Handle decompositions

Antonio Ceres

June 17, 2020

Recall

h-Cobordism Theorem

Let $\left(W ; M_{0}, M_{1}\right)$ be a h-cobordism over a simply connected manifold M_{0} with $\operatorname{dim}\left(M_{0}\right) \geq 5$. Then W is trivial

Recall

h-Cobordism Theorem

Let $\left(W ; M_{0}, M_{1}\right)$ be a h-cobordism over a simply connected manifold M_{0} with $\operatorname{dim}\left(M_{0}\right) \geq 5$. Then W is trivial

s-Cobordism Theorem

There is a more general statement for M_{0} connected with possibly nontrivial fundamental group π such that h-cobordisms over M_{0} are described by the so called Whitehead group $W h(\pi)$.

Outline

- Handle Decomposition
- CW-Structures
- Reducing Handle Decomposition

Handles

Definition

- The q-handle (of dimension n) is the space $D^{q} \times D^{n-q}$. Its transverse sphere is $\{0\} \times S^{n-q-1}$.

Handles

Definition

- The q-handle (of dimension n) is the space $D^{q} \times D^{n-q}$. Its transverse sphere is $\{0\} \times S^{n-q-1}$.
- Let M be a manifold of dimension n with boundary and $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial M$ an embedding. The manifold obtained from M by attaching a handle of index q by ϕ^{q} is given by the pushout $M \cup_{\phi^{q}} D^{q} \times D^{n-q}$. We denote it by $M+\left(\phi^{q}\right)$.

Handles

Definition

- The q-handle (of dimension n) is the space $D^{q} \times D^{n-q}$. Its transverse sphere is $\{0\} \times S^{n-q-1}$.
- Let M be a manifold of dimension n with boundary and $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial M$ an embedding. The manifold obtained from M by attaching a handle of index q by ϕ^{q} is given by the pushout $M \cup_{\phi^{q}} D^{q} \times D^{n-q}$. We denote it by $M+\left(\phi^{q}\right)$.

Handlebody Decomposition

In the following, W is a compact manifold of dimension n with boundary $\partial W=\partial_{0} W \sqcup \partial_{1} W$.

Construction

Consider $W_{0}=\partial_{0} W \times[0,1]$ and an embedding $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W_{0}$. Denote $W_{1}=W_{0}+\left(\phi^{q}\right)$. Iterating this process

$$
W_{r}=W_{0}+\left(\phi^{q_{1}}\right)+\cdots+\left(\phi_{r}^{q}\right)
$$

with boundary $\partial W_{r}=\partial_{0} W \sqcup \partial_{1} W_{r}$. We say this is a handle decomposition of W_{r} relative to $\partial_{0} W$.

Handlebody Decomposition

From Morse theory

Lemma

W admits a handlebody decomposition relative to $\partial_{0} W$.

$$
W=W_{0}+\left(\phi^{q_{1}}\right)+\cdots+\left(\phi^{q_{r}}\right)
$$

where $=$ means diffeomorphic relative to $\partial_{0} W$.

Handlebody Decomposition

From Morse theory

Lemma

W admits a handlebody decomposition relative to $\partial_{0} W$.

$$
W=W_{0}+\left(\phi^{q_{1}}\right)+\cdots+\left(\phi^{q_{r}}\right)
$$

where $=$ means diffeomorphic relative to $\partial_{0} W$.

Handle Manipulation

Strategy

We want to decide if W is a trivial cobordism, i.e., we ask whether we can get rid of the handles without changing the diffeomorphism type of W relative to $\partial_{0} W$.

Handle Manipulation

Strategy

We want to decide if W is a trivial cobordism, i.e., we ask whether we can get rid of the handles without changing the diffeomorphism type of W relative to $\partial_{0} W$.

Summary

- Attaching handles via isotopic embeddings ϕ^{q} and ψ^{q} gives $W+\left(\phi^{1}\right)=W+\left(\psi^{q}\right)$.
- If $W=W^{\prime}$ and ϕ^{q} defines a handle on $\partial_{1} W$, then $W+\left(\phi^{q}\right)=W^{\prime}+\left(\bar{\phi}^{q}\right)$ for some embedding $\bar{\phi}^{q}$ on $\partial_{1} W^{\prime}$.
- Handles can be ordered by increasing index.

Handle Manipulation

Lemma

Let $\phi^{q}, \psi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$ be isotopic embeddings, then $W+\left(\phi^{q}\right)=W+\left(\psi^{q}\right)$.

Handle Manipulation

Lemma

Let $\phi^{q}, \psi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$ be isotopic embeddings, then $W+\left(\phi^{q}\right)=W+\left(\psi^{q}\right)$.

Proof.

