Chern and Pontrjagin numbers

C. Hobohm

13. Mai 2020

C. Hobohm

Chern and Pontrjagin numbers

:▶ ◀ 볼 ▶ 볼 ∽ ९. 13. Mai 2020 1/25

イロト イヨト イヨト イヨト

Definition

A partition of k is an unordered sequence

$$I = (i_1, \ldots, i_r)$$

with $\sum_{j=1}^{r} i_j = k$.

A D N A B N A B N A B N

Definition

A partition of k is an unordered sequence

$$I = (i_1, \ldots, i_r)$$

with $\sum_{j=1}^{r} i_j = k$.

Juxtaposition

We define the juxtaposition of $I = (i_1, ..., i_r)$ (a partition of k) and $J = (j_1, ..., j_s)$ (a partition of I) to be

$$IJ = (i_1, \ldots, i_r, j_1, \ldots, j_s)$$

(a partition of k + l).

< □ > < □ > < □ > < □ > < □ > < □ >

This Operation is:

- associative
- 2 commutative
- In a san identity element (the partition of zero/empty partition)

< □ > < 同 > < 回 > < 回 > < 回 >

This Operation is:

- associative
- 2 commutative
- In a series of the partition of the p

Refinement

A refinement of $I = (i_1, \ldots, i_r)$ is a partition of the form $I_1 \cdot I_2 \cdot \ldots \cdot I_r$, where I_j is a partition of i_j . Example: (1,1)(3)(1,1,2) = (1,1,1,1,2,3) is a refinement of (2,3,4).

Denote the total number of partitions of n by p(n).

Let K^n be a compact complex manifold of dimension n.

Definition

For $I = (i_1, \ldots, i_r)$ a partition of *n*, we define the *I*-th Chern number:

$$c_{I}[K^{n}] = \langle c_{i_{1}}(\tau^{n}) \cdots c_{i_{r}}(\tau^{n}), \mu_{2n} \rangle$$

where τ^n denotes the tangent bundle of K^n and μ_{2n} the fundamental homology class induced by the preferred orientation. If *I* is not a partition of *n*, set $c_I[K^n] = 0$.

$\mathbb{C}\mathsf{P}^n$

Reminder

In Chapter 14 we have seen that the *i*-th Chern class is:

$$c_i(\tau^n) = \binom{n+1}{i} a^i$$

and that $\langle a^n, \mu_{2n} \rangle = 1.$

イロト イヨト イヨト イヨト

$\mathbb{C}\mathsf{P}^n$

Reminder

In Chapter 14 we have seen that the *i*-th Chern class is:

$$c_i(\tau^n) = \binom{n+1}{i} a^i$$

and that $\langle a^n, \mu_{2n} \rangle = 1.$

Hence for any $I = (i_1, \ldots, i_r)$ a partition of n we get

$$c_{l}[K^{n}] = \binom{n+1}{i_{1}} \dots \binom{n+1}{i_{r}}$$

イロト イポト イヨト イヨト 一日

$$c_n[K^n] = \langle c_n(\tau^n), \mu_{2n} \rangle = \xi(K^n)$$

which means, the only Chern number for n = 1 is the Euler characteristic.

イロト イヨト イヨト イヨト

$$c_n[K^n] = \langle c_n(\tau^n), \mu_{2n} \rangle = \xi(K^n)$$

which means, the only Chern number for n = 1 is the Euler characteristic. For n = 2 we have only one other Chern number $c_1c_1[K^2]$.

< □ > < 同 > < 回 > < 回 > < 回 >

$$c_n[K^n] = \langle c_n(\tau^n), \mu_{2n} \rangle = \xi(K^n)$$

which means, the only Chern number for n = 1 is the Euler characteristic. For n = 2 we have only one other Chern number $c_1c_1[K^2]$. In general there are p(n) different Chern numbers, which are linearly independent.

< □ > < 同 > < 回 > < 回 > < 回 >

$$c_n[K^n] = \langle c_n(\tau^n), \mu_{2n} \rangle = \xi(K^n)$$

which means, the only Chern number for n = 1 is the Euler characteristic. For n = 2 we have only one other Chern number $c_1c_1[K^2]$. In general there are p(n) different Chern numbers, which are linearly independent.

