Exotic Spheres

Seminar: Characteristic Classes II

Thibaud van den Hove

June 3, 2020

Goal

We want to show existence of exotic spheres, i.e. construct a smooth n-manifold that is homotopy equivalent, but not diffeomorphic to S^{n}.

Goal

We want to show existence of exotic spheres, i.e. construct a smooth n-manifold that is homotopy equivalent, but not diffeomorphic to S^{n}.

This will be done by considering the space of unit vectors of some vector bundle. (Unless specified, all our vector bundles will be real.) First, we must construct this vector bundle.

Preparations

Proposition

There exists an oriented 4-plane bundle ξ over S^{4}, with

$$
p_{1}(\xi)=-2 u \quad \text { and } \quad e(\xi)=u
$$

where u is a generator of $H^{4}\left(S^{4}, \mathbb{Z}\right)$.

Preparations

Proposition

There exists an oriented 4-plane bundle ξ over S^{4}, with

$$
p_{1}(\xi)=-2 u \quad \text { and } \quad e(\xi)=u
$$

where u is a generator of $H^{4}\left(S^{4}, \mathbb{Z}\right)$.

Proof

Consider the skew-field \mathbb{H} of quaternions. For any $m \geq 1$, we have the projective space $\mathbb{P}^{m}(\mathbb{H})$ of 1 -dimensional subspaces of \mathbb{H}^{m+1}. This is a $4 m$-dimensional smooth manifold.

Preparations

Proposition

There exists an oriented 4-plane bundle ξ over S^{4}, with

$$
p_{1}(\xi)=-2 u \quad \text { and } \quad e(\xi)=u
$$

where u is a generator of $H^{4}\left(S^{4}, \mathbb{Z}\right)$.

Proof

Consider the skew-field \mathbb{H} of quaternions. For any $m \geq 1$, we have the projective space $\mathbb{P}^{m}(\mathbb{H})$ of 1 -dimensional subspaces of \mathbb{H}^{m+1}. This is a $4 m$-dimensional smooth manifold.
Let γ be the canonical quaternion line bundle over $\mathbb{P}^{m}(\mathbb{H})$:

$$
E(\gamma)=\left\{(L, v) \mid L \in \mathbb{P}^{m}(\mathbb{H}), v \in L\right\} .
$$

The space of unit vectors of $E(\gamma)$ can be identified with $S^{4 m+3} \subseteq \mathbb{H}^{m+1}$.

Preparations

Proof

Consider the underlying real (complex) bundle $\gamma_{R}\left(\gamma_{C}\right)$. As the underlying bundle of γ_{C}, γ_{R} is orientable.
We want to compute $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$. To do this, we can use the Gysin sequence for γ_{R} :

$$
\ldots \rightarrow H^{i+n-1}\left(E_{0}\right) \rightarrow H^{i}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{i+n}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\xi_{0}^{*}} H^{i+n}\left(E_{0}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \ldots
$$

Preparations

Proof

Consider the underlying real (complex) bundle $\gamma_{R}\left(\gamma_{C}\right)$. As the underlying bundle of γ_{C}, γ_{R} is orientable.
We want to compute $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$. To do this, we can use the Gysin sequence for γ_{R} :
$\ldots \rightarrow H^{i+3}\left(S^{4 m+3}\right) \rightarrow H^{i}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{i+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\xi_{0}^{*}} H^{i+4}\left(S^{4 m+3}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \ldots$

Preparations

Proof

Consider the underlying real (complex) bundle $\gamma_{R}\left(\gamma_{C}\right)$. As the underlying bundle of γ_{C}, γ_{R} is orientable.
We want to compute $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$. To do this, we can use the Gysin sequence for γ_{R} :
$\ldots \rightarrow H^{i+3}\left(S^{4 m+3}\right) \rightarrow H^{i}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{i+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\xi_{0}^{*}} H^{i+4}\left(S^{4 m+3}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \ldots$
As $H^{0}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$, we see that for $k<4 m+3$, we have $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$ for $k \not \equiv 0 \bmod 4$, and $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$ for $k \equiv 0 \bmod 4$, generated by $e\left(\gamma_{R}\right)^{k / 4}$.

Preparations

Proof

Consider the underlying real (complex) bundle $\gamma_{R}\left(\gamma_{C}\right)$. As the underlying bundle of γ_{C}, γ_{R} is orientable.
We want to compute $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$. To do this, we can use the Gysin sequence for γ_{R} :
$\ldots \rightarrow H^{i+3}\left(S^{4 m+3}\right) \rightarrow H^{i}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{i+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\xi_{0}^{*}} H^{i+4}\left(S^{4 m+3}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \ldots$
As $H^{0}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$, we see that for $k<4 m+3$, we have $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$ for $k \not \equiv 0 \bmod 4$, and $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$ for $k \equiv 0 \bmod 4$, generated by $e\left(\gamma_{R}\right)^{k / 4}$.
For $n=4 m+3,4 m+4$, we have an exact sequence

$$
0 \rightarrow H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow H^{4 m+3}\left(S^{4 m+3}\right) \rightarrow H^{4 m}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow 0
$$

Preparations

Proof

Consider the underlying real (complex) bundle $\gamma_{R}\left(\gamma_{C}\right)$. As the underlying bundle of γ_{C}, γ_{R} is orientable.
We want to compute $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$. To do this, we can use the Gysin sequence for γ_{R} :
$\ldots \rightarrow H^{i+3}\left(S^{4 m+3}\right) \rightarrow H^{i}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{i+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\xi_{0}^{*}} H^{i+4}\left(S^{4 m+3}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \ldots$
As $H^{0}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$, we see that for $k<4 m+3$, we have $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$ for $k \not \equiv 0 \bmod 4$, and $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$ for $k \equiv 0 \bmod 4$, generated by $e\left(\gamma_{R}\right)^{k / 4}$.
For $n=4 m+3,4 m+4$, we have an exact sequence

$$
0 \rightarrow H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \xrightarrow{\cup e} H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow 0 .
$$

Preparations

Proof

Consider the underlying real (complex) bundle $\gamma_{R}\left(\gamma_{C}\right)$. As the underlying bundle of γ_{C}, γ_{R} is orientable.
We want to compute $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$. To do this, we can use the Gysin sequence for γ_{R} :
$\ldots \rightarrow H^{i+3}\left(S^{4 m+3}\right) \rightarrow H^{i}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\cup e} H^{i+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \xrightarrow{\xi_{0}^{*}} H^{i+4}\left(S^{4 m+3}\right) \rightarrow H^{i+1}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \ldots$
As $H^{0}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$, we see that for $k<4 m+3$, we have $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$ for $k \not \equiv 0 \bmod 4$, and $H^{k}\left(\mathbb{P}^{m}(\mathbb{H})\right)=\mathbb{Z}$ for $k \equiv 0 \bmod 4$, generated by $e\left(\gamma_{R}\right)^{k / 4}$.
For $n=4 m+3,4 m+4$, we have an exact sequence

$$
0 \rightarrow H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \xrightarrow{\cup e} H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow 0
$$

In particular, $H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right)$ is generated by $e\left(\gamma_{R}\right)^{m+1}$.

