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Organization of the talk

@ Definition of the oriented cobordism groups €2,

@ Isomorphism between Q,, and a certain homotopy
group 7,4 (T(5%), to)
o Isomorphism 7,4k (T(5%), to) ® Q =2 H,(Gri(R®)) ® Q.
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Oriented Cobordism
We assume all manifolds to be smooth, compact and oriented.
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Oriented Cobordism

We assume all manifolds to be smooth, compact and oriented.

Definition

A cobordism between two n-dim. manifolds M; and M is an

(n+ 1)-dim. manifold with boundary W together with an orientation
preserving diffeomorphism W = My LI (—M,).

Two manifolds are said to be cobordant if there is a coboridsm between
them.
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Oriented Cobordism
Being cobordant is an equivalence relation on the class of manifolds.
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Oriented Cobordism
Being cobordant is an equivalence relation on the class of manifolds.

@ Reflexive: d(M x [0,1]) = M U (—M)
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Oriented Cobordism
Being cobordant is an equivalence relation on the class of manifolds.

@ Reflexive: d(M x [0,1]) = M U (—M)
e Symmetric: 9(—W) = —0W = (—M;) U M,
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Oriented Cobordism
Being cobordant is an equivalence relation on the class of manifolds.

@ Reflexive: d(M x [0,1]) = M U (—M)

e Symmetric: 9(—W) = —0W = (—M;) U M,

@ Transitive: For W; cobordism between M; and M,, W5 cobordism
between M, and Mj3 use collar neighborhood theorem for gluing Wy
and W, along M,
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Oriented Cobordism

Definition

Let 2, be the set of cobordism classes of n-dimensional manifolds.
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Oriented Cobordism

Definition

Let 2, be the set of cobordism classes of n-dimensional manifolds.

The disjoint union induces a map 2, x Q, — Q, turning Q, into an
abelian group. This group is called the n-th oriented cobordism group.
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Oriented Cobordism

Definition

Let 2, be the set of cobordism classes of n-dimensional manifolds.

The disjoint union induces a map 2, x Q, — Q, turning Q, into an
abelian group. This group is called the n-th oriented cobordism group.

For W cobordism between M;, M, and N another n-dim. manifold, then
W U N x [0,1] is cobordism between My LI N and M, LI N. O

4
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.
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Oriented Cobordism

Lemma

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

| A
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

’

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

Example

A
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

’

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

Example

@ (g = Z. Spanned by point with positive orientation.

A
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

’

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

Example

@ (g = Z. Spanned by point with positive orientation.
e Q; = 0. St is boundary of D?

A
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

’

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

Example

@ (g = Z. Spanned by point with positive orientation.
e Q; = 0. St is boundary of D?
e O, =2 0. S? and genus g surfaces bound

A
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

’

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

Example

@ (g = Z. Spanned by point with positive orientation.
0, 220. S is boundary of D?

0, =2 0. S? and genus g surfaces bound

Q3 = 0. (Rohlin, 1951)

A
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Oriented Cobordism

The product induces a map Q. X 2, — Qi turning Q. into a graded
commutative ring. It is called the oriented cobordism ring.

’

For W cobordism between M; and M, W x N is cobordism between
My x N and M, x N because O(W x N) = (My x N)U (=My x N) O

Example
@ (g = Z. Spanned by point with positive orientation.
0, 220. S is boundary of D?
0, =2 0. S? and genus g surfaces bound
Q3 = 0. (Rohlin, 1951)
Q4 =2 Z. Spanned by CP?

A
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i1, ..., Ix) ranges over all partitions of r, the manifolds
CP?1 x ... x CP?«

represent linearly independent elements of Q..
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i, ..., Ix) ranges over all partitions of r, the manifolds
CP?1 x ... x CP?«

represent linearly independent elements of Q..

Proof.

Follows immediatly from the facts that

O
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i, ..., Ix) ranges over all partitions of r, the manifolds
CP?1 x ... x CP?«

represent linearly independent elements of Q..

Proof.
Follows immediatly from the facts that
@ Pontryagin numbers are additive, i.e. p;(M)+ p;(N) = p;(M U N).

O
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i, ..., Ix) ranges over all partitions of r, the manifolds
CP?1 x ... x CP?«

represent linearly independent elements of Q..

Proof.
Follows immediatly from the facts that
@ Pontryagin numbers are additive, i.e. p;(M)+ p;(N) = p;(M U N).

o All Pontryagin numbers of the boundary of a (4r + 1)-dimensional
manifold are 0.

