Chern and Pontrjagin numbers

C. Hobohm

13. Mai 2020

Definition

A partition of k is an unordered sequence

$$
I=\left(i_{1}, \ldots, i_{r}\right)
$$

with $\sum_{j=1}^{r} i_{j}=k$.

Definition

A partition of k is an unordered sequence

$$
I=\left(i_{1}, \ldots, i_{r}\right)
$$

with $\sum_{j=1}^{r} i_{j}=k$.

Juxtaposition
We define the juxtaposition of $I=\left(i_{1}, \ldots, i_{r}\right)$ (a partition of k) and $J=\left(j_{1}, \ldots, j_{s}\right)($ a partition of $I)$ to be

$$
I J=\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}\right)
$$

(a partition of $k+I$).

This Operation is:
(1) associative
(2) commutative
(3) has an identity element (the partition of zero/empty partition)

This Operation is:
(1) associative
(2) commutative
(3) has an identity element (the partition of zero/empty partition)

Refinement

A refinement of $I=\left(i_{1}, \ldots, i_{r}\right)$ is a partition of the form $I_{1} \cdot I_{2} \cdot \ldots \cdot I_{r}$, where l_{j} is a partition of i_{j}. Example: $(1,1)(3)(1,1,2)=(1,1,1,1,2,3)$ is a refinement of $(2,3,4)$.

Denote the total number of partitions of n by $p(n)$.

Let K^{n} be a compact complex manifold of dimension n.
Definition
For $I=\left(i_{1}, \ldots, i_{r}\right)$ a partition of n, we define the I-th Chern number:

$$
c_{l}\left[K^{n}\right]=\left\langle c_{i_{1}}\left(\tau^{n}\right) \cdots c_{i_{r}}\left(\tau^{n}\right), \mu_{2 n}\right\rangle
$$

where τ^{n} denotes the tangent bundle of K^{n} and $\mu_{2 n}$ the fundamental homology class induced by the preferred orientation. If I is not a partition of n, set $c_{l}\left[K^{n}\right]=0$.

Reminder

In Chapter 14 we have seen that the i-th Chern class is:

$$
c_{i}\left(\tau^{n}\right)=\binom{n+1}{i} a^{i}
$$

and that $\left\langle a^{n}, \mu_{2 n}\right\rangle=1$.

Reminder

In Chapter 14 we have seen that the i-th Chern class is:

$$
c_{i}\left(\tau^{n}\right)=\binom{n+1}{i} a^{i}
$$

and that $\left\langle a^{n}, \mu_{2 n}\right\rangle=1$.
Hence for any $I=\left(i_{1}, \ldots, i_{r}\right)$ a partition of n we get

$$
c_{l}\left[K^{n}\right]=\binom{n+1}{i_{1}} \ldots\binom{n+1}{i_{r}}
$$

Observations

$$
c_{n}\left[K^{n}\right]=\left\langle c_{n}\left(\tau^{n}\right), \mu_{2 n}\right\rangle=\xi\left(K^{n}\right)
$$

which means, the only Chern number for $n=1$ is the Euler characteristic.

Observations

$$
c_{n}\left[K^{n}\right]=\left\langle c_{n}\left(\tau^{n}\right), \mu_{2 n}\right\rangle=\xi\left(K^{n}\right)
$$

which means, the only Chern number for $n=1$ is the Euler characteristic. For $n=2$ we have only one other Chern number $c_{1} c_{1}\left[K^{2}\right]$.

Observations

$$
c_{n}\left[K^{n}\right]=\left\langle c_{n}\left(\tau^{n}\right), \mu_{2 n}\right\rangle=\xi\left(K^{n}\right)
$$

which means, the only Chern number for $n=1$ is the Euler characteristic. For $n=2$ we have only one other Chern number $c_{1} c_{1}\left[K^{2}\right]$. In general there are $p(n)$ different Chern numbers, which are linearly independent.

Observations

$$
c_{n}\left[K^{n}\right]=\left\langle c_{n}\left(\tau^{n}\right), \mu_{2 n}\right\rangle=\xi\left(K^{n}\right)
$$

which means, the only Chern number for $n=1$ is the Euler characteristic. For $n=2$ we have only one other Chern number $c_{1} c_{1}\left[K^{2}\right]$. In general there are $p(n)$ different Chern numbers, which are linearly independent.
This is meant in the sense, that there is no linear relation between them, that is satisfied for all n-manifolds.

Basis

Observation

$H^{2 n}\left(G_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right)$ is precisely the free abelian module generated by the Chern numbers.

