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Overview

Outline of the talk:

What is a Signature & the Signature Theorem?

Why do we need multiplicative sequences?

Classification of multiplicative sequences

Proof of Signature Theorem

Some applications of Signature Theorem



Overview References Signature Multiplicative Sequence Signature Theorem Acknowledgments

References

Friedrich Hirzebruch,
Topological methods in algebraic geometry,
Classics in Mathematics. Springer-Verlag, Berlin, 1995.

John W. Milnor and James D. Stasheff,
Characteristic classes,
Annals of Mathematics Studies, No. 76, Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.



Overview References Signature Multiplicative Sequence Signature Theorem Acknowledgments

Signature

Definition

Let Mm be a connected compact oriented manifold.

The signature σ(M) of M is defined to be
zero if the dimension is not a multiple of 4 and

as follows for m = 4n: Pick a basis a1, . . . , ar for H2n(M4n;Q)
so that the symmetric matrix [〈ai ∪ aj , µ4n〉] is diagonal, then
σ(M4n) is the number of positive diagonal entries minus the
number of negative ones.

The signature of a compact oriented but not connected manifold is
the sum of the signatures of its connected components.
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Signature

Remark

Note that H2n(M4n;Q) is a unitary module over a division ring,
i.e. a vector space, so it is valid to speak of basis.

Although the cup product is non-strict commutative, the matrix
[〈ai ∪aj , µ4n〉] is symmetric since the degree of the cohomology
group is even.

Then we derive a rational quadratic form a 7→ 〈a ∪ a, µ4n〉.
So under a suitable (rational) change of basis, the matrix
[〈ai ∪ aj , µ4n〉] is diagonal. (Note that this is congruent di-
agonalization not the usual diagonalization.) Then σ(M4n) is
well-defined by Sylvester’s law of inertia, which means that
σ(M4n) can also be equivalently defined as the difference #
of the positive and negative eigenvalues of [〈ai ∪ aj , µ4n〉].
The manifolds are compact. So the number of connected com-
ponents is finite.
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Signature

Remark

The symmetric matrix [〈ai ∪ aj , µ4n〉] is nonsingular!

We are doing (co)homology with coefficients in a field! There is no
torsion in (co)homology. Consider

H4n−k(M4n;Q)
h−−−→

UCT
HomQ(H4n−k(M4n;Q),Q)

D∗−−−−−−→
Hom-dual

HomQ(Hk(M4n;Q),Q).

D∗ ◦ h sends ψ ∈ H4n−k(M4n;Q) to the homomorphism

Hk(M4n;Q) 3 ϕ 7→ ψ(µ4n ∩ ϕ) = (ϕ ∪ ψ)(µ4n).

Nonsingularity in the other variable follows by (non-strict) commu-
tativity of cup product.
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Signature

Lemma (Thom)

The signature σ has the following three properties:
σ(M + M ′) = σ(M) + σ(M ′), σ(−M) = −σ(M),

σ(M ×M ′) = σ(M)σ(M ′), and

if M is an oriented boundary, then σ(M) = 0.

Proof: See [Hirzebruch, Theorem 8.2.1].

Corollary

The signature σ descends to a ring morphism from the cobordism
ring Ω∗ to the ring Z of integers, or equivalently it gives rise to an
algebra morphism from Ω∗ ⊗Q to Q with M ⊗ 1 7→ an integer.
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Signature Theorem

Consider the L-polynomials in Pontrjagin classes:

L1 =
1

3
p1, L2 =

1

45

(
7p2 − p2

1

)
, L3 =

1

945

(
62p3 − 13p2p1 + 2p3

1

)
,

L4 =
1

14175

(
381p4 − 71p3p1 − 19p2

2 + 22p2p
2
1 − 3p4

1

)
, etc.

The sequence {Ln(p1, . . . , pn)}n≥1 consists of polynomial in Pontr-
jagin classes such that Ln(p1, . . . , pn) ∈ H4n(M;Q) for each n ≥ 1.

Signature Theorem says “Signatures are just Pontrjagin numbers”!!!