O
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i, ..., Ix) ranges over all partitions of r, the manifolds
CP?1 x ... x CP?«

represent linearly independent elements of Q..

Proof.
Follows immediatly from the facts that
@ Pontryagin numbers are additive, i.e. p;(M)+ p;(N) = p;(M U N).

o All Pontryagin numbers of the boundary of a (4r + 1)-dimensional
manifold are 0.

@ Pontryagin numbers define a group homomorphism Q,, — ZP(")

O
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Cobordism classes of complex projective spaces

Theorem (Pontryagin)

As (i, ..., Ix) ranges over all partitions of r, the manifolds
CP?1 x ... x CP?«

represent linearly independent elements of Q..

Proof.
Follows immediatly from the facts that
@ Pontryagin numbers are additive, i.e. p;(M)+ p;(N) = p;(M U N).

o All Pontryagin numbers of the boundary of a (4r + 1)-dimensional
manifold are 0.

@ Pontryagin numbers define a group homomorphism Q,, — ZP(")
@ The above manifolds have linearly independent Pontryagin numbers
O
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The Thom Space of a Euclidean Vector Bundle

Definition

Let £ be a k-dim. Euclidean vector bundle. Let A C E(§) be the subset
of all vectors v with |v| > 1. The Thom space T (&) of £ is defined as
E(&)/A. Let ty denote the canonical base point.
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The Thom Space of a Euclidean Vector Bundle

Let £ be a k-dim. Euclidean vector bundle. Let A C E(§) be the subset

of all vectors v with |v| > 1. The Thom space T (&) of £ is defined as
E(&)/A. Let ty denote the canonical base point.

If £ has a compact base space, then T () is homeomorphic to the
one-point-compactification of E(¢).
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The Thom Space of a Euclidean Vector Bundle

Let £ be a k-dim. Euclidean vector bundle. Let A C E(§) be the subset

of all vectors v with |v| > 1. The Thom space T (&) of £ is defined as
E(&)/A. Let ty denote the canonical base point.

If £ has a compact base space, then T () is homeomorphic to the
one-point-compactification of E(¢).

Extend the E(§) — A — E(§),v — v/(1 —|v|) to a map
T(§) = E(§) U {oo}. O
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Theorem of Thom

Definition

Let 7% denote the universal oriented k-bundle over Grk(Rm).
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Theorem of Thom

Definition

Let 5% denote the universal oriented k-bundle over Grj(R>).

Theorem (Thom, 1954)

There is an isomorphism 7,1 (T(5%), to) = Q, for k > n+ 2.
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The Thom-Pontryagin Construction:

a: Q, = Tk T(55), to)

e For [M] € Q,, choose an embedding M — Rk,
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The Thom-Pontryagin Construction:

a: Q, = Tk T(55), to)

e For [M] € Q,, choose an embedding M — Rk,

@ Choose tubular neighborhood M in Rk je. extend embedding to
embedding i: E(vpy) < Rk
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The Thom-Pontryagin Construction:

a: Q, = Tk T(55), to)

e For [M] € Q,, choose an embedding M — Rk,

@ Choose tubular neighborhood M in Rk je. extend embedding to
embedding i: E(vpy) < Rk

o Get Thom-Pontryagin collapse map S"™* = R™k U {o0} — T(vu)
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The Thom-Pontryagin Construction:

a: Q, = Tk T(55), to)

e For [M] € Q,, choose an embedding M — Rk,
@ Choose tubular neighborhood M in Rk je. extend embedding to
embedding i: E(vpy) < Rk
o Get Thom-Pontryagin collapse map S"™* = R™k U {o0} — T(vu)
o it i(E(vm)) — E(vm) C T(vm) on i(E(vm))
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The Thom-Pontryagin Construction:

a: Q, = Tk T(55), to)

e For [M] € Q,, choose an embedding M — Rk,
@ Choose tubular neighborhood M in Rk je. extend embedding to
embedding i: E(vpy) < Rk
o Get Thom-Pontryagin collapse map S"™* = R™k U {o0} — T(vu)
o it i(E(vm)) — E(vm) C T(vm) on i(E(vm))
e oo outside tubular neighborhood
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The Thom-Pontryagin Construction:

a: Q, = Tk T(55), to)

e For [M] € Q,, choose an embedding M — Rk,
@ Choose tubular neighborhood M in Rk je. extend embedding to
embedding i: E(vpy) < Rk
o Get Thom-Pontryagin collapse map S"™* = R™k U {o0} — T(vu)
o it i(E(vm)) — E(vm) C T(vm) on i(E(vm))
e oo outside tubular neighborhood

o Define a([M]) = [f] where f: S™k — T(vp) 225 T(5K)
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings M — R"* are
isotopic if k > n+ 2.
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.
Independence of choice of embedding: Two embeddings M — R"* are
isotopic if k > n+ 2.
Independence of choice of M.

