
Chern and Pontrjagin numbers

C. Hobohm

13. Mai 2020

C. Hobohm Chern and Pontrjagin numbers 13. Mai 2020 1 / 25



Partitions

Definition

A partition of k is an unordered sequence

I = (i1, . . . , ir )

with
∑r

j=1 ij = k .

Juxtaposition

We define the juxtaposition of I = (i1, . . . , ir ) (a partition of k) and
J = (j1, . . . , js) (a partition of l) to be

IJ = (i1, . . . , ir , j1, . . . , js)

(a partition of k + l).
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Partitions

This Operation is:

1 associative

2 commutative

3 has an identity element (the partition of zero/empty partition)

Refinement

A refinement of I = (i1, . . . , ir ) is a partition of the form I1 · I2 · . . . · Ir ,
where Ij is a partition of ij .
Example: (1, 1)(3)(1, 1, 2) = (1, 1, 1, 1, 2, 3) is a refinement of (2, 3, 4).

Denote the total number of partitions of n by p(n).
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Chern numbers

Let Kn be a compact complex manifold of dimension n.

Definition

For I = (i1, . . . , ir ) a partition of n, we define the I -th Chern number:

cI [K
n] = 〈ci1(τn) · · · cir (τn), µ2n〉

where τn denotes the tangent bundle of Kn and µ2n the fundamental
homology class induced by the preferred orientation.
If I is not a partition of n, set cI [K

n] = 0.
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Chern numbers

CPn

Reminder

In Chapter 14 we have seen that the i-th Chern class is:

ci (τ
n) =

(
n + 1

i

)
ai

and that 〈an, µ2n〉 = 1.

Hence for any I = (i1, . . . , ir ) a partition of n we get

cI [K
n] =

(
n + 1

i1

)
. . .

(
n + 1

ir

)
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Chern numbers

Observations

cn[Kn] = 〈cn(τn), µ2n〉 = ξ(Kn)

which means, the only Chern number for n = 1 is the Euler characteristic.

For n = 2 we have only one other Chern number c1c1[K 2].
In general there are p(n) different Chern numbers, which are linearly
independent.
This is meant in the sense, that there is no linear relation between them,
that is satisfied for all n-manifolds.
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Chern numbers

Basis

Observation

H2n(Gn(C∞);Z) is precisely the free abelian module generated by the
Chern numbers.

We can classify τn by a map Kn f−→ Gn(C∞) with f ∗(γn) = τn.
Now given the fundamental class µ2n we want to have a look at
f∗(µ2n) ∈ H2n(GnC∞;Z).
Observation =⇒ we can just compute all
〈ci1(γn) . . . cir (γ

n), f∗(µ2n)〉 = 〈f ∗(ci1(γn) . . . cir (γ
n)), µ2n〉 = cI [K

n].
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Pontrjagin numbers

Let M4n be a smooth oriented compact manifold of dimension 4n and
I = (i1, . . . , ir ) be a partition of n.

Definition

The I -th Pontrjagin number is defined to be

pI [M
4n] = 〈pi1(τ4n) . . . pir (τ

4n), µ4n〉

where again τ4n is the tangent bundle, µ4n is the fundamental class.

C. Hobohm Chern and Pontrjagin numbers 13. Mai 2020 8 / 25



Pontrjagin numbers

Let M4n be a smooth oriented compact manifold of dimension 4n and
I = (i1, . . . , ir ) be a partition of n.

Definition

The I -th Pontrjagin number is defined to be

pI [M
4n] = 〈pi1(τ4n) . . . pir (τ

4n), µ4n〉

where again τ4n is the tangent bundle, µ4n is the fundamental class.

C. Hobohm Chern and Pontrjagin numbers 13. Mai 2020 8 / 25



Pontrjagin numbers

CP2n

After forgetting the complex structure, CP2n is a smooth compact
oriented manifold of real dimension 4n.

Results from chapter 15

pI [CP2n] =

(
2n + 1

i1

)
. . .

(
2n + 1

ir

)
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Pontrjagin numbers

Pontrjagin number vs Euler number

Reversing orientation on M4n leaves the Pontrjagin classes stable, but
changes the sign of the fundamental class, hence pI [−M4n] = −pI [M4n].
The Euler number stays the same.

Lemma

If any pI [M
4n] 6= 0, then M does not have an orientation reversing

diffeomorphism.

Example: CP2n has no orientation reversing diffeomorphism.

Lemma

If any pI [M
4n] 6= 0, then M is not a boundary of a smooth compact

oriented (4n + 1)-manifold.

See (4.9) - all Stiefel Whitney numbers vanish.
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Symmetric polynomials

Definition

f ∈ Z[t1, . . . , tn] is called symmetric, if it is invariant under permutation of
the ti s.

Example

t21 + t22 + t1t2 ∈ Z[t1, t2] is symmetric.
t1 + t22 is not.

We denote by Sn the subring of the symmetric polynomials.
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Symmetric polynomials

Elementary symmetric polynomials

Theorem

Sn ∼= Z[σ1, . . . , σn]

where σk is the k-th fundamental symmetric function.

The elementary symmetric function σk can be characterized by being the
homogeneous component of degree k in

∐n
i=1(1 + ti ).

For example: in n = 3 we have σ2 = t1t2 + t2t3 + t3t1.
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Symmetric polynomials

Grading

Assign each ti in Z degree 1, then we can see that

S∗ = Z[σ1, . . . , σn]

inherits a grading with deg σi = i .

Definition

We write Sk for the subring of Z[t1, . . . , tn] of symmetric polynomials of
degree k .

We can also see Sk as a free Z-module. An obvious basis are the
monomials σi1 . . . σir with (i1, . . . , ir ) a partition of k .
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Symmetric polynomials

Another basis of Sk

Define an equivalence relation on the monomials in t1, . . . , tn:

p, q are equivalent, if there is a permutation π of {1, . . . , n} so that
p(t1, . . . , tn) = q(tπ(1), . . . , tπ(n)).

Notation

We write ∑
ta11 . . . tann ∈ Sn

for the sum of all monomials equivalent to ta11 . . . tann .

Example: σk =
∑

t1t2 . . . tk
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Symmetric polynomials

Lemma {∑
ta11 . . . tarr

∣∣∣∣ r ≤ n, (a1, . . . , ar ) is a partition of k

}
Is a basis for Sk .

We want to assign to a partition I of k a polynomial sI in k variables.
For n ≥ k , the σ1, . . . , σk are algebraically independent in Z[t1, . . . , tn] and
we can say sI is specified by the equation

sI (σ1, . . . , σk) =
∑

t i11 . . . t
ir
r
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Symmetric polynomials

sI (σ1, . . . , σk) =
∑

t i11 . . . t
ir
r

This does not depend on n, we can set tk+1 = · · · = tn = 0 to recover the
equation for n = k.

From the definition follows that the {sI |I is a partition of k} are linearly
independent. Last Lemma =⇒ this is a basis.
This is the one we wanted to construct!
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Symmetric polynomials

If a complex n-plane bundle ω splits as ν1⊕ · · · ⊕ νn a Whitney sum of line
bundles, the formula
1 + c1(ω) + · · ·+ cn(ω) = (1 + c1(ν1)) . . . (1 + c1(νn)) shows that

ck(ω) = σk(c1(ν1), . . . , c1(νn))

Example: γ1 × · · · × γ1 the n-fold cartesian product over
CP∞× · · · × CP∞.
Note that H∗(CP∞× · · · × CP∞) ∼= Z[a1, . . . , an] with deg ai = 2 and

c(γ1 × · · · × γ1) = (1 + a1) . . . (1 + an)

Hence H∗(Grn(C∞);Z) ∼= Sn and our new basis of Sk gives us a basis of
H2k(Grn(C∞);Z)
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A Product Formula

Let ω be a complex n-plane bundle with paracompact base space B and
total Chern class c = 1 + c1 + · · ·+ cn. For k > 0 and I a partition of k
we write

sI (c) = sI (c1, . . . , ck) ∈ H2k(B;Z)

Lemma - Thom

sI (c(ω ⊕ ω′)) =
∑
JK=I

sJ(c(ω))sI (c(ω′))

where we sum over all partitions J,K with JK = I .