This is meant in the sense, that there is no linear relation between them, that is satisfied for all *n*-manifolds.

(日)

Observation

 $H^{2n}(G_n(\mathbb{C}^\infty);\mathbb{Z})$ is precisely the free abelian module generated by the Chern numbers.

イロト イポト イヨト イヨト

Observation

 $H^{2n}(G_n(\mathbb{C}^\infty);\mathbb{Z})$ is precisely the free abelian module generated by the Chern numbers.

We can classify τ^n by a map $\mathcal{K}^n \xrightarrow{f} \mathcal{G}_n(\mathbb{C}^\infty)$ with $f^*(\gamma^n) = \tau^n$.

イロト イポト イヨト イヨト 一日

Observation

 $H^{2n}(G_n(\mathbb{C}^\infty);\mathbb{Z})$ is precisely the free abelian module generated by the Chern numbers.

We can classify τ^n by a map $K^n \xrightarrow{f} G_n(\mathbb{C}^\infty)$ with $f^*(\gamma^n) = \tau^n$. Now given the fundamental class μ_{2n} we want to have a look at $f_*(\mu_{2n}) \in H_{2n}(G_n\mathbb{C}^\infty;\mathbb{Z})$.

イロト 不得 トイラト イラト 一日

Observation

 $H^{2n}(G_n(\mathbb{C}^\infty);\mathbb{Z})$ is precisely the free abelian module generated by the Chern numbers.

We can classify τ^n by a map $\mathcal{K}^n \xrightarrow{f} G_n(\mathbb{C}^\infty)$ with $f^*(\gamma^n) = \tau^n$. Now given the fundamental class μ_{2n} we want to have a look at $f_*(\mu_{2n}) \in H_{2n}(G_n\mathbb{C}^\infty;\mathbb{Z})$. Observation \Longrightarrow we can just compute all $\langle c_{i_1}(\gamma^n) \dots c_{i_r}(\gamma^n), f_*(\mu_{2n}) \rangle = \langle f^*(c_{i_1}(\gamma^n) \dots c_{i_r}(\gamma^n)), \mu_{2n} \rangle = c_I[\mathcal{K}^n].$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let M^{4n} be a smooth oriented compact manifold of dimension 4n and $I = (i_1, \ldots, i_r)$ be a partition of n.

Let M^{4n} be a smooth oriented compact manifold of dimension 4n and $I = (i_1, \ldots, i_r)$ be a partition of n.

Definition

The I-th Pontrjagin number is defined to be

$$p_I[M^{4n}] = \langle p_{i_1}(\tau^{4n}) \dots p_{i_r}(\tau^{4n}), \mu_{4n} \rangle$$

where again τ^{4n} is the tangent bundle, μ_{4n} is the fundamental class.

< □ > < 同 > < 回 > < 回 > < 回 >

After forgetting the complex structure, $\mathbb{C}P^{2n}$ is a smooth compact oriented manifold of real dimension 4n.

A D N A B N A B N A B N

After forgetting the complex structure, $\mathbb{C}P^{2n}$ is a smooth compact oriented manifold of real dimension 4n.

Results from chapter 15

$$p_{I}[\mathbb{C}\mathsf{P}^{2n}] = \binom{2n+1}{i_{1}} \dots \binom{2n+1}{i_{r}}$$

Reversing orientation on M^{4n} leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_I[-M^{4n}] = -p_I[M^{4n}]$. The Euler number stays the same.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reversing orientation on M^{4n} leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_I[-M^{4n}] = -p_I[M^{4n}]$. The Euler number stays the same.

Lemma

If any $p_I[M^{4n}] \neq 0$, then *M* does not have an orientation reversing diffeomorphism.

Reversing orientation on M^{4n} leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_I[-M^{4n}] = -p_I[M^{4n}]$. The Euler number stays the same.

Lemma

If any $p_I[M^{4n}] \neq 0$, then *M* does not have an orientation reversing diffeomorphism.