Let i be an isotopy from ϕ^{q} to ψ^{q}. There exists a diffeotopy H : $W \times[0,1]$ which is stationary on $\partial_{0} W$ and such that $i=H \circ \phi^{q} \times I d_{[0,1]}$. Then H_{1} is a diffeomorphism relative $\partial_{0} W$ taking ϕ^{q} to ψ^{q}, so it extends to a diffemorphism $W+\left(\phi^{q}\right) \rightarrow W+\left(\psi^{q}\right)$.

Handle Manipulation

Lemma

Let W and W^{\prime} as in our assumption with boundary $\partial_{0} W \sqcup \partial_{1} W$ and $\partial_{0} W^{\prime} \sqcup \partial_{1} W^{\prime}$, resp. Let $F: W \rightarrow W^{\prime}$ be a diffeomorphism restricting to a diffeomorphism $f_{0}: \partial_{0} W \rightarrow \partial_{0} W^{\prime}$ and an embedding $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$. Then there exists an embedding $\bar{\phi}^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W^{\prime}$ and a diffeomorphism $F^{\prime}: W+\left(\phi^{q}\right) \rightarrow W^{\prime}+\left(\bar{\phi}^{q}\right)$ extending F.

Proof.

Pick $\bar{\phi}^{q}=F \circ \phi^{q}$ and F^{\prime} the map induced by F.

Handle Manipulation

Lemma

Let $V=W+\left(\psi^{r}\right)+\left(\phi^{q}\right)$ with $q \leq r$. Then V is diffeomorphic relative $\partial_{0} W$ to $W+\left(\bar{\phi}^{q}\right)+\left(\psi^{r}\right)$ for an embedding $\bar{\phi}^{q}$.

Handle Manipulation

Lemma

Let $V=W+\left(\psi^{r}\right)+\left(\phi^{q}\right)$ with $q \leq r$. Then V is diffeomorphic relative $\partial_{0} W$ to $W+\left(\bar{\phi}^{q}\right)+\left(\psi^{r}\right)$ for an embedding $\bar{\phi}^{q}$.

Proof.

By the first lemma, it suffices to show ϕ^{q} is isotopic to an embedding $\bar{\phi}^{q}$ which doesn't meet the handle ψ^{r}

$$
W+\left(\psi^{r}\right)+\left(\phi^{q}\right)=W+\left(\psi^{r}\right)+\left(\bar{\phi}^{q}\right)=W+\left(\bar{\phi}^{q}\right)+\left(\psi^{r}\right) .
$$

Handle Manipulation

Lemma

Let $V=W+\left(\psi^{r}\right)+\left(\phi^{q}\right)$ with $q \leq r$. Then V is diffeomorphic relative $\partial_{0} W$ to $W+\left(\bar{\phi}^{q}\right)+\left(\psi^{r}\right)$ for an embedding $\bar{\phi}^{q}$.

Proof.

By the first lemma, it suffices to show ϕ^{q} is isotopic to an embedding $\bar{\phi}^{q}$ which doesn't meet the handle ψ^{r}

$$
W+\left(\psi^{r}\right)+\left(\phi^{q}\right)=W+\left(\psi^{r}\right)+\left(\bar{\phi}^{q}\right)=W+\left(\bar{\phi}^{q}\right)+\left(\psi^{r}\right)
$$

- Since $\operatorname{dim} S^{q-1} \times\{0\}+\operatorname{dim}\{0\} \times S^{n-r-1}=(q-1)+(n-r-1)<n-1$, there is an isotopy of ϕ^{q} to an embedding whose restriction to $S^{q-1} \times\{0\}$ doesn't meet the transverse sphere of $\left(\psi^{r}\right)$.

Proof.

- Since D^{n-q} is contractible, there is a closed neighbourhood $U \subset \partial_{1}\left(W+\left(\psi^{r}\right)\right)$ and an isotopy from ϕ^{q} to an embedding which does not meet U.
- Take a diffeotopy on $\partial_{1}\left(W+\left(\psi^{r}\right)\right)$ taking all points in $\partial\left(\psi^{r}\right) \backslash U$ outside of the handle $\left(\psi^{r}\right)$. This determines $\bar{\phi}^{q}$.

Handle Cancellation

Remark

Under certain circunstances, given a handle $\left(\phi^{q}\right)$ on W we can attach a second handle ψ^{q+1} such that $W+\left(\phi^{q}\right)+\left(\psi^{q+1}\right)=W$.

Handle Cancellation

Remark

Under certain circunstances, given a handle $\left(\phi^{q}\right)$ on W we can attach a second handle ψ^{q+1} such that $W+\left(\phi^{q}\right)+\left(\psi^{q+1}\right)=W$.