Basis

Observation
$H^{2 n}\left(G_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right)$ is precisely the free abelian module generated by the Chern numbers.
We can classify τ^{n} by a map $K^{n} \xrightarrow{f} G_{n}\left(\mathbb{C}^{\infty}\right)$ with $f^{*}\left(\gamma^{n}\right)=\tau^{n}$.

Basis

Observation

$H^{2 n}\left(G_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right)$ is precisely the free abelian module generated by the Chern numbers.

We can classify τ^{n} by a map $K^{n} \xrightarrow{f} G_{n}\left(\mathbb{C}^{\infty}\right)$ with $f^{*}\left(\gamma^{n}\right)=\tau^{n}$. Now given the fundamental class $\mu_{2 n}$ we want to have a look at $f_{*}\left(\mu_{2 n}\right) \in H_{2 n}\left(G_{n} \mathbb{C}^{\infty} ; \mathbb{Z}\right)$.

Basis

Observation

$H^{2 n}\left(G_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right)$ is precisely the free abelian module generated by the Chern numbers.

We can classify τ^{n} by a map $K^{n} \xrightarrow{f} G_{n}\left(\mathbb{C}^{\infty}\right)$ with $f^{*}\left(\gamma^{n}\right)=\tau^{n}$. Now given the fundamental class $\mu_{2 n}$ we want to have a look at $f_{*}\left(\mu_{2 n}\right) \in H_{2 n}\left(G_{n} \mathbb{C}^{\infty} ; \mathbb{Z}\right)$.
Observation \Longrightarrow we can just compute all $\left\langle c_{i_{1}}\left(\gamma^{n}\right) \ldots c_{i_{r}}\left(\gamma^{n}\right), f_{*}\left(\mu_{2 n}\right)\right\rangle=\left\langle f^{*}\left(c_{i_{1}}\left(\gamma^{n}\right) \ldots c_{i_{r}}\left(\gamma^{n}\right)\right), \mu_{2 n}\right\rangle=c_{l}\left[K^{n}\right]$.

Let $M^{4 n}$ be a smooth oriented compact manifold of dimension $4 n$ and $I=\left(i_{1}, \ldots, i_{r}\right)$ be a partition of n.

Let $M^{4 n}$ be a smooth oriented compact manifold of dimension $4 n$ and $I=\left(i_{1}, \ldots, i_{r}\right)$ be a partition of n.

Definition
The I-th Pontrjagin number is defined to be

$$
p_{l}\left[M^{4 n}\right]=\left\langle p_{i_{1}}\left(\tau^{4 n}\right) \ldots p_{i_{r}}\left(\tau^{4 n}\right), \mu_{4 n}\right\rangle
$$

where again $\tau^{4 n}$ is the tangent bundle, $\mu_{4 n}$ is the fundamental class.

After forgetting the complex structure, $\mathbb{C} P^{2 n}$ is a smooth compact oriented manifold of real dimension $4 n$.

After forgetting the complex structure, $\mathbb{C} P^{2 n}$ is a smooth compact oriented manifold of real dimension $4 n$.

Results from chapter 15

$$
p_{l}\left[\mathbb{C P}^{2 n}\right]=\binom{2 n+1}{i_{1}} \ldots\binom{2 n+1}{i_{r}}
$$

Pontrjagin number vs Euler number

Reversing orientation on $M^{4 n}$ leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_{l}\left[-M^{4 n}\right]=-p_{l}\left[M^{4 n}\right]$. The Euler number stays the same.

Pontrjagin number vs Euler number

Reversing orientation on $M^{4 n}$ leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_{l}\left[-M^{4 n}\right]=-p_{l}\left[M^{4 n}\right]$. The Euler number stays the same.

Lemma
If any $p_{l}\left[M^{4 n}\right] \neq 0$, then M does not have an orientation reversing diffeomorphism.

Pontrjagin number vs Euler number

Reversing orientation on $M^{4 n}$ leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_{l}\left[-M^{4 n}\right]=-p_{l}\left[M^{4 n}\right]$.
The Euler number stays the same.
Lemma
If any $p_{l}\left[M^{4 n}\right] \neq 0$, then M does not have an orientation reversing diffeomorphism.

Example: $\mathbb{C} P^{2 n}$ has no orientation reversing diffeomorphism.

Pontrjagin number vs Euler number

Reversing orientation on $M^{4 n}$ leaves the Pontrjagin classes stable, but changes the sign of the fundamental class, hence $p_{l}\left[-M^{4 n}\right]=-p_{l}\left[M^{4 n}\right]$.
The Euler number stays the same.

Lemma

If any $p_{l}\left[M^{4 n}\right] \neq 0$, then M does not have an orientation reversing diffeomorphism.

