The h-cobordism theorem and applications

Rui Ji

11. June 2020

Table of Contents

(1) h-cobordism Theorem
(2) An application of h-cobordism Theorem
(3) A proof sketch of h-Cobordism Theorem

References

(1) Surgery Theory: Foundations by Crowley, Lück and Macko.
(2) The h-cobordism Theorem by Andrew R. Mackie-Mason.
(3) A Concise Course in Algebraic Topology by J. Peter May.
(9) Topology and Geometry by Glen Bredon. A proof sketch of h-Cobordism Theorem

h-cobordism Theorem

Definition

Definition 1 (cobordism)

n-dimensional cobordism ($W ; M_{0}, f_{0}, M_{1}, f_{1}$) consists of a compact n-dimensional manifold W where $\partial W=\partial_{0} W \amalg \partial_{1} W$ a disjoint decomposition, closed ($n-1$)-dimensional manifolds M_{0} and M_{1}, and a diffeomorpshim $f_{0}: M_{0} \rightarrow \partial_{0} W$ and $f_{1}: M_{1} \rightarrow \partial_{1} W$.

Remark 2

If we want to specify M_{0}, we say that W is a cobordism over M_{0}.

Remark 3

If $\partial_{0} W=M_{0}, \partial_{1} W=M_{1}$ and f_{0} and f_{1} are given by the identity or if f_{0} and f_{1} are obvious from the context, we briefly write $\left(W ; \partial_{0} W, \partial_{1} W\right)$.

Definition 4

Two cobordisms ($W ; M_{0}, f_{0}, M_{1}, f_{1}$) and ($\left.W^{\prime} ; M_{0}, f_{0}^{\prime}, M_{1}^{\prime}, f_{1}^{\prime}\right)$ over M_{0} are diffeomorphic relative M_{0} if there is a diffeomorphism $F: W \rightarrow W^{\prime}$ with $F \circ f_{0}=f_{0}^{\prime}$.

Definition 5 (h-cobordism)

A cobordism $\left(W ; M_{0}, f_{0}, M_{1}, f_{1}\right)$ is called h-cobordism, if the inclusion $\partial_{i} W \rightarrow W$ for $i=0,1$ are homotopy equivalence.

Remark 6

We call an h-cobordism over M_{0} trivial, if it is diffeomorphic relative M_{0} to the trivial h-cobordism $\left(M_{0} \times[0,1] ; M_{0} \times\{0\}, M_{0} \times\{1\}\right)$.

Remark 7

The definitions also work with topological manifold.

Theorem 8 (h-Cobordism Theorem)

Every h-cobordism (W; $M_{0}, f_{0}, M_{1}, f_{1}$) over a simply connected closed manifold M_{0} with $\operatorname{dim}\left(M_{0}\right) \geq 5$ is trivial.

Our goal is to trivialize W : namely show that it is diffeomorphic relative M_{0} to

$$
\left(M_{0} \times[0,1] ; M_{0} \times\{0\}, M_{0} \times\{1\}\right)
$$

Suffice to show that it is diffeomorphic relative $\partial_{0} W$ to

$$
\left(\partial_{0} W \times[0,1] ; \partial_{0} W \times\{0\}, \partial_{0} W \times\{1\}\right)
$$

where F is the diffeomorphism between cobordism $\partial_{0} W \times[0,1]$ and W relative $\partial_{0} W$, and two vertical maps are inclusion maps:

$$
\begin{gathered}
\iota: M_{0} \rightarrow M_{0} \times\{0\} \rightarrow M_{0} \times[0,1] \\
\iota: \partial_{0} W \rightarrow \partial_{0} W \times\{0\} \rightarrow \partial_{0} W \times[0,1] .
\end{gathered}
$$

Hence we get a diffeomorphism,

$$
\left(M_{0} \times[0,1] ; M_{0} \times\{0\}, M_{0} \times\{1\}\right) \rightarrow\left(W ; M_{0}, f_{0}, M_{1}, f_{1}\right)
$$

The method of showing ($W ; M_{0}, f_{0}, M_{1}, f_{1}$) is diffeomorphic relative $\partial_{0} W$ to

$$
\left(\partial_{0} W \times[0,1] ; \partial_{0} W \times\{0\}, \partial_{0} W \times\{1\}\right)
$$

is to construct a "handlebody decomposition", namely we will reconstruct W from $\partial_{0} W \times[0,1]$ by attaching handles and then try to cancel those handles. We will continue the discussion about this in the proof sketch of h-Cobordism Theorem if we have time.

