S4D4 - GRADUATE SEMINAR ON ADVANCED TOPOLOGY CHARACTERISTIC CLASSES II

HAO XIAO

Abstract

This document introduces multiplicative sequences and Hirzebruch's signature theorem. The main reference is MS74.

Contents

Section Page

1. Multiplicative Sequence 1
2. Signature Theorem 4
References 8

1. Multiplicative Sequence

Multiplicative sequence is the algebraic preliminary to state and prove Hirzebruch's signature theorem. It somehow provides a unifying viewpoint to relate different characteristic classes.

We first fix some definitions and notations before introducing the concept of multiplicative sequence. Let A be a commutative ring with multiplicative identity. In fact, the ring of rationals is sufficient in our practice.
Definition 1.1. A unitary unital commutative A-algebra A^{*} is non-negatively graded if there exist additive subgroups A_{i} of A^{*} for $i \geq 0$ such that $A^{*}=\bigoplus_{i \geq 0} A_{i}$ with $A A_{i} \subset A_{i}$ and $A_{i} A_{j} \subset A_{i+j}$ for all $i, j \geq 0$.
Remark 1.2. It is obvious that $1 \in A_{0}$ and $A \cdot 1 \subset A_{0}$. Since $A^{*}=\bigoplus_{i \geq 0} A_{i}$ is an internal weak direct product decomposition, each element $a \in A^{*}$ can be uniquely expressed as the sum $\sum_{i \geq 0} a_{i}$ with $a_{i} \in A_{i}$ such that only a finitely many a_{i} 's are nonzero. In the main application, A_{n} will usually be the cohomology group $H^{4 n}(B ; A)$. In this case, be careful that $A_{n}=H^{4 n}(B ; A)$ is of degree n in the graded algebra but is of degree $4 n$ as a cohomology group.
Definition 1.3. To each such A^{*}, we associate the ring A^{Π} consisting of all formal sums $\sum_{i \geq 0} a_{i}$ with $a_{i} \in A_{i}$, i.e. the internal direct product decomposition $A^{\Pi}=\sum_{i \geq 0} A_{i}$ holds such that $A A_{i} \subset A_{i}$ and $A_{i} A_{j} \subset A_{i+j}$ for all $i, j \geq 0$.
Remark 1.4. Due to the same reason, for each $a \in A^{\Pi}$ we have a unique expression $a=\sum_{i \geq 0} a_{i}$ with $a_{i} \in A$. We will be particularly interested in elements of the form $a=1+\sum_{i \geq 1} a_{i}$ in A^{Π} which are invertible in A^{Π} by the theory of formal power series. The product of two such elements $a, b \in A^{\Pi}$ is

$$
a b=\left(1+a_{1}+a_{2}+\cdots\right)\left(1+b_{1}+b_{2}+\cdots\right)=1+\left(a_{1}+b_{1}\right)+\left(a_{2}+a_{1} b_{1}+b_{2}\right)+\cdots
$$

where $\sum_{j=0}^{k} a_{j} b_{k-j} \in A_{k}$ for all $k \geq 0$ if we set $a_{0}, b_{0}=1$.
The following easy example reveals what the above two definitions actually mean.

Example 1.5. Let $A^{*}=A[X]$ and $A^{\Pi}=A[[X]]$. More concretely, set $A=\mathbb{Q}$, then we have $A^{*}=\mathbb{Q}[X]$ and $A^{\Pi}=\mathbb{Q}[[X]]$.

Now consider a sequence of polynomials

$$
K_{1}\left(X_{1}\right), K_{2}\left(X_{1}, X_{2}\right), K_{3}\left(X_{1}, X_{2}, X_{3}\right), \ldots
$$

with coefficients in A satisfying homogeneity property:

$$
\text { each } K_{n}\left(X_{1}, X_{2}^{2}, X_{3}^{3}, \ldots, X_{n}^{n}\right) \text { is homogeneous of degree } n .
$$