Example: $\mathbb{C} P^{2 n}$ has no orientation reversing diffeomorphism.
Lemma
If any $p_{l}\left[M^{4 n}\right] \neq 0$, then M is not a boundary of a smooth compact oriented $(4 n+1)$-manifold.

See (4.9) - all Stiefel Whitney numbers vanish.

Definition

$f \in \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ is called symmetric, if it is invariant under permutation of the $t_{i} \mathrm{~s}$.

Definition

$f \in \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ is called symmetric, if it is invariant under permutation of the $t_{i} \mathrm{~s}$.

Example
$t_{1}^{2}+t_{2}^{2}+t_{1} t_{2} \in \mathbb{Z}\left[t_{1}, t_{2}\right]$ is symmetric.
$t_{1}+t_{2}^{2}$ is not.
We denote by \mathcal{S}_{n} the subring of the symmetric polynomials.

Elementary symmetric polynomials

Theorem

$$
\mathcal{S}_{n} \cong \mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

where σ_{k} is the k-th fundamental symmetric function.

Elementary symmetric polynomials

Theorem

$$
\mathcal{S}_{n} \cong \mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

where σ_{k} is the k-th fundamental symmetric function.
The elementary symmetric function σ_{k} can be characterized by being the homogeneous component of degree k in $\coprod_{i=1}^{n}\left(1+t_{i}\right)$.

Elementary symmetric polynomials

Theorem

$$
\mathcal{S}_{n} \cong \mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

where σ_{k} is the k-th fundamental symmetric function.
The elementary symmetric function σ_{k} can be characterized by being the homogeneous component of degree k in $\coprod_{i=1}^{n}\left(1+t_{i}\right)$.
For example: in $n=3$ we have $\sigma_{2}=t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}$.

Grading

Assign each t_{i} in \mathbb{Z} degree 1 , then we can see that

$$
\mathcal{S}^{*}=\mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

inherits a grading with $\operatorname{deg} \sigma_{i}=i$.

Grading

Assign each t_{i} in \mathbb{Z} degree 1 , then we can see that

$$
\mathcal{S}^{*}=\mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

inherits a grading with $\operatorname{deg} \sigma_{i}=i$.
Definition
We write \mathcal{S}^{k} for the subring of $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ of symmetric polynomials of degree k.

Grading

Assign each t_{i} in \mathbb{Z} degree 1 , then we can see that

$$
\mathcal{S}^{*}=\mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]
$$

inherits a grading with $\operatorname{deg} \sigma_{i}=i$.
Definition
We write \mathcal{S}^{k} for the subring of $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ of symmetric polynomials of degree k.

We can also see S^{k} as a free \mathbb{Z}-module. An obvious basis are the monomials $\sigma_{i_{1}} \ldots \sigma_{i_{r}}$ with $\left(i_{1}, \ldots, i_{r}\right)$ a partition of k.

Another basis of \mathcal{S}^{k}

Define an equivalence relation on the monomials in t_{1}, \ldots, t_{n} :

Another basis of \mathcal{S}^{k}

Define an equivalence relation on the monomials in t_{1}, \ldots, t_{n} : p, q are equivalent, if there is a permutation π of $\{1, \ldots, n\}$ so that $p\left(t_{1}, \ldots, t_{n}\right)=q\left(t_{\pi(1)}, \ldots, t_{\pi(n)}\right)$.

Another basis of \mathcal{S}^{k}

Define an equivalence relation on the monomials in t_{1}, \ldots, t_{n} : p, q are equivalent, if there is a permutation π of $\{1, \ldots, n\}$ so that $p\left(t_{1}, \ldots, t_{n}\right)=q\left(t_{\pi(1)}, \ldots, t_{\pi(n)}\right)$.

Notation
We write

$$
\sum t_{1}^{a_{1}} \ldots t_{n}^{a_{n}} \in \mathcal{S}_{n}
$$

for the sum of all monomials equivalent to $t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}$.
Example: $\sigma_{k}=\sum t_{1} t_{2} \ldots t_{k}$

Lemma

$$
\left\{\sum t_{1}^{a_{1}} \ldots t_{r}^{a_{r}} \mid r \leq n,\left(a_{1}, \ldots, a_{r}\right) \text { is a partition of } k\right\}
$$

Is a basis for S^{k}.

Lemma

$$
\left\{\sum t_{1}^{a_{1}} \ldots t_{r}^{a_{r}} \mid r \leq n,\left(a_{1}, \ldots, a_{r}\right) \text { is a partition of } k\right\}
$$

Is a basis for S^{k}.
We want to assign to a partition / of k a polynomial s_{l} in k variables.