An application of h-cobordism Theorem

Poincaré Conjecture

Theorem (Poincaré Conjecture)

If M is a closed manifold homotopy equivalent to the standard n-sphere S^{n}, then M homeomorphic to S^{n}.

For $\mathrm{n}=1$: Classification of closed 1-manifolds.
Every connected closed 1-manifold is homeomorphic to S^{1}

For $\mathrm{n}=2$: Classification of closed surfaces.

Any connected closed surface is homeomorphic to one of
(1) the sphere S^{2};
(2) a connected sum of tori $\#^{g} T^{2}$, for $g \geq 1$;
(3) a connected sum of real projective planes $\#^{k} \mathbb{R} P^{2}$, for $k \geq 1$.

Neither $\pi_{1}\left(\#^{g} T^{2}\right)$ nor $\pi_{1}\left(\#^{k} \mathbb{R} P^{2}\right)$ are trivial, but $\pi_{1}(M) \cong \pi_{1}\left(S^{2}\right)$ is trivial.

For $\mathrm{n}=3$.

Perelman proved this in 2003 (and won the Fields Medal in 2006) for resolving this case.

For $\mathrm{n}=4$.

Freedman solved this in 1982, and also received a Fields Medal.

For $n \geq 5$.
By theory of cobordisms. In particular, we will prove for $n \geq 6$ using h-Cobordism Theorem.

Recap：Homotopy Theory

Definition 9 （ n－connected）

Recall that a pair (X, A) is n－connected if
（1）the inclusion $\iota: A \rightarrow X$ induces for each base point $a \in A$ a bijection

$$
\iota_{*}: \pi_{k}(A, a) \rightarrow \pi_{k}(X, a)
$$

for $k<n$ and surjection for $q=n$
（2）Or equivalently，if $\pi_{0}(A) \rightarrow \pi_{0}(X)$ is surjective and $\pi_{k}(X, A, a)=0$ for $q \in\{1, \ldots, n\}$ and each $a \in A$ ．

Remark 10

By long exact sequence of homotopy group，the above two definition are indeed equivalent．

Theorem 11

A relative $C W$-complex (X, A) with no m-cells for $m \leq n$ is n-connected. (cf. May Chp 10.4)

Theorem 12 (The Relative Hurewicz Theorem)

Suppose that X, A are simply connected and that (X, A) is $n-1$-connected, $n \geq 2$. Then $H_{k}(X, A)=0$ for all $k<n$ and

$$
h_{n}: \pi_{n}(X, A, *) \rightarrow H_{n}(X, A)
$$

is an isomorphism. (cf. Bredon Chp VII Thm 9.5)

Theorem 13 (Whitehead)

Weak homotopy equivalence between CW-complexes is indeed a homotopy equivalence. (cf. May Chp 10.3)

Mapping Cylinder for $f: X \rightarrow Y$,

$\tilde{f}: x \mapsto(x, 1)$ is an inclusion and $M_{f} \rightarrow Y$ such that $(x, t) \mapsto f(x)$ and $y \mapsto y$ is a homotopy equivalence.

Corollary 14

Suppose that X, A are simply connected $C W$-complexes, if $f: X \rightarrow A$ such that $f_{*}: H_{k}(X) \xrightarrow{\cong} H_{k}(A)$ is an isomorphism for all $k \in \mathbb{Z}$, then f is a homotopy equivalence.

Proof.

(1) We pass to the mapping cylinder and assume that f is an inclusion.
(2) Then by long exact sequence of homology the hypothesis is then equivalent to $H_{k}(X, A)=0$ for all $k \in \mathbb{Z}$.
(3) Since both X and A are simply connected, then (X, A) is 1 -connected. Inductively using Relative Hurewicz Theorem, we get that $\pi_{k}(X, A, *)=0$ for all $k \in \mathbb{Z}$.
(9) By long exact sequence of homotopy group $f_{*}: \pi_{k}(X) \xrightarrow{\cong} \pi_{k}(A)$ is an isomorphism. By Whitehead, we get that f is a homotopy equivalence.

