The Whitney Trick

Dimitris Oikonomou

June 24, 2020

Dimitris Oikonomou

The Whitney Trick

১০০৫ টা / 34 June 24, 2020

< □ > < 同 > < 回 > < 回 > < 回 >

Recollections I: Transversality

Definition

Two submanifolds $Y', Y'' \subseteq X^m$ of a given manifold X^m are called **transverse** (or **intersect transversally**) if for any $p \in Y' \cap Y''$ we have $T_pY' + T_pY'' = T_pX$.

Facts:

- If Y', Y" ⊆ X intersect transversally, then Y' ∩ Y" is a submanifold with codim(Y' ∩ Y") = codim Y' + codim Y".
- If Y', Y" ⊆ X are submanifolds of complementary dimensions that intersect transversally, then by the previous, Y' ∩ Y" is a 0-manifold, ie Y' and Y" intersect in isolated points. If moreover Y', Y", X are oriented, then we can assign a sign for each isolated point of Y' ∩ Y" corresponding to the induced orientation.

イロト 不得 トイラト イラト 一日

The Whitney Trick

All manifolds throughout this talk are assumed smooth, compact and oriented.

Theorem (Whitney's Trick)

Consider two submanifolds $N_1^{k_1}$ and $N_2^{k_2}$ of complementary dimensions intersecting transversely inside of M^n , an n-manifold without boundary. Furthermore suppose that N_1 is oriented as well as the normal bundle of N_2 in M. Suppose that $k_1, k_2 \ge 3$. Let P and P' be two intersection points of N_1 and N_2 having opposite signs. Suppose there exists paths γ_1 and γ_2 from P to P' in N_1 and N_2 , respectively, such that the loop $\gamma_1^{-1}\gamma_2$ is nullhomotopic in M. Then there is an ambient isotopy of N_1 into a submanifold N'_1 transverse to N_2 such that

$$N'_1 \cap N_2 = N_1 \cap N_2 - \{P, P'\}$$

A D N A B N A B N A B N

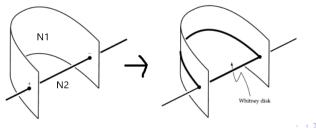
The Whitney Trick

Remark

We can strengthen the above result slightly. In fact we can assume that $k_2 \ge 3$, $n \ge 5$ and in case $k_1 = 1$ or $k_1 = 2$ suppose that the induced map $\pi_1(M - N_2) \rightarrow \pi_1(M)$ is 1-1. The proof is essentially the same. The above assumptions simplify the exposition.

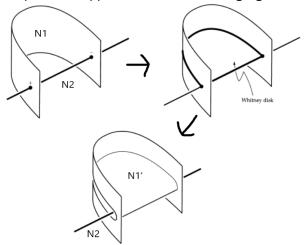
Idea of the Proof

- Assume, using transversality, that γ_1 and γ_2 do not intersect any points of $N_1 \cap N_2$ except P, P'. Since the loop $\gamma_1^{-1}\gamma_2$ is homotopically trivial, it bounds some immersed disk in the complement of N_1 and N_2 .
- By the classical Whitney Embedding Theorem, it is known that embeddings are always dense in the space of all (smooth) maps $A^n \rightarrow B^{2n+1}$. In particular, this implies that immersions of disks in manifolds of dimension **at least 5** can always be approximated by embeddings. In our case, this results in an embedded disk bounded by our circle, called a *Whitney disk*.



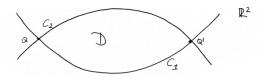
Idea of the Proof

By using this Whitney disk as a guide, we can now push N_1 past N_2 , till the intersection points disappear, as in the following figure:



Proof of the Whitney Trick:

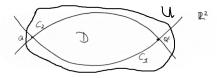
- Without loss of generality suppose that the sign at P is +1, while the sign at P' is -1.
- By slightly deforming our paths, assume (using transversality) that γ₁ and γ₂ do not intersect any points of N₁ ∩ N₂ except P, P'.
- Idea: We embed a "standard model" within which the required isotopy is easy to write. For our standard model, choose two curves C₁, C₂ in ℝ² intersecting transversally at Q, Q' and enclosing a disc D.
- Choose an embedding $\varphi_1 : C_1 \cup C_2 \rightarrow N_1 \cup N_2$ such that $\varphi_1(C_1) = \gamma_1$ and $\varphi_1(C_2) = \gamma_2$. We will find an isotopy F_t from $F_0 = id$ to F_1 such that $N'_1 = F_1(N_1)$ meets the required conditions.



