Thom Spaces and the Oriented Cobordism Ring

Branko Juran

2020-5-20

Organization of the talk

ullet Definition of the oriented cobordism groups Ω_n

Organization of the talk

- Definition of the oriented cobordism groups Ω_n
- Isomorphism between Ω_n and a certain homotopy group $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$

Organization of the talk

- Definition of the oriented cobordism groups Ω_n
- Isomorphism between Ω_n and a certain homotopy group $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$
- Isomorphism $\pi_{n+k}(T(\tilde{\gamma}^k), t_0) \otimes \mathbb{Q} \cong H_n(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty})) \otimes \mathbb{Q}$.

Convention

We assume all manifolds to be smooth, compact and oriented.

Convention

We assume all manifolds to be smooth, compact and oriented.

Definition

A cobordism between two n-dim. manifolds M_1 and M_2 is an (n+1)-dim. manifold with boundary W together with an orientation preserving diffeomorphism $\partial W \cong M_1 \sqcup (-M_2)$.

Two manifolds are said to be *cobordant* if there is a coboridsm between them.

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

• Reflexive: $\partial (M \times [0,1]) \cong M \sqcup (-M)$

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

- Reflexive: $\partial(M \times [0,1]) \cong M \sqcup (-M)$
- Symmetric: $\partial(-W) \cong -\partial W \cong (-M_1) \sqcup M_2$

Lemma

Being cobordant is an equivalence relation on the class of manifolds.

Proof.

- Reflexive: $\partial(M \times [0,1]) \cong M \sqcup (-M)$
- Symmetric: $\partial(-W) \cong -\partial W \cong (-M_1) \sqcup M_2$
- Transitive: For W_1 cobordism between M_1 and M_2 , W_2 cobordism between M_2 and M_3 use collar neighborhood theorem for gluing W_1 and W_2 along M_2

Definition

Let Ω_n be the set of cobordism classes of *n*-dimensional manifolds.

Definition

Let Ω_n be the set of cobordism classes of *n*-dimensional manifolds.

Lemma

The disjoint union induces a map $\Omega_n \times \Omega_n \to \Omega_n$ turning Ω_n into an abelian group. This group is called the n-th oriented cobordism group.

Definition

Let Ω_n be the set of cobordism classes of *n*-dimensional manifolds.

Lemma

The disjoint union induces a map $\Omega_n \times \Omega_n \to \Omega_n$ turning Ω_n into an abelian group. This group is called the n-th oriented cobordism group.

Proof.

For W cobordism between M_1 , M_2 and N another n-dim. manifold, then $W \sqcup N \times [0,1]$ is cobordism between $M_1 \sqcup N$ and $M_2 \sqcup N$.

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

Example

• $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- ullet $\Omega_1\cong 0.$ S^1 is boundary of D^2

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- ullet $\Omega_1\cong 0.$ S^1 is boundary of D^2
- ullet $\Omega_2\cong 0.$ S^2 and genus g surfaces bound

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- $\Omega_1 \cong 0$. S^1 is boundary of D^2
- $\Omega_2 \cong 0$. S^2 and genus g surfaces bound
- $\Omega_3 \cong 0$. (Rohlin, 1951)

Lemma

The product induces a map $\Omega_m \times \Omega_n \to \Omega_{m+n}$ turning Ω_* into a graded commutative ring. It is called the oriented cobordism ring.

Proof.

For W cobordism between M_1 and M_2 , $W \times N$ is cobordism between $M_1 \times N$ and $M_2 \times N$ because $\partial(W \times N) \cong (M_1 \times N) \sqcup (-M_2 \times N)$

- $\Omega_0 \cong \mathbb{Z}$. Spanned by point with positive orientation.
- $\Omega_1 \cong 0$. S^1 is boundary of D^2
- $\Omega_2 \cong 0$. S^2 and genus g surfaces bound
- $\Omega_3 \cong 0$. (Rohlin, 1951)
- $\Omega_4 \cong \mathbb{Z}$. Spanned by $\mathbb{C}P^2$

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

$$\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$$

represent linearly independent elements of Ω_{4r} .