Lemma

$$
\left\{\sum t_{1}^{a_{1}} \ldots t_{r}^{a_{r}} \mid r \leq n,\left(a_{1}, \ldots, a_{r}\right) \text { is a partition of } k\right\}
$$

Is a basis for S^{k}.
We want to assign to a partition / of k a polynomial s_{l} in k variables. For $n \geq k$, the $\sigma_{1}, \ldots, \sigma_{k}$ are algebraically independent in $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$ and we can say s_{l} is specified by the equation

$$
s_{l}\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\sum t_{1}^{i_{1}} \ldots t_{r}^{i_{r}}
$$

$$
s_{I}\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\sum t_{1}^{i_{1}} \ldots t_{r}^{i_{r}}
$$

This does not depend on n, we can set $t_{k+1}=\cdots=t_{n}=0$ to recover the equation for $n=k$.

$$
s_{l}\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\sum t_{1}^{i_{1}} \ldots t_{r}^{i_{r}}
$$

This does not depend on n, we can set $t_{k+1}=\cdots=t_{n}=0$ to recover the equation for $n=k$.
From the definition follows that the $\left\{s_{l} \mid l\right.$ is a partition of $\left.k\right\}$ are linearly independent. Last Lemma \Longrightarrow this is a basis.
This is the one we wanted to construct!

If a complex n-plane bundle ω splits as $\nu_{1} \oplus \cdots \oplus \nu_{n}$ a Whitney sum of line bundles, the formula $1+c_{1}(\omega)+\cdots+c_{n}(\omega)=\left(1+c_{1}\left(\nu_{1}\right)\right) \ldots\left(1+c_{1}\left(\nu_{n}\right)\right)$ shows that

$$
c_{k}(\omega)=\sigma_{k}\left(c_{1}\left(\nu_{1}\right), \ldots, c_{1}\left(\nu_{n}\right)\right)
$$

If a complex n-plane bundle ω splits as $\nu_{1} \oplus \cdots \oplus \nu_{n}$ a Whitney sum of line bundles, the formula
$1+c_{1}(\omega)+\cdots+c_{n}(\omega)=\left(1+c_{1}\left(\nu_{1}\right)\right) \ldots\left(1+c_{1}\left(\nu_{n}\right)\right)$ shows that

$$
c_{k}(\omega)=\sigma_{k}\left(c_{1}\left(\nu_{1}\right), \ldots, c_{1}\left(\nu_{n}\right)\right)
$$

Example: $\gamma^{1} \times \cdots \times \gamma^{1}$ the n-fold cartesian product over $\mathbb{C} P^{\infty} \times \cdots \times \mathbb{C} P^{\infty}$.
Note that $H^{*}\left(\mathbb{C} P^{\infty} \times \cdots \times \mathbb{C} P^{\infty}\right) \cong \mathbb{Z}\left[a_{1}, \ldots, a_{n}\right]$ with $\operatorname{deg} a_{i}=2$ and

$$
c\left(\gamma^{1} \times \cdots \times \gamma^{1}\right)=\left(1+a_{1}\right) \ldots\left(1+a_{n}\right)
$$

If a complex n-plane bundle ω splits as $\nu_{1} \oplus \cdots \oplus \nu_{n}$ a Whitney sum of line bundles, the formula
$1+c_{1}(\omega)+\cdots+c_{n}(\omega)=\left(1+c_{1}\left(\nu_{1}\right)\right) \ldots\left(1+c_{1}\left(\nu_{n}\right)\right)$ shows that

$$
c_{k}(\omega)=\sigma_{k}\left(c_{1}\left(\nu_{1}\right), \ldots, c_{1}\left(\nu_{n}\right)\right)
$$

Example: $\gamma^{1} \times \cdots \times \gamma^{1}$ the n-fold cartesian product over $\mathbb{C} P^{\infty} \times \cdots \times \mathbb{C} P^{\infty}$.
Note that $H^{*}\left(\mathbb{C P}{ }^{\infty} \times \cdots \times \mathbb{C} P^{\infty}\right) \cong \mathbb{Z}\left[a_{1}, \ldots, a_{n}\right]$ with $\operatorname{deg} a_{i}=2$ and

$$
c\left(\gamma^{1} \times \cdots \times \gamma^{1}\right)=\left(1+a_{1}\right) \ldots\left(1+a_{n}\right)
$$

Hence $H^{*}\left(G r_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right) \cong \mathcal{S}^{n}$ and our new basis of \mathcal{S}_{k} gives us a basis of $H^{2 k}\left(G r_{n}\left(\mathbb{C}^{\infty}\right) ; \mathbb{Z}\right)$

