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Abstract. This document introduces multiplicative sequences and Hirzebruch’s sig-
nature theorem. The main reference is [MS74].
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1. Multiplicative Sequence

Multiplicative sequence is the algebraic preliminary to state and prove Hirzebruch’s
signature theorem. It somehow provides a unifying viewpoint to relate different charac-
teristic classes.

We first fix some definitions and notations before introducing the concept of multi-
plicative sequence. Let A be a commutative ring with multiplicative identity. In fact,
the ring of rationals is sufficient in our practice.

Definition 1.1. A unitary unital commutative A-algebra A∗ is non-negatively graded
if there exist additive subgroups Ai of A∗ for i ≥ 0 such that A∗ =

⊕
i≥0Ai with

AAi ⊂ Ai and AiAj ⊂ Ai+j for all i, j ≥ 0.

Remark 1.2. It is obvious that 1 ∈ A0 and A·1 ⊂ A0. Since A∗ =
⊕

i≥0Ai is an internal
weak direct product decomposition, each element a ∈ A∗ can be uniquely expressed as
the sum

∑
i≥0 ai with ai ∈ Ai such that only a finitely many ai’s are nonzero. In the

main application, An will usually be the cohomology group H4n(B;A). In this case, be
careful that An = H4n(B;A) is of degree n in the graded algebra but is of degree 4n as
a cohomology group.

Definition 1.3. To each such A∗, we associate the ring AΠ consisting of all formal
sums

∑
i≥0 ai with ai ∈ Ai, i.e. the internal direct product decomposition AΠ =

∑
i≥0Ai

holds such that AAi ⊂ Ai and AiAj ⊂ Ai+j for all i, j ≥ 0.

Remark 1.4. Due to the same reason, for each a ∈ AΠ we have a unique expression
a =

∑
i≥0 ai with ai ∈ A. We will be particularly interested in elements of the form

a = 1 +
∑

i≥1 ai in AΠ which are invertible in AΠ by the theory of formal power series.

The product of two such elements a, b ∈ AΠ is

ab = (1 + a1 + a2 + · · · )(1 + b1 + b2 + · · · ) = 1 + (a1 + b1) + (a2 + a1b1 + b2) + · · ·

where
∑k

j=0 ajbk−j ∈ Ak for all k ≥ 0 if we set a0, b0 = 1.

The following easy example reveals what the above two definitions actually mean.
1
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Example 1.5. Let A∗ = A[X] and AΠ = A[[X]]. More concretely, set A = Q, then we
have A∗ = Q[X] and AΠ = Q[[X]].

Now consider a sequence of polynomials

K1(X1), K2(X1, X2), K3(X1, X2, X3), . . .

with coefficients in A satisfying homogeneity property:

each Kn(X1, X
2
2 , X

3
3 , . . . , X

n
n ) is homogeneous of degree n.

Given an element a ∈ AΠ with leading term 1, define a new element K(a) ∈ AΠ also
with leading term 1 by the formula

K(a) = 1 +K1(a1) +K2(a1, a2) + · · · .

Definition 1.6. The sequence {Kn}n≥1 is a multiplicative sequence or briefly an
m-sequence of polynomials if it satisfies multiplicative property:

K(ab) = K(a)K(b)

holds for all A-algebras A∗
(
or AΠ

)
and for all a, b ∈ AΠ with leading term 1.

Example 1.7. Given any constant λ ∈ A, the polynomials

Kn(X1, . . . , Xn) = λnXn

form an m-sequence with

K(1 + a1 + a2 + · · · ) = 1 + λa1 + λ2a2 + · · · .
The case λ = 1 (so that K(a) = a) and λ = −1 are of particular interest.

Let λ = −1 and ω be a complex n-plane bundle. Consider the Chern class of the
conjugate bundle ω̄, then we have ck(ω̄) = (−1)kck(ω) due to [MS74, Lemma 14.9].
Hence we derive

c(ω̄) = 1− c1(ω) + c2(ω)− · · ·+ (−1)kcn(ω) = K(c(ω)).

