# Proof of the h-Cobordims Theorem 

Dominik Kirstein

June 30, 2020

The h-Cobordism Theorem

Theorem
Let $M_{0}$ be a closed simply connected manifold of dimension $n \geq 5$. Then every h-cobordism ( $W, M_{0}, M_{1}$ ) over $M_{0}$ is trivial over $M_{0}$.
h-cobordism: - $\omega$ compact manifold,

- $\partial \omega=M_{0} \| M_{1}$
- $M_{0} \hookrightarrow \omega, M_{1} \longrightarrow \omega$ h-equisalaces
trivial: $\omega \cong M_{0} \times[0,1]$
${ }^{\text {Lifleomorplessm}}$ relative Mo

Short Reminder

In the following, let $W$ be a compact $n$-manifold with boundary $\partial W=\partial_{0} W \amalg \partial_{1} W$.
There exists a handlebody decomposition

$$
\begin{equation*}
W \cong \partial_{0} W \times[0,1]+\sum_{i=1}^{p_{0}}\left(\phi_{i}^{0}\right)+\cdots+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right) \tag{1}
\end{equation*}
$$

- There exists a relative $C \omega$ complex $\left(\alpha, \partial_{0} \omega\right) \simeq\left(\omega, \partial_{0} \omega\right)$ $q$-cells of $X \leftrightarrow q$-handles of (1)
$H_{q}\left(\omega, \theta_{0}(\omega)\right.$ an be computed from the hadleboly
 clash complex $C_{q}\left(\omega, D_{0} \omega\right):=H_{q}\left(U_{q}, \omega_{q-1}\right)$

Strategy

We first want to simplify the handlebody decomposition in the following way:
Lemma (Normal form Lemma)
Let $\left(W, \partial_{0} W, \partial_{1} W\right)$ be a $h$-cobordism of dimension $n \geq 6$ and $2 \leq q \leq n-3$. Then there exists a handlebody decomposition of the form

$$
\begin{equation*}
W \cong \partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right) . \tag{2}
\end{equation*}
$$

Sletch of proof: Enow: No 0,1-haulles

- Replace eula $h-h$ dandle $b_{y}(k+2)$-handle

$$
\leadsto \omega=\partial_{0} \omega \times[0,1]+\sum_{i=1}^{P_{2}} \phi_{i}^{q}+\ldots+\sum_{i=1}^{P_{n}} \phi_{i}^{n}
$$

- Dual handlesody de compo sition


## Short Reminder

## Lemma (Elimination Lemma)

Let $1 \leq q \leq n-3$ and suppose that $p_{j}=0$ for $j<q$. Fix any $1 \leq i_{0} \leq p_{q}$ and suppose that there is an embedding $\psi^{q+1}: S^{q} \times D^{n-1-q} \rightarrow \partial_{1}^{\circ} W_{q}$ with the following properties:

- $\left.\psi^{q+1}\right|_{S^{q} \times 0}$ is isotopic in $\partial_{1} W_{q}$ to an embedding $\psi_{1}^{q+1}: S^{q} \times 0 \rightarrow \partial_{1} W_{q}$ which meets the transverse sphere of $\phi_{i_{0}}^{q}$ transversally and in exactly one point and is disjoint from the transverse sphere of $\phi_{i}^{q}$ for all $i \neq i_{0}$;
- $\left.\psi^{q+1}\right|_{S^{q} \times 0}$ is isotopic in $\partial_{1} W_{q+1}$ to a trivial embedding $\psi_{2}^{q+1}: S^{q} \times 0 \rightarrow \partial_{1}^{\circ} W_{q+1}$.