In order to construct F_t we will need the following lemma:

Lemma

For some neighborhood U of D, we can extend $\varphi_1|_{U\cap(C_1\cup C_2)}$ to an embedding $\varphi: U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1} \to M$ such that $\varphi^{-1}(N_1) = (U \cap C_1) \times \mathbb{R}^{k_1-1} \times 0$ and $\varphi^{-1}(N_2) = (U \cap C_2) \times 0 \times \mathbb{R}^{k_2-1}$.



- Let $W = \varphi(U \times \mathbb{R}^{k_1 1} \times \mathbb{R}^{k_2 1}).$
- We define F_t to be the identity outside of our embedded standard model(ie outside of W).

< □ > < □ > < □ > < □ > < □ > < □ >

• Choose an isotopy $G_t: U \rightarrow U$ of our standard model such that:

- G_t is the identity in a neighborhood of the boundary $\overline{U} U$ of U, $0 \le t \le 1$
- $G_1(U \cap C_1) \cap C_2 = \emptyset$

• Let $\rho : \mathbb{R}^{k_1 - 1} \times \mathbb{R}^{k_2 - 1} \to [0, 1]$ be a *smooth* function such that • $\rho(x, y) = 1$ if $|x|^2 + |y|^2 \le 1$ • $\rho(x, y) = 0$ if $|x|^2 + |y|^2 \ge 2$ for $x \in \mathbb{R}^{k_1 - 1}, y \in \mathbb{R}^{k_2 - 1}$.

(4) (日本)

[•] $G_0 = id$

- Define an isotopy $H_t: U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1} \to U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1}$ by $H_t(u, x, y) = (G_{t\rho(x,y)}(u), x, y), u \in U.$
- It is easy to see that F_t(w) = φ ∘ H_t ∘ φ⁻¹(w), w ∈ W, defines the required isotopy on W. This finishes the proof of Whitney trick, modulo the lemma.

< □ > < □ > < □ > < □ > < □ > < □ >

Recollections II: The exponential map

Let M be a Riemannian manifold. It is well known (by the existence and uniqueness of geodesics) that for any $p \in M$, $V \in T_pM$ there exists a unique maximal geodesic $\gamma : I \to M$ with $\gamma(0) = p$ and $\dot{\gamma}(0) = V$. Denote it by γ_V .

Definition

Define $\mathcal{E} = \{ V \in TM : \gamma_V \text{ is defined on an interval containing } [0,1] \}$. Now we define the **exponential map** exp : $\mathcal{E} \to M$ by exp $(V) = \gamma_V(1)$. The restricted exponential exp_p is the restriction to $\mathcal{E}_p = \mathcal{E} \cap T_p M$.

Lemma

- E is an open subset of TM, containing the zero section, and E_p is star shaped with respect to 0.
- **2** For each $V \in TM$, the geodesic γ_V is given by $\gamma_V(t) = \exp(tV)$.
- **③** The exponential map $exp : \mathcal{E} \to M$ is smooth.

イロト イポト イヨト イヨト

Lemma (Normal Neighborhood Lemma)

For any $p \in M$, there is a neighborhood V of the origin in T_pM and a neighborhood U of $p \in M$ such that $\exp_p : V \to U$ is a diffeomorphism, ie the exponential map is a local diffeomorphism.