Let ω be a complex n-plane bundle with paracompact base space B and total Chern class $c=1+c_{1}+\cdots+c_{n}$. For $k>0$ and I a partition of k we write

$$
s_{l}(c)=s_{l}\left(c_{1}, \ldots, c_{k}\right) \in H^{2 k}(B ; \mathbb{Z})
$$

Let ω be a complex n-plane bundle with paracompact base space B and total Chern class $c=1+c_{1}+\cdots+c_{n}$. For $k>0$ and I a partition of k we write

$$
s_{l}(c)=s_{l}\left(c_{1}, \ldots, c_{k}\right) \in H^{2 k}(B ; \mathbb{Z})
$$

Lemma - Thom

$$
s_{l}\left(c\left(\omega \oplus \omega^{\prime}\right)\right)=\sum_{J K=I} s_{J}(c(\omega)) s_{l}\left(c\left(\omega^{\prime}\right)\right)
$$

where we sum over all partitions J, K with $J K=I$.

Let ω be a complex n-plane bundle with paracompact base space B and total Chern class $c=1+c_{1}+\cdots+c_{n}$. For $k>0$ and I a partition of k we write

$$
s_{l}(c)=s_{l}\left(c_{1}, \ldots, c_{k}\right) \in H^{2 k}(B ; \mathbb{Z})
$$

Lemma - Thom

$$
s_{l}\left(c\left(\omega \oplus \omega^{\prime}\right)\right)=\sum_{J K=I} s_{J}(c(\omega)) s_{l}\left(c\left(\omega^{\prime}\right)\right)
$$

where we sum over all partitions J, K with $J K=I$.
Taking the trivial partition $I=(k)$, we see that

$$
s_{k}\left(c\left(\omega \oplus \omega^{\prime}\right)\right)=s_{k}(c(\omega))+s_{k}\left(c\left(\omega^{\prime}\right)\right)
$$

Proof: $s_{l}\left(c\left(\omega \oplus \omega^{\prime}\right)\right)=\sum_{J K=1} s_{J}(c(\omega)) s_{l}\left(c\left(\omega^{\prime}\right)\right)$

Let σ_{k} be the elementary symmetric polynomial in t_{1}, \ldots, t_{n} and σ_{k}^{\prime} be the one in $t_{n+1}, \ldots, t_{2 n}$. Define $\sigma^{\prime \prime}=\sum_{i=0}^{k} \sigma_{i} \sigma_{k-i}^{\prime}$, which is just the k-th elementary symmetric polynomial in t_{1}, \ldots, t_{n}

Proof: $s_{l}\left(c\left(\omega \oplus \omega^{\prime}\right)\right)=\sum_{J K=1} s_{J}(c(\omega)) s_{l}\left(c\left(\omega^{\prime}\right)\right)$

Let σ_{k} be the elementary symmetric polynomial in t_{1}, \ldots, t_{n} and σ_{k}^{\prime} be the one in $t_{n+1}, \ldots, t_{2 n}$. Define $\sigma^{\prime \prime}=\sum_{i=0}^{k} \sigma_{i} \sigma_{k-i}^{\prime}$, which is just the k-th elementary symmetric polynomial in t_{1}, \ldots, t_{n}

Claim

$$
s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{J K=1} s_{J}\left(\sigma_{1}, \ldots\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots\right)
$$

Proof: $s_{l}\left(c\left(\omega \oplus \omega^{\prime}\right)\right)=\sum_{J K=1} s_{J}(c(\omega)) s_{l}\left(c\left(\omega^{\prime}\right)\right)$

Let σ_{k} be the elementary symmetric polynomial in t_{1}, \ldots, t_{n} and σ_{k}^{\prime} be the one in $t_{n+1}, \ldots, t_{2 n}$. Define $\sigma^{\prime \prime}=\sum_{i=0}^{k} \sigma_{i} \sigma_{k-i}^{\prime}$, which is just the k-th elementary symmetric polynomial in t_{1}, \ldots, t_{n}

Claim

$$
s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{J K=1} s_{J}\left(\sigma_{1}, \ldots\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots\right)
$$

Once we have proven this, we can use that $\sigma_{1}, \ldots, \sigma_{n}, \sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}$ are algebraically independent to set $\sigma_{i}=c_{i}(\omega)$ and $\sigma_{i}^{\prime}=c_{i}\left(\omega^{\prime}\right)$. The product formula for Chern classes (14.7) yields $\sigma_{i}^{\prime \prime}=c_{i}\left(\omega \oplus \omega^{\prime}\right)$.