Then

$$
\begin{equation*}
W \cong \partial_{0} W \times[0,1]+\sum_{i=1, i \neq i_{0}}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\bar{\phi}_{i}^{q+1}\right)+\left(\psi^{q+2}\right)+\sum_{i=1}^{p_{q+2}}\left(\bar{\phi}_{i}^{q+2}\right)+\sum_{i=1}^{p_{n}}\left(\bar{\phi}_{i}^{n}\right) \tag{3}
\end{equation*}
$$

Lemma
Suppose $n \geq 6,2 \leq q \leq n-3$ and $i_{0} \in\left\{1, \ldots, p_{q}\right\}$ and let $f: S^{q} \rightarrow \partial_{1} W_{q}$ be an embedding.
The following are equivalent:
(i) $f$ is isotopic to an embedding $g: S^{q} \rightarrow \partial_{1} W_{q}$ such that $g$ meets the transverse sphere of $\left(\phi_{i_{q}}^{q}\right)$ transversally and in exactly one point and is disjoint from the transverse sphere of ( $\phi_{i}^{q}$ ) for all $i \neq i_{0}$.
(ii) There exists $\gamma \in \pi=\pi_{\gamma}\left(\partial_{0} \omega\right)$

$$
\begin{equation*}
[\tilde{f}]= \pm \gamma\left[\phi_{i_{0}}^{q}\right] \tag{4}
\end{equation*}
$$

in $C_{q}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right)$, where $\widetilde{f}: S^{q} \rightarrow \widetilde{W}_{q}$ is a lift of $f$.


$$
k_{q}\left(\tilde{\omega}_{q}\right) \rightarrow k_{q}\left(\tilde{\omega_{q}}, \tilde{\omega_{q-1}}\right) \rightarrow H_{q}\left(\tilde{\omega_{q}}, \tilde{\omega_{q-1}}\right)=C_{q}\left(\tilde{\omega}, \tilde{\nu_{0}} \tilde{\omega}\right)
$$ [₹]

Proof: (c) $=(\bar{u})$ isodope \& $s$.

- $\left.f\right|_{s_{+}^{a}}$ cools bie $S_{+}^{q} \rightarrow D^{d} \times[x] \rightarrow \delta\left(d_{i_{0}}^{q}\right)$
- $f_{s \underline{g}}$ is disjont from all $\phi_{i}^{9}$

$$
\Rightarrow[\tilde{q}]= \pm \gamma\left[\phi_{i_{0}}^{q}\right]
$$



Homology Lemma
$(i i) \Rightarrow(i)$ Assume $[\tilde{Z}]= \pm \gamma\left[\phi_{i_{0}}^{q}\right]$
Isotop \& sit. \& meets all transverse spheres fronsversally

$$
\operatorname{dim} S^{q}+\operatorname{din}(t r a n s u e s e ~ s p h e r e)=q+n-q-1=n-1=\operatorname{din} \partial_{1} \omega_{q}
$$

transversality $\Rightarrow f$ intersects each tronsuese sphere of $\phi_{i}{ }^{q}$ in only finitely many poult $x_{i 1}, \ldots, x_{i r_{i}}$

Homology Lemma

- Pick $y \in S^{q}, z=f(y)$
- $v_{i j}: I \rightarrow S^{q}, u_{i j}(0)=4, f\left(u_{i j}(1)\right)=x_{i j}$
- $\omega: I \rightarrow \partial_{1} \omega_{g}$ starting on the transverse splore of $\phi_{i q}^{q} \quad \omega_{i}(1)=z$
- $V_{i j}: I \rightarrow$ tansuarse sphere, $v_{i j}(0)=x_{i j}, \quad v_{i j}(1)=w ;(0)$

- $\gamma_{i j}=f\left(u_{i j}\right) r v_{i j} * \omega_{i}$

Homology Lemma
As before: $[\tilde{f}]=\sum_{i=1}^{P_{q}} \sum_{j=1}^{r_{i}} \varepsilon_{i j} \gamma_{i j}\left[\phi_{i}^{q}\right]$

$$
\left.\begin{array}{rl} 
\pm \gamma\left[\phi_{i 0}^{q}\right.
\end{array}\right]=\quad \begin{array}{ll}
i=1 \\
& \begin{array}{l}
\text { Linter section number as ch Clothe trick } \\
\\
\\
\\
\pm 1
\end{array}
\end{array}
$$