- Pick embedding $\mu: S^{q-1} \times D^{n-q} \cup_{S^{q-1} \times S_{+}^{n-q-1}} D^{q} \times S_{+}^{n-q-1} \rightarrow \partial_{1} W$.
- Let ϕ^{q} be its restriction to the first factor.
- Let ψ_{-}^{q+1} be the restriction of μ to the second factor and $\psi_{+}^{q+1}: S_{+}^{q} \times S_{+}^{n-q-1} \rightarrow \partial\left(\phi^{q}\right) \subset \partial_{1}\left(W+\left(\phi^{q}\right)\right)$ restriction of the characteristic map of ϕ^{q}. Glue both to the desired ψ^{q+1}.

Handle Cancellation

Lemma

Let $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$ and $\psi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}\left(W+\left(\phi^{q}\right)\right)$ be embeddings such that $\psi^{q+1}\left(S^{q} \times\{0\}\right)$ meets the transverse sphere of $\left(\phi^{q}\right)$ transversely at exactly one point. Then $W=W+\left(\phi^{q}\right)+\left(\psi^{q+1}\right)$.

Handle Cancellation

Lemma

Let $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$ and $\psi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}\left(W+\left(\phi^{q}\right)\right)$ be embeddings such that $\psi^{q+1}\left(S^{q} \times\{0\}\right)$ meets the transverse sphere of $\left(\phi^{q}\right)$ transversely at exactly one point. Then $W=W+\left(\phi^{q}\right)+\left(\psi^{q+1}\right)$.

Proof.

Similarly to last lemma, pick $U \subset \partial\left(\phi^{q}\right)$ neighbourhood of the transverse sphere of $\left(\phi^{q}\right)$ and a diffeotopy on $\partial_{1}\left(W+\left(\phi^{q}\right)\right)$ taking any point in $\partial\left(\phi^{q}\right) \backslash U$ outside the handle $\left(\phi^{q}\right)$.
Now we are in the situation of the previous example, for which the claim holds.

Handle Cancellation

Definition

An embedding $S^{q} \times D^{n-q} \rightarrow M$ into an n-dimensional manifold is called trivial if it factors through D^{n}.

Handle Cancellation

Definition

An embedding $S^{q} \times D^{n-q} \rightarrow M$ into an n-dimensional manifold is called trivial if it factors through D^{n}.

Lemma

Let $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$ be a trivial embedding. Then there is an embedding $\phi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}\left(W+\left(\phi^{q}\right)\right)$ such that $W=W+\left(\phi^{q}\right)+\left(\phi^{q+1}\right)$.

Handle Cancellation

Definition

An embedding $S^{q} \times D^{n-q} \rightarrow M$ into an n-dimensional manifold is called trivial if it factors through D^{n}.

Lemma

Let $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial_{1} W$ be a trivial embedding. Then there is an embedding $\phi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}\left(W+\left(\phi^{q}\right)\right)$ such that $W=W+\left(\phi^{q}\right)+\left(\phi^{q+1}\right)$.

Remark

The Euler characteristic $\chi(W)$ is $\sum_{q \geq 0}(-1)^{q} p_{q}$ where p_{q} is the number of handles of W of index q, so one cannot get rid of a single handle.

Elimination Lemma

Notation

Let $W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{0}}\left(\phi_{i}^{0}\right)+\sum_{i=1}^{p_{1}}\left(\phi_{i}^{1}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right) W e$ denote:

- $W_{q}=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{0}}\left(\phi_{i}^{0}\right)+\sum_{i=1}^{p_{1}}\left(\phi_{i}^{1}\right)+\cdots+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)$.
- $\partial_{1} W_{q}=\partial W_{q} \backslash\left(\partial_{0} W \times\{0\}\right)$.
- $\partial_{1}^{0} W_{q}=\partial_{1} W_{q} \cap \partial_{1} W_{q+1}$

Elimination Lemma

Lemma

Let $1 \leq q \leq n-3$ such that $W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right)$.
Suppose there is i_{0} with $1 \leq i_{0} \leq p_{q}$ and an embedding $\psi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q}$ satisfying:

Elimination Lemma

Lemma

Let $1 \leq q \leq n-3$ such that
$W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right)$.
Suppose there is i_{0} with $1 \leq i_{0} \leq p_{q}$ and an embedding $\psi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q}$ satisfying:
(1) $\left.\psi^{q+1}\right|_{S^{q} \times\{0\}}$ is isotopic in $\partial_{1} W_{q}$ to an embedding $\psi_{1}^{q+1}: S^{q} \times\{0\} \rightarrow \partial_{1} W_{q}$ meeting transversally the transverse sphere of $\left(\phi_{i_{0}}^{q}\right)$ in exactly one point and disjoint to the transverse sphere of any other q-handle.