Example: $\mathbb{C}P^{2n}$ has no orientation reversing diffeomorphism.

Reversing orientation on M^{4n} leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_I[-M^{4n}] = -p_I[M^{4n}]$. The Euler number stays the same.

Lemma

If any $p_I[M^{4n}] \neq 0$, then *M* does not have an orientation reversing diffeomorphism.

Example: $\mathbb{C}P^{2n}$ has no orientation reversing diffeomorphism.

Lemma

If any $p_I[M^{4n}] \neq 0$, then *M* is not a boundary of a smooth compact oriented (4n + 1)-manifold.

See (4.9) - all Stiefel Whitney numbers vanish.

イロト 不得 トイヨト イヨト 二日

Definition

 $f \in \mathbb{Z}[t_1, \ldots, t_n]$ is called symmetric, if it is invariant under permutation of the t_i s.

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition

 $f \in \mathbb{Z}[t_1, \ldots, t_n]$ is called symmetric, if it is invariant under permutation of the t_i s.

Example $t_1^2 + t_2^2 + t_1 t_2 \in \mathbb{Z}[t_1, t_2]$ is symmetric. $t_1 + t_2^2$ is not.

We denote by S_n the subring of the symmetric polynomials.

Elementary symmetric polynomials

Theorem

$$\mathcal{S}_n \cong \mathbb{Z}[\sigma_1,\ldots,\sigma_n]$$

where σ_k is the *k*-th fundamental symmetric function.

• • • • • • • • • • • •

Elementary symmetric polynomials

Theorem

$$\mathcal{S}_n \cong \mathbb{Z}[\sigma_1,\ldots,\sigma_n]$$

where σ_k is the *k*-th fundamental symmetric function.

The elementary symmetric function σ_k can be characterized by being the homogeneous component of degree k in $\prod_{i=1}^{n} (1 + t_i)$.

< ロト < 同ト < ヨト < ヨ

Elementary symmetric polynomials

Theorem

$$\mathcal{S}_n \cong \mathbb{Z}[\sigma_1,\ldots,\sigma_n]$$

where σ_k is the *k*-th fundamental symmetric function.

The elementary symmetric function σ_k can be characterized by being the homogeneous component of degree k in $\prod_{i=1}^{n} (1 + t_i)$. For example: in n = 3 we have $\sigma_2 = t_1 t_2 + t_2 t_3 + t_3 t_1$.

Grading

Assign each t_i in \mathbb{Z} degree 1, then we can see that

$$\mathcal{S}^* = \mathbb{Z}[\sigma_1, \ldots, \sigma_n]$$

inherits a grading with deg $\sigma_i = i$.

イロト 不得 トイヨト イヨト 二日

Grading

Assign each t_i in \mathbb{Z} degree 1, then we can see that

$$\mathcal{S}^* = \mathbb{Z}[\sigma_1, \ldots, \sigma_n]$$

inherits a grading with deg $\sigma_i = i$.

Definition

We write S^k for the subring of $\mathbb{Z}[t_1, \ldots, t_n]$ of symmetric polynomials of degree k.

イロト 不得下 イヨト イヨト

Grading

Assign each t_i in \mathbb{Z} degree 1, then we can see that

$$\mathcal{S}^* = \mathbb{Z}[\sigma_1, \ldots, \sigma_n]$$

inherits a grading with deg $\sigma_i = i$.

Definition

We write S^k for the subring of $\mathbb{Z}[t_1, \ldots, t_n]$ of symmetric polynomials of degree k.