Assume that $\sum_{i} r_{i}>1$
$\Rightarrow \exists 1 \leq i \leq p_{4}$. 子 $1 \leq j_{11}, j_{2} \leq \sigma_{i}$ s.t. $\gamma_{i j_{1}}=\gamma_{i j 2}$ an $\pi$ and

$$
\varepsilon_{i j_{1}}=-\varepsilon_{i j_{2}}
$$

$\Rightarrow \gamma_{i j 1} \times \gamma_{i j 2}^{-}=f\left(v_{i j 1}\right) \times v_{i j 1} \times v_{i j 2}^{-} \times f\left(v_{i j 2}\right)^{-}$is nolllomotopic
Whitney, tide $\Rightarrow$ isotope to remove $x_{i j 1}, x_{i j 2}$

$$
\leadsto \sum_{i} r_{i}=1
$$

Modification Lemma

Lemma
Let $f: S^{q} \rightarrow \partial_{1}^{\circ} W_{q}$ be an embedding and $x_{j} \in \mathbb{Z} \pi\left(j=1, \ldots, p_{q+1}\right)$. Then there exists an embedding $g: S^{q} \rightarrow \partial_{1}^{\circ} W_{q}$ such that:

- $f$ and $g$ are isotopic in $\partial_{1} W_{q+1}$
- For a lift $\widetilde{f}: S^{q} \rightarrow \widetilde{W}_{q}$ one can find a lift $\widetilde{g}: S^{q} \rightarrow \widetilde{W}_{q}$ such that

$$
[\widetilde{g}]=[\widetilde{f}]+\underbrace{\sum_{j=1}^{p_{q+1}} x_{j} \cdot d_{q+1}\left[\phi_{j}^{q+1}\right]}_{\epsilon i m\left(d_{q+1}\right)}
$$

in $C_{q}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right)$.
Only construct of st.

$$
[\tilde{g}]=[\tilde{f}] \pm \gamma d_{q+1}\left[\phi_{i}^{q+1}\right]
$$

Modification Lemma
Cons:der $\quad t_{i}: S^{q} \approx s^{q} \times z \leqslant S^{q} \times S^{n-q-2} \leqslant \partial\left(\phi_{i}^{q+1}\right)$

$$
g=f \#_{\omega} t_{i}
$$

- g istopic to $f$ in $\partial_{1} \partial_{q+1}$

$$
\text { - }[\tilde{y}]=[\tilde{f}]+\tilde{\gamma} d_{q+1}\left(\left[\phi_{i}^{q+1}\right]\right)
$$



## Dual Handelbody Decomposition

Suppose that

$$
\begin{align*}
& \qquad W \cong \partial_{0} W \times[0,1]+\sum_{i=1}^{p_{0}}\left(\phi_{i}^{0}\right)+\overbrace{i}^{\phi_{i}^{6}}+\sum_{i=1}^{p_{n}}\left(\phi_{i}^{n}\right) \\
& \text { Then there exists a handlebody decomposition relative } \phi_{1} W \text { of the form }  \tag{6}\\
& \psi^{n-h}
\end{align*}
$$

$$
\begin{equation*}
W \cong \partial_{1} W \times[0,1]+\sum_{i=1}^{p_{n}}\left(\psi_{i}^{0}\right)+\cdots+\sum_{i=1}^{\psi_{i}^{n-h}}\left(\psi_{i}^{n}\right) \tag{7}
\end{equation*}
$$



Lemma
Let $\left(W, \partial_{0} W, \partial_{1} W\right)$ be a $h$-cobordism of dimension $n \geq 6$ and $2 \leq q \leq n-3$. Then $W$ has a handlebody decomposition with handles only of index $q$ and $(q+1)$ :

$$
\begin{equation*}
W \cong \partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}}\left(\phi_{i}^{q}\right)+\sum_{i=1}^{p_{q+1}}\left(\phi_{i}^{q+1}\right) \tag{8}
\end{equation*}
$$

Proof No 0,1 - haulles, $p_{0}=P_{1}=0$
want $p_{r}=0$ for $r<q$
Inductive: Assume $P_{r}=0(r<h), p_{l}>1$