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

$$\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$$

represent linearly independent elements of Ω_{4r} .

Proof.

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

$$\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$$

represent linearly independent elements of Ω_{4r} .

Proof.

Follows immediatly from the facts that

• Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

$$\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$$

represent linearly independent elements of Ω_{4r} .

Proof.

- Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.
- All Pontryagin numbers of the boundary of a (4r + 1)-dimensional manifold are 0.

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

$$\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$$

represent linearly independent elements of Ω_{4r} .

Proof.

- Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.
- All Pontryagin numbers of the boundary of a (4r + 1)-dimensional manifold are 0.
- Pontryagin numbers define a group homomorphism $\Omega_{4r} \to \mathbb{Z}^{p(r)}$

Theorem (Pontryagin)

As (i_1, \ldots, i_k) ranges over all partitions of r, the manifolds

$$\mathbb{C}P^{2i_1} \times \cdots \times \mathbb{C}P^{2i_k}$$

represent linearly independent elements of Ω_{4r} .

Proof.

- Pontryagin numbers are additive, i.e. $p_I(M) + p_I(N) = p_I(M \sqcup N)$.
- All Pontryagin numbers of the boundary of a (4r + 1)-dimensional manifold are 0
- ullet Pontryagin numbers define a group homomorphism $\Omega_{4r} o \mathbb{Z}^{p(r)}$
- The above manifolds have linearly independent Pontryagin numbers

The Thom Space of a Euclidean Vector Bundle

Definition

Let ξ be a k-dim. Euclidean vector bundle. Let $A \subset E(\xi)$ be the subset of all vectors v with $|v| \ge 1$. The *Thom space* $T(\xi)$ of ξ is defined as $E(\xi)/A$. Let t_0 denote the canonical base point.

The Thom Space of a Euclidean Vector Bundle

Definition

Let ξ be a k-dim. Euclidean vector bundle. Let $A \subset E(\xi)$ be the subset of all vectors v with $|v| \geq 1$. The *Thom space* $T(\xi)$ of ξ is defined as $E(\xi)/A$. Let t_0 denote the canonical base point.

Remark

If ξ has a compact base space, then $T(\xi)$ is homeomorphic to the one-point-compactification of $E(\xi)$.

The Thom Space of a Euclidean Vector Bundle

Definition

Let ξ be a k-dim. Euclidean vector bundle. Let $A \subset E(\xi)$ be the subset of all vectors v with $|v| \geq 1$. The *Thom space* $T(\xi)$ of ξ is defined as $E(\xi)/A$. Let t_0 denote the canonical base point.

Remark

If ξ has a compact base space, then $T(\xi)$ is homeomorphic to the one-point-compactification of $E(\xi)$.

Proof.

Extend the $E(\xi) - A \to E(\xi)$, $v \mapsto v/(1-|v|)$ to a map $T(\xi) \to E(\xi) \cup \{\infty\}$.

Theorem of Thom

Definition

Let $\tilde{\gamma}^k$ denote the universal oriented k-bundle over $\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty)$.

Theorem of Thom

Definition

Let $\tilde{\gamma}^k$ denote the universal oriented k-bundle over $\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty)$.

Theorem (Thom, 1954)

There is an isomorphism $\pi_{n+k}(T(\tilde{\gamma}^k), t_0) \cong \Omega_n$ for $k \geq n+2$.

The Thom-Pontryagin Construction:

$$\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$$

• For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.