Given an element $a \in A^{\Pi}$ with leading term 1, define a new element $K(a) \in A^{\Pi}$ also with leading term 1 by the formula

$$
K(a)=1+K_{1}\left(a_{1}\right)+K_{2}\left(a_{1}, a_{2}\right)+\cdots .
$$

Definition 1.6. The sequence $\left\{K_{n}\right\}_{n \geq 1}$ is a multiplicative sequence or briefly an m-sequence of polynomials if it satisfies multiplicative property:

$$
K(a b)=K(a) K(b)
$$

holds for all A-algebras $A^{*}\left(\right.$ or $\left.A^{\Pi}\right)$ and for all $a, b \in A^{\Pi}$ with leading term 1.
Example 1.7. Given any constant $\lambda \in A$, the polynomials

$$
K_{n}\left(X_{1}, \ldots, X_{n}\right)=\lambda^{n} X_{n}
$$

form an m-sequence with

$$
K\left(1+a_{1}+a_{2}+\cdots\right)=1+\lambda a_{1}+\lambda^{2} a_{2}+\cdots .
$$

The case $\lambda=1$ (so that $K(a)=a$) and $\lambda=-1$ are of particular interest.
Let $\lambda=-1$ and ω be a complex n-plane bundle. Consider the Chern class of the conjugate bundle $\bar{\omega}$, then we have $c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ due to [MS74, Lemma 14.9]. Hence we derive

$$
c(\bar{\omega})=1-c_{1}(\omega)+c_{2}(\omega)-\cdots+(-1)^{k} c_{n}(\omega)=K(c(\omega)) .
$$

Example 1.8. The formula

$$
\begin{aligned}
K(a)=a^{-1} & =\frac{1}{1+\left(a_{1}+a_{2}+\cdots\right)} \\
& =1-\left(a_{1}+a_{2}+\cdots\right)+\left(a_{1}+a_{2}+\cdots\right)^{2}-\left(a_{1}+a_{2}+\cdots\right)^{3}+\cdots
\end{aligned}
$$

defines an m-sequence with

$$
\begin{aligned}
K_{1}\left(X_{1}\right) & =-X_{1}, \\
K_{2}\left(X_{1}, X_{2}\right) & =X_{1}^{2}-X_{2}, \\
K_{3}\left(X_{1}, X_{2}, X_{3}\right) & =-X_{1}^{3}+2 X_{1} X_{2}-X_{3}, \\
K_{4}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =X_{1}^{4}-3 X_{1}^{2} X_{2}+2 X_{1} X_{3}+X_{2}^{2}-X_{4},
\end{aligned}
$$

and so on. In general, we have

$$
K_{n}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i_{1}+2 i_{2}+\cdots+n i_{n}=n} \frac{\left(i_{1}+\cdots+i_{n}\right)!}{i_{1}!\cdots i_{n}!}\left(-X_{1}\right)^{i_{1}} \cdots\left(-X_{n}\right)^{i_{n}}
$$

These polynomials can be used to describe the relations between the Stiefel-Whitney classes (or the Chern classes, or the Pontrjagin classes) of two real vector bundles with trivial Whitney sum. Consider two real vector bundles ξ and η over the same base space. We have the equation $w(\xi \oplus \eta)=w(\xi) w(\eta)$ which can be uniquely solved as

$$
w(\eta)=(w(\xi))^{-1} w(\xi \oplus \eta)=K(w(\xi)) w(\xi \oplus \eta)
$$

(see [MS74, Lemma 4.1]). In particular, if $\xi \oplus \eta$ is trivial, then $w(\eta)=K(w(\xi))$. One important special case is Whitney duality theorem ([MS74, Lemma 4.2]): If τ_{M} is
the tangent bundle of a manifold in Euclidean space and ν is the normal bundle, then $w(\nu)=K\left(w\left(\tau_{M}\right)\right)$. Also, similar statements hold for the other two characteristic classes.

