Handle decompositions

Antonio Ceres

June 17, 2020

Antonio Ceres

Handle decompositions

June 17, 2020 1 / 28

h-Cobordism Theorem

Let $(W; M_0, M_1)$ be a *h*-cobordism over a simply connected manifold M_0 with dim $(M_0) \ge 5$. Then W is trivial

Antonio Ceres

Handle decompositions

June 17, 2020 2 / 28

h-Cobordism Theorem

Let $(W; M_0, M_1)$ be a *h*-cobordism over a simply connected manifold M_0 with dim $(M_0) \ge 5$. Then W is trivial

s-Cobordism Theorem

There is a more general statement for M_0 connected with possibly nontrivial fundamental group π such that *h*-cobordisms over M_0 are described by the so called Whitehead group $Wh(\pi)$.

- Handle Decomposition
- CW-Structures
- Reducing Handle Decomposition

<ロト < 回ト < 回ト < 回ト

Handles

Definition

The q-handle (of dimension n) is the space D^q × D^{n-q}. Its transverse sphere is {0} × S^{n-q-1}.

3

< ロト < 回 > < 回 > < 回 > < 回 > <</p>

Handles

Definition

- The *q*-handle (of dimension *n*) is the space $D^q \times D^{n-q}$. Its transverse sphere is $\{0\} \times S^{n-q-1}$.
- Let M be a manifold of dimension n with boundary and $\phi^q: S^{q-1} \times D^{n-q} \to \partial M$ an embedding. The manifold obtained from M by attaching a handle of index q by ϕ^q is given by the pushout $M \cup_{\phi^q} D^q \times D^{n-q}$. We denote it by $M + (\phi^q)$.

イロト 不得下 イヨト イヨト 二日

Handles

Definition

- The *q*-handle (of dimension *n*) is the space $D^q \times D^{n-q}$. Its transverse sphere is $\{0\} \times S^{n-q-1}$.
- Let M be a manifold of dimension n with boundary and $\phi^q : S^{q-1} \times D^{n-q} \to \partial M$ an embedding. The manifold obtained from M by attaching a handle of index q by ϕ^q is given by the pushout $M \cup_{\phi^q} D^q \times D^{n-q}$. We denote it by $M + (\phi^q)$.

Handlebody Decomposition

In the following, W is a compact manifold of dimension n with boundary $\partial W = \partial_0 W \sqcup \partial_1 W$.

Construction

Consider $W_0 = \partial_0 W \times [0, 1]$ and an embedding $\phi^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W_0$. Denote $W_1 = W_0 + (\phi^q)$. Iterating this process

$$W_r = W_0 + (\phi^{q_1}) + \cdots + (\phi^q_r)$$

with boundary $\partial W_r = \partial_0 W \sqcup \partial_1 W_r$. We say this is a handle decomposition of W_r relative to $\partial_0 W$.

3

Handlebody Decomposition

From Morse theory

Lemma

W admits a handlebody decomposition relative to $\partial_0 W$.

$$W = W_0 + (\phi^{q_1}) + \dots + (\phi^{q_r})$$

where = means diffeomorphic relative to $\partial_0 W$.

Antonio Ceres

Handlebody Decomposition

From Morse theory

Lemma

W admits a handlebody decomposition relative to $\partial_0 W$.

$$W = W_0 + (\phi^{q_1}) + \dots + (\phi^{q_r})$$

where = means diffeomorphic relative to $\partial_0 W$.

Antonio Cere

Strategy

We want to decide if W is a trivial cobordism, i.e., we ask whether we can get rid of the handles without changing the diffeomorphism type of W relative to $\partial_0 W$.

くほし くほし くほし

Strategy

We want to decide if W is a trivial cobordism, i.e., we ask whether we can get rid of the handles without changing the diffeomorphism type of W relative to $\partial_0 W$.

Summary

- Attaching handles via isotopic embeddings ϕ^q and ψ^q gives $W + (\phi^1) = W + (\psi^q)$.
- If W = W' and ϕ^q defines a handle on $\partial_1 W$, then $W + (\phi^q) = W' + (\bar{\phi}^q)$ for some embedding $\bar{\phi}^q$ on $\partial_1 W'$.
- Handles can be ordered by increasing index.