We can also see S^k as a free \mathbb{Z} -module. An obvious basis are the monomials $\sigma_{i_1} \dots \sigma_{i_r}$ with (i_1, \dots, i_r) a partition of k.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another basis of \mathcal{S}^k

Define an equivalence relation on the monomials in t_1, \ldots, t_n :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Another basis of \mathcal{S}^k

Define an equivalence relation on the monomials in t_1, \ldots, t_n : p, q are equivalent, if there is a permutation π of $\{1, \ldots, n\}$ so that $p(t_1, \ldots, t_n) = q(t_{\pi(1)}, \ldots, t_{\pi(n)}).$

イロト イポト イヨト イヨト 二日

Another basis of \mathcal{S}^k

Define an equivalence relation on the monomials in t_1, \ldots, t_n : p, q are equivalent, if there is a permutation π of $\{1, \ldots, n\}$ so that $p(t_1, \ldots, t_n) = q(t_{\pi(1)}, \ldots, t_{\pi(n)}).$

Notation

We write

$$\sum t_1^{a_1} \dots t_n^{a_n} \in \mathcal{S}_n$$

for the sum of all monomials equivalent to $t_1^{a_1} \dots t_n^{a_n}$.

Example: $\sigma_k = \sum t_1 t_2 \dots t_k$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

$$\left\{\sum t_1^{a_1} \dots t_r^{a_r} \mid r \leq n, \ (a_1, \dots, a_r) \text{ is a partition of } k\right\}$$

Is a basis for S^k .

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Lemma

$$\left\{\sum t_1^{a_1} \dots t_r^{a_r} \ \bigg| \ r \leq n, \ (a_1, \dots, a_r) \text{ is a partition of } k \right\}$$

Is a basis for S^k .

We want to assign to a partition I of k a polynomial s_I in k variables.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

$$\left\{\sum t_1^{a_1} \dots t_r^{a_r} \mid r \le n, \ (a_1, \dots, a_r) \text{ is a partition of } k\right\}$$

Is a basis for S^k .

We want to assign to a partition I of k a polynomial s_I in k variables. For $n \ge k$, the $\sigma_1, \ldots, \sigma_k$ are algebraically independent in $\mathbb{Z}[t_1, \ldots, t_n]$ and we can say s_I is specified by the equation

$$s_l(\sigma_1,\ldots,\sigma_k)=\sum t_1^{i_1}\ldots t_r^{i_r}$$

< □ > < 同 > < 回 > < 回 > < 回 >

$$s_l(\sigma_1,\ldots,\sigma_k)=\sum t_1^{i_1}\ldots t_r^{i_r}$$

This does not depend on *n*, we can set $t_{k+1} = \cdots = t_n = 0$ to recover the equation for n = k.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

$$s_l(\sigma_1,\ldots,\sigma_k)=\sum t_1^{i_1}\ldots t_r^{i_r}$$

This does not depend on *n*, we can set $t_{k+1} = \cdots = t_n = 0$ to recover the equation for n = k. From the definition follows that the $\{s_i | l \text{ is a partition of } k\}$ are linearly.

From the definition follows that the $\{s_l | l \text{ is a partition of } k\}$ are linearly independent. Last Lemma \implies this is a basis.

This is the one we wanted to construct!

イロト イポト イヨト イヨト 二日

If a complex *n*-plane bundle ω splits as $\nu_1 \oplus \cdots \oplus \nu_n$ a Whitney sum of line bundles, the formula

 $1 + c_1(\omega) + \dots + c_n(\omega) = (1 + c_1(\nu_1)) \dots (1 + c_1(\nu_n))$ shows that

$$c_k(\omega) = \sigma_k(c_1(\nu_1), \ldots, c_1(\nu_n))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

If a complex *n*-plane bundle ω splits as $\nu_1 \oplus \cdots \oplus \nu_n$ a Whitney sum of line bundles, the formula

 $1 + c_1(\omega) + \dots + c_n(\omega) = (1 + c_1(\nu_1)) \dots (1 + c_1(\nu_n))$ shows that

$$c_k(\omega) = \sigma_k(c_1(\nu_1), \ldots, c_1(\nu_n))$$

Example: $\gamma^1 \times \cdots \times \gamma^1$ the *n*-fold cartesian product over $\mathbb{C}P^{\infty} \times \cdots \times \mathbb{C}P^{\infty}$. Note that $H^*(\mathbb{C}P^{\infty} \times \cdots \times \mathbb{C}P^{\infty}) \cong \mathbb{Z}[a_1, \dots, a_n]$ with deg $a_i = 2$ and $c(\gamma^1 \times \cdots \times \gamma^1) = (1 + a_1) \dots (1 + a_n)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへ⊙

