spectrum, i.e. that we get weak homotopy equivalences $K_{n} \rightarrow \Omega K_{n+1}$.

The isomorphism $h^{n}(X) \cong h^{n+1}(\Sigma X)$ corresponds to a natural isomorphism $\phi:\left[X, K_{n}\right] \rightarrow\left[\Sigma X, K_{n+1}\right] \rightarrow\left[X, \Omega K_{n+1}\right]$. Naturality means that we get the following commutative diagram for all $f: X \rightarrow K_{n}$.

We define $\varepsilon_{n}:=\phi(i d): K_{n} \rightarrow \Omega K_{n+1}$ and calculate:

$$
\phi(f)=\phi(f \circ i d)=\phi \circ f^{*}(i d)=f^{*} \circ \phi(i d)=f^{*}\left(\varepsilon_{n}\right)=\varepsilon_{n} \circ f .
$$

Thus $\phi:\left[K_{n}, K_{n}\right] \rightarrow\left[K_{n}, \Omega K_{n+1}\right]$ is given by composition with ε_{n}. We use $X=S^{k}$ and the fact that ϕ is a bijection to conclude that ε_{n} induces isomorphisms on all homotopy groups, so it is a weak homotopy equivalence. One still has to check that we preserve group structure throughout.

Proof of Lemma 5 (Sketch)

We construct (K, u) from (Z, z) inductively.
We set $K_{1}:=Z \vee\left(\bigvee_{\alpha} S^{1}\right)$, where the α range over $h\left(S^{1}\right)$. Via the wedge axiom, we get an isomorphism $i_{Z} \times\left(\Pi_{\alpha} i_{\alpha}\right): h\left(K_{1}\right) \rightarrow h(Z) \times\left(\Pi_{\alpha} h\left(S^{1}\right)\right)$. Thus, there exists $u_{1} \in h\left(K_{1}\right)$ such that $\left.u\right|_{Z}=z$ and $\left.u\right|_{S_{\alpha}^{1}}=\alpha$. Then, $\left(K_{1}, u_{1}\right)$ is 1-universal.

We assume now we have constructed (K_{n}, u_{n}) n-universal with $Z \subseteq K_{n}$ and $\left.u_{n}\right|_{Z}=z$. We represent elements in the kernel of $T_{u_{n}}: \pi_{n}\left(K_{n}\right) \rightarrow h\left(S^{n}\right)$ by $f_{\alpha}: S^{n} \rightarrow K_{n}$ and define $f:=\bigvee_{\alpha} f_{\alpha}: \bigvee_{\alpha} S_{\alpha}^{n} \rightarrow K_{n}$. The reduced mapping cylinder $M f$ deformation retracts onto K_{n}, so we can regard $u_{n} \in h(M f)$, but then clearly $u_{n} \mid \bigvee_{\alpha} S_{\alpha}^{n}=0$ by the definition of f. Via the exactness axiom and using that $C f=M f / \bigvee_{\alpha} S_{\alpha}^{n}$ the following sequence is exact:

$$
h(C f) \rightarrow h(M f) \rightarrow h\left(\bigvee_{\alpha} S_{\alpha}^{n}\right) .
$$

We get $\omega \in h(C f)$ with $\omega \mapsto u_{n}$ and set $K_{n+1}:=C f \vee\left(\bigvee_{\beta} S_{\beta}^{n+1}\right)$, where $\beta \in h\left(S^{n+1}\right)$. Using the wedge axiom, we can find $u_{n+1} \in h\left(K_{n+1}\right)$ that restricts to $\omega \in h(C f)$ and $\beta \in h\left(S_{\beta}^{n+1}\right)$. We claim that this is $(n+1)$ connected. For this, consider the following commutative diagram:

The upper map is an isomorphism for $i<n$ and surjective for $i=n$, as we construct K_{n+1} from K_{n} by attaching $(n+1)$-cells. The same properties hold for $T_{u_{n}}$, as (K_{n}, u_{n}) is n-universal, so by commutativity the same holds for $T_{u_{n+1}}$. We can also see that $T_{u_{n+1}}$ is injective for $i=n$: An element in the kernel of $T_{u_{n+1}}$ pulls back to an element in the kernel of $T_{u_{n}} \subseteq \pi_{i}\left(K_{n}\right)$ via surjectivity of the upper map and commutativity of the diagram. However, we have constructed K_{n+1} by attaching cells for all elements in the kernel of $T_{u_{n}}$, so this is trivial. Also, for $i=n+1, T_{u_{n+1}}$ is surjective by construction.

We can now define $K:=\bigcup K_{n}$. We use a mapping telescope argument to show that there exists $u \in h(K)$ such that $\left.u\right|_{K_{n}}=u_{n}$. Via a similar argument as above, we see that (K, u) is π_{*}-universal.

Proof of Lemma 6

Wlog we can assume that K is the reduced mapping cylinder, and thus f is the inclusion of a subcomplex. We define $Z:=X \cup_{A} K$. Via Mayer-Vietoris, we get $z \in h(Z)$ such that $\left.z\right|_{X}=x$ and $\left.z\right|_{K}=u$.

We can embed (Z, z) into (K^{\prime}, u^{\prime}) which is π_{*}-universal. The inclusion $(K, u) \rightarrow\left(K^{\prime}, u^{\prime}\right)$ induces isomorphisms on homotopy groups as both are $\pi_{*^{-}}$ universal, so K^{\prime} deformation retracts onto K. The deformation retract induces a homotopy relative A of $X \hookrightarrow K^{\prime}$ to $g: X \rightarrow K$. By the homotopy, clearly $g^{*}(u)=x$ holds since $\left.u^{\prime}\right|_{K}=u$ and $\left.u^{\prime}\right|_{X}=x$.

Proof of Theorem 7

It suffices to show that if (K, u) is π_{*}-universal, then (K, u) is already universal, as we know by Lemma 5 that there exists a π_{*}-universal (K, u), i.e. such that $T_{u}: \pi_{i}(K) \rightarrow h\left(S^{i}\right), f \mapsto f^{*}(u)$ is an isomorphism for all i. We apply Lemma 6 with $A=p t$ and varying $x \in X$ to see that $T_{u}:[X, K] \rightarrow h(X)$ is surjective.

For injectivity, suppose $T_{u}\left(f_{0}\right)=T_{u}\left(f_{1}\right)$, i.e. $f_{0}^{*}(u)=f_{1}^{*}(u)$. Now, we apply Lemma 6 with $(X \times I /(p t \times I), X \times \delta I /(p t \times \delta I))$ with map $f_{0} \sqcup f_{1}$ on $X \times \delta I$, and $x=p^{*} f_{0}^{*}(u)=p^{*} f_{1}^{*}(u)$ where $p: X \times I /(p t \times I) \rightarrow X$ is the reduced projection:

The dashed map that we get is exactly the desired homotopy from f_{0} to f_{1}.