Example 1.9. The polynomials $K_{2 n-1}=0$ and

$$
K_{2 n}\left(X_{1}, \ldots, X_{2 n}\right)=X_{n}^{2}-2 X_{n-1} X_{n+1}+\cdots+(-1)^{n-1} 2 X_{1} X_{2 n-1}+(-1)^{n} 2 X_{2 n}
$$

form an m-sequence which can be used to describe the relationship between the Chern classes of a complex vector bundle ω and the Pontrjagin classes of the underlying real bundle $\omega_{\mathbb{R}}$. Specifically, for any complex n-bundle, the Chern classes $c_{k}(\omega)$ determine the Pontrjagin classes $p_{k}\left(\omega_{\mathbb{R}}\right)$ by the formula

$$
1-p_{1}+p_{2}-\cdots+(-1)^{n} p_{n}=\left(1-c_{1}+c_{2}-\cdots+(-1)^{n} c_{n}\right)\left(1+c_{1}+c_{2}+\cdots+c_{n}\right)
$$

(see [MS74, Corollary 15.5]). Thus we have

$$
\begin{aligned}
p_{k}\left(\omega_{\mathbb{R}}\right) & =c_{k}(\omega)^{2}-2 c_{k-1}(\omega) c_{k+1}(\omega)+\cdots+(-1)^{k-1} 2 c_{1}(\omega) c_{2 k-1}(\omega)+(-1)^{k} 2 c_{2 k}(\omega) \\
& =K_{2 n}\left(c_{1}(\omega), c_{2}(\omega), \ldots, c_{2 k}(\omega)\right)
\end{aligned}
$$

Then the total Pontrjagin class $p\left(\omega_{\mathbb{R}}\right)$ can be written as $p\left(\omega_{\mathbb{R}}\right)=K(c(\omega))$.
Consider $A^{*}=A[t]$ where t can be seen as a generator of A_{1} which is of degree 1 . Then an element of $A^{\Pi}=A[t t]$ with leading term 1 is the formal power series

$$
f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\cdots
$$

with coefficients in A. In particular, $1+t$ is such a term which is obvious but important.
The following nice lemma gives a simple but very sharp classification of all possible m -sequences.

Lemma 1.10 (Hirzebruch). Given a formal power series $f(t)=1+\lambda_{1} t+\lambda_{2} t^{2}+\cdots$ with coefficients in A, there is one and only one m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ with coefficients in A satisfying the condition

$$
K(1+t)=f(t)
$$

or equivalent satisfying the condition that
the coefficient of X_{1}^{n} in each polynomial $K_{n}\left(X_{1}, \ldots, X_{n}\right)$ is equal to λ_{n}.
Definition 1.11. The m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ is called the m-sequence belonging to the formal power series $f(t)$.

Remark 1.12. If the m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ belongs to the power $f(t)$, then for any A^{*} and any $a_{1} \in A_{1}$, the equation $K\left(1+a_{1}\right)=f\left(a_{1}\right)$ is satisfied. Of course, this equation would most likely be false if something of degree $\neq 1$ were substituted in place of a_{1}. This trivial observation will be used in the proof.

Example 1.13. The three m-sequences mentioned above belong to the formal power series $1+\lambda t, 1-t+t^{2}-t^{3}+\cdots$, and $1+t^{2}$ respectively.

Proof of Lemma 1.10. Uniqueness: For any positive integer n, we set $A^{*}=A\left[t_{1}, \ldots, t_{n}\right]$, then $t_{1}, \ldots, t_{n} \in A_{1}$. Let $\sigma=\left(1+t_{1}\right) \cdots\left(1+t_{n}\right)=: 1+\sigma_{1}+\sigma_{2}+\cdots+\sigma_{n}$ where the polynomials $\sigma_{i} \in A_{i}$ are elementary symmetric polynomials in t_{1}, \ldots, t_{n}, then

$$
\begin{aligned}
K(\sigma) & =K\left(1+t_{1}\right) \cdots K\left(1+t_{n}\right)=f\left(t_{1}\right) \cdots f\left(t_{n}\right) \\
& =\left(1+\lambda_{1} t_{1}+\lambda_{2} t_{1}^{2}+\cdots\right) \cdots\left(1+\lambda_{1} t_{n}+\lambda_{2} t_{n}^{2}+\cdots\right) .
\end{aligned}
$$

Taking homogeneous part of degree n, it follows that $K_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is completely determined by the formal power series $f(t)$. Furthermore, note that the elementary symmetric polynomials are algebraically independent, so each K_{n} is finally proven to be unique.