Theorem (Signature Theorem)

Let M be any compact oriented smooth 4n-manifold, then we have
σ(M) = Ln(p1, . . . , pn)[M].
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You Could Have Invented Multiplicative
Sequences!!!
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You Could Have Invented Multiplicative
Sequences!!!

Consider two real vector bundles ξ and η over the same base space
with trivial Whitney sum. We have the equation w(ξ ⊕ η) =
w(ξ)w(η) which can be uniquely solved as

w(η) = (w(ξ))−1w(ξ ⊕ η) = (w(ξ))−1 =: K (w(ξ))

(see [Milnor, Lemma 4.1]). One important special case is Whitney
duality theorem ([Milnor, Lemma 4.2]): w(ν) = K (w(τ)) where τ
is the tangent bundle of a manifold in Euclidean space and ν is its
normal bundle. Now we “expand” K (w(ξ)):

K (w(ξ)) = w(ξ)−1 =
1

1 + (w1(ξ) + w2(ξ) + · · · )
= 1− (w1(ξ) + w2(ξ) + · · · ) + (w1(ξ) + w2(ξ) + · · · )2 − · · ·
= 1 + K1(w1(ξ)) + K2(w1(ξ),w2(ξ)) + · · · .
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You Could Have Invented Multiplicative
Sequences!!!

Consider two vector bundles ξ and η over the same base space. We
have the equation w(ξ ⊕ η) = w(ξ)w(η) which can be uniquely
solved as

w(η) = (w(ξ))−1w(ξ ⊕ η) = K (w(ξ))

(see [Milnor, Lemma 4.1]) where

K (w(ξ)) = w(ξ)−1 = 1 + K1(w1(ξ)) + K2(w1(ξ),w2(ξ)) + · · ·
K1(X1) = −X1,

K2(X1,X2) = X 2
1 − X2,

K3(X1,X2,X3) = −X 3
1 + 2X1X2 − X3,

K4(X1,X2,X3,X4) = X 4
1 − 3X 2

1 X2 + 2X1X3 + X 2
2 − X4, . . . ,

Kn(X1, . . . ,Xn) =
∑

i1+2i2+···+nin=n

(i1 + · · ·+ in)!

i1! · · · in!
(−X1)i1 · · · (−Xn)in .
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You Could Have Invented Multiplicative
Sequences!!!

Consider the general term

Kn(X1, . . . ,Xn) =
∑

i1+2i2+···+nin=n

(i1 + · · ·+ in)!

i1! · · · in!
(−X1)i1 · · · (−Xn)in .

We easily find that

each Kn(X1,X
2
2 ,X

3
3 , . . . ,X

n
n ) is homogeneous of degree n.
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You Could Have Invented Multiplicative
Sequences!!!

Consider the formal sum

K (1 + X1 + X2 + · · · ) = 1 + K1(X1) + K2(X1,X2) + · · · .

Let X = 1+X1 +X2 + · · · and Y = 1+Y1 +Y2 + · · · formally, then
K (X ) = X−1 and K (Y ) = Y−1. Assume XY = YX . We have

K is multiplicative : K (XY ) = (XY )−1 = Y−1X−1

= X−1Y−1 = K (X )K (Y ).
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You Could Have Invented Multiplicative
Sequences!!!

We actually obtain a sequence {Kn(X1, . . . ,Xn)}n≥1 with K (X ) =
1+K1(X1)+K2(X1,X2)+· · · where X = 1+X1 +X2 +· · · satisfying

homogeneity property:

each Kn(X1,X
2
2 ,X

3
3 , . . . ,X

n
n ) is homogeneous of degree n;

multiplicative property: K (XY ) = K (X )K (Y ).

Now we have invented a multiplicative sequence!!!
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Multiplicative Sequence

Let A be a commutative ring with multiplicative identity.

Definition

A unitary unital commutative A-algebra A∗ is non-negatively
graded if there exist additive subgroups Ai of A∗ for i ≥ 0
such that A∗ =

⊕
i≥0 Ai with AAi ⊂ Ai and AiAj ⊂ Ai+j for

all i , j ≥ 0.