Example 1.8. The formula

K(a) = a−1 =
1

1 + (a1 + a2 + · · · )
= 1− (a1 + a2 + · · · ) + (a1 + a2 + · · · )2 − (a1 + a2 + · · · )3 + · · ·

defines an m-sequence with

K1(X1) = −X1,

K2(X1, X2) = X2
1 −X2,

K3(X1, X2, X3) = −X3
1 + 2X1X2 −X3,

K4(X1, X2, X3, X4) = X4
1 − 3X2

1X2 + 2X1X3 +X2
2 −X4,

and so on. In general, we have

Kn(X1, . . . , Xn) =
∑

i1+2i2+···+nin=n

(i1 + · · ·+ in)!

i1! · · · in!
(−X1)i1 · · · (−Xn)in .

These polynomials can be used to describe the relations between the Stiefel-Whitney
classes (or the Chern classes, or the Pontrjagin classes) of two real vector bundles with
trivial Whitney sum. Consider two real vector bundles ξ and η over the same base space.
We have the equation w(ξ ⊕ η) = w(ξ)w(η) which can be uniquely solved as

w(η) = (w(ξ))−1w(ξ ⊕ η) = K(w(ξ))w(ξ ⊕ η)

(see [MS74, Lemma 4.1]). In particular, if ξ ⊕ η is trivial, then w(η) = K(w(ξ)).
One important special case is Whitney duality theorem ([MS74, Lemma 4.2]): If τM is
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the tangent bundle of a manifold in Euclidean space and ν is the normal bundle, then
w(ν) = K(w(τM )). Also, similar statements hold for the other two characteristic classes.

Example 1.9. The polynomials K2n−1 = 0 and

K2n(X1, . . . , X2n) = X2
n − 2Xn−1Xn+1 + · · ·+ (−1)n−12X1X2n−1 + (−1)n2X2n

form an m-sequence which can be used to describe the relationship between the Chern
classes of a complex vector bundle ω and the Pontrjagin classes of the underlying real
bundle ωR. Specifically, for any complex n-bundle, the Chern classes ck(ω) determine
the Pontrjagin classes pk(ωR) by the formula

1− p1 + p2 − · · ·+ (−1)npn =
(
1− c1 + c2 − · · ·+ (−1)ncn

)
(1 + c1 + c2 + · · ·+ cn).

(see [MS74, Corollary 15.5]). Thus we have

pk(ωR) = ck(ω)2 − 2ck−1(ω)ck+1(ω) + · · ·+ (−1)k−12c1(ω)c2k−1(ω) + (−1)k2c2k(ω)

= K2n

(
c1(ω), c2(ω), . . . , c2k(ω)

)
Then the total Pontrjagin class p(ωR) can be written as p(ωR) = K(c(ω)).

Consider A∗ = A[t] where t can be seen as a generator of A1 which is of degree 1.
Then an element of AΠ = A[[t]] with leading term 1 is the formal power series

f(t) = 1 + λ1t+ λ2t
2 + · · ·

with coefficients in A. In particular, 1+ t is such a term which is obvious but important.
The following nice lemma gives a simple but very sharp classification of all possible

m-sequences.

Lemma 1.10 (Hirzebruch). Given a formal power series f(t) = 1 + λ1t+ λ2t
2 + · · ·

with coefficients in A, there is one and only one m-sequence {Kn}n≥1 with coefficients
in A satisfying the condition

K(1 + t) = f(t)

or equivalent satisfying the condition that

the coefficient of Xn
1 in each polynomial Kn(X1, . . . , Xn) is equal to λn.

Definition 1.11. The m-sequence {Kn}n≥1 is called the m-sequence belonging to the
formal power series f(t).

Remark 1.12. If the m-sequence {Kn}n≥1 belongs to the power f(t), then for any A∗

and any a1 ∈ A1, the equation K(1 + a1) = f(a1) is satisfied. Of course, this equation
would most likely be false if something of degree 6= 1 were substituted in place of a1.
This trivial observation will be used in the proof.