Lemma

Let $\phi^q, \psi^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W$ be isotopic embeddings, then $W + (\phi^q) = W + (\psi^q).$

▲ロト ▲開ト ▲ヨト ▲ヨト 三ヨー のへで

Lemma

Let $\phi^q, \psi^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W$ be isotopic embeddings, then $W + (\phi^q) = W + (\psi^q)$.

Proof.

Let *i* be an isotopy from ϕ^q to ψ^q . There exists a diffeotopy $H \colon W \times [0, 1]$ which is stationary on $\partial_0 W$ and such that $i = H \circ \phi^q \times Id_{[0,1]}$. Then H_1 is a diffeomorphism relative $\partial_0 W$ taking ϕ^q to ψ^q , so it extends to a diffemorphism $W + (\phi^q) \to W + (\psi^q)$.

イロト 不得下 イヨト イヨト 二日

Lemma

Let W and W' as in our assumption with boundary $\partial_0 W \sqcup \partial_1 W$ and $\partial_0 W' \sqcup \partial_1 W'$, resp. Let $F \colon W \to W'$ be a diffeomorphism restricting to a diffeomorphism $f_0 \colon \partial_0 W \to \partial_0 W'$ and an embedding $\phi^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W$. Then there exists an embedding $\bar{\phi}^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W'$ and a diffeomorphism $F' \colon W + (\phi^q) \to W' + (\bar{\phi}^q)$ extending F.

Proof.

Pick $\bar{\phi}^q = F \circ \phi^q$ and F' the map induced by F.

<ロト < 回 > < 回 > < 回 > < 回 > … 回

Lemma

Let $V = W + (\psi^r) + (\phi^q)$ with $q \le r$. Then V is diffeomorphic relative $\partial_0 W$ to $W + (\bar{\phi}^q) + (\psi^r)$ for an embedding $\bar{\phi}^q$.

1

Lemma

Let $V = W + (\psi^r) + (\phi^q)$ with $q \leq r$. Then V is diffeomorphic relative $\partial_0 W$ to $W + (\bar{\phi}^q) + (\psi^r)$ for an embedding $\bar{\phi}^q$.

Proof.

By the first lemma, it suffices to show ϕ^q is isotopic to an embedding $\overline{\phi}^q$ which doesn't meet the handle ψ^r $W + (\psi^r) + (\phi^q) = W + (\psi^r) + (\overline{\phi}^q) = W + (\overline{\phi}^q) + (\psi^r).$

Lemma

Let $V = W + (\psi^r) + (\phi^q)$ with $q \leq r$. Then V is diffeomorphic relative $\partial_0 W$ to $W + (\bar{\phi}^q) + (\psi^r)$ for an embedding $\bar{\phi}^q$.

Proof.

By the first lemma, it suffices to show ϕ^q is isotopic to an embedding $\bar\phi^q$ which doesn't meet the handle ψ^r

$$W+(\psi^r)+(\phi^q)=W+(\psi^r)+\left(ar{\phi}^q
ight)=W+\left(ar{\phi}^q
ight)+(\psi^r).$$

Since

 $\dim S^{q-1} \times \{0\} + \dim\{0\} \times S^{n-r-1} = (q-1) + (n-r-1) < n-1,$ there is an isotopy of ϕ^q to an embedding whose restriction to $S^{q-1} \times \{0\}$ doesn't meet the transverse sphere of (ψ^r) .

イロト 不得 トイヨト イヨト 二日

Proof.

- Since D^{n-q} is contractible, there is a closed neighbourhood $U \subset \partial_1 (W + (\psi^r))$ and an isotopy from ϕ^q to an embedding which does not meet U.
- Take a diffectopy on ∂₁ (W + (ψ^r)) taking all points in ∂ (ψ^r) \ U outside of the handle (ψ^r). This determines φ^q.

Remark

Under certain circunstances, given a handle (ϕ^q) on W we can attach a second handle ψ^{q+1} such that $W + (\phi^q) + (\psi^{q+1}) = W$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remark

Under certain circunstances, given a handle (ϕ^q) on W we can attach a second handle ψ^{q+1} such that $W + (\phi^q) + (\psi^{q+1}) = W$.

- Pick embedding $\mu \colon S^{q-1} \times D^{n-q} \cup_{S^{q-1} \times S^{n-q-1}_{\perp}} D^q \times S^{n-q-1}_{+} \to \partial_1 W.$
- Let ϕ^q be its restriction to the first factor.
- Let ψ^{q+1}₋ be the restriction of μ to the second factor and ψ^{q+1}₊: S^q₊ × S^{n-q-1}₊ → ∂ (φ^q) ⊂ ∂₁ (W + (φ^q)) restriction of the characteristic map of φ^q. Glue both to the desired ψ^{q+1}.