Proof of Claim

$$
s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{J K=I} s_{J}\left(\sigma_{1}, \ldots\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots\right)
$$

Proof of Claim

$$
s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{J K=1} s_{J}\left(\sigma_{1}, \ldots\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots\right)
$$

By definition $s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{\alpha} t_{\alpha_{1}}^{i_{1}} \ldots t_{\alpha_{r}}^{i_{r}}$ where the $1 \leq \alpha_{i} \leq 2 n$ are pairwise distinct.

Proof of Claim

$$
s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{J K=1} s_{J}\left(\sigma_{1}, \ldots\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots\right)
$$

By definition $s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{\alpha} t_{\alpha_{1}}^{i_{1}} \ldots t_{\alpha_{r}}^{i_{r}}$ where the $1 \leq \alpha_{i} \leq 2 n$ are pairwise distinct.
Set the partitions $J=\left\{i_{q} \mid 1 \leq \alpha_{q} \leq n\right\}$ and $K=\left\{i_{q} \mid n+1 \leq \alpha_{q} \leq 2 n\right\}$.

Proof of Claim

$$
s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{J K=1} s_{J}\left(\sigma_{1}, \ldots\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots\right)
$$

By definition $s_{l}\left(\sigma_{1}^{\prime \prime}, \ldots, \sigma_{k}^{\prime \prime}\right)=\sum_{\alpha} t_{\alpha_{1}}^{i_{1}} \ldots t_{\alpha_{r}}^{i_{r}}$ where the $1 \leq \alpha_{i} \leq 2 n$ are pairwise distinct.
Set the partitions $J=\left\{i_{q} \mid 1 \leq \alpha_{q} \leq n\right\}$ and $K=\left\{i_{q} \mid n+1 \leq \alpha_{q} \leq 2 n\right\}$. Fixing $J=\left(j_{1}, \ldots, j_{s}\right), K=\left(k_{1}, \ldots, k_{r-s}\right)$ partitions with $J K=I$, and taking the sum over all α that induce them, yields

$$
\underbrace{\sum t_{1}^{j_{1}} \ldots t_{s}^{j_{s}}}_{\text {taken in } t_{1}, \ldots, t_{n}} \cdot \underbrace{\sum t_{n+1}^{k_{1}} \ldots t_{n-r-s}^{k_{r-s}}}_{\text {taken in } t_{n+1}, \ldots, t_{2 n}}=s_{J}\left(\sigma_{1}, \ldots, \sigma_{s}\right) s_{K}\left(\sigma_{1}^{\prime}, \ldots, \sigma_{r-s}^{\prime}\right)
$$

Consider K^{n} a complex manifold of complex dimension n. For a partition I of n define $s_{l}(c)\left[K^{n}\right]=\left\langle s_{l}\left(c\left(\tau^{n}\right)\right), \mu_{2 n}\right\rangle \in \mathbb{Z}$.

Corollary

$$
s_{l}\left[K^{m} \times L^{n}\right]=\sum_{J K=1} s_{J}\left[K^{m}\right] s_{K}\left[L^{n}\right]
$$

where J is a partition of m and K one of n.

Consider K^{n} a complex manifold of complex dimension n. For a partition I of n define $s_{l}(c)\left[K^{n}\right]=\left\langle s_{l}\left(c\left(\tau^{n}\right)\right), \mu_{2 n}\right\rangle \in \mathbb{Z}$.

Corollary

$$
s_{l}\left[K^{m} \times L^{n}\right]=\sum_{J K=1} s_{J}\left[K^{m}\right] s_{K}\left[L^{n}\right]
$$

where J is a partition of m and K one of n.
The tangent bundle of $K^{m} \times L^{n}$ splits $\tau \times \tau^{\prime} \cong\left(\pi_{1}^{*} \tau\right) \oplus\left(\pi_{2}^{*} \tau^{\prime}\right)$ where π_{i} are the projection.

Consider K^{n} a complex manifold of complex dimension n. For a partition I of n define $s_{l}(c)\left[K^{n}\right]=\left\langle s_{l}\left(c\left(\tau^{n}\right)\right), \mu_{2 n}\right\rangle \in \mathbb{Z}$.

Corollary

$$
s_{l}\left[K^{m} \times L^{n}\right]=\sum_{J K=1} s_{J}\left[K^{m}\right] s_{K}\left[L^{n}\right]
$$

where J is a partition of m and K one of n.
The tangent bundle of $K^{m} \times L^{n}$ splits $\tau \times \tau^{\prime} \cong\left(\pi_{1}^{*} \tau\right) \oplus\left(\pi_{2}^{*} \tau^{\prime}\right)$ where π_{i} are the projection.

$$
s_{l}\left[K^{m} \times L^{n}\right]=\left\langle s_{l}\left(\tau \times \tau^{\prime}\right), \mu_{2 m} \times \mu_{2 n^{\prime}}\right\rangle=\sum_{J K=I}\left\langle s_{J}(\tau), \mu_{2 m}\right\rangle\left\langle s_{K}\left(\tau^{\prime}\right), \mu_{2 n}^{\prime}\right\rangle
$$

The signs die since all degrees are even.

