S4D4 - GRADUATE SEMINAR ON ADVANCED TOPOLOGY -
CHARACTERISTIC CLASSES II

HAO XIAO

ABSTRACT. This document introduces multiplicative sequences and Hirzebruch’s sig-
nature theorem. The main reference is [MS74].
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1. MULTIPLICATIVE SEQUENCE

Multiplicative sequence is the algebraic preliminary to state and prove Hirzebruch’s
signature theorem. It somehow provides a unifying viewpoint to relate different charac-
teristic classes.

We first fix some definitions and notations before introducing the concept of multi-
plicative sequence. Let A be a commutative ring with multiplicative identity. In fact,
the ring of rationals is sufficient in our practice.

Definition 1.1. A unitary unital commutative A-algebra A* is non-negatively graded
if there exist additive subgroups A; of A* for i > 0 such that A* = @,~yAi with
AA; C A; and AZA] C Ai_;,_j f07" all 1,7 > 0. -

Remark 1.2. It is obvious that 1 € Ag and A-1 C Ay. Since A* = €, A4; is an internal
weak direct product decomposition, each element a € A* can be uniquely expressed as
the sum ) .., a; with a; € A; such that only a finitely many a;’s are nonzero. In the

main application, A, will usually be the cohomology group H*"(B; A). In this case, be
careful that A, = H*"(B; A) is of degree n in the graded algebra but is of degree 4n as
a cohomology group.

Definition 1.3. To each such A*, we associate the ring A" consisting of all formal
sums Zizo a; with a; € A;, i.e. the internal direct product decomposition A = Zizo A;
holds such that AA; C A; and A;A; C Aiyj for alli,5 > 0.

Remark 1.4. Due to the same reason, for each a € A we have a unique expression
a =Y ;~oa; with a; € A. We will be particularly interested in elements of the form
a=1 —i—_ZZ.>1 a; in A™ which are invertible in A" by the theory of formal power series.
The produc% of two such elements a,b € AU is

ab=(1+ar+as+---)1+b+ba+---) =1+ (a1 +b1) + (a2 + a1by +b2) + - --
where Y% a;by_; € Ay for all k > 0 if we set ag, by = 1.

The following easy example reveals what the above two definitions actually mean.
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Example 1.5. Let A* = A[X] and A™ = A[[X]]. More concretely, set A = Q, then we
have A* = Q[X] and A" = Q[[X]].
Now consider a sequence of polynomials
Ki(Xq), Ko(Xq, Xo), K3(X1,X2,X3), ...
with coefficients in A satisfying homogeneity property:
each K,(X1, X%, X3 ..., X") is homogeneous of degree n.

Given an element a € A™ with leading term 1, define a new element K (a) € A™ also
with leading term 1 by the formula

K(a) =14 Ki(a1) + Ka(ai,a2) +--- .

Definition 1.6. The sequence {Ky},>1 is o multiplicative sequence or briefly an
m-sequence of polynomials if it satisfies multiplicative property:

K(ab) = K(a)K (b)
holds for all A-algebras A* (07’ AH) and for all a,b € A" with leading term 1.
Example 1.7. Given any constant A € A, the polynomials
K,(X1,...,X,) =\"X,
form an m-sequence with
K(l+ai+as+---)= 14+ Xag + Nag+ -+ .

The case A =1 (so that K(a) = a) and A = —1 are of particular interest.

Let A = —1 and w be a complex n-plane bundle. Consider the Chern class of the
conjugate bundle @, then we have cx(@) = (—1)Fci(w) due to [MS74, Lemma 14.9].
Hence we derive

c(@) =1-c1(w) + (W) — -+ (=1)Fep(w) = K(c(w)).
Example 1.8. The formula

1
K(a)=a1=
1+ (a1 +ax+--)

=l—(a1+as+ - )+(ar+a+-)—(a1+as+- )+

defines an m-sequence with
Ki(Xy)

K» (X1, Xs) = X7 — Xo,
K3(X1, X2, X3) = =X} +2X1Xo — X3,
Ky(X1, X2, X3, X4) = X{ — 3X7Xo +2X1 X3 + X3 — X4,
and so on. In general, we have