Elimination Lemma

Lemma

Let $1 \leq q \leq n-3$ such that
$W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right)$.
Suppose there is i_{0} with $1 \leq i_{0} \leq p_{q}$ and an embedding $\psi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q}$ satisfying:
(1) $\left.\psi^{q+1}\right|_{S^{q} \times\{0\}}$ is isotopic in $\partial_{1} W_{q}$ to an embedding $\psi_{1}^{q+1}: S^{q} \times\{0\} \rightarrow \partial_{1} W_{q}$ meeting transversally the transverse sphere of $\left(\phi_{i_{0}}^{q}\right)$ in exactly one point and disjoint to the transverse sphere of any other q-handle.
(2) $\left.\psi^{q+1}\right|_{S^{q} \times\{0\}}$ is isotopic in $\partial_{1} W_{q+1}$ to a trivial embedding
$\psi_{2}^{q+1}: S^{q} \times\{0\} \rightarrow \partial_{1}^{0} W_{q+1}$.

Elimination Lemma

Lemma

Let $1 \leq q \leq n-3$ such that
$W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right)$.
Suppose there is i_{0} with $1 \leq i_{0} \leq p_{q}$ and an embedding $\psi^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q}$ satisfying:
(1) $\left.\psi^{q+1}\right|_{S^{q} \times\{0\}}$ is isotopic in $\partial_{1} W_{q}$ to an embedding $\psi_{1}^{q+1}: S^{q} \times\{0\} \rightarrow \partial_{1} W_{q}$ meeting transversally the transverse sphere of $\left(\phi_{i_{0}}^{q}\right)$ in exactly one point and disjoint to the transverse sphere of any other q-handle.
(2) $\left.\psi^{q+1}\right|_{S^{q} \times\{0\}}$ is isotopic in $\partial_{1} W_{q+1}$ to a trivial embedding
$\psi_{2}^{q+1}: S^{q} \times\{0\} \rightarrow \partial_{1}^{0} W_{q+1}$.
Then $W=\partial_{0} W \times[0,1]+\sum_{i \neq i_{0}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\bar{\phi}_{i}^{q+1}\right)+\left(\psi^{q+2}\right)+$ $\sum_{i=1}^{p_{q+2}}\left(\bar{\phi}_{i}^{q+2}\right) \cdots+\sum_{i=1}^{p_{n}}\left(\bar{\phi}_{i}^{n}\right)$

Elimination Lemma

Proof.

The embeddings ψ_{1}^{q+1} and ψ_{2}^{q+1} can be extended to handle defining embeddings $\psi_{1}^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1} W_{q}$ and $\psi_{2}^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q+1}$ such that

Elimination Lemma

Proof.

The embeddings ψ_{1}^{q+1} and ψ_{2}^{q+1} can be extended to handle defining embeddings $\psi_{1}^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1} W_{q}$ and $\psi_{2}^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q+1}$ such that

- ψ_{1}^{q+1} is isotopic to ψ^{q+1} in $\partial_{1} W_{q}$ and ψ_{2}^{q+1} is isotopic to ψ^{q+1} in $\partial_{1} W_{q+1}$
- The conditions of the lemma still hold

Elimination Lemma

Proof.

The embeddings ψ_{1}^{q+1} and ψ_{2}^{q+1} can be extended to handle defining embeddings $\psi_{1}^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1} W_{q}$ and $\psi_{2}^{q+1}: S^{q} \times D^{n-q-1} \rightarrow \partial_{1}^{0} W_{q+1}$ such that

- ψ_{1}^{q+1} is isotopic to ψ^{q+1} in $\partial_{1} W_{q}$ and ψ_{2}^{q+1} is isotopic to ψ^{q+1} in $\partial_{1} W_{q+1}$
- The conditions of the lemma still hold

Then the Elimination Lemma follows by suitably applying the previous lemmas.

Cellular chain complex

Let (X, A) be a relative $C W$-complex with X connected, fundamental group π and filtration $A \subset X_{0} \subset X_{\widetilde{1}} \subset \cdots \subset X$. Consider $p: \widetilde{X} \rightarrow X$ universal covering of X and write $\widetilde{A}=p^{-1}(A)$ and $\widetilde{X_{q}}=p^{-1}\left(X_{q}\right)$. Then we have

Cellular chain complex

Let (X, A) be a relative $C W$-complex with X connected, fundamental group π and filtration $A \subset X_{0} \subset X_{\widetilde{1}} \subset \cdots \subset X$. Consider $p: \widetilde{X} \rightarrow X$ universal covering of X and write $\widetilde{A}=p^{-1}(A)$ and $\widetilde{X_{q}}=p^{-1}\left(X_{q}\right)$. Then we have