Consider K^{n} a complex manifold of complex dimension n. For a partition I of n define $s_{l}(c)\left[K^{n}\right]=\left\langle s_{l}\left(c\left(\tau^{n}\right)\right), \mu_{2 n}\right\rangle \in \mathbb{Z}$.

Corollary

$$
s_{l}\left[K^{m} \times L^{n}\right]=\sum_{J K=1} s_{J}\left[K^{m}\right] s_{K}\left[L^{n}\right]
$$

where J is a partition of m and K one of n.
The tangent bundle of $K^{m} \times L^{n}$ splits $\tau \times \tau^{\prime} \cong\left(\pi_{1}^{*} \tau\right) \oplus\left(\pi_{2}^{*} \tau^{\prime}\right)$ where π_{i} are the projection.

$$
s_{l}\left[K^{m} \times L^{n}\right]=\left\langle s_{l}\left(\tau \times \tau^{\prime}\right), \mu_{2 m} \times \mu_{2 n^{\prime}}\right\rangle=\sum_{J K=1}\left\langle s_{J}(\tau), \mu_{2 m}\right\rangle\left\langle s_{K}\left(\tau^{\prime}\right), \mu_{2 n}^{\prime}\right\rangle
$$

The signs die since all degrees are even.
As a corollary, $s_{n+m}\left[K^{m} \times L^{n}\right]=0$ if $m, n \neq 0$.

Example: $\mathbb{C P}^{n}$

Since $c(\tau)=(1+a)^{n+1}$, we see that $c_{k}=\sigma_{k}(a, \ldots, a)$ in $n+1$ variables.

Example: $\mathbb{C P}^{n}$

Since $c(\tau)=(1+a)^{n+1}$, we see that $c_{k}=\sigma_{k}(a, \ldots, a)$ in $n+1$ variables.

$$
\Longrightarrow s_{k}\left(c_{1}, \ldots, c_{k}\right)=(n+1) a^{k}
$$

and taking $n=k$ yields $s_{n}\left[\mathbb{C P}^{n}\right]=n+1 \neq 0$

Example: $\mathbb{C P}^{n}$

Since $c(\tau)=(1+a)^{n+1}$, we see that $c_{k}=\sigma_{k}(a, \ldots, a)$ in $n+1$ variables.

$$
\Longrightarrow s_{k}\left(c_{1}, \ldots, c_{k}\right)=(n+1) a^{k}
$$

and taking $n=k$ yields $s_{n}\left[\mathbb{C P}^{n}\right]=n+1 \neq 0$
This means $\mathbb{C} P^{n}$ cannot be expressed as a (non-trivial) product of complex manifolds.

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base space B and I a partition of n. Define

$$
s_{l}(p(\xi))=s_{l}\left(p_{1}(\xi), \ldots, p_{n}(\xi)\right) \in H^{4 n}(B ; \mathbb{Z})
$$

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base space B and I a partition of n. Define

$$
s_{l}(p(\xi))=s_{l}\left(p_{1}(\xi), \ldots, p_{n}(\xi)\right) \in H^{4 n}(B ; \mathbb{Z})
$$

Then we get another product formula, but only modulo 2 (see 16.2):

$$
s_{l}\left(p\left(\xi \oplus \xi^{\prime}\right)\right)=\sum_{J K=I} s_{J}(p(\xi)) s_{K}\left(p\left(\xi^{\prime}\right)\right)
$$

Pontrjagin numbers

... have analogous results. Let ξ be a real vector bundle over the base space B and I a partition of n. Define

$$
s_{l}(p(\xi))=s_{l}\left(p_{1}(\xi), \ldots, p_{n}(\xi)\right) \in H^{4 n}(B ; \mathbb{Z})
$$