Existence: For any partition $I=\left(i_{1}, \ldots, i_{r}\right)$ of n with positive integers, let $\lambda_{I}=$ $\lambda_{i_{1}} \cdots \lambda_{i_{r}}$. Define the polynomial K_{n} by the formula

$$
K_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sum \lambda_{I} s_{I}\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

summing over all partitions I of n. Recall that $s_{I}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, which is a homogeneous symmetric polynomial of degree n, is the unique polynomial in the elementary symmetric polynomials $\sigma_{1}, \ldots, \sigma_{n}$ equal to

$$
\sum t_{\sigma(1)}^{i_{1}} \cdots t_{\sigma(r)}^{i_{r}}
$$

summing over all permutations σ of $\{1,2, \ldots, r\}$. Note that if we fix σ, then for each permutation σ^{\prime} such that $t_{\sigma(1)}^{i_{1}} \cdots t_{\sigma(r)}^{i_{r}}=t_{\sigma^{\prime}(1)}^{i_{1}} \cdots t_{\sigma^{\prime}(r)}^{i_{r}}$, the monomial $t_{\sigma(1)}^{i_{1}} \cdots t_{\sigma(r)}^{i_{r}}$ will be recorded only once in the sum. By convention we have

$$
s_{I}(a)=s_{I}\left(1+a_{1}+a_{2}+\cdots\right)=s_{I}\left(a_{1}, \ldots, a_{n}\right)
$$

for any partition I of n. Note that we have the identity

$$
s_{I}(a b)=\sum_{H J=I} s_{H}(a) s_{J}(b)
$$

summing over all partitions H, J with juxtaposition $H J=I$. Therefore, we obtain

$$
\begin{aligned}
K(a b) & =\sum_{I} \lambda_{I} s_{I}(a b)=\sum_{I} \lambda_{I} \sum_{H J=I} s_{H}(a) s_{J}(b) \\
& =\sum_{I} \sum_{H J=I}\left(\lambda_{H} s_{H}(a)\right)\left(\lambda_{J} s_{J}(b)\right)=\sum_{H, J}\left(\lambda_{H} s_{H}(a)\right)\left(\lambda_{J} s_{J}(b)\right) \\
& =\sum_{H} \lambda_{H} s_{H}(a) \sum_{J} \lambda_{J} s_{J}(b)=K(a) K(b),
\end{aligned}
$$

which holds for all $a, b \in A^{\Pi}$. If I is not a trivial partition of n, i.e. $I \neq(n)$, then $s_{I}\left(\sigma_{1}, 0, \ldots, 0\right)=0$. Since $s_{n}\left(\sigma_{1}, 0, \ldots, 0\right)=\sigma_{1}^{n}$, we derive

$$
K(1+t)=\sum_{I} \lambda_{I} s_{I}(t, 0, \ldots, 0)=\sum_{n \geq 0} \lambda_{(n)} s_{(n)}(t, 0, \ldots, 0)=\sum_{n \geq 0} \lambda_{n} t^{n}=f(t) .
$$

Note that for partition I of 0 we have $\sum \lambda_{I} s_{I}(t, 0, \ldots, 0)=\lambda_{I} s_{I}()=1$ trivially. Now we have finished the proof of existence which is quite constructive.
Example 1.14. Consider the m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ in Example 1.9, which belongs to the formal power series $1+t^{2}$. For $n \geq 1$, we have $K_{2 n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sum \lambda_{I} s_{I}\left(\sigma_{1}, \ldots, \sigma_{2 n}\right)=$ $s_{(2, \ldots, 2)}\left(\sigma_{1}, \ldots, \sigma_{2 n}\right)$, which implies

$$
s_{(2, \ldots, 2)}\left(\sigma_{1}, \ldots, \sigma_{2 n}\right)=\sigma_{n}^{2}-2 \sigma_{n-1} \sigma_{n+1}+\cdots+(-1)^{n-1} 2 \sigma_{1} \sigma_{2 n-1}+(-1)^{n} 2 \sigma_{2 n} .
$$

2. Signature Theorem

Now consider some m-sequence $\left\{K_{n}\left(X_{1}, \ldots, X_{n}\right)\right\}_{n \geq 1}$ with rational coefficients. Let M^{m} be a compact oriented smooth m-dimensional manifold. We also put $A=\mathbb{Q}$ and $A_{n}=H^{4 n}\left(M^{m} ; \mathbb{Q}\right)$.
Definition 2.1. The K-genus $K\left[M^{m}\right]$ is zero if the dimension m is not divisible by 4 and is equal to the rational number

$$
K_{n}\left[M^{4 n}\right]=\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right), \mu_{4 n}\right\rangle
$$

if $m=4 n$ where p_{i} denotes the i-th Pontrjagin class of the tangent bundle and $\mu_{4 k}$ denotes the fundamental homology class of $M^{4 n}$. Thus, $K\left[M^{m}\right]$ is a certain rational linear combination of the Pontrjagin numbers of M^{m}.