If a complex *n*-plane bundle ω splits as $\nu_1 \oplus \cdots \oplus \nu_n$ a Whitney sum of line bundles, the formula

 $1 + c_1(\omega) + \dots + c_n(\omega) = (1 + c_1(\nu_1)) \dots (1 + c_1(\nu_n))$ shows that

$$c_k(\omega) = \sigma_k(c_1(\nu_1), \ldots, c_1(\nu_n))$$

Example: $\gamma^1 \times \cdots \times \gamma^1$ the *n*-fold cartesian product over $\mathbb{C}P^{\infty} \times \cdots \times \mathbb{C}P^{\infty}$. Note that $H^*(\mathbb{C}P^{\infty} \times \cdots \times \mathbb{C}P^{\infty}) \cong \mathbb{Z}[a_1, \dots, a_n]$ with deg $a_i = 2$ and $c(\gamma^1 \times \cdots \times \gamma^1) = (1 + a_1) \dots (1 + a_n)$

Hence $H^*(Gr_n(\mathbb{C}^\infty);\mathbb{Z}) \cong S^n$ and our new basis of S_k gives us a basis of $H^{2k}(Gr_n(\mathbb{C}^\infty);\mathbb{Z})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Let ω be a complex *n*-plane bundle with paracompact base space *B* and total Chern class $c = 1 + c_1 + \cdots + c_n$. For k > 0 and *I* a partition of *k* we write

$$s_I(c) = s_I(c_1,\ldots,c_k) \in H^{2k}(B;\mathbb{Z})$$

イロト イポト イヨト イヨト

Let ω be a complex *n*-plane bundle with paracompact base space *B* and total Chern class $c = 1 + c_1 + \cdots + c_n$. For k > 0 and *I* a partition of *k* we write

$$s_l(c) = s_l(c_1,\ldots,c_k) \in H^{2k}(B;\mathbb{Z})$$

$$s_I(c(\omega \oplus \omega')) = \sum_{JK=I} s_J(c(\omega)) s_I(c(\omega'))$$

where we sum over all partitions J, K with JK = I.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let ω be a complex *n*-plane bundle with paracompact base space *B* and total Chern class $c = 1 + c_1 + \cdots + c_n$. For k > 0 and *I* a partition of *k* we write

$$s_l(c) = s_l(c_1,\ldots,c_k) \in H^{2k}(B;\mathbb{Z})$$

$$s_I(c(\omega \oplus \omega')) = \sum_{JK=I} s_J(c(\omega)) s_I(c(\omega'))$$

where we sum over all partitions J, K with JK = I.

Taking the trivial partition I = (k), we see that

$$s_k(c(\omega\oplus\omega'))=s_k(c(\omega))+s_k(c(\omega'))$$

< ロト < 同ト < ヨト < ヨト

Proof: $s_l(c(\omega \oplus \omega')) = \sum_{JK=I} s_J(c(\omega)) s_l(c(\omega'))$

Let σ_k be the elementary symmetric polynomial in t_1, \ldots, t_n and σ'_k be the one in t_{n+1}, \ldots, t_{2n} . Define $\sigma'' = \sum_{i=0}^k \sigma_i \sigma'_{k-i}$, which is just the k-th elementary symmetric polynomial in t_1, \ldots, t_n

イロト イポト イヨト イヨト 二日

Proof:
$$s_l(c(\omega \oplus \omega')) = \sum_{JK=I} s_J(c(\omega)) s_l(c(\omega'))$$

Let σ_k be the elementary symmetric polynomial in t_1, \ldots, t_n and σ'_k be the one in t_{n+1}, \ldots, t_{2n} . Define $\sigma'' = \sum_{i=0}^k \sigma_i \sigma'_{k-i}$, which is just the k-th elementary symmetric polynomial in t_1, \ldots, t_n

Claim

$$s_I(\sigma_1'',\ldots,\sigma_k'') = \sum_{JK=I} s_J(\sigma_1,\ldots) s_K(\sigma_1',\ldots)$$