Reference: Lee, John. *Riemannian Manifolds: An Introduction to Curvature.* Springer, 1997

Lemma

For some neighborhood U of D, we can extend $\varphi_1|_{U\cap(C_1\cup C_2)}$ to an embedding $\varphi: U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1} \to M$ such that $\varphi^{-1}(N_1) = (U \cap C_1) \times \mathbb{R}^{k_1-1} \times 0$ and $\varphi^{-1}(N_2) = (U \cap C_2) \times 0 \times \mathbb{R}^{k_2-1}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Technical Lemma

Lemma

There exists a Riemannian metric on M such that:

- N₁ and N₂ are totally geodesic submanifolds of M (ie if a geodesic in M is tangent to N₁ or to N₂ at any point then it is entirely in N₁ or N₂, respectively).
- ② There exist coordinate neighborhoods B_P, B_{P'} about P, P' in which the metric is the Euclidean metric and so that B_P ∩ γ₁, B_P ∩ γ₂, B_{P'} ∩ γ₁, B_{P'} ∩ γ₂ are straight line segments. ("Metric is Euclidean near P, P'")

- 4 回 ト 4 ヨ ト 4 ヨ

Lemma

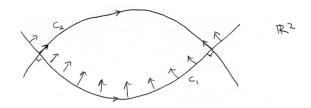
For some neighborhood U of D, we can extend $\varphi_1|_{U\cap(C_1\cup C_2)}$ to an embedding $\varphi: U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1} \to M$ such that $\varphi^{-1}(N_1) = (U \cap C_1) \times \mathbb{R}^{k_1-1} \times 0$ and $\varphi^{-1}(N_2) = (U \cap C_2) \times 0 \times \mathbb{R}^{k_2-1}$.

Proof of the Lemma:

- Fact: We can endow *M* with a Riemmanian metric which is Euclidean near *P*, *P*' and under which *N*₁, *N*₂ are totally geodesic submanifolds.
- Let τ₂(P), τ₂(P') be the unit tangent vectors to γ₂ ⊆ N₂ at P, P'. Note that τ₂(P) is orthogonal to N₁, by the definition of our metric.
- Consider the bundle over γ₁ of vectors orthogonal to N₁. This bundle is trivial since γ₁ is contractible.

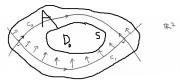
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Hence we can extend τ₂(P) to a smooth field of unit vectors along γ₁ orthogonal to N₁, equal to the parallel translates of τ₂(P) near P (in B_P ∩ γ₁) and equal to the parallel translates of −τ₂(P') near P' (in B_{P'} ∩ γ₂).
- We also construct a corresponding vector field on our model in \mathbb{R}^2 .



 Since the exponential map is a local diffeomorphism we can find a neighborhood of C₁ in the plane and an extension of φ₁|_{C1} to an embedding of this neighborhood into M. Repeating this process we can extend φ₁|_{C2} to an embedding of a neighborhood of C₂ into M.

Since our metric is Euclidean near P and P', we see that the two embeddings agree at these points and thus combine to form an embedding φ₂ : A → M with φ₂⁻¹(N₁) = A ∩ γ₁ and φ₂⁻¹(N₂) = A ∩ γ₂, where A is an annular neighborhood of C₁ ∪ C₂ in



the plane.

Next we extend φ₂ to a neighborhood U of the entire disc D. Let S denote the inner boundary of the annulus A. Since γ₁⁻¹γ₂ is homotopic to φ₂(S), φ₂(S) is also contractible in M.

Actually φ₂(S) is contractible in M − (N₁ ∪ N₂) as the following lemma shows:

Lemma

If V^n , $n \ge 5$, is a smooth manifold, M_1 a smooth submanifold of codimension at least 3, then a loop in $V - M_1$ that is contractible in V is also contractible in $V - M_1$.

• The proof of this lemma follows from the following 2 lemmas due to Whitney.

Lemma (Whitney I)

Let $f : M_1 \to M_2$ be a continuous map of smooth manifolds which is smooth on a closed subset A of M_1 . Then there exists a smooth map $g : M_1 \to M_2$ such that $g \simeq f$ (g is homotopic to f) and $g|_A = f|_A$.

イロト 不得 トイラト イラト 一日

Lemma (Whitney II)

Let $f: M_1 \to M_2$ be a smooth map of smooth manifolds which is an embedding on the closed subset $A \subseteq M_1$. Assume that dim $M_2 \ge 2 \dim M_1 + 1$. Then there exists an embedding $g: M_1 \to M_2$ approximating f such that $g \simeq f$ and $g|_A = f|_A$.