Lemma 2.2. For any m-sequence $\left\{K_{n}\right\}_{n \geq 1}$ with rational coefficients, the correspondence $M \mapsto K[M]$ defines a ring morphism from the cobordism ring Ω_{*} to the ring \mathbb{Q} of rational numbers, or equivalently this correspondence gives rise to an algebra morphism from $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}.

Proof. Since Pontrjagin numbers are cobordism invariants, so $M \mapsto K[M]$ descends to a well-defined map $\Omega_{*} \rightarrow \mathbb{Q}$. This map is additive since addition is given by disjoint union and Pontrjagin numbers are additive under such addition. Consider the product manifold $M \times M^{\prime}$. Note that the tangent bundle of $M \times M^{\prime}$ splits as a Whitney sum $T M \times T M^{\prime} \cong \pi_{1}^{*} T M \oplus \pi_{2}^{*} T M^{\prime}$ where π_{1} and π_{2} are the canonical projections of $M_{1} \times M_{2}$ into the two factors. Modulo elements of order 2, we obtain

$$
\begin{aligned}
K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T\left(M \times M^{\prime}\right)\right) & =K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T M \times T M^{\prime}\right) \\
& =K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M \oplus \pi_{2}^{*} T M^{\prime}\right) \\
& =K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M\right) \cup K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{2}^{*} T M^{\prime}\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
K\left[M \times M^{\prime}\right] & =\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M\right) \cup K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{2}^{*} T M^{\prime}\right), \mu_{4 n} \times \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =(-1)^{m m^{\prime}}\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{1}^{*} T M\right), \mu_{4 n}\right\rangle\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(\pi_{2}^{*} T M^{\prime}\right), \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =\left\langle\pi_{1}^{*} K_{n}\left(p_{1}, \ldots, p_{n}\right)(T M), \mu_{4 n}\right\rangle\left\langle\pi_{2}^{*} K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T M^{\prime}\right), \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)(T M), \mu_{4 n}\right\rangle\left\langle K_{n}\left(p_{1}, \ldots, p_{n}\right)\left(T M^{\prime}\right), \mu_{4 n^{\prime}}^{\prime}\right\rangle \\
& =K[M] K\left[M^{\prime}\right] .
\end{aligned}
$$

There is no sign here since the K-genera is nonzero only when m, m^{\prime} are divisible by 4 . So the proof is finished.

Remark 2.3. Note that the ring morphism here does preserve multiplicative identities. Note that $\Omega_{0} \cong \mathbb{Z}$ is spanned by a singleton of positive orientation. Since singletons are of dimension 0 , the K-genus is just $K_{0}:=1$.

We are going to use this construction to compute an important homotopy type invariant of M.

Definition 2.4. The signature $\sigma(M)$ of a connected compact oriented manifold M^{m} is defined to be zero if the dimension is not a multiple of 4 and as follows for $m=4 n$: Choose a basis a_{1}, \ldots, a_{r} for $H^{2 n}\left(M^{4 n} ; \mathbb{Q}\right)$ so that the symmetric matrix $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$ is diagonal, then $\sigma\left(M^{4 n}\right)$ is the number of positive diagonal entries minus the number of negative ones. The signature of a compact oriented but not connected manifold is the sum of the signatures of its connected components.
Remark 2.5. Note that $H^{2 n}\left(M^{4 n} ; \mathbb{Q}\right)$ is a unitary module over a division ring, i.e. a vector space, so it is valid to speak of basis. As the manifolds are compact, the number of connected components is finite. The definition of $\sigma\left(M^{4 n}\right)$ is then well-defined by Sylvester's law of inertia.