Kn(X1,...,X,) = >
i1+ 2ig+Fnip=n
These polynomials can be used to describe the relations between the Stiefel-Whitney
classes (or the Chern classes, or the Pontrjagin classes) of two real vector bundles with

trivial Whitney sum. Consider two real vector bundles ¢ and 7 over the same base space.
We have the equation w(§ & n) = w(&)w(n) which can be uniquely solved as

w(n) = (w(€))  w(E ®n) = K(w()w & n)
(see [MST74, Lemma 4.1]). In particular, if £ @ 7 is trivial, then w(n) = K(w(f)).
One important special case is Whitney duality theorem ([MS74, Lemma 4.2]): If 75 is

(i1+"‘+in)!

SERREE M|

(X0 (=X
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the tangent bundle of a manifold in Euclidean space and v is the normal bundle, then
w(v) = K(w(7pr)). Also, similar statements hold for the other two characteristic classes.

Example 1.9. The polynomials Ka,—1 = 0 and
Kon(X1,. ..y Xon) = X2 = 2X, 1 X1 + -+ (=1)" 12X Xop o1 + (—1)"2X2,

form an m-sequence which can be used to describe the relationship between the Chern
classes of a complex vector bundle w and the Pontrjagin classes of the underlying real
bundle wr. Specifically, for any complex n-bundle, the Chern classes ci(w) determine
the Pontrjagin classes p(wr) by the formula
L—pr+pr—4+(D)"pn=(1—-crd+eca—-+(=1)"n) A +c1+ o+ +cn)

(see [MS74l Corollary 15.5]). Thus we have

Pr(R) = e1(@)? — 205 1(@)err1 (@) + ++ (—1)F 1260 @)er1 () + (1) 20 ()
= Ko, (cl(w), ca(w), ..., CQk(OJ))

Then the total Pontrjagin class p(wr) can be written as p(wr) = K(c(w)).

Consider A* = A[t] where ¢t can be seen as a generator of A; which is of degree 1.
Then an element of A = A[[t]] with leading term 1 is the formal power series

F&) =1+ Mt + Xot? + - -

with coefficients in A. In particular, 1+ is such a term which is obvious but important.
The following nice lemma gives a simple but very sharp classification of all possible
m-sequences.

Lemma 1.10 (Hirzebruch). Given a formal power series f(t) = 1+ Mt + Agt? + - -
with coefficients in A, there is one and only one m-sequence { Ky }n>1 with coefficients
in A satisfying the condition

K(1+1t) = f(t)
or equivalent satisfying the condition that

the coefficient of X7 in each polynomial K (X1,...,X,) is equal to \y.

Definition 1.11. The m-sequence {Ky,}n>1 is called the m-sequence belonging to the
formal power series f(t).

Remark 1.12. If the m-sequence { K, },>1 belongs to the power f(t¢), then for any A*
and any a1 € Ajp, the equation K (1 + aq) = f(a;) is satisfied. Of course, this equation
would most likely be false if something of degree # 1 were substituted in place of a;.
This trivial observation will be used in the proof.

Example 1.13. The three m-sequences mentioned above belong to the formal power
series 1 4+ M, 1 —t +t2 — ¢34+ ... and 1 + t? respectively.

Proof of Lemma[I.10. Uniqueness: For any positive integer n, we set A* = Afty,. .., t,],
then t1,...,t, € A;. Let o = (1+t1)---(1+1t,) =21+ 01+ 02+ -+ 0, where the
polynomials o; € A; are elementary symmetric polynomials in t1, ..., t,, then
K(o) =K1 +t1) - K(1+tn) = f(ts) - f(tn)
= (1+)\1t1—I—)\gt%—I—'-')'~-(1+>\1tn+)\2t721—l-"-).
Taking homogeneous part of degree n, it follows that K, (o1, ...,0,) is completely deter-

mined by the formal power series f(¢). Furthermore, note that the elementary symmetric
polynomials are algebraically independent, so each K, is finally proven to be unique.
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Existence: For any partition I = (i1,...,4,) of n with positive integers, let \; =
Aiy -+ Ai,.. Define the polynomial K,, by the formula