- $(\widetilde{X}, \widetilde{A})$ has $C W$-structure given by $\widetilde{A} \subset \widetilde{X_{0}} \subset \cdots \subset \widetilde{X}$

Cellular chain complex

Let (X, A) be a relative $C W$-complex with X connected, fundamental group π and filtration $A \subset X_{0} \subset X_{1} \subset \cdots \subset X$. Consider $p: \widetilde{X} \rightarrow X$ universal covering of X and write $\widetilde{A}=p^{-1}(A)$ and $\widetilde{X_{q}}=p^{-1}\left(X_{q}\right)$. Then we have

- $(\widetilde{X}, \widetilde{A})$ has $C W$-structure given by $\widetilde{A} \subset \widetilde{X}_{0} \subset \cdots \subset \widetilde{X}$
- Cellular $\mathbb{Z} \pi$-chain complex $H_{q}\left(\widetilde{X_{q}}, \widetilde{X_{q-1}}\right)$ with π action via deck transformations with differential

$$
H_{q}\left(\widetilde{X_{q}}, \widetilde{X_{q-1}}\right) \xrightarrow{\partial_{q}} H_{q-1}\left(\widetilde{X_{q-1}}\right) \xrightarrow{i_{*}} H_{q-1}\left(\widetilde{X_{q-1}}, \widetilde{X_{q-2}}\right)
$$

Cellular chain complex

- Construction of $\mathbb{Z} \pi$-basis of $C_{q}(\widetilde{X}, \widetilde{A})$:

For each $i \in I_{q} q$-cell in X given by characteristic map $\left(\Phi_{i}^{q}, \phi_{1}^{q}\right)$ pick a lift
$\left(\widetilde{\Phi_{i}^{q}}, \widetilde{\phi_{1}^{q}}\right):\left(D^{q}, S^{q-1}\right) \rightarrow\left(\widetilde{X_{q}}, \widetilde{X_{q-1}}\right)$ and a generator of $H_{q}\left(D^{q}, S^{q-1}\right) \cong \mathbb{Z}$. Write b_{i} for its image by $\left(\widetilde{\Phi_{i}^{q}}, \widetilde{\phi_{1}^{q}}\right)$ in $H_{q}\left(\widetilde{X_{q}}, \widetilde{X_{q-1}}\right)$. This defines a basis $\left\{b_{i} \mid i \in I_{q}\right\}$.

Cellular chain complex

- Construction of $\mathbb{Z} \pi$-basis of $C_{q}(\widetilde{X}, \widetilde{A})$:

For each $i \in I_{q} q$-cell in X given by characteristic map $\left(\Phi_{i}^{q}, \phi_{1}^{q}\right)$ pick a lift
$\left(\widetilde{\Phi_{i}^{q}}, \widetilde{\phi_{1}^{q}}\right):\left(D^{q}, S^{q-1}\right) \rightarrow\left(\widetilde{X_{q}}, \widetilde{X_{q-1}}\right)$ and a generator of $H_{q}\left(D^{q}, S^{q-1}\right) \cong \mathbb{Z}$. Write b_{i} for its image by $\left(\widetilde{\Phi_{i}^{q}}, \widetilde{\phi_{1}^{q}}\right)$ in $H_{q}\left(\widetilde{X_{q}}, \widetilde{X_{q-1}}\right)$. This defines a basis $\left\{b_{i} \mid i \in I_{q}\right\}$.

- To make this independent of choices, we say $\left\{\alpha_{j} \mid j \in I_{q}\right\}$ and $\left\{\beta_{k} \mid k \in I_{q}\right\}$ two such basis are
 equivalent if there is a bijection $\phi: I_{q} \rightarrow I_{q}$ and elements $\varepsilon_{i} \in\{ \pm 1\}$ and $\gamma_{i} \in \pi$ for $i \in I_{q}$ such that $\varepsilon_{i} \gamma_{i} \alpha_{i}=\beta_{\phi(i)}$.

Goal

Let $\left(W, \partial_{0} W\right)$ as before. We want to find an n-dimensional $C W$-complex $\left(X, \partial_{0} W\right)$ and a homotopy equivalence $(f, I d):\left(W, \partial_{0} W\right) \xrightarrow{\simeq}\left(X, \partial_{0} W\right)$.

Goal

Let $\left(W, \partial_{0} W\right)$ as before. We want to find an n-dimensional $C W$-complex $\left(X, \partial_{0} W\right)$ and a homotopy equivalence $(f, I d):\left(W, \partial_{0} W\right) \xrightarrow{\simeq}\left(X, \partial_{0} W\right)$.