The Thom-Pontryagin Construction:

$$\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i \colon E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$

The Thom-Pontryagin Construction:

$$\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i \colon E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- ullet Get Thom-Pontryagin collapse map $S^{n+k}=\mathbb{R}^{n+k}\cup\{\infty\} o T(
 u_M)$

The Thom-Pontryagin Construction:

$$\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i \colon E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- ullet Get Thom-Pontryagin collapse map $S^{n+k}=\mathbb{R}^{n+k}\cup\{\infty\} o T(
 u_M)$
 - i^{-1} : $i(E(\nu_M)) \to E(\nu_M) \subset T(\nu_M)$ on $i(E(\nu_M))$

The Thom-Pontryagin Construction:

$$\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i \colon E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- ullet Get Thom-Pontryagin collapse map $S^{n+k}=\mathbb{R}^{n+k}\cup\{\infty\} o T(
 u_M)$
 - i^{-1} : $i(E(\nu_M)) \to E(\nu_M) \subset T(\nu_M)$ on $i(E(\nu_M))$
 - ullet ∞ outside tubular neighborhood

The Thom-Pontryagin Construction:

$$\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$$

- For $[M] \in \Omega_n$, choose an embedding $M \hookrightarrow \mathbb{R}^{n+k}$.
- Choose tubular neighborhood M in \mathbb{R}^{n+k} , i.e. extend embedding to embedding $i \colon E(\nu_M) \hookrightarrow \mathbb{R}^{n+k}$
- ullet Get Thom-Pontryagin collapse map $S^{n+k}=\mathbb{R}^{n+k}\cup\{\infty\} o T(
 u_M)$
 - i^{-1} : $i(E(\nu_M)) \to E(\nu_M) \subset T(\nu_M)$ on $i(E(\nu_M))$
 - ullet ∞ outside tubular neighborhood

• Define $\alpha([M]) = [f]$ where $f: S^{n+k} \to T(\nu_M) \xrightarrow{\mathsf{Gauss}} T(\tilde{\gamma}^k)$

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

Independence of choice of M.

 \bullet α additive

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

- ullet α additive
- Let W be (n+1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

- ullet α additive
- Let W be (n+1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic
- Embedding $\partial W \to S^{n+k}$ extends to neat embedding $W \hookrightarrow D^{n+k+1}$

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

- ullet α additive
- Let W be (n+1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic
- Embedding $\partial W \to S^{n+k}$ extends to neat embedding $W \hookrightarrow D^{n+k+1}$
- Intersection of S^{n+k} and a tubular neighborhood of W in D^{n+k+1} is a tubular neighborhood of ∂W in S^{n+k}

Independence of choice of tubular neighborhood: Any two tubular neighborhoods are isotopic.

Independence of choice of embedding: Two embeddings $M \to \mathbb{R}^{n+k}$ are isotopic if $k \ge n+2$.

- ullet α additive
- Let W be (n+1)-dim. manifold with boundary. Want to show: Thom-Pontryagin collapse map of ∂W null-homotopic
- Embedding $\partial W \to S^{n+k}$ extends to neat embedding $W \hookrightarrow D^{n+k+1}$
- Intersection of S^{n+k} and a tubular neighborhood of W in D^{n+k+1} is a tubular neighborhood of ∂W in S^{n+k}
- Use Thom-Pontryagin construction for W:

• How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$ (inverse of the zero-section).

- How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ (inverse of the zero-section).
- Idea: For $f: S^{n+k} \to T(\tilde{\gamma}^k)$: $\beta([f]) = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$.

- How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$ (inverse of the zero-section).
- Idea: For $f: S^{n+k} \to T(\tilde{\gamma}^k)$: $\beta([f]) = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$.
- Problem: $f^{-1}(Gr_k(\mathbb{R}^{\infty}))$ does not need to be a manifold (even if f is smooth!)

- How do we get back M from the map $f: S^{n+k} \to T(\tilde{\gamma}^k)$ representing $\alpha([M])$? Solution: $M = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$ (inverse of the zero-section).
- Idea: For $f: S^{n+k} \to T(\tilde{\gamma}^k)$: $\beta([f]) = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$.
- Problem: $f^{-1}(Gr_k(\mathbb{R}^{\infty}))$ does not need to be a manifold (even if f is smooth!)
- Need transversality.