Example 1.13. The three m-sequences mentioned above belong to the formal power
series 1 + λt, 1− t+ t2 − t3 + · · · , and 1 + t2 respectively.

Proof of Lemma 1.10. Uniqueness: For any positive integer n, we set A∗ = A[t1, . . . , tn],
then t1, . . . , tn ∈ A1. Let σ = (1 + t1) · · · (1 + tn) =: 1 + σ1 + σ2 + · · · + σn where the
polynomials σi ∈ Ai are elementary symmetric polynomials in t1, . . . , tn, then

K(σ) = K(1 + t1) · · ·K(1 + tn) = f(t1) · · · f(tn)

= (1 + λ1t1 + λ2t
2
1 + · · · ) · · · (1 + λ1tn + λ2t

2
n + · · · ).

Taking homogeneous part of degree n, it follows that Kn(σ1, . . . , σn) is completely deter-
mined by the formal power series f(t). Furthermore, note that the elementary symmetric
polynomials are algebraically independent, so each Kn is finally proven to be unique.
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Existence: For any partition I = (i1, . . . , ir) of n with positive integers, let λI =
λi1 · · ·λir . Define the polynomial Kn by the formula

Kn(σ1, . . . , σn) =
∑

λIsI(σ1, . . . , σn)

summing over all partitions I of n. Recall that sI(σ1, . . . , σn), which is a homogeneous
symmetric polynomial of degree n, is the unique polynomial in the elementary symmetric
polynomials σ1, . . . , σn equal to ∑

ti1σ(1) · · · t
ir
σ(r)

summing over all permutations σ of {1, 2, . . . , r}. Note that if we fix σ, then for each

permutation σ′ such that ti1σ(1) · · · t
ir
σ(r) = ti1σ′(1) · · · t

ir
σ′(r), the monomial ti1σ(1) · · · t

ir
σ(r) will

be recorded only once in the sum. By convention we have

sI(a) = sI(1 + a1 + a2 + · · · ) = sI(a1, . . . , an)

for any partition I of n. Note that we have the identity

sI(ab) =
∑
HJ=I

sH(a)sJ(b)

summing over all partitions H,J with juxtaposition HJ = I. Therefore, we obtain

K(ab) =
∑
I

λIsI(ab) =
∑
I

λI
∑
HJ=I

sH(a)sJ(b)

=
∑
I

∑
HJ=I

(
λHsH(a)

)(
λJsJ(b)

)
=
∑
H,J

(
λHsH(a)

)(
λJsJ(b)

)
=
∑
H

λHsH(a)
∑
J

λJsJ(b) = K(a)K(b),

which holds for all a, b ∈ AΠ. If I is not a trivial partition of n, i.e. I 6= (n), then
sI(σ1, 0, . . . , 0) = 0. Since sn(σ1, 0, . . . , 0) = σn1 , we derive

K(1 + t) =
∑
I

λIsI(t, 0, . . . , 0) =
∑
n≥0

λ(n)s(n)(t, 0, . . . , 0) =
∑
n≥0

λnt
n = f(t).

Note that for partition I of 0 we have
∑
λIsI(t, 0, . . . , 0) = λIsI( ) = 1 trivially. Now

we have finished the proof of existence which is quite constructive. �

Example 1.14. Consider the m-sequence {Kn}n≥1 in Example 1.9, which belongs to the
formal power series 1 + t2. For n ≥ 1, we have K2n(σ1, . . . , σn) =

∑
λIsI(σ1, . . . , σ2n) =

s(2,...,2)(σ1, . . . , σ2n), which implies

s(2,...,2)(σ1, . . . , σ2n) = σ2
n − 2σn−1σn+1 + · · ·+ (−1)n−12σ1σ2n−1 + (−1)n2σ2n.

2. Signature Theorem

Now consider some m-sequence {Kn(X1, . . . , Xn)}n≥1 with rational coefficients. Let
Mm be a compact oriented smooth m-dimensional manifold. We also put A = Q and
An = H4n(Mm; Q).