Lemma

Let $\phi^q : S^{q-1} \times D^{n-q} \to \partial_1 W$ and $\psi^{q+1} : S^q \times D^{n-q-1} \to \partial_1 (W + (\phi^q))$ be embeddings such that $\psi^{q+1} (S^q \times \{0\})$ meets the transverse sphere of (ϕ^q) transversely at exactly one point. Then $W = W + (\phi^q) + (\psi^{q+1})$.

イロト 不得下 イヨト イヨト

Lemma

Let $\phi^q : S^{q-1} \times D^{n-q} \to \partial_1 W$ and $\psi^{q+1} : S^q \times D^{n-q-1} \to \partial_1 (W + (\phi^q))$ be embeddings such that $\psi^{q+1} (S^q \times \{0\})$ meets the transverse sphere of (ϕ^q) transversely at exactly one point. Then $W = W + (\phi^q) + (\psi^{q+1})$.

Proof.

Similarly to last lemma, pick $U \subset \partial (\phi^q)$ neighbourhood of the transverse sphere of (ϕ^q) and a diffeotopy on $\partial_1 (W + (\phi^q))$ taking any point in $\partial (\phi^q) \setminus U$ outside the handle (ϕ^q) . Now we are in the situation of the previous example, for which the claim holds.

イロト 不得下 イヨト イヨト 二日

Definition

An embedding $S^q \times D^{n-q} \to M$ into an *n*-dimensional manifold is called trivial if it factors through D^n .

Definition

An embedding $S^q \times D^{n-q} \to M$ into an *n*-dimensional manifold is called trivial if it factors through D^n .

Lemma

Let $\phi^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W$ be a trivial embedding. Then there is an embedding $\phi^{q+1} \colon S^q \times D^{n-q-1} \to \partial_1 (W + (\phi^q))$ such that $W = W + (\phi^q) + (\phi^{q+1}).$

イロト 不得下 イヨト イヨト 二日

Definition

An embedding $S^q \times D^{n-q} \to M$ into an *n*-dimensional manifold is called trivial if it factors through D^n .

Lemma

Let $\phi^q \colon S^{q-1} \times D^{n-q} \to \partial_1 W$ be a trivial embedding. Then there is an embedding $\phi^{q+1} \colon S^q \times D^{n-q-1} \to \partial_1 (W + (\phi^q))$ such that $W = W + (\phi^q) + (\phi^{q+1}).$

Remark

The Euler characteristic $\chi(W)$ is $\sum_{q\geq 0} (-1)^q p_q$ where p_q is the number of handles of W of index q, so one cannot get rid of a single handle.

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ Ξ の Q · 14/28</p>

Notation

Let $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_0} (\phi_i^0) + \sum_{i=1}^{p_1} (\phi_i^1) + \dots + \sum_{i=1}^{p_n} (\phi_i^n)$ We denote:

- $W_q = \partial_0 W \times [0,1] + \sum_{i=1}^{p_0} (\phi_i^0) + \sum_{i=1}^{p_1} (\phi_i^1) + \dots + \sum_{i=1}^{p_q} (\phi_i^q).$
- $\partial_1 W_q = \partial W_q \setminus (\partial_0 W \times \{0\}).$
- $\partial_1^0 W_q = \partial_1 W_q \cap \partial_1 W_{q+1}$

イロト イポト イヨト イヨト ニヨー

Lemma

Let $1 \leq q \leq n-3$ such that $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1}) + \dots + \sum_{i=1}^{p_n} (\phi_i^n).$ Suppose there is i_0 with $1 \leq i_0 \leq p_q$ and an embedding $\psi^{q+1} \colon S^q \times D^{n-q-1} \to \partial_1^0 W_q$ satisfying:

Lemma

Let $1 \leq q \leq n-3$ such that $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1}) + \dots + \sum_{i=1}^{p_n} (\phi_i^n).$ Suppose there is i_0 with $1 \leq i_0 \leq p_q$ and an embedding $\psi^{q+1} : S^q \times D^{n-q-1} \to \partial_1^0 W_q$ satisfying: • $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_q$ to an embedding $\psi_1^{q+1} : S^q \times \{0\} \to \partial_1 W_q$ meeting transversally the transverse sphere of $(\phi_{i_0}^q)$ in exactly one point and disjoint to the transverse sphere of any other q-handle.