@ « additive
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.
Independence of choice of embedding: Two embeddings M — R"* are
isotopic if k > n+ 2.
Independence of choice of M.

@ « additive

o Let W be (n+ 1)-dim. manifold with boundary. Want to show:

Thom-Pontryagin collapse map of 9W null-homotopic
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.
Independence of choice of embedding: Two embeddings M — R"* are
isotopic if k > n+ 2.
Independence of choice of M.

@ « additive

o Let W be (n+ 1)-dim. manifold with boundary. Want to show:

Thom-Pontryagin collapse map of 9W null-homotopic
e Embedding OW — Stk extends to neat embedding W < D"k+1
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.
Independence of choice of embedding: Two embeddings M — R"* are
isotopic if k > n+ 2.
Independence of choice of M.
@ « additive
o Let W be (n+ 1)-dim. manifold with boundary. Want to show:
Thom-Pontryagin collapse map of 9W null-homotopic
e Embedding OW — Stk extends to neat embedding W < D"k+1
e Intersection of S" and a tubular neighborhood of W in D"tk*1 js
a tubular neighborhood of OW in Stk
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Well-definiteness of a:: Q, — 7,k (T(5%), to)

Independence of choice of tubular neighborhood: Any two tubular
neighborhoods are isotopic.
Independence of choice of embedding: Two embeddings M — R"* are
isotopic if k > n+ 2.
Independence of choice of M.

@ « additive

o Let W be (n+ 1)-dim. manifold with boundary. Want to show:
Thom-Pontryagin collapse map of 9W null-homotopic
Embedding OW — S™k extends to neat embedding W s D"k+1
Intersection of S"¥ and a tubular neighborhood of W in D"tk+1 js
a tubular neighborhood of OW in Stk
Use Thom-Pontryagin construction for W:

(]

Sn+k — T(I/aw)

N
T(5)
e

DR s T(uy)
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The inverse map 3: mo k(T (5%), to) — Q.

o How do we get back M from the map f: S"** — T(5) representing
a([M])? Solution: M = f~1(Gr,(R*°)) (inverse of the zero-section).
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The inverse map 3: mo k(T (5%), to) — Q.

o How do we get back M from the map f: S"** — T(5) representing
a([M])? Solution: M = f~1(Gr,(R*°)) (inverse of the zero-section).

o Idea: For f: S"™k — T(5%): B([f]) = F1(Gri(R>)).
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The inverse map 3: mo k(T (5%), to) — Q.

o How do we get back M from the map f: S"** — T(5) representing
a([M])? Solution: M = f~1(Gr,(R*°)) (inverse of the zero-section).

o Idea: For f: S"™k — T(5%): B([f]) = F1(Gri(R>)).
@ Problem: f~1(Gr,(R>)) does not need to be a manifold (even if f
is smooth!)
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The inverse map 3: mo k(T (5%), to) — Q.

o How do we get back M from the map f: S"** — T(5) representing
a([M])? Solution: M = f~1(Gr,(R*°)) (inverse of the zero-section).

o Idea: For f: S"™k — T(5%): B([f]) = F1(Gri(R>)).

@ Problem: f~1(Gr,(R>)) does not need to be a manifold (even if f
is smooth!)

© Need transversality.
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Sard's Theorem

Definition

Let f: M — N be a smooth map. A point y € N is a regular value of f if
for all x € f~1(y), the map T,f: T,M — T,N is surjective.

Branko Juran Thom Spaces and the Oriented Cobordism Ring



Sard's Theorem

Let f: M — N be a smooth map. A point y € N is a regular value of f if
for all x € f~1(y), the map T,f: T,M — T,N is surjective.

v

Theorem (Sard)

Let f: M — N be a smooth map. The set of regular values of f is dense
in N.

v

Branko Juran Thom Spaces and the Oriented Cobordism Ring



Transversality

Definition

Let M, N be manifolds, X a subset of M and Y a submanifold of N. A
smooth function f: M — N is transverse to Y throughout X if

.M 25 Tr)N = TroyN/ Trx Y s surjective for all x € F=1(Y) N X.
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Transversality

Let M, N be manifolds, X a subset of M and Y a submanifold of N. A
smooth function f: M — N is transverse to Y throughout X if

.M R TroyN — TeyN/ T(x) Y is surjective for all x € f~HY)nX.