To each such A∗, we associate the ring AΠ consisting of all for-
mal sums

∑
i≥0 ai with ai ∈ Ai , i.e. the internal direct product

decomposition AΠ =
∑

i≥0 Ai holds such that AAi ⊂ Ai and
AiAj ⊂ Ai+j for all i , j ≥ 0.

Example

Let A∗ = A[X ] and AΠ = A[[X ]]. More concretely, set A = Q, then
we have A∗ = Q[X ] and AΠ = Q[[X ]].
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Multiplicative Sequence

Remark

In the main application, we put An = H4n(B;A).

Note that An = H4n(B;A) is of degree n in the graded algebra
but is of degree 4n as a cohomology group.

1 ∈ A0 and A · 1 ⊂ A0.

A∗ =
⊕

i≥0 Ai is an internal weak direct product decomposition
⇒ each element a ∈ A∗ can be uniquely expressed as the sum∑

i≥0 ai with ai ∈ Ai such that only a finitely many ai ’s are
nonzero.
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Multiplicative Sequence

Remark

Due to the same reason, for each a ∈ AΠ we have a unique
expression a =

∑
i≥0 ai with ai ∈ A.

We will be particularly interested in elements of the form a =
1 +

∑
i≥1 ai in AΠ which are invertible in AΠ by the theory of

formal power series.
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Multiplicative Sequence

Now consider a sequence of polynomials

K1(X1), K2(X1,X2), K3(X1,X2,X3), . . .

with coefficients in A satisfying homogeneity property:

each Kn(X1,X
2
2 ,X

3
3 , . . . ,X

n
n ) is homogeneous of degree n.

Given an element a = 1 + a1 + a2 + · · · ∈ AΠ with leading term 1
which is invertible in AΠ, define a new element K (a) ∈ AΠ also with
leading term 1 by the formula

K (a) = 1 + K1(a1) + K2(a1, a2) + · · · .
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Multiplicative Sequence

Definition (Multiplicative Sequence)

The sequence {Kn}n≥1 is a multiplicative sequence or briefly an
m-sequence of polynomials if it satisfies multiplicative property:

K (ab) = K (a)K (b)

holds for all A-algebras A∗
(
or AΠ

)
and for all a, b ∈ AΠ with leading

term 1.
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Multiplicative Sequence

Example

Given any constant λ ∈ A, the polynomials

Kn(X1, . . . ,Xn) = λnXn

form an m-sequence with

K (1 + a1 + a2 + · · · ) = 1 + λa1 + λ2a2 + · · · .

The case λ = 1 (so that K (a) = a) and λ = −1 are of particular
interest:

Let λ = −1 and ω be a complex n-plane bundle. Consider the Chern
class of the conjugate bundle ω̄, then we have ck(ω̄) = (−1)kck(ω)
due to [Milnor, Lemma 14.9]. Hence we derive

c(ω̄) = 1− c1(ω) + c2(ω)− · · ·+ (−1)kcn(ω) = K (c(ω)).
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Multiplicative Sequence

Example

Kn(X1, . . . ,Xn) =
∑

i1+2i2+···+nin=n

(i1 + · · ·+ in)!

i1! · · · in!
(−X1)i1 · · · (−Xn)in ,

K (a) = a−1 =
1

1 + (a1 + a2 + · · · )
= 1− (a1 + a2 + · · · ) + (a1 + a2 + · · · )2

− (a1 + a2 + · · · )3 + · · · .
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Multiplicative Sequence
Example

The polynomials K2n−1 = 0 and

K2n(X1, . . . ,X2n) = X 2
n − 2Xn−1Xn+1 + · · ·

+ (−1)n−12X1X2n−1 + (−1)n2X2n

form an m-sequence. For any complex n-bundle ω, the Chern classes
ck(ω) determine the Pontrjagin classes pk(ωR) by the formula

1−p1+p2−· · ·+(−1)npn =
(
1−c1+c2−· · ·+(−1)ncn

)
(1+c1+c2+· · ·+cn).