Sard's Theorem

Definition

Let $f: M \to N$ be a smooth map. A point $y \in N$ is a *regular value* of f if for all $x \in f^{-1}(y)$, the map $T_x f: T_x M \to T_y N$ is surjective.

Sard's Theorem

Definition

Let $f: M \to N$ be a smooth map. A point $y \in N$ is a *regular value* of f if for all $x \in f^{-1}(y)$, the map $T_x f: T_x M \to T_y N$ is surjective.

Theorem (Sard)

Let $f: M \to N$ be a smooth map. The set of regular values of f is dense in N.

Transversality

Definition

Let M,N be manifolds, X a subset of M and Y a submanifold of N. A smooth function $f\colon M\to N$ is *transverse* to Y throughout X if $T_xM\xrightarrow{T_xf}T_{f(x)}N\to T_{f(x)}N/T_{f(x)}Y$ is surjective for all $x\in f^{-1}(Y)\cap X$.

Transversality

Definition

Let M,N be manifolds, X a subset of M and Y a submanifold of N. A smooth function $f: M \to N$ is *transverse* to Y throughout X if $T_xM \xrightarrow{T_xf} T_{f(x)}N \to T_{f(x)}N/T_{f(x)}Y$ is surjective for all $x \in f^{-1}(Y) \cap X$.

Lemma

If $f: M \to N$ is transverse to $Y \subset N$, then $f^{-1}(Y)$ is a smooth manifold. The normal bundle of Y in N pulls back to the normal bundle of $f^{-1}(Y)$ in M. In particular, $f^{-1}(Y)$ inherits an orientation from an orientation on M and an orientation of the normal bundle of Y in N.

Transversality

Definition

Let M,N be manifolds, X a subset of M and Y a submanifold of N. A smooth function $f: M \to N$ is *transverse* to Y throughout X if $T_xM \xrightarrow{T_xf} T_{f(x)}N \to T_{f(x)}N/T_{f(x)}Y$ is surjective for all $x \in f^{-1}(Y) \cap X$.

Lemma

If $f: M \to N$ is transverse to $Y \subset N$, then $f^{-1}(Y)$ is a smooth manifold. The normal bundle of Y in N pulls back to the normal bundle of $f^{-1}(Y)$ in M. In particular, $f^{-1}(Y)$ inherits an orientation from an orientation on M and an orientation of the normal bundle of Y in N.

Proof.

If φ is a local defining function for Y in N, then $\varphi \circ f$ is one for $f^{-1}(Y)$ in M.

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

• f = g outside compact subset

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$
- $|f(x) g(x)| \le \epsilon$

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$
- $|f(x) g(x)| \le \epsilon$

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$
- $|f(x) g(x)| \le \epsilon$

Proof.

• Construct map $\lambda \colon W \to [0,1]$ such that $\lambda(x) = 1$ in a neighborhood of K and λ vanishes outside compact set.

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout X ∪ K
- $|f(x) g(x)| \le \epsilon$

- Construct map $\lambda \colon W \to [0,1]$ such that $\lambda(x) = 1$ in a neighborhood of K and λ vanishes outside compact set.
- Set $g(x) = f(x) \lambda(x)y$ for y regular value of f and $|y| < \varepsilon$

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout $X \cup K$
- $|f(x) g(x)| \le \epsilon$

- Construct map $\lambda \colon W \to [0,1]$ such that $\lambda(x) = 1$ in a neighborhood of K and λ vanishes outside compact set.
- Set $g(x) = f(x) \lambda(x)y$ for y regular value of f and $|y| < \varepsilon$
- If g(x) = 0 for $x \in K$, then $f(x) = y \implies T_x f = T_x g$ full rank at x

Lemma

Let $W \subset \mathbb{R}^m$ open subset, $f: W \to \mathbb{R}^k$ smooth, origin regular value throughout closed subset $X \subset W$, K a compact subset of W and $\varepsilon > 0$. There exists smooth $g: W \to \mathbb{R}^k$ such that