Preparations

Proof

Consider the section

$$
\left[z_{0}: z_{1}: \ldots: z_{m}\right] \mapsto \frac{\left(\overline{z_{0}} z_{0}, \overline{z_{0}} z_{1}, \ldots, \overline{\bar{z}_{0}} z_{m}\right)}{\sum_{i}\left|z_{i}\right|^{2}}
$$

of γ_{R}.

Preparations

Proof

Consider the section

$$
\left[\lambda z_{0}: \lambda z_{1}: \ldots: \lambda z_{m}\right] \mapsto \frac{\left(\overline{z_{0}} \bar{\lambda} \lambda z_{0}, \overline{z_{0}} \bar{\lambda} \lambda z_{1}, \ldots, \overline{z_{0}} \bar{\lambda} \lambda z_{m}\right)}{|\lambda|^{2} \sum_{i}\left|z_{i}\right|^{2}}
$$

of γ_{R}.

Preparations

Proof

Consider the section

$$
\left[z_{0}: z_{1}: \ldots: z_{m}\right] \mapsto \frac{\left(\overline{z_{0}} z_{0}, \overline{\bar{z}_{0}} z_{1}, \ldots, \overline{\bar{z}_{0}} z_{m}\right)}{\sum_{i}\left|z_{i}\right|^{2}}
$$

of γ_{R}. This is a well-defined, smooth section, which can only vanish when $z_{0}=0$.

Preparations

Proof

Consider the section

$$
\left[z_{0}: z_{1}: \ldots: z_{m}\right] \mapsto \frac{\left(\overline{z_{0}} z_{0}, \overline{z_{0}} z_{1}, \ldots, \overline{z_{0}} z_{m}\right)}{\sum_{i}\left|z_{i}\right|^{2}}
$$

of γ_{R}. This is a well-defined, smooth section, which can only vanish when $z_{0}=0$. Using this, we can construct a nowhere vanishing section of $\bigoplus_{i=0}^{m} \gamma_{R}$, and hence $e\left(\bigoplus_{i=0}^{m} \gamma_{R}\right)=0$. Consequently, $e\left(\gamma_{R}\right)^{m+1}=0$.

Preparations

Proof

Consider the section

$$
\left[z_{0}: z_{1}: \ldots: z_{m}\right] \mapsto \frac{\left(\overline{z_{0}} z_{0}, \overline{z_{0}} z_{1}, \ldots, \overline{z_{0}} z_{m}\right)}{\sum_{i}\left|z_{i}\right|^{2}}
$$

of γ_{R}. This is a well-defined, smooth section, which can only vanish when $z_{0}=0$. Using this, we can construct a nowhere vanishing section of $\bigoplus_{i=0}^{m} \gamma_{R}$, and hence $e\left(\bigoplus_{i=0}^{m} \gamma_{R}\right)=0$. Consequently, $e\left(\gamma_{R}\right)^{m+1}=0$.
So $H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$, and by exactness of

$$
0 \rightarrow H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \xrightarrow{\cup e} H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow 0,
$$

$H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$.
So $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$ is a truncated polynomial ring, generated by $u:=e\left(\gamma_{R}\right) \in H^{4}\left(\mathbb{P}^{m}(\mathbb{H})\right)$.

Preparations

Proof

Consider the section

$$
\left[z_{0}: z_{1}: \ldots: z_{m}\right] \mapsto \frac{\left(\overline{z_{0}} z_{0}, \overline{z_{0}} z_{1}, \ldots, \overline{z_{0}} z_{m}\right)}{\sum_{i}\left|z_{i}\right|^{2}}
$$

of γ_{R}. This is a well-defined, smooth section, which can only vanish when $z_{0}=0$. Using this, we can construct a nowhere vanishing section of $\bigoplus_{i=0}^{m} \gamma_{R}$, and hence $e\left(\bigoplus_{i=0}^{m} \gamma_{R}\right)=0$. Consequently, $e\left(\gamma_{R}\right)^{m+1}=0$.
So $H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$, and by exactness of

$$
0 \rightarrow H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \xrightarrow{\cup e} H^{4 m+4}\left(\mathbb{P}^{m}(\mathbb{H})\right) \rightarrow 0,
$$

$H^{4 m+3}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$.
So $H^{*}\left(\mathbb{P}^{m}(\mathbb{H})\right)$ is a truncated polynomial ring, generated by $u:=e\left(\gamma_{R}\right) \in H^{4}\left(\mathbb{P}^{m}(\mathbb{H})\right)$.
As $H^{2}\left(\mathbb{P}^{m}(\mathbb{H})\right)=0$, the total Chern class of γ_{c} is $c\left(\gamma_{c}\right)=1+u$.

Preparations

Lemma

For a complex vector bundle ω, consider the Chern classes $c_{i}:=c_{i}(\omega)$ and the Pontryagin classes $p_{i}:=p_{i}\left(\omega_{R}\right)$. Then we have

$$
1-p_{1}+p_{2}-\ldots \pm p_{n}=\left(1-c_{1}+c_{2}-\ldots \pm c_{n}\right)\left(1+c_{1}+c_{2}+\ldots+c_{n}\right)
$$

Preparations

Lemma

For a complex vector bundle ω, consider the Chern classes $c_{i}:=c_{i}(\omega)$ and the Pontryagin classes $p_{i}:=p_{i}\left(\omega_{R}\right)$. Then we have

$$
1-p_{1}+p_{2}-\ldots \pm p_{n}=\left(1-c_{1}+c_{2}-\ldots \pm c_{n}\right)\left(1+c_{1}+c_{2}+\ldots+c_{n}\right)
$$

Proof.