Construct inductively spaces $X_{-1}=\partial_{0} W \subset X_{0} \subset \cdots \subset X_{n}=X$ and homotopy equivalences $f_{q}: W_{q} \rightarrow X_{q}$ such that $f_{q} \mid W_{q-1}=f_{q-1}$ as follows:

Goal

Let $\left(W, \partial_{0} W\right)$ as before. We want to find an n-dimensional $C W$-complex $\left(X, \partial_{0} W\right)$ and a homotopy equivalence $(f, I d):\left(W, \partial_{0} W\right) \xrightarrow{\simeq}\left(X, \partial_{0} W\right)$.

Construct inductively spaces $X_{-1}=\partial_{0} W \subset X_{0} \subset \cdots \subset X_{n}=X$ and homotopy equivalences $f_{q}: W_{q} \rightarrow X_{q}$ such that $f_{q} \mid W_{q-1}=f_{q-1}$ as follows:

- For $q=-1$ let $f_{1}: W_{1}=\partial_{0} W \times[0,1] \rightarrow X_{1}=\partial_{0} W$ the projection.

Goal

Let $\left(W, \partial_{0} W\right)$ as before. We want to find an n-dimensional $C W$-complex $\left(X, \partial_{0} W\right)$ and a homotopy equivalence $(f, I d):\left(W, \partial_{0} W\right) \xrightarrow{\simeq}\left(X, \partial_{0} W\right)$.

Construct inductively spaces $X_{-1}=\partial_{0} W \subset X_{0} \subset \cdots \subset X_{n}=X$ and homotopy equivalences $f_{q}: W_{q} \rightarrow X_{q}$ such that $f_{q} \mid W_{q-1}=f_{q-1}$ as follows:

- For $q=-1$ let $f_{1}: W_{1}=\partial_{0} W \times[0,1] \rightarrow X_{1}=\partial_{0} W$ the projection.
- Assume we have constructed X_{q-1} and f_{q-1}. For each handle $\left(\phi_{i}^{q}\right)$ of W of index q, attach a q-cell to X_{q-1} by $\left.f_{q-1} \circ \phi_{i}^{q}\right|_{S^{q-1} \times\{0\}}$.

Handlebody chain complex

Remark

The inclusion $W_{q} \rightarrow W$ is q-connected.

Handlebody chain complex

Remark

The inclusion $W_{q} \rightarrow W$ is q-connected.

Definition

Let $p: \widetilde{W} \rightarrow W$ universal covering of W and π its fundamental group and write $\widetilde{W}_{q}=p^{-1}(W)$. The handlebody $\mathbb{Z} \pi$-chain complex $C_{*}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right)$ is given in degree q by $H_{q}\left(\widetilde{W}_{q}, \widetilde{W_{q-1}}\right)$ with differential

$$
H_{q}\left(\widetilde{W_{q}}, \widetilde{W_{q-1}}\right) \xrightarrow{\partial_{q}} H_{q-1}\left(\widetilde{W_{q-1}}\right) \xrightarrow{i_{*}} H_{q-1}\left(\widetilde{W_{q-1}}, \widetilde{W_{q-2}}\right)
$$

Handlebody chain complex

Remark

The inclusion $W_{q} \rightarrow W$ is q-connected.

Definition

Let $p: \widetilde{W} \rightarrow W$ universal covering of W and π its fundamental group and write $\widetilde{W}_{q}=p^{-1}(W)$. The handlebody $\mathbb{Z} \pi$-chain complex $C_{*}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right)$ is given in degree q by $H_{q}\left(\widetilde{W}_{q}, \widetilde{W_{q-1}}\right)$ with differential

$$
H_{q}\left(\widetilde{W_{q}}, \widetilde{W_{q-1}}\right) \xrightarrow{\partial_{q}} H_{q-1}\left(\widetilde{W_{q-1}}\right) \xrightarrow{i_{*}} H_{q-1}\left(\widetilde{W_{q-1}}, \widetilde{W_{q-2}}\right)
$$

Remark

The homotopy equivelence f induces an isomorphism of $\mathbb{Z} \pi$-chain complexes $C_{*}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right) \cong C_{*}\left(\widetilde{X}, \widetilde{\partial_{0} W}\right)$.

Handlebody chain complex

Remark

- $C_{*}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right)$ has a $\mathbb{Z} \pi$-basis defined in a complete analogous way to $C W$-complex.
- If W doesn't have handle of index 0 or 1 we can describe the handlebody $\mathbb{Z} \pi$-chain complex in terms of homotopy groups by $\pi_{q}\left(\widetilde{W_{q}}, \widetilde{W_{q-1}}\right) \cong H_{q}\left(\widetilde{W_{q}}, \widetilde{W_{q-1}}\right)$.