イロト 不得 トイラト イラト 一日

Proof:
$$s_l(c(\omega \oplus \omega')) = \sum_{JK=I} s_J(c(\omega)) s_l(c(\omega'))$$

Let σ_k be the elementary symmetric polynomial in t_1, \ldots, t_n and σ'_k be the one in t_{n+1}, \ldots, t_{2n} . Define $\sigma'' = \sum_{i=0}^k \sigma_i \sigma'_{k-i}$, which is just the k-th elementary symmetric polynomial in t_1, \ldots, t_n

Claim

$$s_I(\sigma_1'',\ldots,\sigma_k'')=\sum_{JK=I}s_J(\sigma_1,\ldots)s_K(\sigma_1',\ldots)$$

Once we have proven this, we can use that $\sigma_1, \ldots, \sigma_n, \sigma'_1, \ldots, \sigma'_n$ are algebraically independent to set $\sigma_i = c_i(\omega)$ and $\sigma'_i = c_i(\omega')$. The product formula for Chern classes (14.7) yields $\sigma''_i = c_i(\omega \oplus \omega')$.

イロト 不得下 イヨト イヨト 二日

$$s_l(\sigma_1'',\ldots,\sigma_k'') = \sum_{JK=I} s_J(\sigma_1,\ldots) s_K(\sigma_1',\ldots)$$

イロト イ部ト イヨト イヨト 二日

$$s_I(\sigma_1'',\ldots,\sigma_k'') = \sum_{JK=I} s_J(\sigma_1,\ldots) s_K(\sigma_1',\ldots)$$

By definition $s_l(\sigma''_1, \ldots, \sigma''_k) = \sum_{\alpha} t_{\alpha_1}^{i_1} \ldots t_{\alpha_r}^{i_r}$ where the $1 \le \alpha_i \le 2n$ are pairwise distinct.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$s_I(\sigma_1'',\ldots,\sigma_k'')=\sum_{JK=I}s_J(\sigma_1,\ldots)s_K(\sigma_1',\ldots)$$

By definition $s_l(\sigma''_1, \ldots, \sigma''_k) = \sum_{\alpha} t_{\alpha_1}^{i_1} \ldots t_{\alpha_r}^{i_r}$ where the $1 \le \alpha_i \le 2n$ are pairwise distinct.

Set the partitions $J = \{i_q \mid 1 \le \alpha_q \le n\}$ and $K = \{i_q \mid n+1 \le \alpha_q \le 2n\}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$s_I(\sigma_1'',\ldots,\sigma_k'')=\sum_{JK=I}s_J(\sigma_1,\ldots)s_K(\sigma_1',\ldots)$$

By definition $s_l(\sigma''_1, \ldots, \sigma''_k) = \sum_{\alpha} t_{\alpha_1}^{i_1} \ldots t_{\alpha_r}^{i_r}$ where the $1 \le \alpha_i \le 2n$ are pairwise distinct.

Set the partitions $J = \{i_q \mid 1 \le \alpha_q \le n\}$ and $K = \{i_q \mid n+1 \le \alpha_q \le 2n\}$. Fixing $J = (j_1, \ldots, j_s), K = (k_1, \ldots, k_{r-s})$ partitions with JK = I, and taking the sum over all α that induce them, yields

$$\underbrace{\sum_{\mathsf{taken in } t_1} t_s^{j_1} \dots t_s^{j_s}}_{\mathsf{taken in } t_{n+1} \dots t_{n+r-s}} = s_J(\sigma_1, \dots, \sigma_s) s_{\mathcal{K}}(\sigma'_1, \dots, \sigma'_{r-s})$$

(日) (周) (三) (三) (三) (○) (○)

Corollary

$$s_{I}[K^{m} \times L^{n}] = \sum_{JK=I} s_{J}[K^{m}]s_{K}[L^{n}]$$

where J is a partition of m and K one of n.

• • • • • • • • • • • •

Corollary

$$s_{I}[K^{m} \times L^{n}] = \sum_{JK=I} s_{J}[K^{m}]s_{K}[L^{n}]$$

where J is a partition of m and K one of n.