Normal Form Lemma

$$
\omega=\theta_{0} \omega \times I+\sum_{i} \phi_{i}^{h}+-+\sum_{i} \phi_{i}^{4}
$$

Fix tivial $\bar{\psi}^{h+1}: S^{h} \times D^{n-h-1} \rightarrow \partial_{1}^{0} \omega_{L}$

$$
\text { No }(\mathbb{L}-1) \text {-haulles } \Rightarrow d_{L+1}: C_{h+1}\left(\tilde{\omega}, \widetilde{\partial_{0} \tilde{\omega}}\right) \rightarrow C_{h}\left(\tilde{\omega}, \tilde{\partial_{0} \tilde{\omega}}\right)
$$

surjeldue

$$
\left[d_{1}^{h}\right]=\sum_{i=1}^{P_{L+1}} x_{i} d_{h+1}\left[\phi_{i}^{h+1}\right] \text { for } x_{1,-1}, x_{P_{l+1}} \in \mathbb{Z} \pi
$$

Modlication-Lenua: $\quad \underset{\gamma^{h+1}}{ }: S^{h} \times D^{n-h-1} \rightarrow \partial_{1}^{0} \omega_{L} \quad s t$.

- $\bar{\psi}^{c+1}, \psi^{c+1}$ are isotipic in $\partial_{1} U_{h+1}, 0$

Normal Form Lemma
Honologe, + Elinination Lennce $\Rightarrow$ replace $\phi_{1}^{h}$ by some $\psi^{\text {c+2 }}$ $\rightarrow \quad \omega=\partial_{0} \omega \times I+\sum_{i=1}^{p_{F}} \phi_{i}^{q}+\ldots+\sum_{i=1}^{p_{n}} \phi_{i}^{n}$

Doal $\omega=\partial_{1} \omega \times I+\sum_{i} \psi_{i}^{0}+\ldots+\sum_{i} \psi_{i}^{n-q}$
$\Rightarrow \quad \omega=\rho_{1} \omega \times I+\sum \bar{\psi}_{i}^{n-q-1}+\sum \bar{\psi}_{i}^{n-q}$
$\xrightarrow[\sim]{\text { Dual }} \omega=\partial_{0} \omega \times \bar{I}+\sum \bar{\phi}_{i}^{q}+\sum_{i} \bar{\phi}_{i}^{q+1}$

## Whitehead Group

The Normal Form Lemma gives us a decomposition

$$
\begin{equation*}
W=\partial_{0} W \times[0,1]+\sum_{i=1}^{p_{q}} \phi_{i}^{q}+\sum_{i=1}^{p_{q+1}} \phi_{i}^{q+1} \tag{9}
\end{equation*}
$$

Then $d_{q+1}: C_{q+1}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right) \rightarrow C_{q}\left(\widetilde{W}, \widetilde{\partial_{0} W}\right)$ is an isomorphism. The invertible matrix representing this isomorphism with respect to the $\mathbb{Z} \pi$-bases $\left(\left[\phi_{i}^{q+1}\right]\right)_{1 \leq i \leq p_{q+1}}$ and $\left(\left[\phi_{i}^{q}\right]\right)_{1 \leq i \leq p_{q}}$ is called the representative matrix.

- $C_{q+2}\left(\tilde{\omega}, \widetilde{\theta_{0}} \tilde{\omega}\right)=C_{q-1}\left(\tilde{\omega}, \widetilde{\partial_{0}}\right)=0$
- $p_{q}=\rho_{q+1}$

Whitehead Group

Define the Whitehead group $W h(\pi)$ to be set of all invertible $\mathbb{Z} \pi$-matrices (with arbitrary dimension) modulo the following relations: $A$ and $B$ are equivalent if $B$ is obtained from $A$ by a sequence of the following operations:
(1) Add $x$ times the $k$-th row of $A$ to the $m$-th row of $A$ where $x \in \mathbb{Z} \pi$ and $k \neq m$
(2) $B=\left(\begin{array}{ll}A & 0 \\ 0 & 1\end{array}\right)$
(3) $A=\left(\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right)$
(9) Multiply the $m$-th row of $A$ with $\pm \gamma$ for $\gamma \in \pi$
(3) Interchange two rows or columns of $A$.