Kn(ol,. . .,O'n) = Z)\[S[(O'l,. . .,O'n)

summing over all partitions I of n. Recall that s;(o1,...,0y), which is a homogeneous
symmetric polynomial of degree n, is the unique polynomial in the elementary symmetric

polynomials o1, ..., 0, equal to
7 i
Z by, 1) ta(r

summing over all permutations o of {1 2,...,r}. Note that if we fix o, then for each

. L i1 4
permutation ¢’ such that ¢ o(1) U(T) a,(l)‘ tg( ) the monomial ¢ o(1) tU(T) will
be recorded only once in the sum. By convention we have

si(a)=si(14+a1+ag+---) =sr(a,...,an)
for any partition I of n. Note that we have the identity
sr(ab) = > su(a)s;(b)
HJ=I
summing over all partitions H, J with juxtaposition HJ = I. Therefore, we obtain

:Z)\Isl(ab ZAI Z s (a)s.(b)
I

HJ=I

= Z Z (Aasu(a))(Ayss(b)) = Z (Ausm(a)) (Asss(b))

I HJ=I H,J

_ZAHSH ZAJSJ K(a)K (b),

which holds for all a,b € A™. If I is not a trivial partition of n, i.e. I # (n), then

sr(01,0,...,0) = 0. Since s,(01,0,...,0) = o}, we derive
1—|-t Z/\]S[ t 0,. ZZ)\(n)S(n)(t,O,...,O):Z)\nthf(t)
n>0 n>0
Note that for partition I of 0 we have Y Arsy(¢,0,...,0) = Arsy() = 1 trivially. Now
we have finished the proof of existence which is quite constructive. O

Example 1.14. Consider the m-sequence { K, },>1 in Example which belongs to the

formal power series 1+¢2. For n > 1, we have Ko, (01,...,0,) = Y. Ars1(01,...,00,) =
5(2,..,2)(01, ..., 02;), which implies
8(27._"2)(0'1, ey O9p) = 0'721 —20p—10pn4+1 + -+ (—1)”7120'102”_1 + (—1)"209,.

2. SIGNATURE THEOREM

Now consider some m-sequence {K,(Xi,...,Xp)}n>1 with rational coefficients. Let
M™ be a compact oriented smooth m-dimensional manifold. We also put A = Q and
A, = H™(M™;Q).

Definition 2.1. The K-genus K[M™] is zero if the dimension m is not divisible by 4
and is equal to the rational number

KH[M4H] = <Kn(p17 . apn)7 N4n>

if m = 4n where p; denotes the i-th Pontrjagin class of the tangent bundle and pgp
denotes the fundamental homology class of M*". Thus, K[M™)] is a certain rational
linear combination of the Pontrjagin numbers of M™.
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Lemma 2.2. For any m-sequence {K,}n>1 with rational coefficients, the correspon-
dence M — K[M] defines a ring morphism from the cobordism ring Q0 to the ring Q of
rational numbers, or equivalently this correspondence gives rise to an algebra morphism
from 2, ®Q to Q.

Proof. Since Pontrjagin numbers are cobordism invariants, so M +— K[M] descends to
a well-defined map €2, — Q. This map is additive since addition is given by disjoint
union and Pontrjagin numbers are additive under such addition. Consider the product
manifold M x M'. Note that the tangent bundle of M x M’ splits as a Whitney sum
TMxTM' = 7iTM @®7n3TM where w1 and 79 are the canonical projections of M x Ms
into the two factors. Modulo elements of order 2, we obtain

Kn(p1y-- s pn)(T(M x M")) = Ky (p1, .-, 0n)(TM x TM")
= Ku(p1y--.pn) (@i TM @ w3 TM)
= Kn(p1,- -, 00)(miTM) U Ky (p1, ..., pn)(maTM).
Thus, we have
K[M x M']| = (Ky(p1, ..., pn)(m{TM) U Kn(p1, oy P (ST M), puan X i)
(=1)™™ (K (1, - -, ) (T TM), ) (Ko (pr, - -, ) (T3 TM'), )
= (M Kn(p1,...,pn)(T M)?:U'4n><7r2K (P, o) (TM'), i)
= (En(p1, -+, pn) (TM), pran) (K (p1, - - s pa) (TM'), i)
= K[M|K[M'].

