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Outline of the talk:
@ What is a Signature & the Signature Theorem?
@ Why do we need multiplicative sequences?
o Classification of multiplicative sequences
@ Proof of Signature Theorem

@ Some applications of Signature Theorem
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Definition

Let M™ be a connected compact oriented manifold.

The signature o(M) of M is defined to be
@ zero if the dimension is not a multiple of 4 and

e as follows for m = 4n: Pick a basis ay, ..., a, for H>"(M*"; Q)
so that the symmetric matrix [(a; U aj, pian)] is diagonal, then
o(M*") is the number of positive diagonal entries minus the
number of negative ones.

The signature of a compact oriented but not connected manifold is
the sum of the signatures of its connected components.

o’
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SIGNATURE

@ Note that H2”(M4"; Q) is a unitary module over a division ring,
i.e. a vector space, so it is valid to speak of basis.

@ Although the cup product is non-strict commutative, the matrix
[(aiUaj, f1an)] is symmetric since the degree of the cohomology
group is even.

@ Then we derive a rational quadratic form a — (aU a, pan).

@ So under a suitable (rational) change of basis, the matrix
[(ai U aj, puan)] is diagonal. (Note that this is congruent di-
agonalization not the usual diagonalization.) Then o(M*") is
well-defined by Sylvester's law of inertia, which means that
a(M?*") can also be equivalently defined as the difference #
of the positive and negative eigenvalues of [(a; U aj, 114n)].

@ The manifolds are compact. So the number of connected com-
ponents is finite.
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The symmetric matrix [(a; U aj, f4n)] is nonsingular!

We are doing (co)homology with coefficients in a field! There is no
torsion in (co)homology. Consider

H4"_k(/\/74"; Q) U%) HomQ(H4,,_k(M4n; Q),Q)

—2" Homg(H*(M*"; Q), Q).

Hom-dual

D* o h sends 1 € H*"~k(M*"; Q) to the homomorphism

HA(M*"; Q) 3 ¢ = 9(pan N ) = (0 U ) (1an)-

Nonsingularity in the other variable follows by (non-strict) commu-
tativity of cup product.

v
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The signature o has the following three properties:
o o(M+ M) =0c(M)+ao(M), o(—M) = —a(M),
e o(Mx M) =c(M)a(M'), and
@ if M is an oriented boundary, then o(M) = 0.

Proof: See [Hirzebruch, Theorem 8.2.1].

The signature o descends to a ring morphism from the cobordism
ring Q. to the ring Z of integers, or equivalently it gives rise to an
algebra morphism from Q, ® Q to Q with M ® 1 — an integer.
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Consider the L-polynomials in Pontrjagin classes:

1 1 1
L1 == L Tpp — L3 62p3 — 13 2
1= 3P L2 = 45( P2 — p3), 945( p3 pap1 +2p3),
4
Lo = 7,772 (381ps — T1pspr — 19p3 + 22pop; — 3p}), etc.
The sequence {Ln(p1,- .-, Pn)}n>1 consists of polynomial in Pontr-

jagin classes such that L,(p1,...,py) € H*"(M; Q) for each n > 1.

Signature Theorem says “Signatures are just Pontrjagin numbers” !

Theorem (Signature Theorem)

Let M be any compact oriented smooth 4n-manifold, then we have
a(M) = Ln(p1,---,pn)[M].
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You CouLD HAVE INVENTED MULTIPLICATIVE

SEQUENCES!!!

Consider two real vector bundles £ and 7 over the same base space
with trivial Whitney sum. We have the equation w({ @ ) =
w(&)w(n) which can be uniquely solved as

w(n) = (w(§)tw(E @ n) = (w(€)) ™" = K(w(€))

(see [Milnor, Lemma 4.1]). One important special case is Whitney
duality theorem ([Milnor, Lemma 4.2]): w(v) = K(w(7)) where 7
is the tangent bundle of a manifold in Euclidean space and v is its
normal bundle. Now we “expand” K(w(&)):

_ 1

K(w(&)) =w(&) ™ = 1+ (wi(€) + wa(6) +---)
=1—(wi(&) + (&) + - )+ (wi(&) + ma(§) +-- )2 — -+
=14 Ki(w1(§)) + Kz(w1(§), wa(§)) +--- .
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You CouLD HAVE INVENTED MULTIPLICATIVE

SEQUENCES!!!