Definition 2.1. The K-genus K[Mm] is zero if the dimension m is not divisible by 4
and is equal to the rational number

Kn[M4n] = 〈Kn(p1, . . . , pn), µ4n〉
if m = 4n where pi denotes the i-th Pontrjagin class of the tangent bundle and µ4k

denotes the fundamental homology class of M4n. Thus, K[Mm] is a certain rational
linear combination of the Pontrjagin numbers of Mm.
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Lemma 2.2. For any m-sequence {Kn}n≥1 with rational coefficients, the correspon-
dence M 7→ K[M ] defines a ring morphism from the cobordism ring Ω∗ to the ring Q of
rational numbers, or equivalently this correspondence gives rise to an algebra morphism
from Ω∗ ⊗ Q to Q.

Proof. Since Pontrjagin numbers are cobordism invariants, so M 7→ K[M ] descends to
a well-defined map Ω∗ → Q. This map is additive since addition is given by disjoint
union and Pontrjagin numbers are additive under such addition. Consider the product
manifold M ×M ′. Note that the tangent bundle of M ×M ′ splits as a Whitney sum
TM×TM ′ ∼= π∗1TM⊕π∗2TM ′ where π1 and π2 are the canonical projections of M1×M2

into the two factors. Modulo elements of order 2, we obtain

Kn(p1, . . . , pn)(T (M ×M ′)) = Kn(p1, . . . , pn)(TM × TM ′)
= Kn(p1, . . . , pn)(π∗1TM ⊕ π∗2TM ′)
= Kn(p1, . . . , pn)(π∗1TM) ∪Kn(p1, . . . , pn)(π∗2TM

′).

Thus, we have

K[M ×M ′] = 〈Kn(p1, . . . , pn)(π∗1TM) ∪Kn(p1, . . . , pn)(π∗2TM
′), µ4n × µ′4n′〉

= (−1)mm
′〈Kn(p1, . . . , pn)(π∗1TM), µ4n〉〈Kn(p1, . . . , pn)(π∗2TM

′), µ′4n′〉
= 〈π∗1Kn(p1, . . . , pn)(TM), µ4n〉〈π∗2Kn(p1, . . . , pn)(TM ′), µ′4n′〉
= 〈Kn(p1, . . . , pn)(TM), µ4n〉〈Kn(p1, . . . , pn)(TM ′), µ′4n′〉
= K[M ]K[M ′].

There is no sign here since the K-genera is nonzero only when m,m′ are divisible by 4.
So the proof is finished. �

Remark 2.3. Note that the ring morphism here does preserve multiplicative identities.
Note that Ω0

∼= Z is spanned by a singleton of positive orientation. Since singletons are
of dimension 0, the K-genus is just K0 := 1.

We are going to use this construction to compute an important homotopy type in-
variant of M .

Definition 2.4. The signature σ(M) of a connected compact oriented manifold Mm

is defined to be zero if the dimension is not a multiple of 4 and as follows for m = 4n:
Choose a basis a1, . . . , ar for H2n(M4n; Q) so that the symmetric matrix [〈ai ∪ aj , µ4n〉]
is diagonal, then σ(M4n) is the number of positive diagonal entries minus the number
of negative ones. The signature of a compact oriented but not connected manifold is the
sum of the signatures of its connected components.

Remark 2.5. Note that H2n(M4n; Q) is a unitary module over a division ring, i.e. a
vector space, so it is valid to speak of basis. As the manifolds are compact, the number
of connected components is finite. The definition of σ(M4n) is then well-defined by
Sylvester’s law of inertia.

The signature σ is in other words the signature of the rational quadratic form a 7→
〈a ∪ a, µ〉. The number σ is often called the index of M (see for example [Hir95, 8.2]).

Since we are doing (co)homology with coefficients in a field, there is no torsion in
(co)homology. The rational quadratic form a 7→ 〈a ∪ a, µ4n〉 is nonsingular, or equiva-
lently the symmetric matrix [〈ai ∪ aj , µ4n〉] is nonsingular.