- f = g outside compact subset
- Origin regular value throughout X ∪ K
- $|f(x) g(x)| \le \epsilon$

- Construct map $\lambda \colon W \to [0,1]$ such that $\lambda(x) = 1$ in a neighborhood of K and λ vanishes outside compact set.
- Set $g(x) = f(x) \lambda(x)y$ for y regular value of f and $|y| < \varepsilon$
- If g(x) = 0 for $x \in K$, then $f(x) = y \implies T_x f = T_x g$ full rank at x

Theorem

Every map $S^m \to T(\xi)$ is homotopic to a map \hat{f} which is smooth throughout $\hat{f}^{-1}(T(\xi)-t_0)$ and transverse to the zero-section. The map $\pi_{n+k}(T(\xi),t_0)\to\Omega_n$, $f\mapsto [\hat{f}^{-1}(B(\xi))]$ is well-defined.

Existence.

• Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$
 - $\xi \circ f_0 = \xi \circ f_i$ on $f_0^{-1}(T t_0)$

Existence.

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$
 - $\xi \circ f_0 = \xi \circ f_i$ on $f_0^{-1}(T t_0)$
 - $|f_i(x) f_{i-1}(x)| < c/k$

Existence.

- Approximate f by f_0 , smooth throughout $f_0^{-1}(T-t_0)$
- Cover $f_0^{-1}(B)$ by opens W_1, \ldots, W_k , images contained in local trivialization of vector bundle ξ
- Cover $f_0^{-1}(B)$ by compacts $K_i \subset W_i$ $(1 \le i \le k)$ such that $f_0^{-1}(B) \subset \operatorname{int}(K_1 \cup \cdots \cup K_k)$. $\Longrightarrow |f_0(x)| \ge c > 0$ outside $K_1 \cup \cdots \cup K_k$
- Obtain $\hat{f} = f_k$ by inductively define maps $f_i : S^m \to T(\xi)$ smooth throughout $f_i^{-1}(T t_0) = f_0^{-1}(T t_0)$ such that
 - $f_i = f_{i-1}$ outside compact subset of W_i
 - f_i transverse to B throughout $K_1 \cup \cdots \cup K_i$
 - $\xi \circ f_0 = \xi \circ f_i$ on $f_0^{-1}(T t_0)$
 - $|f_i(x) f_{i-1}(x)| < c/k$
- Use coordinates $U_i \times \mathbb{R}^k \cong \xi^{-1}(U_i) \supset f_0(W_i)$: Need to construct map $f_i|_{W_i} \colon W_i \to U_i \times \mathbb{R}^k$ transversal to U_i throughout $(K_1 \cup \cdots \cup K_{i-1}) \cup K_i$. First coordinate given by third condition. Second coordinate given by lemma.

Independence of $\hat{f}^{-1}(B)$ representative.

Independence of $\hat{f}^{-1}(B)$ representative.

• Given two homotopic maps \hat{f}_1 and \hat{f}_2 , choose homotopy $h_0: S^m \times [0,3] \to T(\xi)$, smooth throughout $h_0^{-1}(T-t_0)$, $h_0(x,t) = \hat{f}_1(x)$ for $t \le 1$ and $h_0(x,t) = \hat{f}_2(x)$ for $t \ge 2$.

Independence of $\hat{f}^{-1}(B)$ representative.

- Given two homotopic maps \hat{f}_1 and \hat{f}_2 , choose homotopy $h_0 \colon S^m \times [0,3] \to T(\xi)$, smooth throughout $h_0^{-1}(T-t_0)$, $h_0(x,t) = \hat{f}_1(x)$ for $t \le 1$ and $h_0(x,t) = \hat{f}_2(x)$ for $t \ge 2$.
- Construct new homotopy $h: S^m \times [0,3] \to T(\xi)$ which coincides with h_0 outside compact subset of $S^m \times (0,3)$, transverse to B.