Lemma

Let $1 \leq q \leq n-3$ such that $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1}) + \dots + \sum_{i=1}^{p_n} (\phi_i^n).$ Suppose there is i_0 with $1 \leq i_0 \leq p_q$ and an embedding $\psi^{q+1} \colon S^q \times D^{n-q-1} \to \partial_1^0 W_q$ satisfying: • $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_q$ to an embedding $\psi_1^{q+1} \colon S^q \times \{0\} \to \partial_1 W_q$ meeting transversally the transverse sphere of of $(\phi_{i_0}^q)$ in exactly one point and disjoint to the transverse sphere of any other q-handle.

 $\begin{array}{l} \textcircled{\ }\psi^{q+1}|_{S^q\times\{0\}} \text{ is isotopic in }\partial_1 W_{q+1} \text{ to a trivial embedding} \\ \psi^{q+1}_2 \colon S^q\times\{0\} \to \partial^0_1 W_{q+1}. \end{array}$

Lemma

Let 1 < q < n - 3 such that $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_q} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\phi_i^{q+1}) + \dots + \sum_{i=1}^{p_n} (\phi_i^n).$ Suppose there is i_0 with $1 \le i_0 \le p_q$ and an embedding $\psi^{q+1}: S^q \times D^{n-q-1} \to \partial_1^0 W_q$ satisfying: • $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_q$ to an embedding $\psi_1^{q+1}: S^q \times \{0\} \to \partial_1 W_a$ meeting transversally the transverse sphere of $\left(\phi_{i_0}^{q}
ight)$ in exactly one point and disjoint to the transverse sphere of any other q-handle. • $\psi^{q+1}|_{S^q \times \{0\}}$ is isotopic in $\partial_1 W_{q+1}$ to a trivial embedding $\psi_2^{q+1}: S^q \times \{0\} \to \partial_1^0 W_{q+1}.$

Then $W = \partial_0 W \times [0,1] + \sum_{i \neq i_0} (\phi_i^q) + \sum_{i=1}^{p_{q+1}} (\bar{\phi}_i^{q+1}) + (\psi^{q+2}) + \sum_{i=1}^{p_{q+2}} (\bar{\phi}_i^{q+2}) \dots + \sum_{i=1}^{p_n} (\bar{\phi}_i^n)$

Proof.

The embeddings ψ_1^{q+1} and ψ_2^{q+1} can be extended to handle defining embeddings $\psi_1^{q+1}: S^q \times D^{n-q-1} \to \partial_1 W_q$ and $\psi_2^{q+1}: S^q \times D^{n-q-1} \to \partial_1^0 W_{q+1}$ such that

・ロト ・ 得下 ・ ヨト ・ ヨト ・ ヨー ・ のへで・

Proof.

The embeddings ψ_1^{q+1} and ψ_2^{q+1} can be extended to handle defining embeddings $\psi_1^{q+1} : S^q \times D^{n-q-1} \to \partial_1 W_q$ and $\psi_2^{q+1} : S^q \times D^{n-q-1} \to \partial_1^0 W_{q+1}$ such that • ψ_1^{q+1} is isotopic to ψ^{q+1} in $\partial_1 W_q$ and ψ_2^{q+1} is isotopic to ψ^{q+1} in $\partial_1 W_{q+1}$

• The conditions of the lemma still hold

Proof.

The embeddings ψ_1^{q+1} and ψ_2^{q+1} can be extended to handle defining embeddings $\psi_1^{q+1} : S^q \times D^{n-q-1} \to \partial_1 W_q$ and $\psi_2^{q+1} : S^q \times D^{n-q-1} \to \partial_1^0 W_{q+1}$ such that • ψ_1^{q+1} is isotopic to ψ^{q+1} in $\partial_1 W_q$ and ψ_2^{q+1} is isotopic to ψ^{q+1} in $\partial_1 W_{q+1}$

• The conditions of the lemma still hold

Then the Elimination Lemma follows by suitably applying the previous lemmas.