This follows from 3 facts we have seen before:
(1) $\left(\omega_{R}\right)_{C} \cong \omega \oplus \bar{\omega}$,
(2) $c\left(\xi_{1} \oplus \xi_{2}\right)=c\left(\xi_{1}\right) \cup c\left(\xi_{2}\right)$ for any two complex vector bundles ξ_{1}, ξ_{2},
(3) $c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$. In particular, $c(\bar{\omega})=1-c_{1}(\omega)+c_{2}(\omega)-\ldots$

Preparations

Lemma

For a complex vector bundle ω, consider the Chern classes $c_{i}:=c_{i}(\omega)$ and the Pontryagin classes $p_{i}:=p_{i}\left(\omega_{R}\right)$. Then we have

$$
1-p_{1}+p_{2}-\ldots \pm p_{n}=\left(1-c_{1}+c_{2}-\ldots \pm c_{n}\right)\left(1+c_{1}+c_{2}+\ldots+c_{n}\right)
$$

Proof.

This follows from 3 facts we have seen before:
(1) $\left(\omega_{R}\right)_{C} \cong \omega \oplus \bar{\omega}$,
(2) $c\left(\xi_{1} \oplus \xi_{2}\right)=c\left(\xi_{1}\right) \cup c\left(\xi_{2}\right)$ for any two complex vector bundles ξ_{1}, ξ_{2},
(3) $c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$. In particular, $c(\bar{\omega})=1-c_{1}(\omega)+c_{2}(\omega)-\ldots$

Now use the definition of Pontryagin classes, and note that terms of odd degree of $\left(1-c_{1}+c_{2}-\ldots \pm c_{n}\right)\left(1+c_{1}+c_{2}+\ldots+c_{n}\right)$ vanish.

Preparations

Back to the proof of the proposition.
Applying this lemma to γ_{C}, we see that

$$
1-p_{1}\left(\gamma_{R}\right)+p_{2}\left(\gamma_{R}\right)=1+2 u+u^{2}
$$

so $p_{1}\left(\gamma_{R}\right)=-2 u$.

Preparations

Back to the proof of the proposition.

Applying this lemma to γ_{C}, we see that

$$
1-p_{1}\left(\gamma_{R}\right)+p_{2}\left(\gamma_{R}\right)=1+2 u+u^{2}
$$

so $p_{1}\left(\gamma_{R}\right)=-2 u$.
Specializing to the case $m=1$, we get a real vector bundle over $\mathbb{P}^{1}(\mathbb{H}) \cong S^{4}$, satisfying the requirements.

Preparations

Back to the proof of the proposition.

Applying this lemma to γ_{C}, we see that

$$
1-p_{1}\left(\gamma_{R}\right)+p_{2}\left(\gamma_{R}\right)=1+2 u+u^{2}
$$

so $p_{1}\left(\gamma_{R}\right)=-2 u$.
Specializing to the case $m=1$, we get a real vector bundle over $\mathbb{P}^{1}(\mathbb{H}) \cong S^{4}$, satisfying the requirements.

Now, fix this $u \in H^{4}\left(S^{4}\right)$.

Preparations

Proposition

Let k, I be integers with $k \equiv 2 / \bmod 4$. Then there exists an oriented 4-plane bundle ξ over S^{4} with

$$
p_{1}(\xi)=k u \quad \text { and } \quad e(\xi)=l u
$$

Preparations

Proposition

Let k, I be integers with $k \equiv 2 / \bmod 4$. Then there exists an oriented 4-plane bundle ξ over S^{4} with

$$
p_{1}(\xi)=k u \quad \text { and } \quad e(\xi)=l u
$$

Proof

Let \widetilde{G}_{4} be the space of oriented 4-planes in \mathbb{R}^{∞}, with universal bundle $\widetilde{\gamma}^{4}$. Consider the function

$$
\varphi: \pi_{4}\left(\widetilde{G}_{4}\right) \rightarrow H^{4}\left(S^{4}\right) \cong \mathbb{Z}:[f] \mapsto p_{1}\left(f^{*} \widetilde{\gamma}^{4}\right)=f^{*} p_{1}\left(\widetilde{\gamma}^{4}\right)
$$

Preparations

Proposition

Let k, I be integers with $k \equiv 2 / \bmod 4$. Then there exists an oriented 4-plane bundle ξ over S^{4} with

$$
p_{1}(\xi)=k u \quad \text { and } \quad e(\xi)=l u .
$$

Proof

Let \widetilde{G}_{4} be the space of oriented 4-planes in \mathbb{R}^{∞}, with universal bundle $\widetilde{\gamma}^{4}$. Consider the function

$$
\varphi: \pi_{4}\left(\widetilde{G}_{4}\right) \rightarrow H^{4}\left(S^{4}\right) \cong \mathbb{Z}:[f] \mapsto p_{1}\left(f^{*} \widetilde{\gamma}^{4}\right)=f^{*} p_{1}\left(\widetilde{\gamma}^{4}\right)
$$

This is a homomorphism, as $\left\langle f^{*} p_{1}\left(\widetilde{\gamma}^{4}\right),\left[S^{4}\right]\right\rangle=\left\langle p_{1}\left(\widetilde{\gamma}^{4}\right), f_{*}\left[S^{4}\right]\right\rangle$, and the Hurewicz map $h: \pi_{4}\left(\widetilde{G}_{4}\right) \rightarrow H_{4}\left(\widetilde{G}_{4}\right):[f] \mapsto f_{*}\left[S_{4}\right]$ is a homomorphism.

Preparations

Proposition

Let k, I be integers with $k \equiv 2 / \bmod 4$. Then there exists an oriented 4-plane bundle ξ over S^{4} with

$$
p_{1}(\xi)=k u \quad \text { and } \quad e(\xi)=l u
$$

Proof

Let \widetilde{G}_{4} be the space of oriented 4-planes in \mathbb{R}^{∞}, with universal bundle $\widetilde{\gamma}^{4}$. Consider the function

$$
\varphi: \pi_{4}\left(\widetilde{G}_{4}\right) \rightarrow H^{4}\left(S^{4}\right) \cong \mathbb{Z}:[f] \mapsto p_{1}\left(f^{*} \widetilde{\gamma}^{4}\right)=f^{*} p_{1}\left(\widetilde{\gamma}^{4}\right)
$$

This is a homomorphism, as $\left\langle f^{*} p_{1}\left(\widetilde{\gamma}^{4}\right),\left[S^{4}\right]\right\rangle=\left\langle p_{1}\left(\widetilde{\gamma}^{4}\right), f_{*}\left[S^{4}\right]\right\rangle$, and the Hurewicz map $h: \pi_{4}\left(\widetilde{G}_{4}\right) \rightarrow H_{4}\left(\widetilde{G}_{4}\right):[f] \mapsto f_{*}\left[S_{4}\right]$ is a homomorphism.
Similarly, we have a homomorphism

$$
\psi: \pi_{4}\left(\widetilde{G}_{4}\right) \rightarrow H^{4}\left(S^{4}\right) \cong \mathbb{Z}:[f] \mapsto e\left(f^{*} \widetilde{\gamma}^{4}\right)
$$

Preparations

Proof.

Let $f_{1}: S^{4} \rightarrow \widetilde{G}_{4}$ classify the (oriented) tangent bundle of S^{4}. Then

$$
\varphi\left(f_{1}\right)=0 \quad \text { and } \quad \psi\left(f_{1}\right)=2 u
$$

Preparations

Proof.

Let $f_{1}: S^{4} \rightarrow \widetilde{G}_{4}$ classify the (oriented) tangent bundle of S^{4}. Then

$$
\varphi\left(f_{1}\right)=0 \quad \text { and } \quad \psi\left(f_{1}\right)=2 u
$$

Similarly, we have $f_{2}: S^{4} \rightarrow \widetilde{G}_{4}$ classifying γ_{R} from the previous proposition, with

$$
\varphi\left(f_{2}\right)=-2 u \quad \text { and } \quad \psi\left(f_{2}\right)=u
$$

Preparations

Proof.

Let $f_{1}: S^{4} \rightarrow \widetilde{G}_{4}$ classify the (oriented) tangent bundle of S^{4}. Then

$$
\varphi\left(f_{1}\right)=0 \quad \text { and } \quad \psi\left(f_{1}\right)=2 u
$$

Similarly, we have $f_{2}: S^{4} \rightarrow \widetilde{G}_{4}$ classifying γ_{R} from the previous proposition, with

$$
\varphi\left(f_{2}\right)=-2 u \quad \text { and } \quad \psi\left(f_{2}\right)=u
$$

Then the vector bundle $\xi=\left[\frac{k+2 l}{4} f_{1}-\frac{k}{2} f_{2}\right]^{*} \widetilde{\gamma}^{4}$ is oriented and satisfies

$$
p_{1}(\xi)=k u \quad \text { and } e(\xi)=l u
$$

Existence of Exotic Spheres

Let $k \equiv 2 \bmod 4$ be an integer. By the previous proposition, there exists an oriented 4-plane bundle ξ over S^{4} with

$$
p_{1}(\xi)=k u \quad \text { and } \quad e(\xi)=u
$$

Existence of Exotic Spheres

Let $k \equiv 2 \bmod 4$ be an integer. By the previous proposition, there exists an oriented 4-plane bundle ξ over S^{4} with

$$
p_{1}(\xi)=k u \quad \text { and } \quad e(\xi)=u
$$

Let $E=E(\xi)$ be the total space of this vector bundle, E^{\prime} the space of vectors with length ≤ 1, and ∂E^{\prime} the space of unit vectors. We want to show ∂E^{\prime} is homotopy equivalent to S^{7}.

Existence of Exotic Spheres

Look at the Gysin sequence

$$
\ldots \rightarrow H^{i+3}\left(\partial E^{\prime}\right) \rightarrow H^{i}\left(S^{4}\right) \xrightarrow{\cup e} H^{i+4}\left(S^{4}\right) \rightarrow H^{i+4}\left(\partial E^{\prime}\right) \rightarrow H^{i+1}\left(S^{4}\right) \rightarrow \ldots
$$

Existence of Exotic Spheres

Look at the Gysin sequence

$$
\ldots \rightarrow H^{i+3}\left(\partial E^{\prime}\right) \rightarrow H^{i}\left(S^{4}\right) \xrightarrow{\cup e} H^{i+4}\left(S^{4}\right) \rightarrow H^{i+4}\left(\partial E^{\prime}\right) \rightarrow H^{i+1}\left(S^{4}\right) \rightarrow \ldots
$$

As $e(\xi)=u$ is a generator of $H^{4}\left(S^{4}\right)$, the map $\cup e: H^{0}\left(S^{4}\right) \rightarrow H^{4}\left(S^{4}\right)$ is an isomorphism. Consequently, $H^{*}\left(\partial E^{\prime}, \mathbb{Z}\right) \cong H^{*}\left(S^{7}, \mathbb{Z}\right)$.

Existence of Exotic Spheres

Look at the Gysin sequence

$$
\ldots \rightarrow H^{i+3}\left(\partial E^{\prime}\right) \rightarrow H^{i}\left(S^{4}\right) \xrightarrow{\cup e} H^{i+4}\left(S^{4}\right) \rightarrow H^{i+4}\left(\partial E^{\prime}\right) \rightarrow H^{i+1}\left(S^{4}\right) \rightarrow \ldots
$$

As $e(\xi)=u$ is a generator of $H^{4}\left(S^{4}\right)$, the map $\cup e: H^{0}\left(S^{4}\right) \rightarrow H^{4}\left(S^{4}\right)$ is an isomorphism. Consequently, $H^{*}\left(\partial E^{\prime}, \mathbb{Z}\right) \cong H^{*}\left(S^{7}, \mathbb{Z}\right)$.

We also have a fibration $S^{3} \rightarrow \partial E^{\prime} \rightarrow S^{4}$. The associated long exact homotopy sequence shows that

$$
\ldots \rightarrow \pi_{1}\left(S^{3}\right) \rightarrow \pi_{1}\left(\partial E^{\prime}\right) \rightarrow \pi_{1}\left(S^{4}\right) \rightarrow \ldots
$$

is exact.

Existence of Exotic Spheres

Look at the Gysin sequence

$$
\ldots \rightarrow H^{i+3}\left(\partial E^{\prime}\right) \rightarrow H^{i}\left(S^{4}\right) \xrightarrow{\cup e} H^{i+4}\left(S^{4}\right) \rightarrow H^{i+4}\left(\partial E^{\prime}\right) \rightarrow H^{i+1}\left(S^{4}\right) \rightarrow \ldots
$$

As $e(\xi)=u$ is a generator of $H^{4}\left(S^{4}\right)$, the map $\cup e: H^{0}\left(S^{4}\right) \rightarrow H^{4}\left(S^{4}\right)$ is an isomorphism. Consequently, $H^{*}\left(\partial E^{\prime}, \mathbb{Z}\right) \cong H^{*}\left(S^{7}, \mathbb{Z}\right)$.

We also have a fibration $S^{3} \rightarrow \partial E^{\prime} \rightarrow S^{4}$. The associated long exact homotopy sequence shows that

$$
\ldots \rightarrow \pi_{1}\left(S^{3}\right) \rightarrow \pi_{1}\left(\partial E^{\prime}\right) \rightarrow \pi_{1}\left(S^{4}\right) \rightarrow \ldots
$$

is exact.
So ∂E^{\prime} is simply connected. As we also have $H_{*}\left(\partial E^{\prime}, \mathbb{Z}\right) \cong H_{*}\left(S^{7}, \mathbb{Z}\right)$ by Poincaré duality, and a degree 1 map $S^{7} \rightarrow \partial E^{\prime}$ by the Hopf theorem, ∂E^{\prime} is homotopy equivalent to S^{7}.

Existence of Exotic Spheres

Now suppose there exists a diffeomorphism $\varphi: S^{7} \rightarrow \partial E^{\prime}$. Define

$$
M:=E^{\prime} \cup_{\varphi} D^{8} .
$$

Existence of Exotic Spheres

Now suppose there exists a diffeomorphism $\varphi: S^{7} \rightarrow \partial E^{\prime}$. Define

$$
M:=E^{\prime} \cup_{\varphi} D^{8}
$$

Then $M \simeq E^{\prime} \cup_{\partial E^{\prime}} C\left(\partial E^{\prime}\right)$. As this is defined by coning of ∂E^{\prime} in E^{\prime}, this is homotopy equivalent to $E^{\prime} / \partial E^{\prime}=\operatorname{Th}(\xi)$.

Existence of Exotic Spheres

Now suppose there exists a diffeomorphism $\varphi: S^{7} \rightarrow \partial E^{\prime}$. Define

$$
M:=E^{\prime} \cup_{\varphi} D^{8}
$$

Then $M \simeq E^{\prime} \cup_{\partial E^{\prime}} C\left(\partial E^{\prime}\right)$. As this is defined by coning of ∂E^{\prime} in E^{\prime}, this is homotopy equivalent to $E^{\prime} / \partial E^{\prime}=\operatorname{Th}(\xi)$.

Recall:

Lemma

If the base space B of k-plane bundle ξ is a $C W$-complex, then $\operatorname{Th}(\xi)$ has the structure of a $(k-1)$-connected CW-complex having, in addition to the basepoint, one $(n+k)$-cell for each n-cell of B.

Existence of Exotic Spheres

Using this lemma, we see that $H^{n}(\operatorname{Th}(\xi), \mathbb{Z})=\mathbb{Z}$ if $n=0,4,8$, and 0 otherwise.

Existence of Exotic Spheres

Using this lemma, we see that $H^{n}(\operatorname{Th}(\xi), \mathbb{Z})=\mathbb{Z}$ if $n=0,4,8$, and 0 otherwise.
In particular, the signature $\sigma(M)= \pm 1$. By choosing the correct orientation of M, we can assume $\sigma(M)=1$.

Existence of Exotic Spheres

Using this lemma, we see that $H^{n}(\operatorname{Th}(\xi), \mathbb{Z})=\mathbb{Z}$ if $n=0,4,8$, and 0 otherwise.
In particular, the signature $\sigma(M)= \pm 1$. By choosing the correct orientation of M, we can assume $\sigma(M)=1$.

We want to compute $p_{1}(T M)$. As

$$
H^{3}\left(\partial E^{\prime}\right) \rightarrow H^{4}(M) \rightarrow H^{4}\left(E^{\prime}\right) \oplus H^{4}\left(C\left(\partial E^{\prime}\right)\right) \rightarrow H^{4}\left(\partial E^{\prime}\right)
$$

is exact, we see that $i: E^{\prime} \rightarrow M$ induces an isomorphism on $H^{4}(-, \mathbb{Z})$ (which is isomorphic to $\mathbb{Z})$. So we can compute $p_{1}\left(T E^{\prime}\right)$ instead.

Existence of Exotic Spheres

Consider some Riemannian metric on E^{\prime}. Then $T E^{\prime}$ splits as the Whitney sum of the bundle of vectors tangent to the fibers (of $\xi: E^{\prime} \rightarrow S^{4}$), and the bundle of vectors normal to the fiber.

Existence of Exotic Spheres

Consider some Riemannian metric on E^{\prime}. Then $T E^{\prime}$ splits as the Whitney sum of the bundle of vectors tangent to the fibers (of $\xi: E^{\prime} \rightarrow S^{4}$), and the bundle of vectors normal to the fiber. So we get

$$
T E^{\prime}=\xi^{*}(\xi) \oplus \xi^{*}\left(T S^{4}\right)
$$

Existence of Exotic Spheres

Consider some Riemannian metric on E^{\prime}. Then $T E^{\prime}$ splits as the Whitney sum of the bundle of vectors tangent to the fibers (of $\xi: E^{\prime} \rightarrow S^{4}$), and the bundle of vectors normal to the fiber. So we get

$$
T E^{\prime}=\xi^{*}(\xi) \oplus \xi^{*}\left(T S^{4}\right)
$$

This shows

$$
2 p\left(T E^{\prime}\right)=2\left(p\left(\xi^{*}(\xi)\right) \cup p\left(\xi^{*}\left(T S^{4}\right)\right)\right)
$$

Existence of Exotic Spheres

Consider some Riemannian metric on E^{\prime}. Then $T E^{\prime}$ splits as the Whitney sum of the bundle of vectors tangent to the fibers (of $\xi: E^{\prime} \rightarrow S^{4}$), and the bundle of vectors normal to the fiber. So we get

$$
T E^{\prime}=\xi^{*}(\xi) \oplus \xi^{*}\left(T S^{4}\right)
$$

This shows

$$
2 p\left(T E^{\prime}\right)=2\left(p\left(\xi^{*}(\xi)\right) \cup p\left(\xi^{*}\left(T S^{4}\right)\right)\right)
$$

Hence

$$
2 p_{1}\left(T E^{\prime}\right)=2\left(p_{1}\left(\xi^{*}(\xi)\right)+p_{1}\left(\xi^{*}\left(T S^{4}\right)\right)\right) .
$$

Existence of Exotic Spheres

Consider some Riemannian metric on E^{\prime}. Then $T E^{\prime}$ splits as the Whitney sum of the bundle of vectors tangent to the fibers (of $\xi: E^{\prime} \rightarrow S^{4}$), and the bundle of vectors normal to the fiber. So we get

$$
T E^{\prime}=\xi^{*}(\xi) \oplus \xi^{*}\left(T S^{4}\right)
$$

This shows

$$
2 p\left(T E^{\prime}\right)=2\left(p\left(\xi^{*}(\xi)\right) \cup p\left(\xi^{*}\left(T S^{4}\right)\right)\right)
$$

Hence

$$
p_{1}\left(T E^{\prime}\right)=p_{1}\left(\xi^{*}(\xi)\right)+p_{1}\left(\xi^{*}\left(T S^{4}\right)\right)
$$

Existence of Exotic Spheres

Consider some Riemannian metric on E^{\prime}. Then $T E^{\prime}$ splits as the Whitney sum of the bundle of vectors tangent to the fibers (of $\xi: E^{\prime} \rightarrow S^{4}$), and the bundle of vectors normal to the fiber. So we get

$$
T E^{\prime}=\xi^{*}(\xi) \oplus \xi^{*}\left(T S^{4}\right)
$$

This shows

$$
2 p\left(T E^{\prime}\right)=2\left(p\left(\xi^{*}(\xi)\right) \cup p\left(\xi^{*}\left(T S^{4}\right)\right)\right)
$$

Hence

$$
p_{1}\left(T E^{\prime}\right)=p_{1}\left(\xi^{*}(\xi)\right)+p_{1}\left(\xi^{*}\left(T S^{4}\right)\right)
$$

Consequently, $p_{1}\left(T E^{\prime}\right)=\xi^{*} p_{1}(\xi)$ is k times a generator of $H^{4}\left(E^{\prime}\right)$.

Existence of Exotic Spheres

So $p_{1}(T M)=k a$, for some generator $a \in H^{4}(M, \mathbb{Z})$. By the chosen orientation for M, it follows that $p_{1}^{2}[M]=k^{2} .(\langle a \cup a,[M]\rangle=1$, as $\sigma(M)=1$. $)$

Existence of Exotic Spheres

So $p_{1}(T M)=k a$, for some generator $a \in H^{4}(M, \mathbb{Z})$. By the chosen orientation for M, it follows that $p_{1}^{2}[M]=k^{2}$. $(\langle a \cup a,[M]\rangle=1$, as $\sigma(M)=1$. $)$

By the signature theorem we have

$$
\sigma(M)=\frac{7}{45} p_{2}[M]-\frac{1}{45} p_{1}^{2}[M]
$$

Existence of Exotic Spheres

So $p_{1}(T M)=k a$, for some generator $a \in H^{4}(M, \mathbb{Z})$. By the chosen orientation for M, it follows that $p_{1}^{2}[M]=k^{2}$. $(\langle a \cup a,[M]\rangle=1$, as $\sigma(M)=1$. $)$

By the signature theorem we have

$$
\sigma(M)=\frac{7}{45} p_{2}[M]-\frac{1}{45} p_{1}^{2}[M]
$$

and hence $p_{2}[M]=\frac{45+k^{2}}{7}$.

Existence of Exotic Spheres

So $p_{1}(T M)=k a$, for some generator $a \in H^{4}(M, \mathbb{Z})$. By the chosen orientation for M, it follows that $p_{1}^{2}[M]=k^{2} .(\langle a \cup a,[M]\rangle=1$, as $\sigma(M)=1$. $)$

By the signature theorem we have

$$
\sigma(M)=\frac{7}{45} p_{2}[M]-\frac{1}{45} p_{1}^{2}[M]
$$

and hence $p_{2}[M]=\frac{45+k^{2}}{7}$.
For $k=6$, we find $p_{2}[M]=11+\frac{4}{7}$, but the Pontryagin numbers must be integers.

Existence of Exotic Spheres

So $p_{1}(T M)=k a$, for some generator $a \in H^{4}(M, \mathbb{Z})$. By the chosen orientation for M, it follows that $p_{1}^{2}[M]=k^{2}$. $(\langle a \cup a,[M]\rangle=1$, as $\sigma(M)=1$. $)$

By the signature theorem we have

$$
\sigma(M)=\frac{7}{45} p_{2}[M]-\frac{1}{45} p_{1}^{2}[M]
$$

and hence $p_{2}[M]=\frac{45+k^{2}}{7}$.
For $k=6$, we find $p_{2}[M]=11+\frac{4}{7}$, but the Pontryagin numbers must be integers.
This contradicts our assumption that there exists a diffeomorphism $S^{7} \rightarrow \partial E^{\prime}$.

Existence of Exotic Spheres

Conclusion

We have found a smooth 7-manifold which is homotopy equivalent, but not diffeomorphic to S^{7}.

Existence of Exotic Spheres

Conclusion

We have found a smooth 7-manifold which is homotopy equivalent, but not diffeomorphic to S^{7}.

Remark

By the generalized Poincaré conjecture, this manifold must even be homeomorphic to S^{7}.

Group structures on sets of homotopy spheres

From now on, all manifolds will assumed to be smooth and oriented.

Group structures on sets of homotopy spheres

From now on, all manifolds will assumed to be smooth and oriented.

Definition

A homotopy sphere is an n-manifold, which is homotopy equivalent to S^{n}.

Group structures on sets of homotopy spheres

From now on, all manifolds will assumed to be smooth and oriented.

Definition

A homotopy sphere is an n-manifold, which is homotopy equivalent to S^{n}.

Proposition (Mazur)

For a closed manifold M, the following are equivalent:
(1) There exists a manifold N with $M \# N \cong S^{n}$,
(2) $M \# \mathbb{R}^{n} \cong \mathbb{R}^{n}$,
(3) M can be covered by two open subsets, both diffeomorphic to \mathbb{R}^{n}.

Group structures on sets of homotopy spheres

From now on, all manifolds will assumed to be smooth and oriented.

Definition

A homotopy sphere is an n-manifold, which is homotopy equivalent to S^{n}.

Proposition (Mazur)

For a closed manifold M, the following are equivalent:
(1) There exists a manifold N with $M \# N \cong S^{n}$,
(2) $M \# \mathbb{R}^{n} \cong \mathbb{R}^{n}$,
(3) M can be covered by two open subsets, both diffeomorphic to \mathbb{R}^{n}.

Denote by A^{n} the set of manifolds satisfying these conditions, up to orientation-preserving diffeomorphism.

Group structures on sets of homotopy spheres

By the condition $M \# \mathbb{R}^{n} \cong \mathbb{R}^{n}$, we have

Lemma

$$
\text { Any } M \in A^{n} \text { is homeomorphic to } S^{n} \text {. }
$$

Group structures on sets of homotopy spheres

By the condition $M \# \mathbb{R}^{n} \cong \mathbb{R}^{n}$, we have
Lemma
Any $M \in A^{n}$ is homeomorphic to S^{n}.

By the first condition, we get

Lemma

The set A^{n}, together with the connected sum operation, is an abelian group.

Group structures on sets of homotopy spheres

By the condition $M \# \mathbb{R}^{n} \cong \mathbb{R}^{n}$, we have

Lemma

Any $M \in A^{n}$ is homeomorphic to S^{n}.

By the first condition, we get

Lemma

The set A^{n}, together with the connected sum operation, is an abelian group.

Remark

- When this group was first constructed, it was not yet known that any homotopy sphere was homeomorphic to S^{n}.
- Even now, there might be homotopy spheres not in A^{n}.
- While it can be shown that these groups are countable, and some lower bounds are known as well, it is very difficult to determine upper bounds for the orders of these groups.

Group structures on sets of homotopy spheres

To address these problems, it is useful to replace the "diffeomorphism" by a different concept of equivalence.

Group structures on sets of homotopy spheres

To address these problems, it is useful to replace the "diffeomorphism" by a different concept of equivalence.

Definition

Two closed manifolds M, N are h-cobordant (or J-equivalent), if there exists a manifold W with boundary such that
(1) $\partial W \cong M \sqcup-N$
(2) $M \hookrightarrow W$ and $N \hookrightarrow W$ are homotopy equivalences.

Group structures on sets of homotopy spheres

To address these problems, it is useful to replace the "diffeomorphism" by a different concept of equivalence.

Definition

Two closed manifolds M, N are h-cobordant (or J-equivalent), if there exists a manifold W with boundary such that
(1) $\partial W \cong M \sqcup-N$
(2) $M \hookrightarrow W$ and $N \hookrightarrow W$ are homotopy equivalences.

In particular, h-cobordant manifolds are cobordant, and homotopy equivalent.

Group structures on sets of homotopy spheres

Theorem

For a closed manifold M, there exists a closed manifold N with $M \# N$-cobordant to S^{n}, if and only if M is homotopy equivalent to S^{n}.

Group structures on sets of homotopy spheres

Theorem

For a closed manifold M, there exists a closed manifold N with $M \# N$-cobordant to S^{n}, if and only if M is homotopy equivalent to S^{n}.
In particular, the set of h-cobordism classes of homotopy spheres forms an abelian group under the connected sum operation. We denote this group by Θ^{n}.
It can be shown that the inverse of some homotopy sphere is given by the same homotopy sphere, but with the reversed orientation.

Group structures on sets of homotopy spheres

Theorem

For a closed manifold M, there exists a closed manifold N with $M \# N$-cobordant to S^{n}, if and only if M is homotopy equivalent to S^{n}.
In particular, the set of h-cobordism classes of homotopy spheres forms an abelian group under the connected sum operation. We denote this group by Θ^{n}.
It can be shown that the inverse of some homotopy sphere is given by the same homotopy sphere, but with the reversed orientation.

Using this notion of h-cobordism instead of diffeomorphism, Milnor and Kervaire showed that Θ^{n} is finite for $n \neq 3$. They were also able to determine some of these groups completely.

Group structures on sets of homotopy spheres

Let $b P_{n+1} \subseteq \Theta^{n}$ be the set of elements which are the boundary of some parallellizable manifold. This is well-defined (i.e. does not depend of the choice of representative), and a subgroup.

Group structures on sets of homotopy spheres

Let $b P_{n+1} \subseteq \Theta^{n}$ be the set of elements which are the boundary of some parallellizable manifold. This is well-defined (i.e. does not depend of the choice of representative), and a subgroup.

Theorem

The quotient $\Theta^{n} / b P_{n+1}$ is finite.

Group structures on sets of homotopy spheres

Let $b P_{n+1} \subseteq \Theta^{n}$ be the set of elements which are the boundary of some parallellizable manifold. This is well-defined (i.e. does not depend of the choice of representative), and a subgroup.

Theorem

The quotient $\Theta^{n} / b P_{n+1}$ is finite.

These $b P_{n+1}$'s have a big influence in how big the Θ^{n} 's are:

n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\left\|\Theta^{n}\right\|$	1	1	1	28	2	8	6	992	1	3	2	16256	2	16	16	523264
$\left\|b P_{n+1}\right\|$	1	1	1	28	1	2	1	992	1	1	1	8128	1	2	1	261632
$\left\|\Theta^{n} / b P_{n+1}\right\|$	1	1	1	1	2	4	6	1	1	3	2	2	2	8	16	2

Group structures on sets of homotopy spheres

This is not an accident:

Theorem

- If n is even, then $b P_{n+1}$ is trivial.
- If $n \equiv 1 \bmod 4$, then $b P_{n+1}$ has order at most 2 .

Group structures on sets of homotopy spheres

This is not an accident:

Theorem

- If n is even, then $b P_{n+1}$ is trivial.
- If $n \equiv 1 \bmod 4$, then $b P_{n+1}$ has order at most 2 .

In contrast to this, we have:

Theorem

For $k>1$, we have that $b P_{4 k}$ is cyclic of order

$$
2^{k-2}\left(2^{k-1}-1\right) \cdot \text { numerator }\left(\frac{4 B_{k}}{k}\right)
$$

where B_{k} is the k 'th Bernoulli number.

Group structures on sets of homotopy spheres

$b P_{4 k}$ is cyclic: idea of proof.

- Consider all the set of all parallellizable $4 k$-manifolds M_{0}, which have boundary $S^{4 k-1}$.
- There is a notion of connected sum along the boundary, and the signature is additive with respect to this operation.

Group structures on sets of homotopy spheres

$b P_{4 k}$ is cyclic: idea of proof.

- Consider all the set of all parallellizable $4 k$-manifolds M_{0}, which have boundary $S^{4 k-1}$.
- There is a notion of connected sum along the boundary, and the signature is additive with respect to this operation.
- As reversing the orientation changes the sign of the signature, and $\sigma\left(D^{4 k}\right)=0$, the set of signatures $\sigma\left(M_{0}\right)$ forms a subgroup of \mathbb{Z}.
- This subgroup is not trivial, and hence has a positive generator σ_{k}.

Group structures on sets of homotopy spheres

Theorem

Let Σ_{1}, Σ_{2} be homotopy spheres of dimension $4 k-1$, bounding parallellizable manifolds M_{1} and M_{2}. Then Σ_{1} and Σ_{2} are h-cobordant if and only if

$$
\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \quad \bmod \sigma_{k} .
$$

Group structures on sets of homotopy spheres

Theorem

Let Σ_{1}, Σ_{2} be homotopy spheres of dimension $4 k-1$, bounding parallellizable manifolds M_{1} and M_{2}. Then Σ_{1} and Σ_{2} are h-cobordant if and only if

$$
\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \quad \bmod \sigma_{k} .
$$

Proof sketch.