Consider two vector bundles £ and 7 over the same base space. We
have the equation w(§ @ 1) = w(&)w(n) which can be uniquely
solved as

w(n) = (w(€)) (€ ® n) = K(w(€))
(see [Milnor, Lemma 4.1]) where
K(w(€)) = w(€) ™" = 1+ Ki(m(€)) + Ka(wa(€), wa(€)) + - -
Ki(X1) _Xla
Ka(X1, X2)
K3(X1, X2, X3)
)
)

_Xl + 2)<1)<2 - X37
X 3X1 Xo 4+ 2X1X3 + X2 Xy onn,
Z (Il«ll»~--<.Fln)-(_X1)il.”(_Xn)in‘

bl
i14-2ip+---+nin=n 1 n

K4(X1> X27 X37 4

Kn(X1, ..., Xn
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You CouLD HAVE INVENTED MULTIPLICATIVE

SEQUENCES!!!

Consider the general term

(il + -+ In)

i1!.../,,! (=) (X"

Kn(X1,..., X,) = >

i1+2i++-+nip=n
We easily find that

each K,(X1, X3, X3,..., X" is homogeneous of degree n.
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You CouLD HAVE INVENTED MULTIPLICATIVE

SEQUENCES!!!

Consider the formal sum
KI+Xi+Xo+--) =1+ Ki(X1) + Ko( X1, X2) + -+ .

Let X =14+X1+Xo+--- and Y =14 Y1+ Yo+ .- formally, then
K(X)=X"1and K(Y) = YL Assume XY = YX. We have

K is multiplicative : K(XY) = (XY) ! =y 1x!
= X1yl = K(X)K(Y).
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You CouLD HAVE INVENTED MULTIPLICATIVE

SEQUENCES!!!

We actually obtain a sequence {K,(X1,...,Xn)}n>1 with K(X) =
14+ K (X1)+Ko( X1, Xo)+- - - where X = 14+ X1 +Xo+- - - satisfying

o homogeneity property:
each K,(X1, X3, X3,...,X") is homogeneous of degree n;

e multiplicative property: K(XY) = K(X)K(Y).

Now we have invented a multiplicative sequence!!!
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MULTIPLICATIVE SEQUENCE

Let A be a commutative ring with multiplicative identity.

@ A unitary unital commutative A-algebra A* is non-negatively
graded if there exist additive subgroups A; of A* for i > 0
such that A* = @,-, Ai with AA; C A; and AjA; C Ay for
all i,j > 0. B

@ To each such A*, we associate the ring A™ consisting of all for-
mal sums Zi>0 a; with a; € A;, i.e. the internal direct product
decomposition A™ = >"._, A; holds such that AA; C A; and
A,'AJ' C A,'+j for all iy J 26

v

Let A* = A[X] and A™ = A[[X]]. More concretely, set A = Q, then
we have A* = Q[X] and A" = Q[[X]].

v
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MULTIPLICATIVE SEQUENCE

o In the main application, we put A, = H*"(B; A).

o Note that A, = H*"(B; A) is of degree n in the graded algebra
but is of degree 4n as a cohomology group.

@lecAyand A-1C Ap.

0 A* = EB,.ZO A; is an internal weak direct product decomposition
= each element a € A* can be uniquely expressed as the sum
> >0 @i with a; € A; such that only a finitely many a;'s are
nonzero.
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MULTIPLICATIVE SEQUENCE

@ Due to the same reason, for each a € A™ we have a unique
expression a = » ;- a; with a; € A.

o We will be particularly interested in elements of the form a =
1+ ;51 a in A™ which are invertible in A by the theory of
formal power series.

v
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MULTIPLICATIVE SEQUENCE

Now consider a sequence of polynomials
Ki(X1), Ka(X1, X2), K3(X1, X2, X3), ...
with coefficients in A satisfying homogeneity property:
each K,(X1, X3, X3,..., X" is homogeneous of degree n.