(see [Milnor, Corollary 15.5]). Thus we have

pk(ωR) = ck(ω)2 − 2ck−1(ω)ck+1(ω) + · · ·+ (−1)k−12c1(ω)c2k−1(ω)

+ (−1)k2c2k(ω) = K2n

(
c1(ω), c2(ω), . . . , c2k(ω)

)
The total Pontrjagin class p(ωR) is just p(ωR) = K (c(ω)).
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Multiplicative Sequence

Consider A∗ = A[t] where t can be seen as a generator of A1 which
is of degree 1.

Then an element of AΠ = A[[t]] with leading term 1 is the formal
power series

f (t) = 1 + λ1t + λ2t
2 + · · ·

with coefficients in A.

In particular, 1 + t is such a term which is obvious but important.
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Multiplicative Sequence

The following nice lemma gives a simple but very sharp classification
of all possible m-sequences:

Lemma (Classification of m-Sequences)

Given a formal power series f (t) = 1 + λ1t + λ2t
2 + · · · with

coefficients in A, there is one and only one m-sequence {Kn}n≥1

with coefficients in A satisfying the condition

K (1 + t) = f (t)

or equivalent satisfying the condition that

the coefficient of X n
1 in each polynomial Kn(X1, . . . ,Xn)

is equal to λn.
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Multiplicative Sequence

Definition

The m-sequence {Kn}n≥1 is called the m-sequence belonging to
the formal power series f (t).

Remark

If the m-sequence {Kn}n≥1 belongs to the power f (t), then for any
A∗ and any a1 ∈ A1, the equation K (1 + a1) = f (a1) is satisfied.
Of course, this equation would most likely be false if something of
degree 6= 1 were substituted in place of a1. This trivial observation
will be used in the proof.

Example

The three m-sequences mentioned above belong to the formal power
series 1 + λt, 1− t + t2 − t3 + · · · , and 1 + t2 respectively.
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Multiplicative Sequence

Uniqueness: For any positive integer n, we set A∗ = A[t1, . . . , tn],
then t1, . . . , tn ∈ A1. Let σ = (1 + t1) · · · (1 + tn) =: 1 + σ1 + σ2 +
· · · + σn where the polynomials σi ∈ Ai are elementary symmetric
polynomials in t1, . . . , tn, then

K (σ) = K (1 + t1) · · ·K (1 + tn) = f (t1) · · · f (tn)

= (1 + λ1t1 + λ2t
2
1 + · · · ) · · · (1 + λ1tn + λ2t

2
n + · · · ).

Taking homogeneous part of degree n, it follows that Kn(σ1, . . . , σn)
is completely determined by the formal power series f (t). Further-
more, note that the elementary symmetric polynomials are alge-
braically independent, so each Kn is finally proven to be unique.
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Multiplicative Sequence

Existence: For any partition I = (i1, . . . , ir ) of n with positive inte-
gers, let λI = λi1 · · ·λir . Define the polynomial Kn by the formula

Kn(σ1, . . . , σn) =
∑

λI sI (σ1, . . . , σn)

summing over all partitions I of n. Recall that sI (σ1, . . . , σn), which
is a homogeneous symmetric polynomial of degree n, is the unique
polynomial in the elementary symmetric polynomials σ1, . . . , σn equal
to ∑

t i1σ(1) · · · t
ir
σ(r)

summing over all permutations σ of {1, 2, . . . , r}. Note that if
we fix σ, then for each permutation σ′ such that t i1σ(1) · · · t

ir
σ(r) =

t i1σ′(1) · · · t
ir
σ′(r), the monomial t i1σ(1) · · · t

ir
σ(r) will be recorded only once

in the sum.
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Multiplicative Sequence

By convention we have

sI (a) = sI (1 + a1 + a2 + · · · ) = sI (a1, . . . , an)

for any partition I of n. Note that we have the identity

sI (ab) =
∑
HJ=I

sH(a)sJ(b)

summing over all partitions H, J with juxtaposition HJ = I . There-
fore, we obtain

K (ab) =
∑
I

λI sI (ab) =
∑
I

λI
∑
HJ=I

sH(a)sJ(b)

=
∑
I

∑
HJ=I

(
λHsH(a)

)(
λJsJ(b)

)
=
∑
H,J

(
λHsH(a)

)(
λJsJ(b)

)
=
∑
H

λHsH(a)
∑
J

λJsJ(b) = K (a)K (b),

which holds for all a, b ∈ AΠ.
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Multiplicative Sequence

If I is not a trivial partition of n, i.e. I 6= (n), then sI (σ1, 0, . . . , 0) =
0. Since sn(σ1, 0, . . . , 0) = σn1 , we derive

K (1 + t) =
∑
I

λI sI (t, 0, . . . , 0) =
∑
n≥0

λ(n)s(n)(t, 0, . . . , 0)

=
∑
n≥0

λnt
n = f (t).