The tangent bundle of $K^m \times L^n$ splits $\tau \times \tau' \cong (\pi_1^* \tau) \oplus (\pi_2^* \tau')$ where π_i are the projection.

Corollary

$$s_{I}[K^{m} \times L^{n}] = \sum_{JK=I} s_{J}[K^{m}]s_{K}[L^{n}]$$

where J is a partition of m and K one of n.

The tangent bundle of $K^m \times L^n$ splits $\tau \times \tau' \cong (\pi_1^* \tau) \oplus (\pi_2^* \tau')$ where π_i are the projection.

$$s_{I}[K^{m} \times L^{n}] = \langle s_{I}(\tau \times \tau'), \mu_{2m} \times \mu_{2n'} \rangle = \sum_{JK=I} \langle s_{J}(\tau), \mu_{2m} \rangle \langle s_{K}(\tau'), \mu'_{2n} \rangle$$

The signs die since all degrees are even.

Corollary

$$s_I[K^m \times L^n] = \sum_{JK=I} s_J[K^m] s_K[L^n]$$

where J is a partition of m and K one of n.

The tangent bundle of $K^m \times L^n$ splits $\tau \times \tau' \cong (\pi_1^* \tau) \oplus (\pi_2^* \tau')$ where π_i are the projection.

$$s_{I}[K^{m} \times L^{n}] = \langle s_{I}(\tau \times \tau'), \mu_{2m} \times \mu_{2n'} \rangle = \sum_{JK=I} \langle s_{J}(\tau), \mu_{2m} \rangle \langle s_{K}(\tau'), \mu'_{2n} \rangle$$

The signs die since all degrees are even. As a corollary, $s_{n+m}[K^m \times L^n] = 0$ if $m, n \neq 0$.

Example: $\mathbb{C}P^n$

Since $c(\tau) = (1 + a)^{n+1}$, we see that $c_k = \sigma_k(a, \ldots, a)$ in n+1 variables.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Example: $\mathbb{C}P^n$

Since $c(\tau) = (1 + a)^{n+1}$, we see that $c_k = \sigma_k(a, ..., a)$ in n + 1 variables. $\implies s_k(c_1, ..., c_k) = (n+1)a^k$ and taking n = k yields $s_n[\mathbb{CP}^n] = n + 1 \neq 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example: $\mathbb{C}P^n$

Since $c(\tau) = (1 + a)^{n+1}$, we see that $c_k = \sigma_k(a, \ldots, a)$ in n+1 variables.

$$\implies s_k(c_1,\ldots,c_k) = (n+1)a^k$$

and taking n = k yields $s_n[\mathbb{CP}^n] = n + 1 \neq 0$

This means $\mathbb{C}P^n$ cannot be expressed as a (non-trivial) product of complex manifolds.

▲□▶▲□▶▲□▶▲□▶ □ ののの

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base space B and I a partition of n. Define

$$s_I(p(\xi)) = s_I(p_1(\xi), \ldots, p_n(\xi)) \in H^{4n}(B; \mathbb{Z})$$

< □ > < 同 > < 回 > < 回 > < 回 >

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base space B and I a partition of n. Define

$$s_I(p(\xi)) = s_I(p_1(\xi),\ldots,p_n(\xi)) \in H^{4n}(B;\mathbb{Z})$$

Then we get another product formula, but only modulo 2 (see 16.2):

$$s_I(p(\xi \oplus \xi')) = \sum_{JK=I} s_J(p(\xi)) s_K(p(\xi'))$$

< □ > < 同 > < 回 > < 回 > < 回 >

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base space B and I a partition of n. Define

$$s_I(p(\xi)) = s_I(p_1(\xi), \ldots, p_n(\xi)) \in H^{4n}(B;\mathbb{Z})$$

Then we get another product formula, but only modulo 2 (see 16.2):

$$s_I(p(\xi \oplus \xi')) = \sum_{JK=I} s_J(p(\xi)) s_K(p(\xi'))$$

which implies $s_I(p)[M \times N] = \sum_{JK=I} s_J(p)[M] s_K(p)[N]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Result

Theorem - Thom

For K_1, \ldots, K^n complex manifolds with $s_k(c)[K^k] \neq 0$, we have that the matrix

$$[c_{i_1}\ldots c_{i_r}[{\cal K}^{j_1} imes\cdots imes {\cal K}^{j_s}]]_{I,J}$$
 are partitions of n

is non-singular.