Taking the trivial partition I = (k), we see that

sk(c(ω ⊕ ω′)) = sk(c(ω)) + sk(c(ω′))
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A Product Formula

Proof: sI (c(ω ⊕ ω′)) =
∑

JK=I sJ(c(ω))sI (c(ω
′))

Let σk be the elementary symmetric polynomial in t1, . . . , tn and σ′k be the

one in tn+1, . . . , t2n. Define σ′′ =
∑k

i=0 σiσ
′
k−i , which is just the k-th

elementary symmetric polynomial in t1, . . . , tn

Claim

sI (σ
′′
1 , . . . , σ

′′
k ) =

∑
JK=I

sJ(σ1, . . . )sK (σ′1, . . . )

Once we have proven this, we can use that σ1, . . . , σn, σ
′
1, . . . , σ

′
n are

algebraically independent to set σi = ci (ω) and σ′i = ci (ω
′). The product

formula for Chern classes (14.7) yields σ′′i = ci (ω ⊕ ω′).
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A Product Formula

Consider Kn a complex manifold of complex dimension n. For a partition I
of n define sI (c)[Kn] = 〈sI (c(τn)), µ2n〉 ∈ Z.

Corollary

sI [K
m × Ln] =

∑
JK=I

sJ [Km]sK [Ln]

where J is a partition of m and K one of n.

The tangent bundle of Km × Ln splits τ × τ ′ ∼= (π∗1τ)⊕ (π∗2τ
′) where πi

are the projection.

sI [K
m × Ln] = 〈sI (τ × τ ′), µ2m × µ2n′〉 =

∑
JK=I

〈sJ(τ), µ2m〉〈sK (τ ′), µ′2n〉

The signs die since all degrees are even.
As a corollary, sn+m[Km × Ln] = 0 if m, n 6= 0.
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A Product Formula

Example: CPn

Since c(τ) = (1 + a)n+1, we see that ck = σk(a, . . . , a) in n + 1 variables.

=⇒ sk(c1, . . . , ck) = (n + 1)ak

and taking n = k yields sn[CPn] = n + 1 6= 0
This means CPn cannot be expressed as a (non-trivial) product of complex
manifolds.
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A Product Formula

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base
space B and I a partition of n. Define

sI (p(ξ)) = sI (p1(ξ), . . . , pn(ξ)) ∈ H4n(B;Z)

Then we get another product formula, but only modulo 2 (see 16.2):

sI (p(ξ ⊕ ξ′)) =
∑
JK=I

sJ(p(ξ))sK (p(ξ′))

which implies sI (p)[M × N] =
∑

JK=I sJ(p)[M]sK (p)[N]
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Linear Independence of Chern and Pontrjagin Numbers

Main Result

Theorem - Thom

For K1, . . . ,K
n complex manifolds with sk(c)[K k ] 6= 0, we have that the

matrix
[ci1 . . . cir [K

j1 × · · · × K js ]]I ,J are partitions of n

is non-singular.

For example, K r = CPr has this property

Theorem

If M4, . . . ,M4n are oriented manifolds and sk(p)[M4k ] 6= 0 then

[pi1 . . . pir [M
4j1 × · · · ×M4js ]]I ,J are partitions of n

is non-singular.
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Linear Independence of Chern and Pontrjagin Numbers

Proof

We can easily generalize our product formula to

sI [K
j1 × · · · × K jq ] =

∑
I1...Iq=I

sI1 [K j1 ] . . . sIq [K jq ]

where we sum over Il partitions of jl .

We see that sI [K
j1 × · · · × k jq ] = 0, unless I = (i1, . . . , ir ) is a refinement

of (j1, . . . , jq).
But that means we can arrange the partitions so that

[ci1 . . . cir [K
j1 × · · · × K js ]]I ,J are partitions of n

Is a triangular matrix with zeros above the diagonal.
The diagonal entries are s(i1,...,ir )[K

i1 × · · · × K ir ] =
∐r

l=1 sil [K
il ] 6= 0, so

the determinant of the matrix is non-zero.
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