Proof of Poincaré Conjecture

Theorem 15 (Poincaré Conjecture)

If M is a closed n-manifold, $n \geq 6$, homotopy equivalent to the standard n-sphere S^{n}, then M homeomorphic to S^{n}.

Let $D_{i}^{n} \hookrightarrow M$ for $i=0,1$ be the inclusion of two embedded disjoint disks. Let $W=M \backslash \operatorname{int}\left(D_{0}^{n}\right) \coprod \operatorname{int}\left(D_{1}^{n}\right)$, notice that

$$
\partial W=\partial D_{0}^{n} \coprod \partial D_{1}^{n}=S_{0}^{n-1} \coprod S_{1}^{n-1}
$$

Note we want to use h-cobordism Theorem, so let us first prove W is indeed a h-cobordism.

Now suppose that we already prove that W is h-cobordism over a simply connected closed manifold. Hence by h-cobordism theorem we can find a diffeomorphism

$$
F:\left(W ; \partial D_{0}^{n}, \partial D_{1}^{n}\right) \rightarrow\left(\partial D_{0}^{n} \times[0,1] ; \partial D_{0}^{n} \times\{0\}, \partial D_{0}^{n} \times\{1\}\right)
$$

By definition we have following commutative diagram

Namely, F is identity on $\partial D_{0}^{n} \xrightarrow{f_{0}} \partial D_{0}^{n} \times\{0\}$ and induces some (unknown) diffeomorphism $f_{1}: \partial D_{1}^{n} \rightarrow \partial D_{0}^{n} \times\{1\}$.
homotopy n-sphere $\quad S^{n-1} \times[0,1]$

Claim 1

W is simply connected.

Proof of Claim 1.

Since (M, W) is a relative CW complex with no m cells for $m \leq n-1$, by Theorem $11(M, W)$ is $n-1$-connected. Hence, W is simply connected.

Claim 2

$H_{k}\left(W, S_{i}^{n-1}\right)=0$ for all $k \in \mathbb{Z}$ and $i=0,1$.

Proof of Claim 2.

Step 1:

(1) Notice that by definition, we want to show for all $k \in \mathbb{Z}$,

$$
H_{k}\left(M \backslash \operatorname{int}\left(D_{0}^{n}\right) \coprod \operatorname{int}\left(D_{1}^{n}\right), \partial D_{0}^{n}\right)=H_{k}\left(W, S_{0}^{n-1}\right)=0 .
$$

(2) By excision (excising $\left.\operatorname{int}\left(D_{0}^{n}\right)\right)$ we have,

$$
H_{k}\left(M \backslash \operatorname{int}\left(D_{0}^{n}\right) \coprod \operatorname{int}\left(D_{1}^{n}\right), \partial D_{0}^{n}\right) \cong H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right), D_{0}^{n}\right) .
$$

So suffice to show that $H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right), D_{0}^{n}\right)=0$, for all $k \in \mathbb{Z}$.

Step 2:

(1) since D_{0}^{n} is contractible, for $k \in \mathbb{Z}$,
$H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right), D_{0}^{n}\right) \cong H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right.$, pt $)=\tilde{H}_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right)$,
where ~ denotes the reduced homology.
(2) Since $M \backslash \operatorname{int}\left(D_{1}^{n}\right)$ is path connected, $H_{0}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right), D_{0}^{n}\right)=0$. Then suffice to show that

$$
H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right)=0
$$

for all $k \geq 1 \in \mathbb{Z}$.

Step 3: Consider the long exact sequence in homology for pair of space ($M, M \backslash \operatorname{int}\left(D_{1}^{n}\right)$), we have

$$
\begin{aligned}
\cdots \longrightarrow & H_{k+1}\left(M, M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \xrightarrow{\partial} H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \longrightarrow H_{k}(M) \\
& G H_{k}\left(M, M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \xrightarrow{\partial} H_{k-1}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \longrightarrow \cdots
\end{aligned}
$$

Notice that by excision (excising $M \backslash D_{1}^{n}$) we have

$$
H_{k}\left(M, M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \cong H_{k}\left(D_{1}^{n}, \partial D_{1}^{n}\right) \cong H_{k}\left(S^{n}, \mathrm{pt}\right)
$$