- We now choose a continuous extension of φ_2 to $U = A \cup D_0$, $\varphi'_2 : U \to M$, that maps Int(D) into $M (N_1 \cup N_2)$.
- Applying the above lemmas to $\varphi'_2|_{Int(D)}$ we can obtain a smooth embedding $\varphi_3 : U \to M$ coinciding with φ_2 on a neighborhood of U Int(D), and such that $\varphi_3(u) \notin N_1 \cup N_2$ for $u \notin C_1 \cup C_2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- It remains to extend φ_3 to $U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1}$. We will find an obstruction to this extension in general, which will be obviated by our assumption that the signs of P and P' are opposite.
- In particular, we use the following intermediate lemma whose statement and proof are due to Milnor. Henceforth let U' := φ₃(U) and γ_i := U' ∩ γ_i, C_i = U ∩ C_i for i = 1, 2.

Lemma (Milnor)

There exist smooth vector fields $\xi_1, \ldots, \xi_{k_1-1}, \eta_1, \ldots, \eta_{k_2-1}$ on U' such that:

- ξ_i, η_j are orthonormal and orthogonal to U'.
- **2** ξ_i are tangent to N_1 along γ_1 .
- **3** η_j are tangent to N_2 along γ_2 .

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Milnor)

There exist smooth vector fields $\xi_1, \ldots, \xi_{k_1-1}, \eta_1, \ldots, \eta_{k_2-1}$ on U' such that:

- ξ_i, η_j are orthonormal and orthogonal to U'.
- **2** ξ_i are tangent to N_1 along γ_1 .
- **3** η_j are tangent to N_2 along γ_2 .

We shall use the vector fields constructed to define a map $U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1} \to M$ by

$$(u, x_1, \ldots, x_{k_1-1}, y_1, \ldots, y_{k_2-1}) \mapsto \exp\left[\sum_{i=1}^{k_1-1} x_i \xi_i(\varphi_3(u)) + \sum_{j=1}^{k_2-1} y_j \eta_j(\varphi_3(u))\right]$$

.

• It follows from the lemma and the fact that this map is a local diffeomorphism that there exists an open ε -neighborhood B_{ε} about the origin in $\mathbb{R}^{k_1+k_2-2} = \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1}$ such that if $\varphi_4: U \times B_{\varepsilon} \to M$ denotes the restriction of the above map to $U \times B_{\varepsilon}$, then φ_4 is an embedding. (U may have to be replaced by a slightly smaller neighborhood, which we still denote by U.)

• Define
$$\varphi: U \times \mathbb{R}^{k_1-1} \times \mathbb{R}^{k_2-1} \to M$$
 by $\varphi(u,z) = \varphi_4(u, \frac{\varepsilon z}{\sqrt{1+|z|^2}}).$

- Then φ(C₁ × ℝ^{k₁-1} × 0) ⊆ N₁ (This follows because N₁ is a totally geodesic submanifold by choice of metric; on C₁ × ℝ^{k₁-1} × 0, φ only deals with vectors v ∈ T_p(N₁) ⊆ T_p(M), and exp(tv) is a geodesic in M, tangent to N₁ at t = 0, and thus entirely within N₁). Similarly φ(C₂ × 0 × ℝ<sup>k₂-1) ⊆ N₂.
 </sup>
- Moreover, since $\varphi(U \times 0) = U'$ intersects N_1 and N_2 transversely in γ_1 and γ_2 , it follows that for ε small enough, $Im(\varphi)$ intersects N_1 and N_2 transversely. Thus $\varphi^{-1}(N_1) = C_1 \times \mathbb{R}^{k_1 1} \times 0$ and $\varphi^{-1}(N_2) = C_2 \times 0 \times \mathbb{R}^{k_2 1}$, as desired.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Milnor's Lemma

Lemma (Milnor)

There exist smooth vector fields $\xi_1, \ldots, \xi_{k_1-1}, \eta_1, \ldots, \eta_{k_2-1}$ on U' such that:

- ξ_i, η_j are orthonormal and orthogonal to U'.
- **2** ξ_i are tangent to N_1 along γ_1 .