If f: M — N is transverse to Y C N, then f~1(Y') is a smooth manifold.
The normal bundle of Y in N pulls back to the normal bundle of f=1(Y)
in M. In particular, f=(Y') inherits an orientation from an orientation on
M and an orientation of the normal bundle of Y in N.

<
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Transversality

Let M, N be manifolds, X a subset of M and Y a submanifold of N. A
smooth function f: M — N is transverse to Y throughout X if

.M R TroyN — TeyN/ T(x) Y is surjective for all x € f~HY)nX.

If f: M — N is transverse to Y C N, then f~1(Y') is a smooth manifold.
The normal bundle of Y in N pulls back to the normal bundle of f=1(Y)
in M. In particular, f~X(Y) inherits an orientation from an orientation on
M and an orientation of the normal bundle of Y in N.

If o is a local defining function for Y in N, then ¢ o f is one for f~1(Y)
in M. OJ

v
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Thom's Transversality Theorem

Lemma

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

Branko Juran Thom Spaces and the Oriented Cobordism Ring



Thom's Transversality Theorem

Lemma

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset
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Thom's Transversality Theorem

Lemma

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset
o Origin regular value throughout X U K
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Thom's Transversality Theorem

Lemma

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset
o Origin regular value throughout X U K
o |f(x)—g(x)| <e
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Thom's Transversality Theorem

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset
o Origin regular value throughout X U K

° |f(x) —g(x)| <e

O
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Thom's Transversality Theorem

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset
o Origin regular value throughout X U K

° |f(x) —g(x)| <e

o Construct map A\: W — [0, 1] such that A\(x) =1 in a neighborhood
of K and )\ vanishes outside compact set.

O
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Thom's Transversality Theorem

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset

o Origin regular value throughout X U K
o |f(x) —g(x)| <e

o Construct map A\: W — [0, 1] such that A\(x) =1 in a neighborhood
of K and )\ vanishes outside compact set.

@ Set g(x) = f(x) — A(x)y for y regular value of f and |y| < ¢

O
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Thom's Transversality Theorem

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset

o Origin regular value throughout X U K
o |f(x) —g(x)| <e

o Construct map A\: W — [0, 1] such that A\(x) =1 in a neighborhood
of K and )\ vanishes outside compact set.

@ Set g(x) = f(x) — A(x)y for y regular value of f and |y| < ¢
e If g(x) =0 for x € K, then f(x) =y = T,f=T,g full rank at x

O
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Thom's Transversality Theorem

Let W C R™ open subset, f: W — R¥ smooth, origin regular value
throughout closed subset X C W, K a compact subset of W and € > 0.
There exists smooth g: W — R¥ such that

e f = g outside compact subset

o Origin regular value throughout X U K
o |f(x) —g(x)| <e

o Construct map A\: W — [0, 1] such that A\(x) =1 in a neighborhood
of K and )\ vanishes outside compact set.

@ Set g(x) = f(x) — A(x)y for y regular value of f and |y| < ¢
e If g(x) =0 for x € K, then f(x) =y = T,f=T,g full rank at x

@ We can choose partial derivatives of f and g uniformly close to each
other = origin regular value throughout X 0
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Thom's Transversality Theorem

Every map 5Am — T(&) is homotopic to a map f which is smooth
throughout f~*(T(§) — to) and transverse to the zero-section.
The map ok (T(€), to) — Qn, f = [FH(B(E))] is well-defined.
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