Lemma 2.6 (Thom). The signature σ has the following three properties:

(i) σ(M +M ′) = σ(M) + σ(M ′), σ(−M) = −σ(M),
(ii) σ(M ×M ′) = σ(M)σ(M ′), and
(iii) if M is an oriented boundary, then σ(M) = 0.
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Proof. See [Hir95, Theorem 8.2.1]. �

The following theorem reveals that, using these properties, one can show that the
signature of a manifold can be expressed as a linear function of its Pontrjagin numbers.

Theorem 2.7 (Signature Theorem). Let {Ln(X1, . . . , Xn)}n≥1 be the m-sequence of
polynomials belonging to the formal power series

√
t

tanh
√
t

:= 1 +
1

3
t− 1

45
t2 + · · ·+ (−1)k−1 22kBk

(2k)!
tk + · · · .

Then the signature σ(M) of any compact oriented smooth manifold M is equal to the
L-genus L[M ].

Here Bk denotes the k-th Bernoulli number which can be defined as the coefficients
occur in the power series expansion

x

tanhx
=
x coshx

sinhx
= 1 +

B1

2!
(2x)2 − B2

4!
(2x)4 +

B3

6!
(2x)6 − · · ·

convergent for |x| < π, or equivalently in the Laurent expansion

z

ez − 1
= 1− z

2
+
B1

2!
z2 − B2

4!
z4 +

B3

6!
z6 − · · · .

These two series are related by the easily verified identity

x

tanhx
=

2x

e2x − 1
+ x.

With this notion one has:

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
, B5 =

5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
,

and so on. These numbers were first introduced by Jakob Bernoulli. The first four
L-polynomials are

L1 =
1

3
p1, L2 =

1

45

(
7p2 − p2

1

)
, L3 =

1

945

(
62p3 − 13p2p1 + 2p3

1

)
,

L4 =
1

14175

(
381p4 − 71p3p1 − 19p2

2 + 22p2p
2
1 − 3p4

1

)
.

Proposition 2.8 (Cauchy’s Integral Formula). Let U be an open subset of the
complex plane C, and suppose that the closed disk D defined as {z ∈ C : |z − z0| ≤ r} is
completely contained in U . Let f : U → C be a holomorphic function, and let C be the
circle, oriented counterclockwise and forming the boundary of D. Then for every ξ in
the interior of D, we have

f(ξ) =

∮
C

f(z)

z − ξ
dz.

Moreover, since holomorphic functions are analytic, i.e. they can be expanded as conver-
gent Laurent power series, we have f(z) =

∑+∞
−∞ an(z − ξ)n for every z in the interior

of D where

an =
f (n)(ξ)

n!
=

1

2πi

∮
C

f(z)

(z − ξ)n+1
dz.

Proof of Theorem 2.7. Note that the signature descends to a ring morphism Ω∗ → Q
(preserving multiplicative identities since the signature of a point is just 1). Since the
correspondences M 7→ σ(M) and M 7→ L[M ] both give rise to algebra morphisms
from Ω∗⊗Q to Q, it suffices to check this theorem on a set of generators for the algebra
Ω∗⊗Q, i.e. it suffices to prove the equality on each CP2k since they generate the oriented
cobordism ring.
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Let τ be the tangent bundle of CP2k. Let γ1 := γ1(C2k+1) be the canonical line
bundle over CP2k, then a := −c1(γ1) is a generator of H2(CP2k; Q) ∼= Q such that the
total Chern class of τ is c(τn) = (1 + a)2k+1 and the total Pontrjagin class of τR is
p := p(τR) = (1 + a2)2k+1.