Given an element a=1+a; +a, + --- € A" with leading term 1
which is invertible in A™, define a new element K(a) € A" also with
leading term 1 by the formula

K(a) =1+ Kl(al) + Kz(al,az) + e



Multiplicative Sequence
0000000000®00000000000

MULTIPLICATIVE SEQUENCE

Definition (Multiplicative Sequence)

The sequence {K,},>1 is a multiplicative sequence or briefly an
m-sequence of polynomials if it satisfies multiplicative property:

K(ab) = K(a)K(b)

holds for all A-algebras A* (or A”) and for all a, b € A" with leading
term 1.

4
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Given any constant A € A, the polynomials

Kn(X1,...,Xn) = A" X,
form an m-sequence with
Kl+ai+a+--)=1+Xag+Na+ .

The case A = 1 (so that K(a) = a) and A = —1 are of particular
interest:

Let A = —1 and w be a complex n-plane bundle. Consider the Chern
class of the conjugate bundle @, then we have ¢, (@) = (—1)*ck(w)
due to [Milnor, Lemma 14.9]. Hence we derive

(@) =1 - a(w) + ew) =+ (1) ca(w) = K(c(w)).
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MULTIPLICATIVE SEQUENCE

(i 4+ )]
YR
120+ +nin=n ! n

1
K(a)=a!=
(a) a 1+(31+32+"')

=l—(a1+a+ - )+(atat )
_(a1_|_32_|_...)3_|_....

KXo Xa) = > (=Xa)" - (=Xa)™,
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The polynomials K,_1 = 0 and

Kon(X1, ..., Xon) = X2 = 2X_1 Xpp1 + - - -
+ (_1)n_12X1X2n71 T (—1)n2X2n

form an m-sequence. For any complex n-bundle w, the Chern classes
ck(w) determine the Pontrjagin classes px(wr) by the formula

1—p1+p2— - +(=1)"pp = (1—c1+c— - -+(=1)"cs) (1+c1+ e+ - H¢n)
(see [Milnor, Corollary 15.5]). Thus we have

pr(wr) = ck(w)? = 2ck1(w)ekr1(w) + -+ + (1) 2c1 (w)can—1(w)
+ (—1)k2c2k(w) = K2n (cl(w), Cz(w), 00T Cgk(w))

The total Pontrjagin class p(wg) is just p(wr) = K(c(w)).
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MULTIPLICATIVE SEQUENCE

Consider A* = A[t] where t can be seen as a generator of A; which
is of degree 1.

Then an element of A = A[[t]] with leading term 1 is the formal
power series
F(t) =14 A\t + Xot? + -

with coefficients in A.

In particular, 1 + t is such a term which is obvious but important.
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MULTIPLICATIVE SEQUENCE

The following nice lemma gives a simple but very sharp classification
of all possible m-sequences:

Lemma (Classification of m-Sequences)

Given a formal power series f(t) = 14 A1t + Apt? + --- with
coefficients in A, there is one and only one m-sequence {Kj,}n>1
with coefficients in A satisfying the condition

K(1+t)=f(t)
or equivalent satisfying the condition that

the coefficient of X{" in each polynomial K,(Xi,...,X,)

is equal to Ap.
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MULTIPLICATIVE SEQUENCE

The m-sequence {Kj},>1 is called the m-sequence belonging to
the formal power series f(t).

|

Remark

If the m-sequence {K,}n>1 belongs to the power f(t), then for any
A* and any a; € A, the equation K(1 + a;1) = f(a1) is satisfied.
Of course, this equation would most likely be false if something of
degree # 1 were substituted in place of a;. This trivial observation
will be used in the proof.

|

Example

The three m-sequences mentioned above belong to the formal power
series 1 + \t, 1 —t+t> —t3+---, and 1 + t° respectively.