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ Ξ · 𝔅 𝔅 17/28</p>

Cellular chain complex

Let (X, A) be a relative *CW*-complex with X connected, fundamental group π and filtration $A \subset X_0 \subset X_1 \subset \cdots \subset X$. Consider $p: \widetilde{X} \to X$ universal covering of X and write $\widetilde{A} = p^{-1}(A)$ and $\widetilde{X_q} = p^{-1}(X_q)$. Then we have

イロト イポト イモト イモト

Cellular chain complex

Let (X, A) be a relative *CW*-complex with X connected, fundamental group π and filtration $A \subset X_0 \subset X_1 \subset \cdots \subset X$. Consider $p \colon \widetilde{X} \to X$ universal covering of X and write $\widetilde{A} = p^{-1}(A)$ and $\widetilde{X}_q = p^{-1}(X_q)$. Then we have

• $\left(\widetilde{X},\widetilde{A}\right)$ has *CW*-structure given by $\widetilde{A}\subset\widetilde{X_0}\subset\cdots\subset\widetilde{X}$

イロト 不得 トイヨト イヨト

Cellular chain complex

Let (X, A) be a relative *CW*-complex with X connected, fundamental group π and filtration $A \subset X_0 \subset X_1 \subset \cdots \subset X$. Consider $p: \widetilde{X} \to X$ universal covering of X and write $\widetilde{A} = p^{-1}(A)$ and $\widetilde{X}_q = p^{-1}(X_q)$. Then we have

- $\left(\widetilde{X},\widetilde{A}\right)$ has *CW*-structure given by $\widetilde{A}\subset\widetilde{X_0}\subset\cdots\subset\widetilde{X}$
- Cellular $\mathbb{Z}\pi$ -chain complex $H_q\left(\widetilde{X_q}, \widetilde{X_{q-1}}\right)$ with π action via deck transformations with differential

$$H_q\left(\widetilde{X_q},\widetilde{X_{q-1}}\right) \xrightarrow{\partial_q} H_{q-1}\left(\widetilde{X_{q-1}}\right) \xrightarrow{i_*} H_{q-1}\left(\widetilde{X_{q-1}},\widetilde{X_{q-2}}\right)$$

Cellular chain complex

• Construction of $\mathbb{Z}\pi$ -basis of $C_q\left(\widetilde{X},\widetilde{A}\right)$: For each $i \in I_q$ q-cell in X given by characteristic map $\left(\Phi_i^q, \phi_1^q\right)$ pick a lift $\left(\widetilde{\Phi_i^q}, \widetilde{\phi_1^q}\right)$: $\left(D^q, S^{q-1}\right) \rightarrow \left(\widetilde{X_q}, \widetilde{X_{q-1}}\right)$ and a generator of $H_q\left(D^q, S^{q-1}\right) \cong \mathbb{Z}$. Write b_i for its image by $\left(\widetilde{\Phi_i^q}, \widetilde{\phi_1^q}\right)$ in $H_q\left(\widetilde{X_q}, \widetilde{X_{q-1}}\right)$. This defines a basis $\{b_i | i \in I_q\}$.

イロト イポト イヨト

Cellular chain complex

• Construction of $\mathbb{Z}\pi$ -basis of $C_q\left(\widetilde{X},\widetilde{A}\right)$: For each $i \in I_q$ q-cell in X given by characteristic map $\left(\Phi_i^q, \phi_1^q\right)$ pick a lift $\left(\widetilde{\Phi_i^q}, \widetilde{\phi_1^q}\right) : \left(D^q, S^{q-1}\right) \to \left(\widetilde{X_q}, \widetilde{X_{q-1}}\right)$ and a generator of $H_q\left(D^q, S^{q-1}\right) \cong \mathbb{Z}$. Write b_i for its image by $\left(\widetilde{\Phi_i^q}, \widetilde{\phi_1^q}\right)$ in $H_q\left(\widetilde{X_q}, \widetilde{X_{q-1}}\right)$. This defines a basis $\{b_i | i \in I_q\}$.

• To make this independent of choices, we say $\{\alpha_j | j \in I_q\}$ and $\{\beta_k | k \in I_q\}$ two such basis are equivalent if there is a bijection $\phi: I_q \rightarrow I_q$ and elements $\varepsilon_i \in \{\pm 1\}$ and $\gamma_i \in \pi$ for $i \in I_q$ such that $\varepsilon_i \gamma_i \alpha_i = \beta_{\phi(i)}$.