Reducing the Handlebody Decomposition

Lemma

Let W be a compact manifold of dimension $n \geq 6$ with boundary $\partial W=\partial_{0} W \sqcup \partial_{1} W$. Then the following are equivalent:
(1) The inclusion $\partial_{0} W \rightarrow W$ is 1 -connected,
(2) We have

$$
W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{2}}\left(\phi_{i}^{2}\right)+\sum_{i=1}^{p_{3}}\left(\phi_{i}^{3}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right)
$$

Reducing the Handlebody Decomposition

Lemma

Let W be a compact manifold of dimension $n \geq 6$ with boundary $\partial W=\partial_{0} W \sqcup \partial_{1} W$. Then the following are equivalent:
(1) The inclusion $\partial_{0} W \rightarrow W$ is 1 -connected,
(2) We have

$$
W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{2}}\left(\phi_{i}^{2}\right)+\sum_{i=1}^{p_{3}}\left(\phi_{i}^{3}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right)
$$

Proof.

2) $\Rightarrow 1$) Follows since $W_{1} \rightarrow W$ is 1-connected and $\partial_{0} W \rightarrow W_{0}=W_{1}$ is a homotopy equivalence.

Reducing the Handlebody Decomposition

Proof.

$1) \Rightarrow 2)$ First we show we can get rid of 0 -handles. Let $\left(\phi_{i_{0}}^{0}\right)$ a 0 -handle.

Reducing the Handlebody Decomposition

Proof.

$1) \Rightarrow 2)$ First we show we can get rid of 0 -handles. Let $\left(\phi_{i_{0}}^{0}\right)$ a 0 -handle.

- By assumption, the inclusion $\partial_{0} W \rightarrow W_{1}$ induces an isomorphism on the set of path connected components.

Reducing the Handlebody Decomposition

Proof.

$1) \Rightarrow 2)$ First we show we can get rid of 0 -handles. Let $\left(\phi_{i_{0}}^{0}\right)$ a 0 -handle.

- By assumption, the inclusion $\partial_{0} W \rightarrow W_{1}$ induces an isomorphism on the set of path connected components.
- There is a 1-handle $\left(\phi_{i_{1}}^{1}\right)$ such that $\left.\phi_{i_{1}}^{1}\right|_{D^{1} \times\{0\}}$ connects $\partial_{0} W \times\{1\}$ and the handle $\left(\phi_{i_{0}}^{0}\right)$.

Reducing the Handlebody Decomposition

Proof.

$1) \Rightarrow 2)$ First we show we can get rid of 0 -handles. Let $\left(\phi_{i_{0}}^{0}\right)$ a 0 -handle.

- By assumption, the inclusion $\partial_{0} W \rightarrow W_{1}$ induces an isomorphism on the set of path connected components.
- There is a 1-handle $\left(\phi_{i_{1}}^{1}\right)$ such that $\left.\phi_{i_{1}}^{1}\right|_{D^{1} \times\{0\}}$ connects $\partial_{0} W \times\{1\}$ and the handle $\left(\phi_{i_{0}}^{0}\right)$.
- By the Cancellation Lemma, $\left(\phi_{i_{1}}^{1}\right)$ cancels $\left(\phi_{i_{0}}^{0}\right)$.

Proof.

Next we cancel 1-handles via Ellimination Lemma. Let $\left(\phi_{1}^{1}\right)$ be a 1-handle. We need to construct an embedding $\psi^{2}: S^{1} \times D^{n-2} \rightarrow \partial_{1}^{0} W_{1}$ satisfying the required conditions:

Proof.

Next we cancel 1-handles via Ellimination Lemma. Let $\left(\phi_{1}^{1}\right)$ be a 1-handle. We need to construct an embedding $\psi^{2}: S^{1} \times D^{n-2} \rightarrow \partial_{1}^{0} W_{1}$ satisfying the required conditions:

- Let $\psi_{+}^{2}: S_{+}^{1}=D^{1} \times\{x\} \subset\left(\phi_{1}^{1}\right)$ for some fixed x in the transversal sphere of $\left(\phi_{1}^{1}\right)$.

Proof.

Next we cancel 1-handles via Ellimination Lemma. Let $\left(\phi_{1}^{1}\right)$ be a 1-handle. We need to construct an embedding $\psi^{2}: S^{1} \times D^{n-2} \rightarrow \partial_{1}^{0} W_{1}$ satisfying the required conditions:

- Let $\psi_{+}^{2}: S_{+}^{1}=D^{1} \times\{x\} \subset\left(\phi_{1}^{1}\right)$ for some fixed x in the transversal sphere of $\left(\phi_{1}^{1}\right)$.
- The inclusion $\partial_{1}^{0} W_{0} \rightarrow \partial_{1} W_{0}=\partial_{0} W \times\{1\}$ induces an isomorphism on the fundamental group. Together with the assumption, this implies $\partial_{1}^{0} W_{0} \rightarrow W$ gives a surjection on the fundamental group.