Independence of $\hat{f}^{-1}(B)$ representative.

- Given two homotopic maps \hat{f}_1 and \hat{f}_2 , choose homotopy $h_0: S^m \times [0,3] \to T(\xi)$, smooth throughout $h_0^{-1}(T-t_0)$, $h_0(x,t) = \hat{f}_1(x)$ for $t \le 1$ and $h_0(x,t) = \hat{f}_2(x)$ for $t \ge 2$.
- Construct new homotopy $h: S^m \times [0,3] \to T(\xi)$ which coincides with h_0 outside compact subset of $S^m \times (0,3)$, transverse to B.
- $h^{-1}(B)$ is cobordism between $\hat{f}_1^{-1}(B)$ and $\hat{f}_2^{-1}(B)$

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$ are mutually inverses.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

Proof.

• Clear: $\beta \circ \alpha = id$ (recall motivation for map β)

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^{\infty})$.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^{\infty})$.
- Choose tubular neighborhood U of $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^{\infty}))$ and disc subbundle $D \subset U$.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^{\infty})$.
- Choose tubular neighborhood U of $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^{\infty}))$ and disc subbundle $D \subset U$.
- **Input 1:** f transverse to $B \implies f$ homotopic to a map $\Phi \colon S^{n+k} \to T(\tilde{\gamma}^k)$ which restricts to a bundle map on D

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^{\infty})$.
- Choose tubular neighborhood U of $M = f^{-1}(\tilde{Gr}_k(\mathbb{R}^{\infty}))$ and disc subbundle $D \subset U$.
- **Input 1:** f transverse to $B \implies f$ homotopic to a map $\Phi \colon S^{n+k} \to T(\tilde{\gamma}^k)$ which restricts to a bundle map on D
- $\Phi|_D \colon D \to E(\tilde{\gamma}^k)$ is differential of f at M. Homotopic to $f|_D$ via homotopy $h_t(x) = f(tx)/t$.

Theorem

The Thom-Pontryagin construction $\alpha \colon \Omega_n \to \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ and $\beta \colon \pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to \Omega_n, f \mapsto \hat{f}^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^\infty))$ are mutually inverses.

- Clear: $\beta \circ \alpha = id$ (recall motivation for map β)
- Let $f: S^{n+k} \to T(\tilde{\gamma}^k)$ represent element of $\pi_{n+k}(T(\tilde{\gamma}^k), t_0)$. Assume that f is transverse to $\tilde{Gr}_k(\mathbb{R}^{\infty})$.
- Choose tubular neighborhood U of $M = f^{-1}(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$ and disc subbundle $D \subset U$.
- **Input 1:** f transverse to $B \implies f$ homotopic to a map $\Phi \colon S^{n+k} \to T(\tilde{\gamma}^k)$ which restricts to a bundle map on D
- $\Phi|_D \colon D \to E(\tilde{\gamma}^k)$ is differential of f at M. Homotopic to $f|_D$ via homotopy $h_t(x) = f(tx)/t$.
- Input 2: The Thom-Pontryagin collapse map and Φ agree on D and they map $S^{n+k} \operatorname{int}(D)$ to the contractible space $T(\tilde{\gamma}^k) \tilde{\operatorname{Gr}}_k(\mathbb{R}^{\infty}) \implies$ they are homotopic \square

Topology of the Thom space

Lemma

If the base space B of ξ admits a CW-structure, then $T(\xi)$ admits a (k-1)-connected CW-structure where the (n+k)-cells correspond one-to-one to n-cells of B (and one additional base point).

Topology of the Thom space

Lemma

If the base space B of ξ admits a CW-structure, then $T(\xi)$ admits a (k-1)-connected CW-structure where the (n+k)-cells correspond one-to-one to n-cells of B (and one additional base point).

Proof.

Preimage of open n-cells in B under ξ are open (n+k)-cells in E.