1

イロト 不得下 イヨト イヨト

Let $(W, \partial_0 W)$ as before. We want to find an *n*-dimensional *CW*-complex $(X, \partial_0 W)$ and a homotopy equivalence $(f, Id) : (W, \partial_0 W) \xrightarrow{\simeq} (X, \partial_0 W)$.

1

Let $(W, \partial_0 W)$ as before. We want to find an *n*-dimensional *CW*-complex $(X, \partial_0 W)$ and a homotopy equivalence $(f, Id) : (W, \partial_0 W) \xrightarrow{\simeq} (X, \partial_0 W)$.

Construct inductively spaces $X_{-1} = \partial_0 W \subset X_0 \subset \cdots \subset X_n = X$ and homotopy equivalences $f_q \colon W_q \to X_q$ such that $f_q|_{W_{q-1}} = f_{q-1}$ as follows:

1

Let $(W, \partial_0 W)$ as before. We want to find an *n*-dimensional *CW*-complex $(X, \partial_0 W)$ and a homotopy equivalence $(f, Id) : (W, \partial_0 W) \xrightarrow{\simeq} (X, \partial_0 W)$.

Construct inductively spaces $X_{-1} = \partial_0 W \subset X_0 \subset \cdots \subset X_n = X$ and homotopy equivalences $f_q \colon W_q \to X_q$ such that $f_q|_{W_{q-1}} = f_{q-1}$ as follows:

• For q = -1 let $f_1: W_1 = \partial_0 W \times [0,1] \to X_1 = \partial_0 W$ the projection.

Let $(W, \partial_0 W)$ as before. We want to find an *n*-dimensional *CW*-complex $(X, \partial_0 W)$ and a homotopy equivalence $(f, Id) : (W, \partial_0 W) \xrightarrow{\simeq} (X, \partial_0 W)$.

Construct inductively spaces $X_{-1} = \partial_0 W \subset X_0 \subset \cdots \subset X_n = X$ and homotopy equivalences $f_q \colon W_q \to X_q$ such that $f_q|_{W_{q-1}} = f_{q-1}$ as follows:

- For q = -1 let $f_1 \colon W_1 = \partial_0 W \times [0,1] \to X_1 = \partial_0 W$ the projection.
- Assume we have constructed X_{q-1} and f_{q-1}. For each handle (φ^q_i) of W of index q, attach a q-cell to X_{q-1} by f_{q-1} ∘ φ^q_i|_{S^{q-1}×{0}}.

Remark

The inclusion $W_q \rightarrow W$ is *q*-connected.

Remark

The inclusion $W_q \rightarrow W$ is *q*-connected.

Definition

Let $p: \widetilde{W} \to W$ universal covering of W and π its fundamental group and write $\widetilde{W}_q = p^{-1}(W)$. The handlebody $\mathbb{Z}\pi$ -chain complex $C_*\left(\widetilde{W}, \widetilde{\partial_0 W}\right)$ is given in degree q by $H_q\left(\widetilde{W}_q, \widetilde{W}_{q-1}\right)$ with differential

$$H_q\left(\widetilde{W_q},\widetilde{W_{q-1}}\right)\xrightarrow{\partial_q}H_{q-1}\left(\widetilde{W_{q-1}}\right)\xrightarrow{i_*}H_{q-1}\left(\widetilde{W_{q-1}},\widetilde{W_{q-2}}\right)$$

イロト 不得 トイヨト イヨト 二日

Remark

The inclusion $W_q \rightarrow W$ is *q*-connected.

Definition

Let $p: \widetilde{W} \to W$ universal covering of W and π its fundamental group and write $\widetilde{W}_q = p^{-1}(W)$. The handlebody $\mathbb{Z}\pi$ -chain complex $C_*\left(\widetilde{W}, \widetilde{\partial_0 W}\right)$ is given in degree q by $H_q\left(\widetilde{W}_q, \widetilde{W}_{q-1}\right)$ with differential

$$H_q\left(\widetilde{W_q},\widetilde{W_{q-1}}\right) \xrightarrow{\partial_q} H_{q-1}\left(\widetilde{W_{q-1}}\right) \xrightarrow{i_*} H_{q-1}\left(\widetilde{W_{q-1}},\widetilde{W_{q-2}}\right)$$

Remark

The homotopy equivelence f induces an isomorphism of $\mathbb{Z}\pi$ -chain complexes $C_*\left(\widetilde{W}, \widetilde{\partial_0 W}\right) \cong C_*\left(\widetilde{X}, \widetilde{\partial_0 W}\right)$.