Then for $k \geq 1$ and $k \neq n, n-1$, we have

$$
\cdots \rightarrow 0 \rightarrow H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \rightarrow 0 \rightarrow \cdots
$$

that is $H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right)=0$ for $k \geq 1$ and $k \neq n, n-1$.

$$
\left.\begin{array}{rl}
\cdots & H_{k+1}\left(M, M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \xrightarrow{\partial} \rightarrow H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \rightarrow M
\end{array}\right]
$$

For $k=n, n-1$, since $H_{k}(M) \xrightarrow{\cong} H_{k}\left(M, M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right)$ we have

$$
0 \rightarrow H_{n}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \rightarrow \mathbb{Z} \stackrel{\cong}{\rightrightarrows} \mathbb{Z} \rightarrow H_{n-1}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right) \rightarrow 0
$$

that is $H_{k}\left(M \backslash \operatorname{int}\left(D_{1}^{n}\right)\right)=0$ for $k=n, n-1$.

Claim 3

$S_{i}^{n-1} \hookrightarrow W$ is homotopy equivalence for $i=0,1$.

Proof of Claim 3.

By Claim $2 H_{k}\left(W, S_{i}^{n-1}\right)=0$ for all k then by Corollary 14 we know $S_{i}^{n-1} \hookrightarrow W$ is homotopy equivalence for $i=0,1$.

Then W is h-cobordism over a simply connected closed manifold ∂D_{0}^{n} where $n \geq 6$. Hence by h-cobordism theorem we can find a diffeomorphism

$$
F:\left(W ; \partial D_{0}^{n}, \partial D_{1}^{n}\right) \rightarrow\left(\partial D_{0}^{n} \times[0,1] ; \partial D_{0}^{n} \times\{0\}, \partial D_{0}^{n} \times\{1\}\right)
$$

By definition we have following commutative diagram

Namely, F is identity on $\partial D_{0}^{n} \xrightarrow{f_{0}} \partial D_{0}^{n} \times\{0\}$ and induces some (unknown) diffeomorphism $f_{1}: \partial D_{1}^{n} \rightarrow \partial D_{0}^{n} \times\{1\}$.
homotopy n-sphere $\quad S^{n-1} \times[0,1]$

Claim 4 (Alexander trick)

Any homeomorphism $f_{1}: \partial D_{1}^{n}=S^{n-1} \rightarrow S^{n-1}=\partial D_{0}^{n} \times\{1\}$ can be extended to a homeomorphism $\bar{f}_{1}: D_{1}^{n}=D^{n} \rightarrow D^{n}=D_{0}^{n} \times\{1\}$.

Proof of Claim 4: radical extension.

Note that we can think of D^{n} as the product $S^{n-1} \times[0,1]$ with $S^{n-1} \times\{0\}$ identified to a single point. Define \bar{f}_{1} as follows

$$
\bar{f}_{1}(x, t)=\left(t \cdot f_{1}(x), t\right) .
$$

The fact that \bar{f}_{1} is a homeomorphism follows directly from f_{1} being a homeomorphism.
Note that we cannot extend this lemma to diffeomorphisms, because problems will arise near $t=0$. Thus diffeomorphisms $f_{1}^{\prime}: S^{n-1} \rightarrow S^{n-1}$ only extend to homeomorphisms $D^{n} \xrightarrow{\bar{f}_{1}^{\prime}} D^{n}$.

Now define a homeomorphism

$$
h: M=D_{0}^{n} \bigcup_{j_{0}} W \bigcup_{j_{1}} D_{1}^{n} \rightarrow D_{0}^{n} \times\{0\} \bigcup_{i_{0}} \partial D_{0}^{n} \times[0,1] \bigcup_{i_{1}} D_{0}^{n} \times\{1\}
$$

where $i_{k}: \partial D_{0}^{n} \times\{k\} \rightarrow D_{0}^{n} \times[0,1]$ and $j_{k}: \partial D_{k}^{n} \rightarrow W$ for $k=0,1$ are the canonical inclusion maps.

$$
\begin{aligned}
& \left.h\right|_{D_{0}^{n}}=\mathrm{id} ; \\
& \left.h\right|_{W}=F ; \\
& \left.h\right|_{D_{1}^{n}}=\bar{f}_{1} .
\end{aligned}
$$