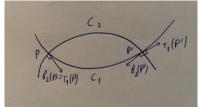
3 η_j are tangent to N_2 along γ_2 .

Proof:

- We construct the ξ 's in steps: first along γ_1 , then extending to $\gamma_1 \cup \gamma_2$ and then finally to all of U'.
- Let τ₁ and τ₂ be the normalized velocity vector fields along γ₁ and γ₂. Let β₂ be the field of unit vectors along γ₂ which are tangent to U' ⊆ M and inward orthogonal to γ₂. Finally, let ν(N₂) denote the normal bundle of N₂ ⊆ M.

< □ > < 同 > < 回 > < 回 > < 回 >

• Note that $\beta_2(P) = \tau_1(P)$ and $\beta_2(P') = -\tau_1(P')$.



- Choose $k_1 1$ vectors $\xi_1(P), \ldots, \xi_{k_1-1}(P)$ which are tangent to N_1 at P, orthogonal to U', and such that the k_1 -frame $\tau_1(P), \xi_1(P), \ldots, \xi_{k_1-1}(P)$ is positively oriented in $T_P(N_1)$.
- We parallel translate these vectors to define the ξ's along γ₁. These vectors automatically satisfy (2) because parallel translation along a curve in a a totally geodesic submanifold sends tangent vectors (to N₁) to tangent vectors.

• • = • • = •

- By continuity, the k_1 -frame constructed is positively oriented in TN_1 along γ_1 . In small neighborhoods of P and P' ($B_P \cap \gamma_2$, $B_{P'} \cap \gamma_2$), we can extend the ξ 's along γ_2 by parallel translation.
- We wish to extend the ξ 's along the whole of γ_2 , however. We have assumed that the intersection numbers of N_1 and N_2 are +1 and -1at P and P', respectively. In other words, $\tau_1(P), \xi_1(P), \ldots, \xi_{k_1-1}(P)$ is positively oriented in $\nu(N_2)$ at P, while negatively oriented in $\nu(N_2)$ at P'.
- But, since $\beta_2(P) = \tau_1(P)$ and $\beta_2(P') = -\tau_1(P')$, at all points of γ_2 near P and P' the frames $\beta_2, \xi_1, \ldots, \xi_{k_1-1}$ are positively oriented in $\nu(N_2)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We wish to extend the ξ's to γ₂ − i.e. to find a moving (k₁ − 1)-frame over γ₂ agreeing with the frame already defined over γ₁.
- Instead of looking for (k₁ − 1) independent sections over γ₂, we look for a single (nonzero) cross section of the frame-bundle of (k₁ − 1)-frames ζ₁,..., ζ_{k₁−1}, orthogonal to N₂ and to U', and such that β₂, ζ₁,..., ζ_{k₁−1} is positively oriented in ν(N₂).
- This frame bundle is trivial with fiber SO(n k₂ 1) = SO(k₁ 1). Since the fiber is connected (and we are trying to extend over a 1-dimensional manifold γ₂), we can extend ξ₁,...,ξ_{k₁-1} to a smooth field of (k₁ 1)-frames on γ₁ ∪ γ₂ satisfying conditions (1) and (2).

イロト 不得 トイヨト イヨト 二日

- Aiming to extend to all of U', we must consider the frame-bundle over U' of orthonormal (k₁ − 1)-frames orthogonal to U', which is trivial with fiber O(k₁ + k₂ − 2)/O(k₂ − 1) = V_{k1−1}(ℝ^{k1+k2−2}), the Stiefel manifold of orthonormal (k₁ − 1)-frames in ℝ^{k1+k2−2} = ℝ^{k1−1} × ℝ^{k2−1}.
- We already have defined a smooth section of this bundle over γ₁ ∪ γ₂. Composing this section with projection onto the fiber gives us a smooth map of S¹ = γ₁ ∪ γ₂ into O(k₁ + k₂ - 2)/O(k₂ - 1).
- Thus, the obstruction to extending this section lies in π₁(V_{k1-1}(ℝ^{k1+k2-2})) which, as k₂ ≥ 3 is trivial.¹ Thus we can perform the required extension to all of U', satisfying (1) and (2).