Antonio Cere

Remark

- $C_*\left(\widetilde{W}, \widetilde{\partial_0 W}\right)$ has a $\mathbb{Z}\pi$ -basis defined in a complete analogous way to CW-complex.
- If W doesn't have handle of index 0 or 1 we can describe the handlebody $\mathbb{Z}\pi$ -chain complex in terms of homotopy groups by $\pi_q\left(\widetilde{W}_q,\widetilde{W}_{q-1}\right) \cong H_q\left(\widetilde{W}_q,\widetilde{W}_{q-1}\right).$

Lemma

Let W be a compact manifold of dimension $n \ge 6$ with boundary $\partial W = \partial_0 W \sqcup \partial_1 W$. Then the following are equivalent:

- **①** The inclusion $\partial_0 W \to W$ is 1-connected,
- We have

 $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_2} (\phi_i^2) + \sum_{i=1}^{p_3} (\phi_i^3) + \dots + \sum_{i=1}^{p_n} (\phi_i^n)$

Lemma

Let W be a compact manifold of dimension $n \ge 6$ with boundary $\partial W = \partial_0 W \sqcup \partial_1 W$. Then the following are equivalent:

- $\bullet \quad \text{The inclusion } \partial_0 W \to W \text{ is } 1\text{-connected},$
- **2** We have $W = \partial_0 W \times [0,1] + \sum_{i=1}^{p_2} (\phi_i^2) + \sum_{i=1}^{p_3} (\phi_i^3) + \dots + \sum_{i=1}^{p_n} (\phi_i^n)$

Proof.

2) \Rightarrow 1) Follows since $W_1 \rightarrow W$ is 1-connected and $\partial_0 W \rightarrow W_0 = W_1$ is a homotopy equivalence.

<□▶ < @▶ < ミ▶ < ミ▶ ミ ラ へ C² 23/28

Proof.

1) \Rightarrow 2) First we show we can get rid of 0-handles. Let $(\phi_{i_0}^0)$ a 0-handle.

1

- 1) \Rightarrow 2) First we show we can get rid of 0-handles. Let $(\phi_{i_0}^0)$ a 0-handle.
 - By assumption, the inclusion $\partial_0 W \to W_1$ induces an isomorphism on the set of path connected components.

Proof.

- 1) \Rightarrow 2) First we show we can get rid of 0-handles. Let $(\phi^0_{i_0})$ a 0-handle.
 - By assumption, the inclusion $\partial_0 W \to W_1$ induces an isomorphism on the set of path connected components.
 - There is a 1-handle $(\phi_{i_1}^1)$ such that $\phi_{i_1}^1|_{D^1 \times \{0\}}$ connects $\partial_0 W \times \{1\}$ and the handle $(\phi_{i_0}^0)$.

- 4 伊 ト 4 戸 ト - 4 戸 ト - -

Proof.

- 1) \Rightarrow 2) First we show we can get rid of 0-handles. Let $(\phi^0_{i_0})$ a 0-handle.
 - By assumption, the inclusion $\partial_0 W \to W_1$ induces an isomorphism on the set of path connected components.
 - There is a 1-handle $(\phi_{i_1}^1)$ such that $\phi_{i_1}^1|_{D^1 \times \{0\}}$ connects $\partial_0 W \times \{1\}$ and the handle $(\phi_{i_0}^0)$.
 - By the Cancellation Lemma, $(\phi^1_{i_1})$ cancels $(\phi^0_{i_0})$.

Next we cancel 1-handles via Ellimination Lemma. Let (ϕ_1^1) be a 1-handle. We need to construct an embedding $\psi^2 \colon S^1 \times D^{n-2} \to \partial_1^0 W_1$ satisfying the required conditions:

1

イロト イポト イヨト

Next we cancel 1-handles via Ellimination Lemma. Let (ϕ_1^1) be a 1-handle. We need to construct an embedding $\psi^2 \colon S^1 \times D^{n-2} \to \partial_1^0 W_1$ satisfying the required conditions:

• Let ψ_+^2 : $S_+^1 = D^1 \times \{x\} \subset (\phi_1^1)$ for some fixed x in the transversal sphere of (ϕ_1^1) .