The signature σ is in other words the signature of the rational quadratic form $a \mapsto$ $\langle a \cup a, \mu\rangle$. The number σ is often called the index of M (see for example [Hir95, 8.2]).

Since we are doing (co)homology with coefficients in a field, there is no torsion in (co)homology. The rational quadratic form $a \mapsto\left\langle a \cup a, \mu_{4 n}\right\rangle$ is nonsingular, or equivalently the symmetric matrix $\left[\left\langle a_{i} \cup a_{j}, \mu_{4 n}\right\rangle\right]$ is nonsingular.
Lemma 2.6 (Thom). The signature σ has the following three properties:
(i) $\sigma\left(M+M^{\prime}\right)=\sigma(M)+\sigma\left(M^{\prime}\right), \sigma(-M)=-\sigma(M)$,
(ii) $\sigma\left(M \times M^{\prime}\right)=\sigma(M) \sigma\left(M^{\prime}\right)$, and
(iii) if M is an oriented boundary, then $\sigma(M)=0$.

Proof. See [Hir95, Theorem 8.2.1].
The following theorem reveals that, using these properties, one can show that the signature of a manifold can be expressed as a linear function of its Pontrjagin numbers.

Theorem 2.7 (Signature Theorem). Let $\left\{L_{n}\left(X_{1}, \ldots, X_{n}\right)\right\}_{n \geq 1}$ be the m-sequence of polynomials belonging to the formal power series

$$
\frac{\sqrt{t}}{\tanh \sqrt{t}}:=1+\frac{1}{3} t-\frac{1}{45} t^{2}+\cdots+(-1)^{k-1} \frac{2^{2 k} B_{k}}{(2 k)!} t^{k}+\cdots
$$

Then the signature $\sigma(M)$ of any compact oriented smooth manifold M is equal to the L-genus $L[M]$.

Here B_{k} denotes the k-th Bernoulli number which can be defined as the coefficients occur in the power series expansion

$$
\frac{x}{\tanh x}=\frac{x \cosh x}{\sinh x}=1+\frac{B_{1}}{2!}(2 x)^{2}-\frac{B_{2}}{4!}(2 x)^{4}+\frac{B_{3}}{6!}(2 x)^{6}-\cdots
$$

convergent for $|x|<\pi$, or equivalently in the Laurent expansion

$$
\frac{z}{e^{z}-1}=1-\frac{z}{2}+\frac{B_{1}}{2!} z^{2}-\frac{B_{2}}{4!} z^{4}+\frac{B_{3}}{6!} z^{6}-\cdots
$$

These two series are related by the easily verified identity

$$
\frac{x}{\tanh x}=\frac{2 x}{e^{2 x}-1}+x
$$

With this notion one has:

$$
B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, B_{3}=\frac{1}{42}, B_{4}=\frac{1}{30}, B_{5}=\frac{5}{66}, B_{6}=\frac{691}{2730}, B_{7}=\frac{7}{6}, B_{8}=\frac{3617}{510}
$$

and so on. These numbers were first introduced by Jakob Bernoulli. The first four L-polynomials are

$$
\begin{aligned}
L_{1} & =\frac{1}{3} p_{1}, L_{2}=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right), L_{3}=\frac{1}{945}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right) \\
L_{4} & =\frac{1}{14175}\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{2} p_{1}^{2}-3 p_{1}^{4}\right)
\end{aligned}
$$

Proposition 2.8 (Cauchy's Integral Formula). Let U be an open subset of the complex plane \mathbb{C}, and suppose that the closed disk D defined as $\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\}$ is completely contained in U. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function, and let C be the circle, oriented counterclockwise and forming the boundary of D. Then for every ξ in the interior of D, we have

$$
f(\xi)=\oint_{C} \frac{f(z)}{z-\xi} d z
$$

Moreover, since holomorphic functions are analytic, i.e. they can be expanded as convergent Laurent power series, we have $f(z)=\sum_{-\infty}^{+\infty} a_{n}(z-\xi)^{n}$ for every z in the interior of D where

$$
a_{n}=\frac{f^{(n)}(\xi)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-\xi)^{n+1}} d z
$$

Proof of Theorem 2.7. Note that the signature descends to a ring morphism $\Omega_{*} \rightarrow \mathbb{Q}$ (preserving multiplicative identities since the signature of a point is just 1). Since the correspondences $M \mapsto \sigma(M)$ and $M \mapsto L[M]$ both give rise to algebra morphisms from $\Omega_{*} \otimes \mathbb{Q}$ to \mathbb{Q}, it suffices to check this theorem on a set of generators for the algebra $\Omega_{*} \otimes \mathbb{Q}$, i.e. it suffices to prove the equality on each $\mathbb{C} P^{2 k}$ since they generate the oriented cobordism ring.