Homotopy and Homology groups modulo ${\mathcal C}$

Definition

Let $\mathcal{C} \subset \mathsf{Ab}$ denote the class of all finite abelian groups. A map $f \colon A \to B$ of abelian groups is a \mathcal{C} -isomorphism if $\ker(f) \in \mathcal{C}$ and $\operatorname{coker}(f) \in \mathcal{C}$.

Homotopy and Homology groups modulo ${\mathcal C}$

Definition

Let $\mathcal{C} \subset \mathsf{Ab}$ denote the class of all finite abelian groups. A map $f \colon A \to B$ of abelian groups is a \mathcal{C} -isomorphism if $\ker(f) \in \mathcal{C}$ and $\operatorname{coker}(f) \in \mathcal{C}$.

Theorem

Let X be finite (k-1)-connected CW-complex for an integer $k \geq 2$. The Hurewicz morphism $\pi_n(X,x_0) \to H_n(X)$ is a $\mathcal C$ -isomorphism for n < 2k-1.

C-isomorphism $\pi_n(T(\xi), t_0) \to H_{n-k}(B(\xi))$

Corollary

There is a C-isomorphism: $\pi_{n+k}(T(\xi), t_0) \to H_n(B(\xi))$ in degree n < k - 1.

C-isomorphism $\pi_n(T(\xi), t_0) \to H_{n-k}(B(\xi))$

Corollary

There is a C-isomorphism: $\pi_{n+k}(T(\xi), t_0) \to H_n(B(\xi))$ in degree n < k - 1.

- Generalized Hurewicz: There is C-isomorphism $\pi_{n+k}(T(\xi), t_0) \to H_{n+k}(T(\xi))$
- Let T_0 denote the complement of the zero-section in $T(\xi)$. Since T_0 is contractible: $H_{n+k}(T(\xi)) \cong H_{n+k}(T(\xi), T_0)$. By Excision: $H_{n+k}(T(\xi), T_0) \cong H_{n+k}(E(\xi), E_0)$. Thom isomorphism: $H_{n+k}(E(\xi), E_0) \cong H_n(B(\xi))$.

Description of Ω_n

Theorem (Thom, 1954)

The oriented cobordism group Ω_n is finite for $4 \nmid n$ and finitely generated of rank p(r) (numbers of partitions of r) if n = 4r.

Proof.

- We know that $\Omega_n \cong \pi_{n+k}(T(\tilde{\gamma}^k), t_0)$ for $k \gg 0$
- There is a C-isomorphism $\pi_{n+k}(T(\tilde{\gamma}^k), t_0) \to H_n(\tilde{\mathsf{Gr}}_k(\mathbb{R}^{\infty}))$.
- This group is finite for $4 \nmid n$ and finitely generated of rank p(r) (number of partitions) if n = 4r.

Corollary

The graded ring $\Omega_* \otimes \mathbb{Q}$ is a polynomial algebra over \mathbb{Q} with linearly independent generators $\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \dots$

Classification of oriented boundaries

Corollary

The multiple of an n-dimensional manifold M is diffeomorphic to an oriented boundary if and only if all Pontrjagin numbers vanish.

Theorem (Wall, 1960)

An n-dimensional manifold M is an oriented boundary if and only if all Pontrjagin numbers and all Stiefel-Whitney classes vanish.

References

- Morris W. Hirsch. *Differential topology*. Vol. 33. Graduate Texts in Mathematics. Corrected reprint of the 1976 original. Springer-Verlag, New York, 1994, pp. x+222.
- John W. Milnor and James D. Stasheff. *Characteristic classes*. Vol. 76. Annals of Mathematics Studies. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, pp. vii+331.
- Edwin H. Spanier. *Algebraic topology*. Corrected reprint. Springer-Verlag, New York-Berlin, 1981, pp. xvi+528.
- René Thom. "Quelques propriétés globales des variétés différentiables". In: Comment. Math. Helv. 28 (1954), pp. 17–86.