Note that for partition I of 0 we have
∑
λI sI (t, 0, . . . , 0) = λI sI ( ) =

1 trivially.

Now we have finished the proof of existence which is constructive!!!
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Multiplicative Sequence

Example

Consider the m-sequence {Kn}n≥1 belonging to 1+t2, which belongs
to the formal power series 1 + t2.

For n ≥ 1, we have

K2n(σ1, . . . , σn) =
∑

λI sI (σ1, . . . , σ2n) = s(2, . . . , 2)︸ ︷︷ ︸
n terms of 2

(σ1, . . . , σ2n),

which implies

s(2, . . . , 2)︸ ︷︷ ︸
n terms of 2

(σ1, . . . , σ2n) = σ2
n − 2σn−1σn+1 + · · ·

+ (−1)n−12σ1σ2n−1 + (−1)n2σ2n.
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Signature Theorem

Now consider some m-sequence {Kn(X1, . . . ,Xn)}n≥1 with rational
coefficients. Let Mm be a compact oriented smooth m-dimensional
manifold. We also put A = Q and An = H4n(Mm;Q).

Definition

The K -genus K [Mm] is zero if the dimension m is not divisible by
4 and is equal to the rational number

Kn[M4n] = 〈Kn(p1, . . . , pn), µ4n〉

if m = 4n where pi denotes the i-th Pontrjagin class of the tan-
gent bundle and µ4k denotes the fundamental homology class of
M4n. Thus, K [Mm] is a certain rational linear combination of the
Pontrjagin numbers of Mm.
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Signature Theorem

Lemma

For any m-sequence {Kn}n≥1 with rational coefficients, the corre-
spondence M 7→ K [M] defines a ring morphism from the cobordism
ring Ω∗ to the ring Q of rational numbers, and this correspondence
gives rise to an algebra morphism from Ω∗ ⊗Q.

Remark

We will see that, using Signature Theorem, the ring morphism is
actually Ω∗ → Z. So the algebra morphism Ω∗ ⊗ Q → Q satisfies
M ⊗ 1→ an integer, which means that the ring morphism Ω∗ → Q
can be recovered.
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Signature Theorem

Proof: Since Pontrjagin numbers are cobordism invariants, so M 7→
K [M] descends to a well-defined map Ω∗ → Q.

This map is additive since addition is given by disjoint union and
Pontrjagin numbers are additive under such addition.

Consider the product manifold M × M ′. Note that the tangent
bundle of M ×M ′ splits as a Whitney sum TM × TM ′ ∼= π∗1TM ⊕
π∗2TM

′ where π1 and π2 are the canonical projections of M1 ×M2

into the two factors. Modulo elements of order 2, we obtain

Kn(p1, . . . , pn)(T (M ×M ′)) = Kn(p1, . . . , pn)(TM × TM ′)

= Kn(p1, . . . , pn)(π∗1TM ⊕ π∗2TM ′)
= Kn(p1, . . . , pn)(π∗1TM) ∪ Kn(p1, . . . , pn)(π∗2TM

′).
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Signature Theorem

Thus, we have

K [M ×M ′]

= 〈Kn(p1, . . . , pn)(π∗1TM) ∪ Kn(p1, . . . , pn)(π∗2TM
′), µ4n × µ′4n′〉

= (−1)mm′〈Kn(p1, . . . , pn)(π∗1TM), µ4n〉〈Kn(p1, . . . , pn)(π∗2TM
′), µ′4n′〉

= 〈π∗1Kn(p1, . . . , pn)(TM), µ4n〉〈π∗2Kn(p1, . . . , pn)(TM ′), µ′4n′〉
= 〈Kn(p1, . . . , pn)(TM), µ4n〉〈Kn(p1, . . . , pn)(TM ′), µ′4n′〉
= K [M]K [M ′].