Let τ be the tangent bundle of $\mathbb{C} P^{2 k}$. Let $\gamma^{1}:=\gamma^{1}\left(\mathbb{C}^{2 k+1}\right)$ be the canonical line bundle over $\mathbb{C} P^{2 k}$, then $a:=-c_{1}\left(\gamma^{1}\right)$ is a generator of $H^{2}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right) \cong \mathbb{Q}$ such that the total Chern class of τ is $c\left(\tau^{n}\right)=(1+a)^{2 k+1}$ and the total Pontrjagin class of $\tau_{\mathbb{R}}$ is $p:=p\left(\tau_{\mathbb{R}}\right)=\left(1+a^{2}\right)^{2 k+1}$.

It follows that the top Chern class $c_{2 k}(\tau)=(2 k+1) a^{2 k}$. Therefore, the Euler number $e\left[\mathbb{C P}^{2 k}\right]=\left\langle e\left(\tau_{\mathbb{R}}\right), \mu_{4 k}\right\rangle=\left\langle c_{2 k}(\tau), \mu_{4 k}\right\rangle=(2 k+1)\left\langle c_{2 k}(\tau), \mu_{4 k}\right\rangle=(2 k+1)\left\langle a^{2 k}, \mu_{n}\right\rangle . \mathrm{On}$ the other hand, we have $\left\langle e\left(\tau_{\mathbb{R}}\right), \mu_{4 k}\right\rangle$ (using integer or rational coefficients) is equal to the Euler characteristic $\chi\left(\mathbb{C P}^{2 k}\right)=\sum(-1)^{i} \operatorname{dim} H^{i}\left(\mathbb{C P}{ }^{2 k} ; \mathbb{Q}\right)=2 k+1$ (see [MS74, Corollary 11.12]). Thus, $\left\langle a^{2 k}, \mu_{4 k}\right\rangle=1$ which means $a^{2 k}$ is precisely the generator of $H^{4 k}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right) \cong \mathbb{Q}$ (which is compatible with the preferred orientation).

Note that the generator $a^{k} \in H^{2 k}\left(\mathbb{C} P^{2 k} ; \mathbb{Q}\right) \cong \mathbb{Q}$ actually forms a basis, so $\left\langle a^{k} \cup\right.$ $\left.a^{k}, \mu_{4 k}\right\rangle=\left\langle a^{2 k}, \mu_{4 k}\right\rangle=1$ (for the preferred orientation of $\mathbb{C} P^{2 k}$). Hence we obtain the signature $\sigma\left(\mathbb{C P}^{2 k}\right)=1$.

Since the m-sequence $\left\{L_{k}\right\}_{k \geq 1}$ belongs to the power series $f(t)=\frac{\sqrt{t}}{\tanh \sqrt{t}}$, we derive

$$
L\left(1+a^{2}\right)=\frac{\sqrt{a^{2}}}{\tanh \sqrt{a^{2}}} \xlongequal[\text { formal power series }]{\text { in the sense of }} \frac{a}{\tanh a} .
$$

Note that $a^{2} \in H^{4}\left(\mathbb{C P}^{2 k} ; \mathbb{Q}\right)$ is of degree 1 in the graded algebra since we take A_{n} to be $H^{4 n}\left(\mathbb{C P}^{2 k} ; \mathbb{Q}\right)$ and we have

$$
L(p)=L\left(\left(1+a^{2}\right)^{2 k+1}\right)=\left(L\left(1+a^{2}\right)\right)^{2 k+1}=\left(\frac{a}{\tanh a}\right)^{2 k+1} .
$$

Thus the L-genus $\left\langle L_{k}\left(p_{1}, \ldots, p_{k}\right), \mu_{4 k}\right\rangle=\left\langle L_{k}\left(\alpha_{1} a^{2}, \ldots, \alpha_{k} a^{2 k}\right), \mu_{4 k}\right\rangle$ is equal to the coefficient of $a^{2 k}$ in this power series where $\alpha_{1}, \ldots, \alpha_{k}$ are binomial coefficients determined by $p\left(\tau_{\mathbb{R}}\right)=\left(1+a^{2}\right)^{2 k+1}$.