Since $D_{0}^{n} \times\{0\} \bigcup_{i_{0}} \partial D_{0}^{n} \times[0,1] \bigcup_{i_{1}} D_{0}^{n} \times\{1\}$ clearly homeomorphic to S^{n} Poincaré Conjuncture for $n \geq 6$ follows.
homotopy n-sphere $\quad S^{n-1} \times[0,1]$

A proof sketch of h-Cobordism Theorem

Theorem (h-Cobordism Theorem)

Every h-cobordism (W; $M_{0}, f_{0}, M_{1}, f_{1}$) over a simply connected closed manifold M_{0} with $\operatorname{dim}\left(M_{0}\right) \geq 5$ is trivial.

Suffice to show that it is diffeomorphic relative $\partial_{0} W$ to

$$
\left(\partial_{0} W \times[0,1] ; \partial_{0} W \times\{0\}, \partial_{0} W \times\{1\}\right)
$$

The method for doing this is to construct a "handlebody decomposition"

Definition 16 (Handlebody)

An n-dimensional handle of index q is a structure diffeomorphic to $D^{q} \times D^{n-q}$. Where D^{q} and D^{n-q} are the closed disk in \mathbb{R}^{q} and \mathbb{R}^{n-q} respectively.

Remark 17

We will refer to this as an (n, q)-handle or, if the dimension is clearly, simply a q-handle.

Definition 18 (Attach Handle)

Given a n-dimensional manifold M with boundary ∂M and a smooth embedding $\phi^{q}: S^{q-1} \times D^{n-q} \rightarrow \partial M$, we can attach a q-handle $D^{q} \times D^{n-q}$ to M. Namely,

$$
M \cup_{\phi^{q}} D^{q} \times D^{n-q}=\left(M \coprod D^{q} \times D^{n-q}\right) / \sim
$$

where $x \sim \phi^{q}(x)$ for $x \in S^{q-1} \times D^{n-q}$. This operation generates a new manifold denoted by $M+\left(\phi^{q}\right)$.

Remark 19

$\left(D^{q} \times D^{n-q}, S^{q-1} \times D^{n-q}\right) \rightarrow\left(D^{q}, S^{q-1}\right)$ is homotopy equivalence, we can think ϕ^{q} as the attaching map of a q-cell.

Remark 20

Note that $M+\left(\phi^{q}\right)$ is obviously a topological manifold, but one can use some technique to get rid of the corners and get smooth attaching.

Definition 21 (handlebody decomposition)

A handlebody decomposition of a manifold W with $\partial W=\partial_{0} W \amalg \partial_{1} W$ (relative to $\partial_{0} W$) is another manifold W^{\prime} diffeomorphic to W relative to $\partial_{0} W$ with

$$
W^{\prime}=\partial_{0} W \times[0,1]+\left(\phi_{1}^{q_{1}}\right)+\left(\phi_{2}^{q_{2}}\right)+\cdots+\left(\phi_{n}^{q_{n}}\right)
$$

where image of $\phi_{i}^{q_{i}}$ is contained in
$\partial_{1}\left(\partial_{0} W \times[0,1]+\left(\phi_{1}^{q_{1}}\right)+\left(\phi_{2}^{q_{2}}\right)+\cdots+\left(\phi_{i-1}^{q_{i-1}}\right)\right.$). (note: q_{i} not necessarily distinct and increasing)

Lemma 22

If W is a compact manifold with $\partial W=\partial_{0} W \coprod \partial_{1} W$, then there exists a handlebody decomposition of W rel $\partial_{0} W$.

Now in order to show that the W is diffeomorphic to the trivial h-cobordism, we need we find a way to smoothly remove the handles. Luckily we will see a bunch of lemmas which allow us to do lots of operation on the handlebody decomposition, for instance rearrange handles, cancel some handles. Then have the following normal form lemma.

Lemma 23 (Normal form)

Take an h-cobordism $\left(W ; \partial_{0} W, \partial_{1} W\right)$ with $\operatorname{dim}(W) \geq 6$ and $\partial_{0} W$ simply connected. Then for any $2 \leq q \leq n-3$, we have

$$
W \cong \partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right)
$$

Think ($W, \partial_{0} W$) as CW-complex, then

$$
W_{q}=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)
$$

and

$$
W=W_{q+1}=W_{q}+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right)
$$

Then we have the following CW-chain complex for $\left(W, \partial_{0} W\right)$

$$
\cdots \rightarrow 0 \rightarrow C_{p+1}^{\text {cell }}\left(W, \partial_{0} W\right) \xrightarrow{d_{p+1}} C_{p}^{\text {cell }}\left(W, \partial_{0} W\right) \rightarrow 0 \rightarrow \cdots
$$

Namely,

$$
\cdots \rightarrow 0 \rightarrow H_{q+1}\left(W_{q+1}, W_{q}\right) \xrightarrow{d_{p+1}} H_{q}\left(W_{q}, W_{q-1}\right) \rightarrow 0 \rightarrow \cdots
$$

$H_{q+1}\left(W_{q+1}, W_{q}\right)$ has \mathbb{Z}-basis defined by attaching $\left\{\left[\phi_{i}^{q+1}\right]\right\}_{i}$ and $H_{q}\left(W_{q}, W_{q-1}\right)$ has \mathbb{Z}-basis defined by attaching $\left\{\left[\phi_{i}^{q}\right]\right\}_{i}$. Then d_{p+1} is given as $p_{q+1} \times p_{q}$ matrix.

$$
\cdots \rightarrow 0 \rightarrow H_{q+1}\left(W_{q+1}, W_{q}\right) \xrightarrow{d_{p+1}} H_{q}\left(W_{q}, W_{q-1}\right) \rightarrow 0 \rightarrow \cdots
$$

Remark 24

The definition of $\left[\phi_{i}^{q}\right]$ are similar with CW-complex. Consider the following map

$$
\left(\Phi_{1}^{q}, \phi_{1}^{q}\right):\left(D^{q} \times D^{n-q}, S^{q-1} \times D^{n-q}\right) \rightarrow\left(W^{q}, W^{q-1}\right)
$$

where Φ_{1}^{q} is characteristic map.
Then we have the induced map on homology, namely

$$
H_{q}\left(\Phi_{1}^{q}, \phi_{1}^{q}\right): H_{q}\left(D^{q} \times D^{n-q}, S^{q-1} \times D^{n-q}\right) \rightarrow H_{q}\left(W^{q}, W^{q-1}\right) .
$$

Note $H_{q}\left(D^{q} \times D^{n-q}, S^{q-1} \times D^{n-q}\right) \cong \mathbb{Z},\left[\phi_{i}^{q}\right]$ the image of preferred generator. Then d_{p+1} is given as $p_{q+1} \times p_{q}$ matrix.

Remark 25

Since, $\left(W ; \partial_{0} W, \partial_{1} W\right)$ is h-cobordisms then $H_{i}\left(W, \partial_{0} W\right)$ vanishes; hence,

$$
\cdots \rightarrow 0 \rightarrow H_{q+1}\left(W_{q+1}, W_{q}\right) \xrightarrow{d_{p+1}} H_{q}\left(W_{q}, W_{q-1}\right) \rightarrow 0 \rightarrow \cdots
$$

d_{p+1} isomorphism.
Also $p_{q}=p_{q+1}$, and d_{p+1} is given as $p_{q} \times p_{q}$ matrix, we call this matrix representative matrix.

If matrix representative matrix of d_{p+1} is the empty matrix, then W trivial.

Lemma 26

Take an h-cobordism ($W ; \partial_{0} W, \partial_{1} W$) with $\operatorname{dim}(W) \geq 6$ and $\partial_{0} W$ simply connected. Let A be its representative matrix. If B be any matrix formed from A using any of the following operation, Then there is another handlebody decomposition of W with B as its representative matrix.
(1) B is obtained from A by adding a multiple of the $k_{t h}$ row to the $I_{\text {th }}$ row, for $k \neq 1$;
(2) B is obtained from A by multiplying the $k_{t h}$ row by -1 ;
(3) B is obtained from A by interchanging two rows or two columns;
(c) B is of the form $A \oplus I_{1}$ i.e.

$$
B=\left(\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right) \text {; }
$$

(5) A is of the form $B \oplus I_{1}$ i.e.

$$
A=\left(\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right)
$$

Using previous lemma rule $1-3$ we can change the matrix representative matrix of d_{p+1} to identity matrix. Then by rule 5 , we can change the identity matrix to trivial matrix.