There is no sign here since the K -genera is nonzero only when m,m′

are divisible by 4. So the proof is finished.



Overview References Signature Multiplicative Sequence Signature Theorem Acknowledgments

Signature Theorem

The following theorem reveals that, using these properties, one can
show that the signature of a manifold can be expressed as a linear
function of its Pontrjagin numbers.

Signature Theorem

Let {Ln(X1, . . . ,Xn)}n≥1 be the m-sequence of polynomials belong-
ing to the formal power series

√
t

tanh
√
t

:= 1 +
1

3
t − 1

45
t2 + · · ·+ (−1)k−1 22kBk

(2k)!
tk + · · · .

Then the signature σ(M) of any compact oriented smooth manifold
M is equal to the L-genus L[M].
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Signature Theorem

Here Bk denotes the k-th Bernoulli number which can be defined as
the coefficients occur in the power series expansion

x

tanh x
=

x cosh x

sinh x
= 1 +

B1

2!
(2x)2 − B2

4!
(2x)4 +

B3

6!
(2x)6 − · · ·

convergent for |x | < π, or equivalently in the Laurent expansion

z

ez − 1
= 1− z

2
+

B1

2!
z2 − B2

4!
z4 +

B3

6!
z6 − · · · .

These two series are related by the easily verified identity

x

tanh x
=

2x

e2x − 1
+ x .
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Signature Theorem

With this notion one has:

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
,

B5 =
5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
,

and so on. These numbers were first introduced by Jakob Bernoulli.
The first four L-polynomials are

L1 =
1

3
p1, L2 =

1

45

(
7p2 − p2

1

)
, L3 =

1

945

(
62p3 − 13p2p1 + 2p3

1

)
,

L4 =
1

14175

(
381p4 − 71p3p1 − 19p2

2 + 22p2p
2
1 − 3p4

1

)
,

and so on.
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Signature Theorem

Proof of Signature Theorem:

Since the correspondences M 7→ σ(M) and M 7→ L[M] both give
rise to algebra morphisms from Ω∗ ⊗ Q to Q, it suffices to check
this theorem on a set of generators for the algebra Ω∗ ⊗ Q, i.e. it
suffices to prove the equality on each CP2k since they generate the
oriented cobordism ring.

Let τ be the tangent bundle of CP2k . Let γ1 := γ1(C2k+1) be the
canonical line bundle over CP2k , then a := −c1(γ1) is a generator
of H2(CP2k ;Q) ∼= Q such that the total Chern class of τ is c(τn) =
(1 + a)2k+1 and the total Pontrjagin class of τR is p := p(τR) =
(1 + a2)2k+1.
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Signature Theorem

It follows that the top Chern class c2k(τ) = (2k + 1)a2k . Therefore,
the Euler number e[CP2k ] = 〈e(τR), µ4k〉 = 〈c2k(τ), µ4k〉 = (2k +
1)〈c2k(τ), µ4k〉 = (2k + 1)〈a2k , µn〉.

On the other hand, we have 〈e(τR), µ4k〉 (using integer or ratio-
nal coefficients) is equal to the Euler characteristic χ(CP2k) =∑

(−1)i dimH i (CP2k ;Q) = 2k + 1 (see [Milnor, Corollary 11.12]).

Thus, 〈a2k , µ4k〉 = 1 which means a2k is precisely the generator of
H4k(CP2k ;Q) ∼= Q (which is compatible with the preferred orienta-
tion).

Note that the generator ak ∈ H2k(CP2k ;Q) ∼= Q actually forms a
basis, so 〈ak∪ak , µ4k〉 = 〈a2k , µ4k〉 = 1 (for the preferred orientation
of CP2k). Hence we obtain the signature σ(CP2k) = 1.
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Since the m-sequence {Lk}k≥1 belongs to the power series f (t) =√
t

tanh
√
t
, we derive

L(1 + a2) =

√
a2

tanh
√
a2

in the sense of
=============

formal power series

a

tanh a
.