For example, $K^r = \mathbb{C}P^r$ has this property

< □ > < 同 > < 回 > < Ξ > < Ξ

Main Result

Theorem - Thom

For K_1, \ldots, K^n complex manifolds with $s_k(c)[K^k] \neq 0$, we have that the matrix

$$[c_{i_1}\ldots c_{i_r}[{\cal K}^{j_1} imes\cdots imes {\cal K}^{j_s}]]_{I,J}$$
 are partitions of n

is non-singular.

For example, $K^r = \mathbb{C}P^r$ has this property

Theorem

If M^4, \ldots, M^{4n} are oriented manifolds and $s_k(p)[M^{4k}] \neq 0$ then

$$[p_{i_1} \dots p_{i_r}[M^{4j_1} \times \dots \times M^{4j_s}]]_{I,J}$$
 are partitions of *n*

is non-singular.

A D N A B N A B N A B N

We can easily generalize our product formula to

$$s_I[K^{j_1} \times \cdots \times K^{j_q}] = \sum_{l_1 \dots l_q = l} s_{l_1}[K^{j_1}] \dots s_{l_q}[K^{j_q}]$$

where we sum over I_I partitions of j_I .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We can easily generalize our product formula to

$$s_I[\mathcal{K}^{j_1} \times \cdots \times \mathcal{K}^{j_q}] = \sum_{I_1 \dots I_q = I} s_{I_1}[\mathcal{K}^{j_1}] \dots s_{I_q}[\mathcal{K}^{j_q}]$$

where we sum over I_l partitions of j_l . We see that $s_l[K^{j_1} \times \cdots \times k^{j_q}] = 0$, unless $I = (i_1, \ldots, i_r)$ is a refinement of (j_1, \ldots, j_q) .

イロト イポト イヨト イヨト 二日

We can easily generalize our product formula to

$$s_I[K^{j_1} \times \cdots \times K^{j_q}] = \sum_{I_1 \dots I_q = I} s_{I_1}[K^{j_1}] \dots s_{I_q}[K^{j_q}]$$

where we sum over I_l partitions of j_l . We see that $s_l[K^{j_1} \times \cdots \times k^{j_q}] = 0$, unless $I = (i_1, \ldots, i_r)$ is a refinement of (j_1, \ldots, j_q) . But that means we can arrange the partitions so that

$$[c_{i_1} \dots c_{i_r}[K^{j_1} \times \dots \times K^{j_s}]]_{I,J}$$
 are partitions of n

Is a triangular matrix with zeros above the diagonal.

▲ロ▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへの

We can easily generalize our product formula to

$$s_I[\mathcal{K}^{j_1} \times \cdots \times \mathcal{K}^{j_q}] = \sum_{I_1 \dots I_q = I} s_{I_1}[\mathcal{K}^{j_1}] \dots s_{I_q}[\mathcal{K}^{j_q}]$$

where we sum over I_l partitions of j_l . We see that $s_l[K^{j_1} \times \cdots \times k^{j_q}] = 0$, unless $I = (i_1, \ldots, i_r)$ is a refinement of (j_1, \ldots, j_q) . But that means we can arrange the partitions so that

$$[c_{i_1} \dots c_{i_r}[K^{j_1} \times \dots \times K^{j_s}]]_{I,J}$$
 are partitions of *n*

Is a triangular matrix with zeros above the diagonal. The diagonal entries are $s_{(i_1,...,i_r)}[K^{i_1} \times \cdots \times K^{i_r}] = \prod_{l=1}^r s_{i_l}[K^{i_l}] \neq 0$, so the determinant of the matrix is non-zero.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの