Hirzebruch's Signature Theorem Multiplicative Sequence Approach

Hao XIAO

S4D4 - GRADUATE SEMINAR ON ADVANCED TOPOLOGY CHARACTERISTIC CLASSES II

Mathematisches Institut, Universität Bonn

$$
\text { May 27, } 2020
$$

Overview

Outline of the talk:

- What is a Signature \& the Signature Theorem?
- Why do we need multiplicative sequences?
- Classification of multiplicative sequences
- Proof of Signature Theorem
- Some applications of Signature Theorem

References

Friedrich Hirzebruch,
Topological methods in algebraic geometry, Classics in Mathematics. Springer-Verlag, Berlin, 1995.

嗇 John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.

SigNATURE

Definition

Let M^{m} be a connected compact oriented manifold.
The signature $\sigma(M)$ of M is defined to be

- zero if the dimension is not a multiple of 4 and
- as follows for $m=4 n$: Pick a basis a_{1}, \ldots, a_{r} for $H^{2 n}\left(M^{4 n} ; \mathbb{Q}\right)$ so that the symmetric matrix $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$ is diagonal, then $\sigma\left(M^{4 n}\right)$ is the number of positive diagonal entries minus the number of negative ones.

The signature of a compact oriented but not connected manifold is the sum of the signatures of its connected components.

Signature

Remark

- Note that $H^{2 n}\left(M^{4 n} ; \mathbb{Q}\right)$ is a unitary module over a division ring, i.e. a vector space, so it is valid to speak of basis.
- Although the cup product is non-strict commutative, the matrix $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$ is symmetric since the degree of the cohomology group is even.
- Then we derive a rational quadratic form $a \mapsto\left\langle a \cup a, \mu_{4 n}\right\rangle$.
- So under a suitable (rational) change of basis, the matrix $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$ is diagonal. (Note that this is congruent diagonalization not the usual diagonalization.) Then $\sigma\left(M^{4 n}\right)$ is well-defined by Sylvester's law of inertia, which means that $\sigma\left(M^{4 n}\right)$ can also be equivalently defined as the difference \# of the positive and negative eigenvalues of $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$.
- The manifolds are compact. So the number of connected components is finite.

Signature

Remark

The symmetric matrix $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$ is nonsingular!
We are doing (co)homology with coefficients in a field! There is no torsion in (co)homology. Consider

$$
\begin{aligned}
H^{4 n-k}\left(M^{4 n} ; \mathbb{Q}\right) & \xrightarrow[\text { UCT }]{h} \operatorname{Hom}_{\mathbb{Q}}\left(H_{4 n-k}\left(M^{4 n} ; \mathbb{Q}\right), \mathbb{Q}\right) \\
& \xrightarrow[\text { Hom-dual }]{D^{*}} \operatorname{Hom}_{\mathbb{Q}}\left(H^{k}\left(M^{4 n} ; \mathbb{Q}\right), \mathbb{Q}\right) .
\end{aligned}
$$

$D^{*} \circ h$ sends $\psi \in H^{4 n-k}\left(M^{4 n} ; \mathbb{Q}\right)$ to the homomorphism

$$
H^{k}\left(M^{4 n} ; \mathbb{Q}\right) \ni \varphi \mapsto \psi\left(\mu_{4 n} \cap \varphi\right)=(\varphi \cup \psi)\left(\mu_{4 n}\right) .
$$

Nonsingularity in the other variable follows by (non-strict) commutativity of cup product.

Signature

Lemma (Thom)

The signature σ has the following three properties:

- $\sigma\left(M+M^{\prime}\right)=\sigma(M)+\sigma\left(M^{\prime}\right), \sigma(-M)=-\sigma(M)$,
- $\sigma\left(M \times M^{\prime}\right)=\sigma(M) \sigma\left(M^{\prime}\right)$, and
- if M is an oriented boundary, then $\sigma(M)=0$.

Proof: See [Hirzebruch, Theorem 8.2.1].

Corollary

The signature σ descends to a ring morphism from the cobordism ring Ω_{*} to the ring \mathbb{Z} of integers, or equivalently it gives rise to an algebra morphism from $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q} with $M \otimes 1 \mapsto$ an integer.

Signature Theorem

Consider the L-polynomials in Pontrjagin classes:

$$
\begin{aligned}
& L_{1}=\frac{1}{3} p_{1}, L_{2}=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right), L_{3}=\frac{1}{945}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right), \\
& L_{4}=\frac{1}{14175}\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{2} p_{1}^{2}-3 p_{1}^{4}\right), \text { etc. }
\end{aligned}
$$

The sequence $\left\{L_{n}\left(p_{1}, \ldots, p_{n}\right)\right\}_{n \geq 1}$ consists of polynomial in Pontrjagin classes such that $L_{n}\left(p_{1}, \ldots, p_{n}\right) \in H^{4 n}(M ; \mathbb{Q})$ for each $n \geq 1$.

Signature Theorem says "Signatures are just Pontrjagin numbers" !!!

Theorem (Signature Theorem)

Let M be any compact oriented smooth $4 n$-manifold, then we have $\sigma(M)=L_{n}\left(p_{1}, \ldots, p_{n}\right)[M]$.

You Could Have Invented Multiplicative

 Sequences!!!
You Could Have Invented Spectral Sequences
 Timothy Y. Chow

You Could Have Invented Multiplicative

 Sequences!!!Consider two real vector bundles ξ and η over the same base space with trivial Whitney sum. We have the equation $w(\xi \oplus \eta)=$ $w(\xi) w(\eta)$ which can be uniquely solved as

$$
w(\eta)=(w(\xi))^{-1} w(\xi \oplus \eta)=(w(\xi))^{-1}=: K(w(\xi))
$$

(see [Milnor, Lemma 4.1]). One important special case is Whitney duality theorem ([Milnor, Lemma 4.2]): $w(\nu)=K(w(\tau))$ where τ is the tangent bundle of a manifold in Euclidean space and ν is its normal bundle. Now we "expand" $K(w(\xi))$:

$$
\begin{aligned}
& K(w(\xi))=w(\xi)^{-1}=\frac{1}{1+\left(w_{1}(\xi)+w_{2}(\xi)+\cdots\right)} \\
& \quad=1-\left(w_{1}(\xi)+w_{2}(\xi)+\cdots\right)+\left(w_{1}(\xi)+w_{2}(\xi)+\cdots\right)^{2}-\cdots \\
& \quad=1+K_{1}\left(w_{1}(\xi)\right)+K_{2}\left(w_{1}(\xi), w_{2}(\xi)\right)+\cdots
\end{aligned}
$$

You Could Have Invented Multiplicative

Sequences!!!

Consider two vector bundles ξ and η over the same base space. We have the equation $w(\xi \oplus \eta)=w(\xi) w(\eta)$ which can be uniquely solved as

$$
w(\eta)=(w(\xi))^{-1} w(\xi \oplus \eta)=K(w(\xi))
$$

(see [Milnor, Lemma 4.1]) where

$$
\begin{aligned}
K(w(\xi))=w(\xi)^{-1} & =1+K_{1}\left(w_{1}(\xi)\right)+K_{2}\left(w_{1}(\xi), w_{2}(\xi)\right)+\cdots \\
K_{1}\left(X_{1}\right) & =-X_{1} \\
K_{2}\left(X_{1}, X_{2}\right) & =X_{1}^{2}-X_{2}, \\
K_{3}\left(X_{1}, X_{2}, X_{3}\right) & =-X_{1}^{3}+2 X_{1} X_{2}-X_{3}, \\
K_{4}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =X_{1}^{4}-3 X_{1}^{2} X_{2}+2 X_{1} X_{3}+X_{2}^{2}-X_{4}, \ldots,
\end{aligned}
$$

$$
K_{n}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} \frac{\left(i_{1}+\cdots+i_{n}\right)!}{i_{1}!\cdots i_{n}!}\left(-X_{1}\right)^{i_{1}} \cdots\left(-X_{n}\right)^{i_{n}}
$$

You Could Have Invented Multiplicative Sequences!!!

Consider the general term
$K_{n}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} \frac{\left(i_{1}+\cdots+i_{n}\right)!}{i_{1}!\cdots i_{n}!}\left(-X_{1}\right)^{i_{1}} \cdots\left(-X_{n}\right)^{i_{n}}$.
We easily find that
each $K_{n}\left(X_{1}, X_{2}^{2}, X_{3}^{3}, \ldots, X_{n}^{n}\right)$ is homogeneous of degree n.

You Could Have Invented Multiplicative SEquences!!!

Consider the formal sum

$$
K\left(1+X_{1}+X_{2}+\cdots\right)=1+K_{1}\left(X_{1}\right)+K_{2}\left(X_{1}, X_{2}\right)+\cdots .
$$

Let $X=1+X_{1}+X_{2}+\cdots$ and $Y=1+Y_{1}+Y_{2}+\cdots$ formally, then $K(X)=X^{-1}$ and $K(Y)=Y^{-1}$. Assume $X Y=Y X$. We have
K is multiplicative : $K(X Y)=(X Y)^{-1}=Y^{-1} X^{-1}$

$$
=X^{-1} Y^{-1}=K(X) K(Y)
$$

You Could Have Invented Multiplicative Sequences!!!

We actually obtain a sequence $\left\{K_{n}\left(X_{1}, \ldots, X_{n}\right)\right\}_{n \geq 1}$ with $K(X)=$ $1+K_{1}\left(X_{1}\right)+K_{2}\left(X_{1}, X_{2}\right)+\cdots$ where $X=1+X_{1}+X_{2}+\cdots$ satisfying

- homogeneity property:
each $K_{n}\left(X_{1}, X_{2}^{2}, X_{3}^{3}, \ldots, X_{n}^{n}\right)$ is homogeneous of degree n;
- multiplicative property: $K(X Y)=K(X) K(Y)$.

Now we have invented a multiplicative sequence!!!

Multiplicative SEQuence

Let A be a commutative ring with multiplicative identity.

Definition

- A unitary unital commutative A-algebra A^{*} is non-negatively graded if there exist additive subgroups A_{i} of A^{*} for $i \geq 0$ such that $A^{*}=\bigoplus_{i \geq 0} A_{i}$ with $A A_{i} \subset A_{i}$ and $A_{i} A_{j} \subset A_{i+j}$ for all $i, j \geq 0$.
- To each such A^{*}, we associate the ring A^{Π} consisting of all formal sums $\sum_{i \geq 0} a_{i}$ with $a_{i} \in A_{i}$, i.e. the internal direct product decomposition $A^{\Pi}=\sum_{i \geq 0} A_{i}$ holds such that $A A_{i} \subset A_{i}$ and $A_{i} A_{j} \subset A_{i+j}$ for all $i, j \geq \overline{0}$.

Example

Let $A^{*}=A[X]$ and $A^{\Pi}=A[[X]]$. More concretely, set $A=\mathbb{Q}$, then we have $A^{*}=\mathbb{Q}[X]$ and $A^{\Pi}=\mathbb{Q}[[X]]$.

Multiplicative Sequence

Remark

- In the main application, we put $A_{n}=H^{4 n}(B ; A)$.
- Note that $A_{n}=H^{4 n}(B ; A)$ is of degree n in the graded algebra but is of degree $4 n$ as a cohomology group.
- $1 \in A_{0}$ and $A \cdot 1 \subset A_{0}$.
- $A^{*}=\bigoplus_{i \geq 0} A_{i}$ is an internal weak direct product decomposition \Rightarrow each element $a \in A^{*}$ can be uniquely expressed as the sum $\sum_{i \geq 0} a_{i}$ with $a_{i} \in A_{i}$ such that only a finitely many a_{i} 's are nonzero.

Multiplicative SEQuence

Remark

- Due to the same reason, for each $a \in A^{\Pi}$ we have a unique expression $a=\sum_{i \geq 0} a_{i}$ with $a_{i} \in A$.
- We will be particularly interested in elements of the form $a=$ $1+\sum_{i \geq 1} a_{i}$ in A^{Π} which are invertible in A^{Π} by the theory of formal power series.

Multiplicative Sequence

Now consider a sequence of polynomials

$$
K_{1}\left(X_{1}\right), K_{2}\left(X_{1}, X_{2}\right), K_{3}\left(X_{1}, X_{2}, X_{3}\right), \ldots
$$

with coefficients in A satisfying homogeneity property:
each $K_{n}\left(X_{1}, X_{2}^{2}, X_{3}^{3}, \ldots, X_{n}^{n}\right)$ is homogeneous of degree n.
Given an element $a=1+a_{1}+a_{2}+\cdots \in A^{\Pi}$ with leading term 1 which is invertible in A^{Π}, define a new element $K(a) \in A^{\Pi}$ also with leading term 1 by the formula

$$
K(a)=1+K_{1}\left(a_{1}\right)+K_{2}\left(a_{1}, a_{2}\right)+\cdots .
$$

Multiplicative SEquence

Definition (Multiplicative Sequence)

The sequence $\left\{K_{n}\right\}_{n \geq 1}$ is a multiplicative sequence or briefly an \mathbf{m}-sequence of polynomials if it satisfies multiplicative property:

$$
K(a b)=K(a) K(b)
$$

holds for all A-algebras $A^{*}\left(\right.$ or $\left.A^{\Pi}\right)$ and for all $a, b \in A^{\Pi}$ with leading term 1.

Multiplicative Sequence

Example

Given any constant $\lambda \in A$, the polynomials

$$
K_{n}\left(X_{1}, \ldots, X_{n}\right)=\lambda^{n} X_{n}
$$

form an m-sequence with

$$
K\left(1+a_{1}+a_{2}+\cdots\right)=1+\lambda a_{1}+\lambda^{2} a_{2}+\cdots .
$$

The case $\lambda=1$ (so that $K(a)=a$) and $\lambda=-1$ are of particular interest:

Let $\lambda=-1$ and ω be a complex n-plane bundle. Consider the Chern class of the conjugate bundle $\bar{\omega}$, then we have $c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ due to [Milnor, Lemma 14.9]. Hence we derive

$$
c(\bar{\omega})=1-c_{1}(\omega)+c_{2}(\omega)-\cdots+(-1)^{k} c_{n}(\omega)=K(c(\omega)) .
$$

Multiplicative SEquence

Example

$$
\begin{aligned}
K_{n}\left(X_{1}, \ldots, X_{n}\right)= & \sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} \frac{\left(i_{1}+\cdots+i_{n}\right)!}{i_{1}!\cdots i_{n}!}\left(-X_{1}\right)^{i_{1}} \cdots\left(-X_{n}\right)^{i_{n}}, \\
K(a)= & a^{-1}=\frac{1}{1+\left(a_{1}+a_{2}+\cdots\right)} \\
= & 1-\left(a_{1}+a_{2}+\cdots\right)+\left(a_{1}+a_{2}+\cdots\right)^{2} \\
& -\left(a_{1}+a_{2}+\cdots\right)^{3}+\cdots .
\end{aligned}
$$

Multiplicative Sequence

Example

The polynomials $K_{2 n-1}=0$ and

$$
\begin{aligned}
K_{2 n}\left(X_{1}, \ldots, X_{2 n}\right)=X_{n}^{2} & -2 X_{n-1} X_{n+1}+\cdots \\
& +(-1)^{n-1} 2 X_{1} X_{2 n-1}+(-1)^{n} 2 X_{2 n}
\end{aligned}
$$

form an m-sequence. For any complex n-bundle ω, the Chern classes $c_{k}(\omega)$ determine the Pontrjagin classes $p_{k}\left(\omega_{\mathbb{R}}\right)$ by the formula $1-p_{1}+p_{2}-\cdots+(-1)^{n} p_{n}=\left(1-c_{1}+c_{2}-\cdots+(-1)^{n} c_{n}\right)\left(1+c_{1}+c_{2}+\cdots+c_{n}\right)$
(see [Milnor, Corollary 15.5]). Thus we have

$$
\begin{aligned}
p_{k}\left(\omega_{\mathbb{R}}\right)=c_{k}(\omega)^{2} & -2 c_{k-1}(\omega) c_{k+1}(\omega)+\cdots+(-1)^{k-1} 2 c_{1}(\omega) c_{2 k-1}(\omega) \\
& +(-1)^{k} 2 c_{2 k}(\omega)=K_{2 n}\left(c_{1}(\omega), c_{2}(\omega), \ldots, c_{2 k}(\omega)\right)
\end{aligned}
$$

The total Pontrjagin class $p\left(\omega_{\mathbb{R}}\right)$ is just $p\left(\omega_{\mathbb{R}}\right)=K(c(\omega))$.

Multiplicative Sequence

Consider $A^{*}=A[t]$ where t can be seen as a generator of A_{1} which is of degree 1 .

Then an element of $A^{\Pi}=A[[t]]$ with leading term 1 is the formal power series

$$
f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\cdots
$$

with coefficients in A.

In particular, $1+t$ is such a term which is obvious but important.

Multiplicative Sequence

The following nice lemma gives a simple but very sharp classification of all possible m-sequences:

Lemma (Classification of m-Sequences)

Given a formal power series $f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\cdots$ with coefficients in A, there is one and only one m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ with coefficients in A satisfying the condition

$$
K(1+t)=f(t)
$$

or equivalent satisfying the condition that
the coefficient of X_{1}^{n} in each polynomial $K_{n}\left(X_{1}, \ldots, X_{n}\right)$ is equal to λ_{n}.

Multiplicative SEQuence

Definition

The m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ is called the m-sequence belonging to the formal power series $f(t)$.

Remark

If the m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ belongs to the power $f(t)$, then for any A^{*} and any $a_{1} \in A_{1}$, the equation $K\left(1+a_{1}\right)=f\left(a_{1}\right)$ is satisfied. Of course, this equation would most likely be false if something of degree $\neq 1$ were substituted in place of a_{1}. This trivial observation will be used in the proof.

Example

The three m -sequences mentioned above belong to the formal power series $1+\lambda t, 1-t+t^{2}-t^{3}+\cdots$, and $1+t^{2}$ respectively.

Multiplicative SEQuence

Uniqueness: For any positive integer n, we set $A^{*}=A\left[t_{1}, \ldots, t_{n}\right]$, then $t_{1}, \ldots, t_{n} \in A_{1}$. Let $\sigma=\left(1+t_{1}\right) \cdots\left(1+t_{n}\right)=: 1+\sigma_{1}+\sigma_{2}+$ $\cdots+\sigma_{n}$ where the polynomials $\sigma_{i} \in A_{i}$ are elementary symmetric polynomials in t_{1}, \ldots, t_{n}, then

$$
\begin{aligned}
K(\sigma) & =K\left(1+t_{1}\right) \cdots K\left(1+t_{n}\right)=f\left(t_{1}\right) \cdots f\left(t_{n}\right) \\
& =\left(1+\lambda_{1} t_{1}+\lambda_{2} t_{1}^{2}+\cdots\right) \cdots\left(1+\lambda_{1} t_{n}+\lambda_{2} t_{n}^{2}+\cdots\right) .
\end{aligned}
$$

Taking homogeneous part of degree n, it follows that $K_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is completely determined by the formal power series $f(t)$. Furthermore, note that the elementary symmetric polynomials are algebraically independent, so each K_{n} is finally proven to be unique.

Multiplicative Sequence

Existence: For any partition $I=\left(i_{1}, \ldots, i_{r}\right)$ of n with positive integers, let $\lambda_{I}=\lambda_{i_{1}} \cdots \lambda_{i_{r}}$. Define the polynomial K_{n} by the formula

$$
K_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sum \lambda_{l} s_{l}\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

summing over all partitions I of n. Recall that $s_{l}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, which is a homogeneous symmetric polynomial of degree n, is the unique polynomial in the elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$ equal to

$$
\sum t_{\sigma(1)}^{i_{1}} \cdots t_{\sigma(r)}^{i_{r}}
$$

summing over all permutations σ of $\{1,2, \ldots, r\}$. Note that if we fix σ, then for each permutation σ^{\prime} such that $t_{\sigma(1)}^{i_{1}} \cdots t_{\sigma(r)}^{i_{r}}=$ $t_{\sigma^{\prime}(1)}^{i_{1}} \cdots t_{\sigma^{\prime}(r)}^{i_{r}}$, the monomial $t_{\sigma(1)}^{i_{1}} \cdots t_{\sigma(r)}^{i_{r}}$ will be recorded only once in the sum.

Multiplicative Sequence

By convention we have

$$
s_{l}(a)=s_{l}\left(1+a_{1}+a_{2}+\cdots\right)=s_{l}\left(a_{1}, \ldots, a_{n}\right)
$$

for any partition I of n. Note that we have the identity

$$
s_{l}(a b)=\sum_{H J=I} s_{H}(a) s_{J}(b)
$$

summing over all partitions H, J with juxtaposition $H J=I$. Therefore, we obtain

$$
\begin{aligned}
K(a b) & =\sum_{l} \lambda_{I} s_{I}(a b)=\sum_{I} \lambda_{I} \sum_{H J=I} s_{H}(a) s_{J}(b) \\
& =\sum_{l} \sum_{H J=I}\left(\lambda_{H} s_{H}(a)\right)\left(\lambda_{J} s_{J}(b)\right)=\sum_{H, J}\left(\lambda_{H} s_{H}(a)\right)\left(\lambda_{J} s_{J}(b)\right) \\
& =\sum_{H} \lambda_{H} s_{H}(a) \sum_{J} \lambda_{J} s_{J}(b)=K(a) K(b),
\end{aligned}
$$

which holds for all $a, b \in A^{\Pi}$.

Multiplicative Sequence

If I is not a trivial partition of n, i.e. $I \neq(n)$, then $s_{l}\left(\sigma_{1}, 0, \ldots, 0\right)=$ 0 . Since $s_{n}\left(\sigma_{1}, 0, \ldots, 0\right)=\sigma_{1}^{n}$, we derive

$$
\begin{aligned}
K(1+t) & =\sum_{l} \lambda_{l} s_{l}(t, 0, \ldots, 0)=\sum_{n \geq 0} \lambda_{(n)} s_{(n)}(t, 0, \ldots, 0) \\
& =\sum_{n \geq 0} \lambda_{n} t^{n}=f(t) .
\end{aligned}
$$

Note that for partition I of 0 we have $\sum \lambda_{l} s_{l}(t, 0, \ldots, 0)=\lambda_{l} s_{l}()=$ 1 trivially.

Now we have finished the proof of existence which is constructive!!!

Multiplicative SEQuence

Example

Consider the m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ belonging to $1+t^{2}$, which belongs to the formal power series $1+t^{2}$.

For $n \geq 1$, we have

$$
K_{2 n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sum \lambda_{I} s_{l}\left(\sigma_{1}, \ldots, \sigma_{2 n}\right)=s_{\underbrace{(2, \ldots, 2)}_{n \text { terms of } 2}}^{2_{1}}\left(\sigma_{1}, \ldots, \sigma_{2 n}\right),
$$

which implies

$$
\begin{aligned}
\underbrace{(2, \ldots, 2)}_{n \text { terms of } 2} & \left(\sigma_{1}, \ldots, \sigma_{2 n}\right)=\sigma_{n}^{2}-2 \sigma_{n-1} \sigma_{n+1}+\cdots \\
& +(-1)^{n-1} 2 \sigma_{1} \sigma_{2 n-1}+(-1)^{n} 2 \sigma_{2 n} .
\end{aligned}
$$

Signature Theorem

Now consider some m-sequence $\left\{K_{n}\left(X_{1}, \ldots, X_{n}\right)\right\}_{n \geq 1}$ with rational coefficients. Let M^{m} be a compact oriented smooth m-dimensional manifold. We also put $A=\mathbb{Q}$ and $A_{n}=H^{4 n}\left(M^{m} ; \mathbb{Q}\right)$.

Definition

The K-genus $K\left[M^{m}\right]$ is zero if the dimension m is not divisible by 4 and is equal to the rational number

$$
K_{n}\left[M^{4 n}\right]=\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right), \mu_{4 n}\right\rangle
$$

if $m=4 n$ where p_{i} denotes the i-th Pontrjagin class of the tangent bundle and $\mu_{4 k}$ denotes the fundamental homology class of $M^{4 n}$. Thus, $K\left[M^{m}\right]$ is a certain rational linear combination of the Pontrjagin numbers of M^{m}.

Signature Theorem

Lemma

For any m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ with rational coefficients, the correspondence $M \mapsto K[M]$ defines a ring morphism from the cobordism ring Ω_{*} to the ring \mathbb{Q} of rational numbers, and this correspondence gives rise to an algebra morphism from $\Omega_{*} \otimes \mathbb{Q}$.

Remark

We will see that, using Signature Theorem, the ring morphism is actually $\Omega_{*} \rightarrow \mathbb{Z}$. So the algebra morphism $\Omega_{*} \otimes \mathbb{Q} \rightarrow \mathbb{Q}$ satisfies $M \otimes 1 \rightarrow$ an integer, which means that the ring morphism $\Omega_{*} \rightarrow \mathbb{Q}$ can be recovered.

Signature Theorem

Proof: Since Pontrjagin numbers are cobordism invariants, so $M \mapsto$ $K[M]$ descends to a well-defined map $\Omega_{*} \rightarrow \mathbb{Q}$.

This map is additive since addition is given by disjoint union and Pontrjagin numbers are additive under such addition.

Consider the product manifold $M \times M^{\prime}$. Note that the tangent bundle of $M \times M^{\prime}$ splits as a Whitney sum $T M \times T M^{\prime} \cong \pi_{1}^{*} T M \oplus$ $\pi_{2}^{*} T M^{\prime}$ where π_{1} and π_{2} are the canonical projections of $M_{1} \times M_{2}$ into the two factors. Modulo elements of order 2, we obtain

$$
\begin{aligned}
K_{n}\left(p_{1}, \ldots, p_{n}\right) & \left(T\left(M \times M^{\prime}\right)\right)=K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T M \times T M^{\prime}\right) \\
& =K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M \oplus \pi_{2}^{*} T M^{\prime}\right) \\
& =K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M\right) \cup K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{2}^{*} T M^{\prime}\right)
\end{aligned}
$$

Signature Theorem

Thus, we have

$$
\begin{aligned}
& K\left[M \times M^{\prime}\right] \\
& =\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M\right) \cup K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{2}^{*} T M^{\prime}\right), \mu_{4 n} \times \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =(-1)^{m m^{\prime}}\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M\right), \mu_{4 n}\right\rangle\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{2}^{*} T M^{\prime}\right), \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =\left\langle\pi_{1}^{*} K_{n}\left(p_{1}, \ldots, p_{n}\right)(T M), \mu_{4 n}\right\rangle\left\langle\pi_{2}^{*} K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T M^{\prime}\right), \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)(T M), \mu_{4 n}\right\rangle\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T M^{\prime}\right), \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =K[M] K\left[M^{\prime}\right] .
\end{aligned}
$$

There is no sign here since the K-genera is nonzero only when m, m^{\prime} are divisible by 4 . So the proof is finished.

Signature Theorem

The following theorem reveals that, using these properties, one can show that the signature of a manifold can be expressed as a linear function of its Pontrjagin numbers.

Signature Theorem

Let $\left\{L_{n}\left(X_{1}, \ldots, X_{n}\right)\right\}_{n \geq 1}$ be the m-sequence of polynomials belonging to the formal power series

$$
\frac{\sqrt{t}}{\tanh \sqrt{t}}:=1+\frac{1}{3} t-\frac{1}{45} t^{2}+\cdots+(-1)^{k-1} \frac{2^{2 k} B_{k}}{(2 k)!} t^{k}+\cdots .
$$

Then the signature $\sigma(M)$ of any compact oriented smooth manifold M is equal to the L-genus $L[M]$.

Signature Theorem

Here B_{k} denotes the k-th Bernoulli number which can be defined as the coefficients occur in the power series expansion

$$
\frac{x}{\tanh x}=\frac{x \cosh x}{\sinh x}=1+\frac{B_{1}}{2!}(2 x)^{2}-\frac{B_{2}}{4!}(2 x)^{4}+\frac{B_{3}}{6!}(2 x)^{6}-\cdots
$$

convergent for $|x|<\pi$, or equivalently in the Laurent expansion

$$
\frac{z}{e^{z}-1}=1-\frac{z}{2}+\frac{B_{1}}{2!} z^{2}-\frac{B_{2}}{4!} z^{4}+\frac{B_{3}}{6!} z^{6}-\cdots
$$

These two series are related by the easily verified identity

$$
\frac{x}{\tanh x}=\frac{2 x}{e^{2 x}-1}+x
$$

Signature Theorem

With this notion one has:

$$
\begin{aligned}
& B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, B_{3}=\frac{1}{42}, B_{4}=\frac{1}{30}, \\
& B_{5}=\frac{5}{66}, B_{6}=\frac{691}{2730}, B_{7}=\frac{7}{6}, B_{8}=\frac{3617}{510},
\end{aligned}
$$

and so on. These numbers were first introduced by Jakob Bernoulli. The first four L-polynomials are

$$
\begin{aligned}
& L_{1}=\frac{1}{3} p_{1}, L_{2}=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right), L_{3}=\frac{1}{945}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right), \\
& L_{4}=\frac{1}{14175}\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{2} p_{1}^{2}-3 p_{1}^{4}\right),
\end{aligned}
$$

and so on.

Signature Theorem

Proof of Signature Theorem:

Since the correspondences $M \mapsto \sigma(M)$ and $M \mapsto L[M]$ both give rise to algebra morphisms from $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}, it suffices to check this theorem on a set of generators for the algebra $\Omega_{*} \otimes \mathbb{Q}$, i.e. it suffices to prove the equality on each $\mathbb{C} P^{2 k}$ since they generate the oriented cobordism ring.

Let τ be the tangent bundle of $\mathbb{C} P^{2 k}$. Let $\gamma^{1}:=\gamma^{1}\left(\mathbb{C}^{2 k+1}\right)$ be the canonical line bundle over $\mathbb{C} P^{2 k}$, then $a:=-c_{1}\left(\gamma^{1}\right)$ is a generator of $H^{2}\left(\mathbb{C P}^{2 k} ; \mathbb{Q}\right) \cong \mathbb{Q}$ such that the total Chern class of τ is $c\left(\tau^{n}\right)=$ $(1+a)^{2 k+1}$ and the total Pontrjagin class of $\tau_{\mathbb{R}}$ is $p:=p\left(\tau_{\mathbb{R}}\right)=$ $\left(1+a^{2}\right)^{2 k+1}$.

Signature Theorem

It follows that the top Chern class $c_{2 k}(\tau)=(2 k+1) a^{2 k}$. Therefore, the Euler number $e\left[\mathbb{C P}^{2 k}\right]=\left\langle e\left(\tau_{\mathbb{R}}\right), \mu_{4 k}\right\rangle=\left\langle c_{2 k}(\tau), \mu_{4 k}\right\rangle=(2 k+$ $1)\left\langle c_{2 k}(\tau), \mu_{4 k}\right\rangle=(2 k+1)\left\langle a^{2 k}, \mu_{n}\right\rangle$.

On the other hand, we have $\left\langle e\left(\tau_{\mathbb{R}}\right), \mu_{4 k}\right\rangle$ (using integer or rational coefficients) is equal to the Euler characteristic $\chi\left(\mathbb{C P}^{2 k}\right)=$ $\sum(-1)^{i} \operatorname{dim} H^{i}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right)=2 k+1$ (see [Milnor, Corollary 11.12]).

Thus, $\left\langle a^{2 k}, \mu_{4 k}\right\rangle=1$ which means $a^{2 k}$ is precisely the generator of $H^{4 k}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right) \cong \mathbb{Q}$ (which is compatible with the preferred orientation).

Note that the generator $a^{k} \in H^{2 k}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right) \cong \mathbb{Q}$ actually forms a basis, so $\left\langle a^{k} \cup a^{k}, \mu_{4 k}\right\rangle=\left\langle a^{2 k}, \mu_{4 k}\right\rangle=1$ (for the preferred orientation of $\left.\mathbb{C} P^{2 k}\right)$. Hence we obtain the signature $\sigma\left(\mathbb{C} P^{2 k}\right)=1$.

Signature Theorem

Since the m-sequence $\left\{L_{k}\right\}_{k \geq 1}$ belongs to the power series $f(t)=$ $\frac{\sqrt{t}}{\tanh \sqrt{ } t}$, we derive

$$
L\left(1+a^{2}\right)=\frac{\sqrt{a^{2}}}{\tanh \sqrt{a^{2}}} \xlongequal[\text { formal power series }]{\text { in the sense of }} \frac{a}{\tanh a} .
$$

Note that $a^{2} \in H^{4}\left(\mathbb{C P}^{2 k} ; \mathbb{Q}\right)$ is of degree 1 in the graded algebra since we take A_{n} to be $H^{4 n}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right)$ and we have

$$
L(p)=L\left(\left(1+a^{2}\right)^{2 k+1}\right)=\left(L\left(1+a^{2}\right)\right)^{2 k+1}=\left(\frac{a}{\tanh a}\right)^{2 k+1} .
$$

Thus the L-genus

$$
\left\langle L_{k}\left(p_{1}, \ldots, p_{k}\right), \mu_{4 k}\right\rangle=\left\langle L_{k}\left(\alpha_{1} a^{2}, \ldots, \alpha_{k} a^{2 k}\right), \mu_{4 k}\right\rangle
$$

is equal to the coefficient of $a^{2 k}$ in this power series where $\alpha_{1}, \ldots, \alpha_{k}$ are binomial coefficients determined by $p\left(\tau_{\mathbb{R}}\right)=\left(1+a^{2}\right)^{2 k+1}$.

Signature Theorem

Cauchy Integral Formula

Let U be an open subset of the complex plane \mathbb{C}, and suppose that the closed disk D defined as $\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\}$ is completely contained in U. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let C be the circle, oriented counterclockwise and forming the boundary of D. Then for every ξ in the interior of D, we have

$$
f(\xi)=\oint_{C} \frac{f(z)}{z-\xi} d z .
$$

Moreover, since holomorphic functions are analytic, i.e. they can be expanded as convergent Laurent power series, we have $f(z)=$ $\sum_{-\infty}^{+\infty} a_{n}(z-\xi)^{n}$ for every z in the interior of D where

$$
a_{n}=\frac{f^{(n)}(\xi)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-\xi)^{n+1}} d z .
$$

Signature Theorem

Replace a by the complex variable z, the coefficient of $z^{2 k}$ in the Laurent expansion of $\left(\frac{z}{\tanh z}\right)^{2 k+1}$ can be computed by dividing by $2 \pi i z^{2 k+1}$ and then integrating around the origin. In fact, the substitution $u=\tanh z$ with $d z=\frac{d u}{1-u^{2}}=\left(1+u^{2}+u^{4}+\cdots\right) d u$ shows that

$$
\begin{aligned}
L\left[\mathbb{C P}^{2 k}\right] & =\frac{1}{2 \pi i} \oint_{C} \frac{d z}{(\tanh z)^{2 k+1}}=\frac{1}{2 \pi i} \oint_{C} \frac{1+u^{2}+u^{4}+\cdots}{u^{2 k+1}} d u \\
& =d^{2 k}\left(1+u^{2}+u^{4}+\cdots+u^{2 k}+\cdots\right) /\left.d^{2 k} u\right|_{u=0} /(2 k)! \\
& =\left.((2 k)!+\cdots)\right|_{u=0} /(2 k)!=1 .
\end{aligned}
$$

Hence, we always have $L\left[\mathbb{C P}^{2 k}\right]=1=\sigma\left(\mathbb{C} P^{2 k}\right)$, and it follows that $L[M]=\sigma(M)$ for all M.

Now we have finished the proof!

Signature Theorem

Signature Theorem

Let $\left\{L_{n}\left(X_{1}, \ldots, X_{n}\right)\right\}_{n \geq 1}$ be the m-sequence of polynomials belonging to the formal power series

$$
\frac{\sqrt{t}}{\tanh \sqrt{t}}:=1+\frac{1}{3} t-\frac{1}{45} t^{2}+\cdots+(-1)^{k-1} \frac{2^{2 k} B_{k}}{(2 k)!} t^{k}+\cdots .
$$

Then the signature $\sigma(M)$ of any compact oriented smooth manifold M is equal to the L-genus $L[M]$.

Since the signature of any manifold is an integer and only depends on the oriented homotopy type, we immediately obtain the following corollary:

Corollary

The L-genus $L[M]$ of any smooth compact oriented M is an integer and only depends on the oriented homotopy type of M.

Signature Theorem

Example

There exists no compact oriented smooth 4-connected 12-manifold M with $\operatorname{dim} H^{6}(M ; \mathbb{Q})$ equal to an odd number.

Proof: The matrix used to define the signature of M is nonsingular, so $\sigma(M)$ is an odd number since $\operatorname{dim} H^{6}(M ; \mathbb{Q})$ is odd. Since M is 4-connected, Hurewicz theorem implies $H_{i}(M ; \mathbb{Q})=0$ for $i=3,4$. UCT implies

$$
\begin{aligned}
0 \rightarrow 0=\operatorname{Ext}_{\mathbb{Q}}^{1}\left(H_{3}(M ; \mathbb{Q}) ; \mathbb{Q}\right) & \rightarrow H^{4}(M ; \mathbb{Q}) \\
& \rightarrow \operatorname{Hom}_{\mathbb{Q}}\left(H_{4}(M ; \mathbb{Q}) ; \mathbb{Q}\right)=0 \rightarrow 0 .
\end{aligned}
$$

So $H^{4}(M ; \mathbb{Q})=0 \Rightarrow p_{1}[M]=0 \Rightarrow L[M]=\left\langle L_{3}\left(p_{1}, p_{2}, p_{3}\right), \mu_{12}\right\rangle=$ $\frac{62}{945} p_{3}[M]$ is an integer. As 62 and 945 are coprime, we see that 945 divides $p_{3}[M]$ and $L[M]$ is even. Signature Theorem says that $\sigma(M)=L[M]$ is even, which is a contradiction.

Signature Theorem

Example

The Pontrjagin number $p_{1}\left[M^{4}\right]$ is divisible by 3 , and the Pontrjagin number $7 p_{2}\left[M^{8}\right]-p_{1}\left[M^{8}\right]$ is divisible by 45 . If M^{8} is 4 -connected, then $p_{2}\left[M^{8}\right]$ is divisible by 45 .

Acknowledgments

Thanks for your attention!