There is no sign here since the K-genera is nonzero only when m,m’ are divisible by 4.
So the proof is finished. O

Remark 2.3. Note that the ring morphism here does preserve multiplicative identities.
Note that Qg =2 Z is spanned by a singleton of positive orientation. Since singletons are
of dimension 0, the K-genus is just Ky := 1.

We are going to use this construction to compute an important homotopy type in-
variant of M.

Definition 2.4. The signature o(M) of a connected compact oriented manifold M™
is defined to be zero if the dimension is not a multiple of 4 and as follows for m = 4n:
Choose a basis a1, . .., a, for H*(M*;Q) so that the symmetric matriz [(a; U a;, ftan)]
is diagonal, then o(M*") is the number of positive diagonal entries minus the number
of negative ones. The signature of a compact oriented but not connected manifold is the
sum of the signatures of its connected components.

Remark 2.5. Note that H?"(M*";Q) is a unitary module over a division ring, i.e. a
vector space, so it is valid to speak of basis. As the manifolds are compact, the number
of connected components is finite. The definition of o(M?*") is then well-defined by
Sylvester’s law of inertia.

The signature ¢ is in other words the signature of the rational quadratic form a —
(aUa,p). The number o is often called the index of M (see for example [Hir95, 8.2]).

Since we are doing (co)homology with coefficients in a field, there is no torsion in
(co)homology. The rational quadratic form a — (a U a, j145,) is nonsingular, or equiva-
lently the symmetric matrix [(a; U aj, ptan)] is nonsingular.

Lemma 2.6 (Thom). The signature o has the following three properties:
(i) o(M + M) = o(M) 4+ o(M’), o(=M) = —o(M),
(ii) o(M x M') = o(M)o(M"), and
(iii) if M is an oriented boundary, then o(M) = 0.
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Proof. See [Hir95, Theorem 8.2.1]. O

The following theorem reveals that, using these properties, one can show that the
signature of a manifold can be expressed as a linear function of its Pontrjagin numbers.

Theorem 2.7 (Signature Theorem). Let {L,(X,...,X,)} n>1 be the m-sequence of
polynomials belonging to the formal power series
Vi L k12" By 1

1
=l ot — 24 (-1 .
tanh v/t 3 45 (=1) (2k)!

Then the signature o(M) of any compact oriented smooth manifold M is equal to the
L-genus L{M].

Here B; denotes the k-th Bernoulli number which can be defined as the coefficients
occur in the power series expansion

x x cosh x Bl BQ Bg

= =14 —(22)% — ==2(22)* + =2 (22)5 — ...
tanh x sinh z + 21 (22) 4! (22)" + 6! (22)
convergent for |x| < 7, or equivalently in the Laurent expansion
-1 et T wt et T
These two series are related by the easily verified identity
r 2z n
tanhx €2 — 1 .
With this notion one has:
1 1 1 1 5 691 7 3617
L7 72300 7P T 422 T 300 7 T 66 0 21300 T T 67 8T 510

and so on. These numbers were first introduced by Jakob Bernoulli. The first four
L-polynomials are

1 1 1
Li=>py, Lo = —(Tps — p?), Ly = — (62p3 — 13 23
1 3]?1, 2 45( D2 pl), 3 945( D3 D2p1 + p1),
2 2 4
Ly= TI75 (381ps — Tlpspr — 19p3 + 22pap; — 3pi).

Proposition 2.8 (Cauchy’s Integral Formula). Let U be an open subset of the
complex plane C, and suppose that the closed disk D defined as {z € C: |z — zo| <71} is
completely contained in U. Let f: U — C be a holomorphic function, and let C be the
circle, oriented counterclockwise and forming the boundary of D. Then for every £ in
the interior of D, we have

= /(z) dz.