Branko Juran Thom Spaces and the Oriented Cobordism Ring



Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

o Cover fy *(B) by compacts K; C W; (1 < i < k) such that

f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU--- UK,
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

o Cover fy *(B) by compacts K; C W; (1 < i < k) such that
f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU---U Kk

e Obtain f = f; by inductively define maps f;: S™ — T(&) smooth
throughout (T — to) = f; *(T — t) such that
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f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU--- UK
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throughout (T — to) = f; *(T — t) such that

e fi = fi_1 outside compact subset of W;
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

o Cover fy *(B) by compacts K; C W; (1 < i < k) such that
f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU--- UK

e Obtain f = f; by inductively define maps f;: S™ — T(&) smooth
throughout (T — to) = f; *(T — t) such that

e fi = fi_1 outside compact subset of W;
o fi transverse to B throughout K1 U - - U K;
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

o Cover fy *(B) by compacts K; C W; (1 < i < k) such that
f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU--- UK

e Obtain f = f; by inductively define maps f;: S™ — T(&) smooth
throughout (T — to) = f; *(T — t) such that

e fi = fi_1 outside compact subset of W;

o fi transverse to B throughout K1 U - - U K;
e fofy=Eof on fo_l(T—to)
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

o Cover fy *(B) by compacts K; C W; (1 < i < k) such that
f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU--- UK

e Obtain f = f; by inductively define maps f;: S™ — T(&) smooth
throughout (T — to) = f; *(T — t) such that

e fi = fi_1 outside compact subset of W;

o fi transverse to B throughout K1 U - - U K;
e fofy=Eof on fo_l(T—to)

o [i(x) — s (x)] < c/k
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Thom's Transversality Theorem

Existence.

@ Approximate f by fy, smooth throughout fo_l(T — tp)

e Cover fo_l(B) by opens W, ..., Wy, images contained in local
trivialization of vector bundle &

o Cover fo_l(B) by compacts K; C W; (1 < i < k) such that
f;1(B) Cint(KiU---UKk). = |fo(x)| > ¢ > 0 outside
KiU--- UK

e Obtain f = f; by inductively define maps f;: S™ — T(&) smooth
throughout (T — to) = f; *(T — t) such that

e fi = fi_1 outside compact subset of W;

o fi transverse to B throughout K1 U - - U K;
e fofy=Eof on fo_l(T—to)

o [fi(x) — fia(x)| < c/k

e Use coordinates U; x R¥ 22 ¢71(U;) D fo(W;): Need to construct
map filw,: W; — U; x R¥ transversal to U; throughout
(K1U---UK;_1) UK;. First coordinate given by third condition.
Second coordinate given by lemma.
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Thom's Transversality Theorem

Independence of #~1(B) representative.
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Thom's Transversality Theorem

Independence of #~1(B) representative.

@ Given two homotopic maps f and £, choose homotopy
ho: S™ X [O 3] = T(&), smooth throughout he 1 (T — to),
ho(x, t) = A (x) for t <1 and ho(x, t) = fa(x) for t > 2.
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Thom's Transversality Theorem

Independence of #~1(B) representative.

@ Given two homotopic maps f and £, choose homotopy
ho: S™ X [O 3] = T(&), smooth throughout he 1 (T — to),
ho(x, t) = A (x) for t <1 and ho(x, t) = fa(x) for t > 2.

e Construct new homotopy h: S™ x [0,3] — T(&) which coincides
with hg outside compact subset of S™ x (0, 3), transverse to B.
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Thom's Transversality Theorem

Independence of #~1(B) representative.

@ Given two homotopic maps f and £, choose homotopy
ho: S™ X [O 3] = T(&), smooth throughout he 1 (T — to),
ho(x, t) = A (x) for t <1 and ho(x, t) = fa(x) for t > 2.

e Construct new homotopy h: S™ x [0,3] — T(&) which coincides
with hg outside compact subset of S™ x (0, 3), transverse to B.

o h™(B) is cobordism between f,"*(B) and £, *(B)
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Proof of Thom's Theorem

The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.
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Proof of Thom's Theorem

The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.
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Proof of Thom's Theorem

The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.

@ Clear: o« =id (recall motivation for map 3)
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B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.

@ Clear: o« =id (recall motivation for map 3)

o Let f: S"*% — T(5*) represent element of m, (T (5%), to).
Assume that f is transverse to Gry(R>).
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The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.

@ Clear: o« =id (recall motivation for map 3)

o Let f: S"*% — T(5*) represent element of m, (T (5%), to).
Assume that f is transverse to Gry(R>).

@ Choose tubular neighborhood U of M = £~1(Gr,(R>)) and disc
subbundle D C U.
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Proof of Thom's Theorem

The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.

@ Clear: o« =id (recall motivation for map 3)

o Let f: S"*% — T(5*) represent element of m, (T (5%), to).
Assume that f is transverse to Gry(R>).

@ Choose tubular neighborhood U of M = £~1(Gr,(R>)) and disc
subbundle D C U.

@ Input 1: f transverse to B = f homotopic to a map
®: Sk — T(5*) which restricts to a bundle map on D
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Proof of Thom's Theorem

The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.