Then we get another product formula, but only modulo 2 (see 16.2):

$$
s_{l}\left(p\left(\xi \oplus \xi^{\prime}\right)\right)=\sum_{J K=I} s_{J}(p(\xi)) s_{K}\left(p\left(\xi^{\prime}\right)\right)
$$

which implies $s_{l}(p)[M \times N]=\sum_{J K=l} s_{J}(p)[M] s_{K}(p)[N]$

Main Result

Theorem - Thom
For K_{1}, \ldots, K^{n} complex manifolds with $s_{k}(c)\left[K^{k}\right] \neq 0$, we have that the matrix

$$
\left[c_{i_{1}} \ldots c_{i_{r}}\left[K^{j_{1}} \times \cdots \times K^{j_{s}}\right]\right]_{/, J} \text { are partitions of } n
$$

is non-singular.
For example, $K^{r}=\mathbb{C} P^{r}$ has this property

Main Result

Theorem - Thom
For K_{1}, \ldots, K^{n} complex manifolds with $s_{k}(c)\left[K^{k}\right] \neq 0$, we have that the matrix

$$
\left[c_{i_{1}} \ldots c_{i_{r}}\left[K^{j_{1}} \times \cdots \times K^{j_{s}}\right]\right]_{/, J} \text { are partitions of } n
$$

is non-singular.
For example, $K^{r}=\mathbb{C} P^{r}$ has this property
Theorem
If $M^{4}, \ldots, M^{4 n}$ are oriented manifolds and $s_{k}(p)\left[M^{4 k}\right] \neq 0$ then

$$
\left[p_{i_{1}} \ldots p_{i_{r}}\left[M^{4 j_{1}} \times \cdots \times M^{4 j_{s}}\right]\right]_{I, J} \text { are partitions of } n
$$

is non-singular.

Proof

We can easily generalize our product formula to

$$
s_{l}\left[K^{j_{1}} \times \cdots \times K^{j_{q}}\right]=\sum_{I_{1} \ldots I_{q}=l} s_{l_{1}}\left[K^{j_{1}}\right] \ldots s_{I_{q}}\left[K^{j_{q}}\right]
$$

where we sum over $I_{/}$partitions of j_{l}.

Proof

We can easily generalize our product formula to

$$
s_{l}\left[K^{j_{1}} \times \cdots \times K^{j_{q}}\right]=\sum_{I_{1} \ldots I_{q}=l} s_{l_{1}}\left[K^{j_{1}}\right] \ldots s_{l_{q}}\left[K^{j_{q}}\right]
$$

where we sum over l_{l} partitions of j_{l}.
We see that $s_{I}\left[K^{j_{1}} \times \cdots \times k^{j_{q}}\right]=0$, unless $I=\left(i_{1}, \ldots, i_{r}\right)$ is a refinement of $\left(j_{1}, \ldots, j_{q}\right)$.

Proof

We can easily generalize our product formula to

$$
s_{l}\left[K^{j_{1}} \times \cdots \times K^{j_{q}}\right]=\sum_{I_{1} \ldots I_{q}=l} s_{l_{1}}\left[K^{j_{1}}\right] \ldots s_{l_{q}}\left[K^{j_{q}}\right]
$$

where we sum over l_{l} partitions of j_{l}.
We see that $s_{I}\left[K^{j_{1}} \times \cdots \times k^{j_{q}}\right]=0$, unless $I=\left(i_{1}, \ldots, i_{r}\right)$ is a refinement of $\left(j_{1}, \ldots, j_{q}\right)$.
But that means we can arrange the partitions so that

$$
\left[c_{i_{1}} \ldots c_{i_{r}}\left[K^{j_{1}} \times \cdots \times K^{j_{s}}\right]\right]_{l, J} \text { are partitions of } n
$$

Is a triangular matrix with zeros above the diagonal.

Proof

We can easily generalize our product formula to

$$
s_{l}\left[K^{j_{1}} \times \cdots \times K^{j_{q}}\right]=\sum_{I_{1} \ldots I_{q}=l} s_{l_{1}}\left[K^{j_{1}}\right] \ldots s_{l_{q}}\left[K^{j_{q}}\right]
$$

where we sum over l_{l} partitions of j_{l}.
We see that $s_{I}\left[K^{j_{1}} \times \cdots \times k^{j_{q}}\right]=0$, unless $I=\left(i_{1}, \ldots, i_{r}\right)$ is a refinement of $\left(j_{1}, \ldots, j_{q}\right)$.
But that means we can arrange the partitions so that

$$
\left[c_{i_{1}} \ldots c_{i_{r}}\left[K^{j_{1}} \times \cdots \times K^{j_{s}}\right]\right]_{/, J} \text { are partitions of } n
$$

Is a triangular matrix with zeros above the diagonal.
The diagonal entries are $s_{\left(i_{1}, \ldots, i_{r}\right)}\left[K^{i_{1}} \times \cdots \times K^{i_{r}}\right]=\coprod_{l=1}^{r} s_{i_{l}}\left[K^{i_{l}}\right] \neq 0$, so the determinant of the matrix is non-zero.