First, assume $\sigma\left(M_{1}\right)=\sigma\left(M_{2}\right)+\sigma\left(M_{0}\right)$, with M_{0} parrallellizable and with boundary $S^{4 k-1}$. Take the connected sum along the boundary:

$$
(M, \partial M)=\left(-M_{1},-\partial M_{1}\right) \#\left(M_{2}, \partial M_{2}\right) \#\left(M_{0}, \partial M_{0}\right) .
$$

Group structures on sets of homotopy spheres

Theorem

Let Σ_{1}, Σ_{2} be homotopy spheres of dimension $4 k-1$, bounding parallellizable manifolds M_{1} and M_{2}. Then Σ_{1} and Σ_{2} are h-cobordant if and only if

$$
\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \quad \bmod \sigma_{k} .
$$

Proof sketch.

First, assume $\sigma\left(M_{1}\right)=\sigma\left(M_{2}\right)+\sigma\left(M_{0}\right)$, with M_{0} parrallellizable and with boundary $S^{4 k-1}$. Take the connected sum along the boundary:

$$
(M, \partial M)=\left(-M_{1},-\partial M_{1}\right) \#\left(M_{2}, \partial M_{2}\right) \#\left(M_{0}, \partial M_{0}\right) .
$$

Then $\partial M=-\partial M_{1} \# \partial M_{2} \# S^{4 k-1} \cong-\Sigma_{1} \# \Sigma_{2}$.
We have $\sigma(M)=-\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)+\sigma\left(M_{0}\right)=0$.
It can then be shown, that ∂M must be h-cobordant to $S^{4 k-1}$. (This fails if $k=1$.)

Group structures on sets of homotopy spheres

Theorem

Let Σ_{1}, Σ_{2} be homotopy spheres of dimension $4 k-1$, bounding parallellizable manifoldsf M_{1} and M_{2}. Then Σ_{1} and Σ_{2} are h-cobordant if and only if

$$
\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \quad \bmod \sigma_{k} .
$$

Proof sketch.

Conversely, suppose W is an h-cobordism between $-\Sigma_{1} \# \Sigma_{2}$ and $S^{4 k-1}$.
Glue W and $\left(-M_{1},-\partial M_{1}\right) \#\left(M_{2}, \partial M_{2}\right)$ along their common boundary $-\Sigma_{1} \# \Sigma_{2}$ to get a manifold M. This has boundary $S^{4 k-1}$, and is parallellizable.

Group structures on sets of homotopy spheres

Theorem

Let Σ_{1}, Σ_{2} be homotopy spheres of dimension $4 k-1$, bounding parallellizable manifoldsf M_{1} and M_{2}. Then Σ_{1} and Σ_{2} are h-cobordant if and only if

$$
\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \quad \bmod \sigma_{k} .
$$

Proof sketch.

Conversely, suppose W is an h-cobordism between $-\Sigma_{1} \# \Sigma_{2}$ and $S^{4 k-1}$.
Glue W and $\left(-M_{1},-\partial M_{1}\right) \#\left(M_{2}, \partial M_{2}\right)$ along their common boundary $-\Sigma_{1} \# \Sigma_{2}$ to get a manifold M. This has boundary $S^{4 k-1}$, and is parallellizable.
Hence we have $\sigma(M) \equiv 0 \bmod \sigma_{k}$.
But $\sigma(M)=-\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)$, so $\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \bmod \sigma_{k}$.

Group structures on sets of homotopy spheres

Theorem

Let Σ_{1}, Σ_{2} be homotopy spheres of dimension $4 k-1$, bounding parallellizable manifoldsf M_{1} and M_{2}. Then Σ_{1} and Σ_{2} are h-cobordant if and only if

$$
\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \quad \bmod \sigma_{k} .
$$

Proof sketch.

Conversely, suppose W is an h-cobordism between $-\Sigma_{1} \# \Sigma_{2}$ and $S^{4 k-1}$.
Glue W and $\left(-M_{1},-\partial M_{1}\right) \#\left(M_{2}, \partial M_{2}\right)$ along their common boundary $-\Sigma_{1} \# \Sigma_{2}$ to get a manifold M. This has boundary $S^{4 k-1}$, and is parallellizable.
Hence we have $\sigma(M) \equiv 0 \bmod \sigma_{k}$.
But $\sigma(M)=-\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)$, so $\sigma\left(M_{1}\right) \equiv \sigma\left(M_{2}\right) \bmod \sigma_{k}$.

It follows that $b P_{4 k}$ is isomorphic to a subgroup of the cyclic group of order σ_{k}, and hence must be cyclic.

Group structures on sets of homotopy spheres

For $n \leq 3$, every topological n-manifold has a smooth structure, unique up to diffeomorphism. Hence, $\Theta^{n}=0$ for $n \leq 3$. (Using the Poincaré conjecture for $n=3$.)

Group structures on sets of homotopy spheres

For $n \leq 3$, every topological n-manifold has a smooth structure, unique up to diffeomorphism. Hence, $\Theta^{n}=0$ for $n \leq 3$. (Using the Poincaré conjecture for $n=3$.)

For $n=4$, it is known that $\Theta^{4}=0$. However, this is the only case for which it is not known if there exist exotic spheres.

Group structures on sets of homotopy spheres

For $n \leq 3$, every topological n-manifold has a smooth structure, unique up to diffeomorphism. Hence, $\Theta^{n}=0$ for $n \leq 3$. (Using the Poincaré conjecture for $n=3$.)

For $n=4$, it is known that $\Theta^{4}=0$. However, this is the only case for which it is not known if there exist exotic spheres.

Theorem (h-cobordism theorem)

If W is an h-cobordism between M and N, with M, N-dimensional closed simply connected manifolds and $n \geq 5$, then W is trivial (i.e. diffeomorphic to $M \times[0,1]$).

Group structures on sets of homotopy spheres

For $n \leq 3$, every topological n-manifold has a smooth structure, unique up to diffeomorphism. Hence, $\Theta^{n}=0$ for $n \leq 3$. (Using the Poincaré conjecture for $n=3$.)

For $n=4$, it is known that $\Theta^{4}=0$. However, this is the only case for which it is not known if there exist exotic spheres.

Theorem (h-cobordism theorem)

If W is an h-cobordism between M and N, with M, N-dimensional closed simply connected manifolds and $n \geq 5$, then W is trivial (i.e. diffeomorphic to $M \times[0,1]$).

So for $n \geq 5$, we see that each element of Θ^{n} is represented by exactly one homotopy sphere (up to oriented diffeomorphism).

References

速 Kervaire, Michel A. and Milnor, John W. Groups of homotopy spheres: I. Annals of Mathematics, 77:504-537, 1963. JSTOR.
: Milnor, John and Stasheff, James D. Characteristic Classes. No 76. Princeton University Press, 1974.
雷 Milnor, John W. Sommes de variétés différentiables et structures différentiables des spheres. Bulletin de la Société Mathématique de France, 87:439-444, 1959.