Note that a2 ∈ H4(CP2k ;Q) is of degree 1 in the graded algebra
since we take An to be H4n(CP2k ;Q) and we have

L(p) = L
(
(1 + a2)2k+1

)
=
(
L(1 + a2)

)2k+1
=
( a

tanh a

)2k+1
.

Thus the L-genus

〈Lk(p1, . . . , pk), µ4k〉 = 〈Lk(α1a
2, . . . , αka

2k), µ4k〉

is equal to the coefficient of a2k in this power series where α1, . . . , αk

are binomial coefficients determined by p(τR) = (1 + a2)2k+1.
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Cauchy Integral Formula

Let U be an open subset of the complex plane C, and suppose that
the closed disk D defined as {z ∈ C : |z − z0| ≤ r} is completely
contained in U. Let f : U → C be a holomorphic function, and let
C be the circle, oriented counterclockwise and forming the boundary
of D. Then for every ξ in the interior of D, we have

f (ξ) =

∮
C

f (z)

z − ξ
dz .

Moreover, since holomorphic functions are analytic, i.e. they can
be expanded as convergent Laurent power series, we have f (z) =∑+∞
−∞ an(z − ξ)n for every z in the interior of D where

an =
f (n)(ξ)

n!
=

1

2πi

∮
C

f (z)

(z − ξ)n+1
dz .
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Replace a by the complex variable z , the coefficient of z2k in the

Laurent expansion of
(

z
tanh z

)2k+1
can be computed by dividing by

2πiz2k+1 and then integrating around the origin. In fact, the sub-
stitution u = tanh z with dz = du

1−u2 = (1 + u2 + u4 + · · · )du shows
that

L[CP2k ] =
1

2πi

∮
C

dz

(tanh z)2k+1
=

1

2πi

∮
C

1 + u2 + u4 + · · ·
u2k+1

du

= d2k(1 + u2 + u4 + · · ·+ u2k + · · · )/d2ku|u=0/(2k)!

= ((2k)! + · · · )|u=0/(2k)! = 1.

Hence, we always have L[CP2k ] = 1 = σ(CP2k), and it follows that
L[M] = σ(M) for all M.

Now we have finished the proof!
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Signature Theorem

Let {Ln(X1, . . . ,Xn)}n≥1 be the m-sequence of polynomials belong-
ing to the formal power series

√
t

tanh
√
t

:= 1 +
1

3
t − 1

45
t2 + · · ·+ (−1)k−1 22kBk

(2k)!
tk + · · · .

Then the signature σ(M) of any compact oriented smooth manifold
M is equal to the L-genus L[M].

Since the signature of any manifold is an integer and only depends
on the oriented homotopy type, we immediately obtain the following
corollary:

Corollary

The L-genus L[M] of any smooth compact oriented M is an integer
and only depends on the oriented homotopy type of M.
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Example

There exists no compact oriented smooth 4-connected 12-manifold
M with dimH6(M;Q) equal to an odd number.

Proof: The matrix used to define the signature of M is nonsingular,
so σ(M) is an odd number since dimH6(M;Q) is odd. Since M is
4-connected, Hurewicz theorem implies Hi (M;Q) = 0 for i = 3, 4.
UCT implies

0→ 0 = Ext1
Q(H3(M;Q);Q)→ H4(M;Q)

→ HomQ(H4(M;Q);Q) = 0→ 0.

So H4(M;Q) = 0 ⇒ p1[M] = 0 ⇒ L[M] = 〈L3(p1, p2, p3), µ12〉 =
62

945p3[M] is an integer. As 62 and 945 are coprime, we see that
945 divides p3[M] and L[M] is even. Signature Theorem says that
σ(M) = L[M] is even, which is a contradiction.
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Example

The Pontrjagin number p1[M4] is divisible by 3, and the Pontrjagin
number 7p2[M8] − p1[M8] is divisible by 45. If M8 is 4-connected,
then p2[M8] is divisible by 45.
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