¹Recall that we have fibration $V_{k-1}(\mathbb{R}^{n-1}) \to V_k(\mathbb{R}^n) \to S^{n-1}_{\mathbb{R}^n} \to \mathbb{R}^n$

- Finally, to define the η 's, consider the bundle over U' of orthonormal frames $\eta_1, \ldots, \eta_{k_2-1}$ in TM such that each η_i is orthogonal to U' and to the ξ 's. This bundle is trivial by the contractibility of U'.
- Hence we can find the field of frames η₁,..., η_{k2-1} (cross section of the bundle), which, together with the ξ's satisfy the conditions (1), (2), and (3) of our lemma. Of course, condition (3) is satisfied by the η's because they are orthogonal to the ξ's, which were constructed to be orthogonal to N₂ along γ₂.

Technical Lemma

Lemma

There exists a Riemannian metric on M such that:

- N₁ and N₂ are totally geodesic submanifolds of M (ie if a geodesic in M is tangent to N₁ or to N₂ at any point then it is entirely in N₁ or N₂, respectively).
- There exist coordinate neighborhoods B_P, B_{P'} about P, P' in which the metric is the Euclidean metric and so that B_P ∩ γ₁, B_P ∩ γ₂, B_{P'} ∩ γ₁, B_{P'} ∩ γ₂ are straight line segments. ("Euclidean near P, P'")

Proof(Sketch):

Suppose that N_1 and N_2 intersect transversely in points $P_1 = P, P_2 = P', \dots, P_k$.

< □ > < 同 > < 三 > < 三 >

Proof of the technical lemma

Cover $N_1 \cup N_2$ by coordinate neighborhoods W_1, \ldots, W_m in M with coordinate diffeomorphisms $h_i : W_i \to \mathbb{R}^{k_1+k_2} = \mathbb{R}^n$, $i = 1, \ldots, m$, such that:

- There are disjoint coordinate neighborhoods B_1, \ldots, B_k with $P_i \in B_i \subseteq \overline{B_i} \subseteq W_i$ and $N_i \cap W_j = \emptyset$ for $i = 1, \ldots, k$ and $j = k + 1, \ldots, m$.
- Some in the segments in $R^{k_1+k_2} = R^n$

Construct a Riemannian metric $\langle v, w \rangle$ on the open set $W_0 = W_1 \cup \cdots \cup W_m$ by piecing together the metrics on the W_i induced by the h_i , using a partition of unity. Note that because of (1) this metric is Euclidean in the B_i , $i = 1 \dots, k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Proof of the technical lemma

- With this metric construct open tubular neighborhoods T and T' of N_1 and N_2 in W_0 using the exponential map. By choosing them thin enough we may assume that $T \cap T' \subseteq B_1 \cup \cdots \cup B_k$.
- Let A: T → T be the smooth involution (A² = id) which is the antipodal map on each fiber of T. Define a new Riemannian metric < v, w >_A on T by < v, w >_A = ¹/₂(< v, w > + < A_{*}v, A_{*}w >)
- Claim: With respect to this new metric, N_1 is a totally geodesic submanifold of T.
- Similarly define a new metric $\langle v, w \rangle_{A'}$, on T'. It follows from property (2) and the form of $T \cap T'$ that these two new metrics agree with the old metric on $T \cap T'$ and hence together define a metric on $T \cup T'$.
- Extending to all of *M* the restriction of this metric to an open set *O*, with N₁ ∪ N₂ ⊆ *O* ⊆ *O* ⊆ *T* ∪ *T'*, completes the construction of a metric on *M* satisfying conditions (1) and (2).

イロト イボト イヨト イヨト

References

- Lee, John. Riemannian Manifolds: An Introduction to Curvature. Springer, 1997
- Milnor, John. *Lectures on the h-cobordism theorem*. Princeton University Press, 1965
- Plotkin, Joshua. Cobordism and Exotic Spheres. Bachelor Thesis, Harvard, 1999.
- Scorpan, Alexandru. *The Wild World of 4-Manifols*. American Mathematical Society, 2005

Thank you all for your attention! :)

• • • • • • • • • • • •