4
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MULTIPLICATIVE SEQUENCE

Uniqueness: For any positive integer n, we set A* = Alty, ..., tp],
then t1,...,th € A;. Leto=(1+t1) - (1+ty)=1+01+02+
.-« + o, where the polynomials o; € A; are elementary symmetric
polynomials in ty, ..., t,, then

K(o)=K(1+t) - K1+ ty) =F(t1)---f(tn)
=14+ Mt + Xt 4 ) (L4 Aty + dot2 +--).
Taking homogeneous part of degree n, it follows that K,(o1,...,04,)
is completely determined by the formal power series f(t). Further-

more, note that the elementary symmetric polynomials are alge-
braically independent, so each K, is finally proven to be unique.
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MULTIPLICATIVE SEQUENCE

Existence: For any partition | = (i1,...,i,) of n with positive inte-
gers, let A\j = Aj, --- Aj,. Define the polynomial K|, by the formula

Kn(al,...,a,,) = Z)\/Sl(dl,...,an)

summing over all partitions / of n. Recall that s;(o1,...,0,), which
is a homogeneous symmetric polynomial of degree n, is the unique
polynomial in the elementary symmetric polynomials o1, ..., 0, equal

to .
i ir
Ztal(l)”‘ta(r)
summing over all permutations o of {1,2,...,r}. Note that if

we fix o, then for each permutation ¢’ such that tc’rl(l)'--t(’;(r) =
.t;l,(l) e t;’,(r), the monomial t;l(l) e t(’;j(r) will be recorded only once
in the sum.
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By convention we have
si(a)=si(l+a1+ax+---)=s/(a1,...,an)
for any partition / of n. Note that we have the identity
si(ab) = > su(a)sy(b)
Hi=I

summing over all partitions H, J with juxtaposition HJ = [. There-
fore, we obtain

ab) = Z)\,sl(ab) Z)\, Z sy(a)sy(b)
I

l HJ=I

= Z Z (Ansr(a)) (Auss(b)) = Z (Arsn(a)) (Asss(b))

I HJ=I H,J

—Z)\HSH ZAJSJ(b K(a)K(b),

which holds for all a, b € A™.
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MULTIPLICATIVE SEQUENCE

If I is not a trivial partition of n, i.e. | # (n), then s/(01,0,...,0) =

0. Since s,(01,0,...,0) = of, we derive
K(1+t)= Z)\/Sl .,0)ZZ)\(,,)S(,,)(!',O,...,O)
n>0
= ZA,,t = f(t
n>0

Note that for partition / of 0 we have >~ A\;s/(¢t,0,...,0) = N\;s() =
1 trivially.

Now we have finished the proof of existence which is constructive!!!
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MULTIPLICATIVE SEQUENCE

Example

Consider the m-sequence {Kj,},>1 belonging to 1+t2, which belongs
to the formal power series 1 + t2.

For n > 1, we have

Kzn(al, . ,0’,,) = Z)\[S/(O'l, ce ,Uzn) = 5(2, . .’2)(0'1, .. .,0’2,,),
n terms of 2
which implies

5(2, .. .72)(0'1,...,0'2,,) = 0% — 2071041+
~—

n terms of 2

+ (_1)n—120,10,2n_1 + (—1)"20’2,,.

v
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Now consider some m-sequence {K,(Xi,...,Xn)}n>1 with rational
coefficients. Let M™ be a compact oriented smooth m-dimensional
manifold. We also put A= Q and A, = H*"(M™; Q).

Definition

The K-genus K[M™] is zero if the dimension m is not divisible by
4 and is equal to the rational number

Kn[M4n] = <Kn(P17 e aPn)v Wan)

if m = 4n where p; denotes the i-th Pontrjagin class of the tan-
gent bundle and pg4x denotes the fundamental homology class of
M4 Thus, K[M™] is a certain rational linear combination of the
Pontrjagin numbers of M.

<
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SIGNATURE THEOREM

For any m-sequence {K,},>1 with rational coefficients, the corre-
spondence M — K[M] defines a ring morphism from the cobordism
ring €2, to the ring Q of rational numbers, and this correspondence
gives rise to an algebra morphism from Q, ® Q.

We will see that, using Signature Theorem, the ring morphism is
actually Q, — Z. So the algebra morphism Q, ® Q — Q satisfies
M ® 1 — an integer, which means that the ring morphism Q, — Q
can be recovered.
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SIGNATURE THEOREM

Proof: Since Pontrjagin numbers are cobordism invariants, so M —
K[M] descends to a well-defined map Q, — Q.