Replace a by the complex variable z, the coefficient of $z^{2 k}$ in the Laurent expansion of $\left(\frac{z}{\tanh z}\right)^{2 k+1}$ can be computed by dividing by $2 \pi i z^{2 k+1}$ and then integrating around the origin. In fact, the substitution $u=\tanh z$ with $d z=\frac{d u}{1-u^{2}}=\left(1+u^{2}+u^{4}+\cdots\right) d u$ shows that

$$
\begin{aligned}
L\left[\mathbb{C P}^{2 k}\right] & =\frac{1}{2 \pi i} \oint_{C} \frac{d z}{(\tanh z)^{2 k+1}}=\frac{1}{2 \pi i} \oint_{C} \frac{1+u^{2}+u^{4}+\cdots}{u^{2 k+1}} d u \\
& =d^{2 k}\left(1+u^{2}+u^{4}+\cdots+u^{2 k}+\cdots\right) /\left.d^{2 k} u\right|_{u=0} /(2 k)! \\
& =\left.((2 k)!+\cdots)\right|_{u=0} /(2 k)!=1
\end{aligned}
$$

Hence, we always have $L\left[\mathbb{C P}^{2 k}\right]=1=\sigma\left(\mathbb{C P}^{2 k}\right)$, and it follows that $L[M]=\sigma(M)$ for all M.

Since the signature of any manifold is an integer and only depends on the oriented homotopy type, we immediately obtain the following corollary:

Corollary 2.9. The L-genus $L[M]$ of any smooth compact oriented M is an integer and only depends on the oriented homotopy type of M.

Example 2.10. There exists no compact oriented smooth 4-connected 12-manifold M with $\operatorname{dim} H^{6}(M ; \mathbb{Q})$ equal to an odd number.

In fact, note that the matrix used to define the signature of M is nonsingular, so $\sigma(M)$ is an odd number since $\operatorname{dim} H^{6}(M ; \mathbb{Q})$ is odd.

It suffices to show that the signature is also even. Since M is 4 -connected, we have $\pi_{i}(M)=0$ for $i=3,4$. Hurewicz theorem implies $H_{i}(M ; \mathbb{Q})=0$ for $i=3,4$. Then Universal coefficient theorem implies

$$
0 \rightarrow 0=\operatorname{Ext}_{\mathbb{Q}}^{1}\left(H_{3}(M ; \mathbb{Q}) ; \mathbb{Q}\right) \rightarrow H^{4}(M ; \mathbb{Q}) \rightarrow \operatorname{Hom}_{\mathbb{Q}}\left(H_{4}(M ; \mathbb{Q}) ; \mathbb{Q}\right)=0 \rightarrow 0
$$

So $H^{4}(M ; \mathbb{Q})=0$ and then $p_{1}[M]=0$. Hence, $L[M]=\left\langle L_{3}\left(p_{1}, p_{2}, p_{3}\right), \mu_{12}\right\rangle=\frac{62}{945} p_{3}[M]$, which is an integer. As 62 and 945 are coprime, we see that 945 divides $p_{3}[M]$ and $L[M]$ is even. Signature theorem says that $\sigma(M)=L[M]$ is even, which is a contradiction.

Example 2.11. The Pontrjagin number $p_{1}\left[M^{4}\right]$ is divisible by 3 , and the Pontrjagin number $7 p_{2}\left[M^{8}\right]-p_{1}\left[M^{8}\right]$ is divisible by 45 . If M^{8} is 4 -connected, then $p_{2}\left[M^{8}\right]$ is divisible by 45 .

References

[Hir95] Friedrich Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics. Springer-Verlag, Berlin, 1995. MR1335917
[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, pp. 219-226. MR0440554

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115, Bonn, GerMANY

E-mail address: xiao@uni-bonn.de