It follows that the top Chern class c2k(τ) = (2k+ 1)a2k. Therefore, the Euler number
e[CP2k] = 〈e(τR), µ4k〉 = 〈c2k(τ), µ4k〉 = (2k + 1)〈c2k(τ), µ4k〉 = (2k + 1)〈a2k, µn〉. On
the other hand, we have 〈e(τR), µ4k〉 (using integer or rational coefficients) is equal
to the Euler characteristic χ(CP2k) =

∑
(−1)i dimH i(CP2k; Q) = 2k + 1 (see [MS74,

Corollary 11.12]). Thus, 〈a2k, µ4k〉 = 1 which means a2k is precisely the generator of
H4k(CP2k; Q) ∼= Q (which is compatible with the preferred orientation).

Note that the generator ak ∈ H2k(CP2k; Q) ∼= Q actually forms a basis, so 〈ak ∪
ak, µ4k〉 = 〈a2k, µ4k〉 = 1 (for the preferred orientation of CP2k). Hence we obtain the
signature σ(CP2k) = 1.

Since the m-sequence {Lk}k≥1 belongs to the power series f(t) =
√
t

tanh
√
t
, we derive

L(1 + a2) =

√
a2

tanh
√
a2

in the sense of
=============
formal power series

a

tanh a
.

Note that a2 ∈ H4(CP2k; Q) is of degree 1 in the graded algebra since we take An to be
H4n(CP2k; Q) and we have

L(p) = L
(
(1 + a2)2k+1

)
=
(
L(1 + a2)

)2k+1
=
( a

tanh a

)2k+1
.

Thus the L-genus 〈Lk(p1, . . . , pk), µ4k〉 = 〈Lk(α1a
2, . . . , αka

2k), µ4k〉 is equal to the coef-
ficient of a2k in this power series where α1, . . . , αk are binomial coefficients determined
by p(τR) = (1 + a2)2k+1.

Replace a by the complex variable z, the coefficient of z2k in the Laurent expansion

of
(

z
tanh z

)2k+1
can be computed by dividing by 2πiz2k+1 and then integrating around

the origin. In fact, the substitution u = tanh z with dz = du
1−u2 = (1 + u2 + u4 + · · · )du

shows that

L[CP2k] =
1

2πi

∮
C

dz

(tanh z)2k+1
=

1

2πi

∮
C

1 + u2 + u4 + · · ·
u2k+1

du

= d2k(1 + u2 + u4 + · · ·+ u2k + · · · )/d2ku|u=0/(2k)!

= ((2k)! + · · · )|u=0/(2k)! = 1.

Hence, we always have L[CP2k] = 1 = σ(CP2k), and it follows that L[M ] = σ(M) for
all M . �

Since the signature of any manifold is an integer and only depends on the oriented
homotopy type, we immediately obtain the following corollary:

Corollary 2.9. The L-genus L[M ] of any smooth compact oriented M is an integer and
only depends on the oriented homotopy type of M .

Example 2.10. There exists no compact oriented smooth 4-connected 12-manifold M
with dimH6(M ; Q) equal to an odd number.

In fact, note that the matrix used to define the signature of M is nonsingular, so
σ(M) is an odd number since dimH6(M ; Q) is odd.

It suffices to show that the signature is also even. Since M is 4-connected, we have
πi(M) = 0 for i = 3, 4. Hurewicz theorem implies Hi(M ; Q) = 0 for i = 3, 4. Then
Universal coefficient theorem implies

0→ 0 = Ext1
Q(H3(M ; Q); Q)→ H4(M ; Q)→ HomQ(H4(M ; Q); Q) = 0→ 0.
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So H4(M ; Q) = 0 and then p1[M ] = 0. Hence, L[M ] = 〈L3(p1, p2, p3), µ12〉 = 62
945p3[M ],

which is an integer. As 62 and 945 are coprime, we see that 945 divides p3[M ] and L[M ]
is even. Signature theorem says that σ(M) = L[M ] is even, which is a contradiction.

Example 2.11. The Pontrjagin number p1[M4] is divisible by 3, and the Pontrjagin
number 7p2[M8] − p1[M8] is divisible by 45. If M8 is 4-connected, then p2[M8] is
divisible by 45.
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