This map is additive since addition is given by disjoint union and
Pontrjagin numbers are additive under such addition.

Consider the product manifold M x M’. Note that the tangent
bundle of M x M’ splits as a Whitney sum TM x TM' = 7 TM @
73 TM' where 71 and 7, are the canonical projections of My x M,
into the two factors. Modulo elements of order 2, we obtain

Kn(ph e 7Pn)(T(M X MI)) = Kn(pla e 7Pn)(TM X TMI)

= Kn(p1,-- -, pn)(mi TM & 75 TM")
= Kn(p1, .-, pn)(mi TM) U Kn(p1, - - ., pn)(m3 TM').
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Thus, we have

KIM x M']

= (Ka(p1s- - -, pn)(7] TM) U Kn(p1, - - - Pn) (75 TM'), piap X fia)

= (=)™ (Kn(p1, - - -, Pn) (7} TM), p1an)(Kn(p1, - - ., p) (73 TM'), 1)
= (11 Kn(p1, - - - Pn)(TM), p1an) (5 Kn(p1, - -, ) (TM'), i)

= (Ka(p1, - - > Pn)(TM), ptan)(Kn(p1, - - - Pn)(TM"), 1y )
= K[M]K[M].

There is no sign here since the K-genera is nonzero only when m, m’
are divisible by 4. So the proof is finished.
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SIGNATURE THEOREM

The following theorem reveals that, using these properties, one can
show that the signature of a manifold can be expressed as a linear
function of its Pontrjagin numbers.

Signature Theorem

Let {L,(X1,...,Xn)}n>1 be the m-sequence of polynomials belong-
ing to the formal power series

t 11
Vi 1+ 2t——t>+- +(-1)

- k-12%%Bic
tanh\/t 3 45

et T

Then the signature o(M) of any compact oriented smooth manifold
M is equal to the L-genus L[M].
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Here By denotes the k-th Bernoulli number which can be defined as
the coefficients occur in the power series expansion

X x cosh x Bl 2 BQ 4 B3 6
p— p— 1 — 2 —_— — 2 —_— 2 P
tanhx _ sinhx o207 7 (2074 1 (2%)

convergent for |x| < m, or equivalently in the Laurent expansion

e i R TR AT AT

These two series are related by the easily verified identity

X 2x +
= X.
tanhx ex—1
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With this notion one has:

1 1 1 1
Bi=- By=—. B3=—, By= —
1 65 2 30’ 3 427 4 307

5 691 7 3617
Bs= > Bg=—— By =~ Bg= ——
5766 ° 2730° ' 6 ° 510’

and so on. These numbers were first introduced by Jakob Bernoulli.
The first four L-polynomials are

1 1 1
Li=Zp1, Lo=—(Tps — p?), L 62 13 2p3
1 3P17 2 5( P2 P1)7 3= 945( p3 — 13p2p1 + Pl),
o o 4
La = T7775 (381ps = T1p3py 19p5 + 22p2pi — 3p7),

and so on.
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Proof of Signature Theorem:

Since the correspondences M +— o(M) and M — L[M] both give
rise to algebra morphisms from €, ® Q to Q, it suffices to check
this theorem on a set of generators for the algebra Q, ® Q, i.e. it
suffices to prove the equality on each CP? since they generate the
oriented cobordism ring.

Let 7 be the tangent bundle of CP?¥. Let 4! := 41(C?**1) be the
canonical line bundle over CP?%, then a := —c;(y!) is a generator
of H?(CP?¥; Q) = Q such that the total Chern class of 7 is ¢(7") =

(1 + a)%*1 and the total Pontrjagin class of 7r is p := p(7r) =
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It follows that the top Chern class cyx(7) = (2k 4 1)a®¥. Therefore,
the Euler number e[CP?] = (e(r), pak) = (cok(7), ptak) = (2k +
1) {ean(r)s pak) = (2K + 1)(a2*, o).

On the other hand, we have (e(7r), ptak) (using integer or ratio-
nal coefficients) is equal to the Euler characteristic x(CP?¥) =
S (—1)' dim H(CP?¥; Q) = 2k + 1 (see [Milnor, Corollary 11.12]).
Thus, (a®%, ju4x) = 1 which means a%f is precisely the generator of
H*(CP?k; Q) = Q (which is compatible with the preferred orienta-
tion).