1O=9 =

Moreover, since holomorphic functions are analytic, i.e. they can be expanded as conver-
gent Laurent power series, we have f(z) = 3.7 a,(z — &)" for every z in the interior

of D where
C

! 2mi z—=&nt T

Proof of Theorem [2.7, Note that the signature descends to a ring morphism €, — Q
(preserving multiplicative identities since the signature of a point is just 1). Since the
correspondences M +— o(M) and M ~— L[M] both give rise to algebra morphisms
from €, ® Q to Q, it suffices to check this theorem on a set of generators for the algebra
0, ®Q, i.e. it suffices to prove the equality on each CP?* since they generate the oriented
cobordism ring.
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Let 7 be the tangent bundle of CP2*. Let ! := 4!(C?*1) be the canonical line
bundle over CP?*| then a := —c;(y') is a generator of H?(CP?*;Q) = Q such that the
total Chern class of 7 is ¢(7") = (1 4+ a)?**! and the total Pontrjagin class of g is
pi=p(m) = (1+a2)2+,

It follows that the top Chern class cor(7) = (2k 4+ 1)a®*. Therefore, the Euler number
e[CP] = (e(mR), pax) = (cok(r), k) = (26 + 1){can(r), uag) = (26 + 1) (a%, pa). On
the other hand, we have (e(7r), u4x) (using integer or rational coefficients) is equal
to the Euler characteristic y(CP?¥) = 3°(—1)"dim H*(CP?*;Q) = 2k + 1 (see [MS74,
Corollary 11.12]). Thus, (a?*, u4,) = 1 which means a?* is precisely the generator of
H*(CP?¥;Q) = Q (which is compatible with the preferred orientation).

Note that the generator a* € H?¥(CP?¥;Q) = Q actually forms a basis, so (a* U
a®, ) = (a®*, pgy) = 1 (for the preferred orientation of CP?*). Hence we obtain the
signature o(CP?¥) = 1.

Since the m-sequence {Lj},>1 belongs to the power series f(t) =
Va? in the sense of a

Ll+ad*) = ——= .
( * ) tanh Va2 formal power series tanha

Vi

tann V' W€ derive

Note that a®> € H*(CP?*;Q) is of degree 1 in the graded algebra since we take A, to be
H*(CP?¢;Q) and we have

= ) — a2 ()

tanh a

Thus the L-genus (L (p1, ..., k), par) = (Lip(a1a?, ..., apa®), ua) is equal to the coef-
ficient of a®* in this power series where a1, ..., oy are binomial coefficients determined
by p(1R) = (1 + a?)***.

Replace a by the complex variable z, the coefficient of 22 in the Laurent expansion

of ( z )QkH can be computed by dividing by 27riz2++!

Tanhz and then integrating around
the origin. In fact, the substitution u = tanh z with dz = ~9%5; = (1 4+ u? + u* + - - )du

1—u
shows that

1 dz 1 14+u?2+ute. ..
LCPH| = — ¢ ——— = j'{ d
| 2mi Jo (tanh 2)26+1 275 [ u2ktl “
= 1 +u? +ut -+ ) Jdul =g/ (2K)!
= ((2B)!+ -+ )lu=0/(2k)! = 1.

Hence, we always have L[CP?¥] = 1 = ¢(CP?¥), and it follows that L[M] = (M) for
all M. O

Since the signature of any manifold is an integer and only depends on the oriented
homotopy type, we immediately obtain the following corollary:

Corollary 2.9. The L-genus L[M] of any smooth compact oriented M is an integer and
only depends on the oriented homotopy type of M.

Example 2.10. There exists no compact oriented smooth 4-connected 12-manifold M
with dim H(M; Q) equal to an odd number.

In fact, note that the matrix used to define the signature of M is nonsingular, so
o(M) is an odd number since dim H%(M;Q) is odd.

It suffices to show that the signature is also even. Since M is 4-connected, we have
mi(M) = 0 for i = 3,4. Hurewicz theorem implies H;(M;Q) = 0 for i = 3,4. Then
Universal coefficient theorem implies

0 — 0 = Extg(Hs(M;Q);Q) — H*(M;Q) — Homg(Ha(M;Q); Q) = 0 — 0.
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So H*(M;Q) = 0 and then p1[M] = 0. Hence, L[M] = (L3(p1, p2, p3), h12) = %pg[M],
which is an integer. As 62 and 945 are coprime, we see that 945 divides ps[M] and L[M]
is even. Signature theorem says that o(M) = L[M] is even, which is a contradiction.

Example 2.11. The Pontrjagin number p;[M?] is divisible by 3, and the Pontrjagin
number 7ps[M8] — pi[M?®] is divisible by 45. If M® is 4-connected, then po[M®] is
divisible by 45.
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