@ Clear: o« =id (recall motivation for map 3)

o Let f: S"*% — T(5*) represent element of m, (T (5%), to).
Assume that f is transverse to Gry(R>).

@ Choose tubular neighborhood U of M = £~1(Gr,(R>)) and disc
subbundle D C U.

@ Input 1: f transverse to B = f homotopic to a map
®: Sk — T(5*) which restricts to a bundle map on D

e ®|p: D — E(5¥) is differential of f at M. Homotopic to f|p via
homotopy h:(x) = f(tx)/t.

O
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Proof of Thom's Theorem

The Thom-Pontryagin construction a: Q, — Tok(T(55), to) and
B: Tnik(T(F5), to) = Qan, = F1(Gre(R>)) are mutually inverses.

@ Clear: o« =id (recall motivation for map 3)

o Let f: S"*% — T(5*) represent element of m, (T (5%), to).
Assume that f is transverse to Gry(R>).

@ Choose tubular neighborhood U of M = £~1(Gr,(R>)) and disc
subbundle D C U.

@ Input 1: f transverse to B = f homotopic to a map
®: Sk — T(5*) which restricts to a bundle map on D

e ®|p: D — E(5¥) is differential of f at M. Homotopic to f|p via
homotopy h:(x) = f(tx)/t.

@ Input 2: The Thom-Pontryagin collapse map and ¢ agree on D and
they map §”+k —int (D) to the contractible space
T(7%) — Grg(R>®) = they are homotopic O
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Topology of the Thom space

If the base space B of & admits a CW-structure, then T(§) admits a
(k — 1)-connected CW-structure where the (n + k)-cells correspond
one-to-one to n-cells of B (and one additional base point).
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Topology of the Thom space

If the base space B of & admits a CW-structure, then T(§) admits a
(k — 1)-connected CW-structure where the (n + k)-cells correspond
one-to-one to n-cells of B (and one additional base point).

Preimage of open n-cells in B under & are open (n + k)-cells in E. O
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Homotopy and Homology groups modulo C

Definition

Let C C Ab denote the class of all finite abelian groups. A map f: A— B
of abelian groups is a C-isomorphism if ker(f) € C and coker(f) € C.
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Homotopy and Homology groups modulo C

Definition

Let C C Ab denote the class of all finite abelian groups. A map f: A— B
of abelian groups is a C-isomorphism if ker(f) € C and coker(f) € C.

Let X be finite (k — 1)-connected CW-complex for an integer k > 2. The
Hurewicz morphism m,(X, x0) — Hn(X) is a C-isomorphism for
n<2k—1.

Branko Juran Thom Spaces and the Oriented Cobordism Ring



C-isomorphism 7,( T(£), to) — Ha_«(B(£))

There is a C-isomorphism: 7p k(T (§), to) — Hp(B(§)) in degree
n<k-—1
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C-isomorphism 7,( T(£), to) — Ha_«(B(£))

Corollary

There is a C-isomorphism: 7p k(T (§), to) — Hp(B(§)) in degree
n<k—1.

o Generalized Hurewicz: There is C-isomorphism
Tntk(T(E), to) = Hnri(T(£))

@ Let Ty denote the complement of the zero-section in T(&). Since Ty
is contractible: H, k(T (§)) = Hpik(T (), To). By Excision:
Hoik(T(E), To) = Hork(E(E), Ep). Thom isomorphism:

Hn+k(E(£), Eo) = Ha(B())-
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Description of 2,
Theorem (Thom, 1954)

The oriented cobordism group Q, is finite for 4 4 n and finitely generated
of rank p(r) (numbers of partitions of r) if n = 4r.

o We know that Q, = 7, (T (5%), to) for k >0
o There is a C-isomorphism 7, «(T(5%), to) = Ha(Gri(R>)).

@ This group is finite for 4 1 n and finitely generated of rank p(r)
(number of partitions) if n = 4r.

A

Corollary

The graded ring Q. ® Q is a polynomial algebra over Q with linearly
independent generators CP?,CP* CP®, . ...
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Classification of oriented boundaries

Corollary

The multiple of an n-dimensional manifold M is diffeomorphic to an
oriented boundary if and only if all Pontrjagin numbers vanish.

Theorem (Wall, 1960)
An n-dimensional manifold M is an oriented boundary if and only if all
Pontrjagin numbers and all Stiefel-Whitney classes vanish.
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