Note that the generator a¥ € H?(CP?*; Q) = Q actually forms a
basis, so (a¥Ua¥, pax) = (2%, pak) = 1 (for the preferred orientation
of CP2k). Hence we obtain the signature o(CP?K) = 1.
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Since the m-sequence {Lx}x>1 belongs to the power series f(t) =

Vit

fann v We derive

7/ 32 .

a in the sense of a

Ll+a%)=—"+ :
tanh \/32 formal power series tanh a

Note that a®> € H*(CP?*;Q) is of degree 1 in the graded algebra
since we take A, to be H*"(CP?*; Q) and we have

a )2k+1

Lp) = L((1+ %) = (L )P = (2

Thus the L-genus

2k)

(Li(p1y - - Pi)s pak) = (Li(1d®, ..., aka®), puax)

is equal to the coefficient of a2 in this power series where a1, . . . , ay
are binomial coefficients determined by p(7r) = (1 + a2)?+1.
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Cauchy Integral Formula

Let U be an open subset of the complex plane C, and suppose that
the closed disk D defined as {z € C : |z — z| < r} is completely
contained in U. Let f : U — C be a holomorphic function, and let
C be the circle, oriented counterclockwise and forming the boundary
of D. Then for every £ in the interior of D, we have

f(£) = fc Zf(_zldz.

Moreover, since holomorphic functions are analytic, i.e. they can
be expanded as convergent Laurent power series, we have f(z) =
S % an(z — €)™ for every z in the interior of D where

L _ 9 _ 1 7{ f2)
"o i ‘

nl 27 Je(z—&)rtlT
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Replace a by the complex variable z, the coefficient of z2% in the
z \2k+1
tanhz)

Laurent expansion of ( can be computed by dividing by

27miz?*1 and then integrating around the origin. In fact, the sub-
stitution u = tanh z with dz = 1TL2 = (1+ v+ u*+---)du shows
that
1 dz 1 14+’ v+
LCsz:fzjf d
[ ] 27i Jc (tanh z)2k+1  27f J- u2k+1 !

— (L4 Ut P ) A U/ (2K)!
= ((2k)! + -+ )lu=o/(2k)! = 1.

Hence, we always have L[CP?(] = 1 = ¢(CP?), and it follows that
L[M] = (M) for all M.

Now we have finished the proof!
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Signature Theorem

Let {L,(X1,...,Xn)}n>1 be the m-sequence of polynomials belong-
ing to the formal power series

Vit 1 il 4
— =14 -t— —t°+--+ (=1
tanh v/t 3 45 (=1)

2%k
k—12 Bktk+_”_
(2K)!

Then the signature o(M) of any compact oriented smooth manifold
M is equal to the L-genus L[M].

v

Since the signature of any manifold is an integer and only depends
on the oriented homotopy type, we immediately obtain the following
corollary:

The L-genus L[M] of any smooth compact oriented M is an integer
and only depends on the oriented homotopy type of M.
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There exists no compact oriented smooth 4-connected 12-manifold
M with dim H%(M; Q) equal to an odd number.

Proof: The matrix used to define the signature of M is nonsingular,
so a(M) is an odd number since dim H%(M; Q) is odd. Since M is
4-connected, Hurewicz theorem implies H;(M;Q) = 0 for i = 3, 4.
UCT implies

0 — 0 = Ext}(H3(M; Q); Q) — H*(M; Q)
— Homg(Hs(M;Q); Q) = 0 — 0.

So H*(M; Q) = 0 = p1[M] = 0 = L[M] = (L3(p1, p2, P3), 12) =
%m[l\/l] is an integer. As 62 and 945 are coprime, we see that
945 divides p3[M] and L[M] is even. Signature Theorem says that
o(M) = L[M] is even, which is a contradiction.
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The Pontrjagin number p;[M*] is divisible by 3, and the Pontrjagin
number 7pa[M®] — p1[M®] is divisible by 45. If M® is 4-connected,
then pp[M8] is divisible by 45.
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