Next we cancel 1-handles via Ellimination Lemma. Let (ϕ_1^1) be a 1-handle. We need to construct an embedding $\psi^2 \colon S^1 \times D^{n-2} \to \partial_1^0 W_1$ satisfying the required conditions:

- Let ψ_+^2 : $S_+^1 = D^1 \times \{x\} \subset (\phi_1^1)$ for some fixed x in the transversal sphere of (ϕ_1^1) .
- The inclusion $\partial_1^0 W_0 \rightarrow \partial_1 W_0 = \partial_0 W \times \{1\}$ induces an isomorphism on the fundamental group. Together with the assumption, this implies $\partial_1^0 W_0 \rightarrow W$ gives a surjection on the fundamental group.

Next we cancel 1-handles via Ellimination Lemma. Let (ϕ_1^1) be a 1-handle. We need to construct an embedding $\psi^2 \colon S^1 \times D^{n-2} \to \partial_1^0 W_1$ satisfying the required conditions:

- Let ψ_+^2 : $S_+^1 = D^1 \times \{x\} \subset (\phi_1^1)$ for some fixed x in the transversal sphere of (ϕ_1^1) .
- The inclusion $\partial_1^0 W_0 \to \partial_1 W_0 = \partial_0 W \times \{1\}$ induces an isomorphism on the fundamental group. Together with the assumption, this implies $\partial_1^0 W_0 \to W$ gives a surjection on the fundamental group.
- We can find an embedding $\psi_{-}^2 \colon S_{-}^1 \to \partial_1^0 W_0$ which glues with ψ_{+}^2 to $\psi_0^2 \colon S^1 \to \partial_1 W_1$ which is nullhomotopic in W.

Next we cancel 1-handles via Ellimination Lemma. Let (ϕ_1^1) be a 1-handle. We need to construct an embedding $\psi^2 \colon S^1 \times D^{n-2} \to \partial_1^0 W_1$ satisfying the required conditions:

- Let ψ_+^2 : $S_+^1 = D^1 \times \{x\} \subset (\phi_1^1)$ for some fixed x in the transversal sphere of (ϕ_1^1) .
- The inclusion $\partial_1^0 W_0 \to \partial_1 W_0 = \partial_0 W \times \{1\}$ induces an isomorphism on the fundamental group. Together with the assumption, this implies $\partial_1^0 W_0 \to W$ gives a surjection on the fundamental group.
- We can find an embedding $\psi_{-}^2 \colon S_{-}^1 \to \partial_1^0 W_0$ which glues with ψ_{+}^2 to $\psi_0^2 \colon S^1 \to \partial_1 W_1$ which is nullhomotopic in W.
- Since dim S^1 + dim $\psi_0^2(S^1) < \dim \partial_1 W_1$, one can isotope the embeddings $\phi_i^2 \colon S^1 \times D^{n-2} \to \partial_1 W_1$ of the 2-handles such that they don't meet $\psi_0^2(S^1)$. Hence ψ_0^2 lies in $\partial_1^0 W_1$

イロト 不得 トイヨト イヨト 二日

 By connectivity, ψ₀² must already be homotopic in ∂₁W₂, say via h: D² → ∂₁W₂.

- By connectivity, ψ₀² must already be homotopic in ∂₁W₂, say via h: D² → ∂₁W₂.
- We can modify h relative to S^1 such that it is an embedding

- By connectivity, ψ_0^2 must already be homotopic in $\partial_1 W_2$, say via $h: D^2 \rightarrow \partial_1 W_2$.
- We can modify h relative to S^1 such that it is an embedding
- Then the normal bundle of h is trivial, hence also for ψ_0^2

- By connectivity, ψ_0^2 must already be homotopic in $\partial_1 W_2$, say via $h: D^2 \rightarrow \partial_1 W_2$.
- We can modify h relative to S^1 such that it is an embedding
- Then the normal bundle of h is trivial, hence also for ψ_0^2
- Thus ψ_0^2 extends to an embedding $\psi^2 \colon S^1 \times D^{n-1} \to \partial_1^0 W_1$. This satisfies the required conditions by construction

Remark

We really require $n \ge 6$ to approximate h by an embedding.

Antonio Ceres

Handle decompositions

June 17, 2020 27 / 28

< □ ▶ < @ ▶ < \ > ▲ \ > \ = うへで 27/28

Remark

We really require $n \ge 6$ to approximate h by an embedding.

Motivation

Antonio Ceres

- **1** Surgery Theory: Foundations by Crowley, Lück and Macko.
- O Differential Topology by Hirsch.

ъ