Proof.

Next we cancel 1-handles via Ellimination Lemma. Let $\left(\phi_{1}^{1}\right)$ be a 1-handle. We need to construct an embedding $\psi^{2}: S^{1} \times D^{n-2} \rightarrow \partial_{1}^{0} W_{1}$ satisfying the required conditions:

- Let $\psi_{+}^{2}: S_{+}^{1}=D^{1} \times\{x\} \subset\left(\phi_{1}^{1}\right)$ for some fixed x in the transversal sphere of $\left(\phi_{1}^{1}\right)$.
- The inclusion $\partial_{1}^{0} W_{0} \rightarrow \partial_{1} W_{0}=\partial_{0} W \times\{1\}$ induces an isomorphism on the fundamental group. Together with the assumption, this implies $\partial_{1}^{0} W_{0} \rightarrow W$ gives a surjection on the fundamental group.
- We can find an embedding $\psi_{-}^{2}: S_{-}^{1} \rightarrow \partial_{1}^{0} W_{0}$ which glues with ψ_{+}^{2} to $\psi_{0}^{2}: S^{1} \rightarrow \partial_{1} W_{1}$ which is nullhomotopic in W.

Proof.

Next we cancel 1-handles via Ellimination Lemma. Let $\left(\phi_{1}^{1}\right)$ be a 1-handle. We need to construct an embedding $\psi^{2}: S^{1} \times D^{n-2} \rightarrow \partial_{1}^{0} W_{1}$ satisfying the required conditions:

- Let $\psi_{+}^{2}: S_{+}^{1}=D^{1} \times\{x\} \subset\left(\phi_{1}^{1}\right)$ for some fixed x in the transversal sphere of $\left(\phi_{1}^{1}\right)$.
- The inclusion $\partial_{1}^{0} W_{0} \rightarrow \partial_{1} W_{0}=\partial_{0} W \times\{1\}$ induces an isomorphism on the fundamental group. Together with the assumption, this implies $\partial_{1}^{0} W_{0} \rightarrow W$ gives a surjection on the fundamental group.
- We can find an embedding $\psi_{-}^{2}: S_{-}^{1} \rightarrow \partial_{1}^{0} W_{0}$ which glues with ψ_{+}^{2} to $\psi_{0}^{2}: S^{1} \rightarrow \partial_{1} W_{1}$ which is nullhomotopic in W.
- Since $\operatorname{dim} S^{1}+\operatorname{dim} \psi_{0}^{2}\left(S^{1}\right)<\operatorname{dim} \partial_{1} W_{1}$, one can isotope the embeddings $\phi_{i}^{2}: S^{1} \times D^{n-2} \rightarrow \partial_{1} W_{1}$ of the 2-handles such that they don't meet $\psi_{0}^{2}\left(S^{1}\right)$. Hence ψ_{0}^{2} lies in $\partial_{1}^{0} W_{1}$

Proof.

- By connectivity, ψ_{0}^{2} must already be homotopic in $\partial_{1} W_{2}$, say via $h: D^{2} \rightarrow \partial_{1} W_{2}$.

Proof.

- By connectivity, ψ_{0}^{2} must already be homotopic in $\partial_{1} W_{2}$, say via $h: D^{2} \rightarrow \partial_{1} W_{2}$.
- We can modify h relative to S^{1} such that it is an embedding

Proof.

- By connectivity, ψ_{0}^{2} must already be homotopic in $\partial_{1} W_{2}$, say via $h: D^{2} \rightarrow \partial_{1} W_{2}$.
- We can modify h relative to S^{1} such that it is an embedding
- Then the normal bundle of h is trivial, hence also for ψ_{0}^{2}

Proof.

- By connectivity, ψ_{0}^{2} must already be homotopic in $\partial_{1} W_{2}$, say via $h: D^{2} \rightarrow \partial_{1} W_{2}$.
- We can modify h relative to S^{1} such that it is an embedding
- Then the normal bundle of h is trivial, hence also for ψ_{0}^{2}
- Thus ψ_{0}^{2} extends to an embedding $\psi^{2}: S^{1} \times D^{n-1} \rightarrow \partial_{1}^{0} W_{1}$. This satisfies the required conditions by construction

Remark

We really require $n \geq 6$ to approximate h by an embedding.

Remark

We really require $n \geq 6$ to approximate h by an embedding.

Motivation

References

(1) Surgery Theory: Foundations by Crowley, Lück and Macko.
(2) Differential Topology by Hirsch.