- $\omega_{h}(0)=0$
- $\cos (\pi)$ is caelian
- $\left[A \cdot[B]:=\left[\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right)\right]\right.$

Modifying the Handlebody Decomposition
in normal form
Lemma
Suppose $A$ is the representative matrix of a handlebody decomposition of $W$ and $B \in G L(k, \mathbb{Z} \pi)$ such that $[A]=[B]$ in $W h(\pi)$. Then $W$ has a handlebody decomposition with representative matrix $B$.

Only need to shaw:
For each operation 1-5 we can modify the handle body decomposition

Modifying the Handlebody Decomposition
(1) Add $x$ times the $k$-th row of $A$ to the $m$-th row of $A$ where $x \in \mathbb{Z} \pi$ and $k \neq m$ Change $\phi_{m}^{q+1}$ s.t. $\left[\left.\phi_{m}^{q_{+1}}\right|_{s^{h} \times 0}\right]=\left[\left.\phi_{m}^{q+1}\right|_{s^{6} \times 0}\right]+x d_{q+1}\left[\phi_{k}^{q+1}\right]$
(2) $B=\left(\begin{array}{ll}A & 0 \\ 0 & 1\end{array}\right)$ Attach a trivial handle + cancel it
(3) $A=\left(\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right)$ Homology lemma + Cancelation Lamina
(9) Multiply the $m$-th row of $A$ with $\pm \gamma$ for $\gamma \in \pi$

Choose a different base point of loft
Charge vientution af hackle
(- Interchange two rows or columns of $A$.
Change order of handles

Proof of the h-Cobordism Theorem

Theorem
(1) Let $\left(W, \partial_{0} W, \partial_{1} W\right)$ be a $h$-cobordism of dimension $n \geq 6$. If $A$ is the representative matrix of a handlebody decomposition of $W$ such that $[A]=0$ in $W h(\pi)$, then $W$ is trivial relative $\partial_{0} W$.
(2) Let $M_{0}$ be a closed manifold of dimension $n-1 \geq 5$ and $u \in W h(\pi)$. Then there exists a $h$-cobordism ( $W, M_{0}, M_{1}$ ) with representative matrix $A$ such that $[A]=u$.

Proof: (1) $\mathrm{B}_{3}$
no han Mes
(2) Let $A \in \delta L\left(h_{1} \mathbb{Z}_{\pi}\right)$ s. $\perp .[A]=0$.

Start with $\omega^{\prime}=\omega_{0} \times I+\sum_{i=1}^{h} \phi_{i}^{2}$ for disjoint finial $\phi_{i}^{2}$ 's

Proof of the h-Cobordism Theorem
Then coustuct $\phi_{i}^{3}$ 's s.t.

$$
\left[\left.\phi_{i}^{3}\right|_{S^{2} \times 0}\right]=\sum_{i} a_{i j}\left[\phi_{j}^{2}\right]
$$

$\Rightarrow \omega=\omega^{\prime}+\sum_{j=1}^{h} \phi_{j}^{3} \quad$ has rearesectative meatix $A$

The s-Cobordism Theorem

Theorem
Let $M_{0}$ be a closed connected manifold of dimension $n-1 \geq 5$ and $\pi=\pi_{1}\left(M_{0}\right)$.
(1) A h-cobordism $\left(W, M_{0}, M_{1}\right)$ is trivial relative $M_{0}$ if the Whitehead torsion $\tau\left(W, M_{0}\right) \in W h(\pi)$ is zero.
(2) For any $u \in W h(\pi)$ there exists a h-cobordism $\left(W, M_{0}, M_{1}\right)$ such that $\tau\left(W, M_{0}\right)=u$.
(3) The function
$\left(\left\{h\right.\right.$-cobordisms over $\left.\left.M_{0}\right\} / \cong\right) \rightarrow W h(\pi),\left(W, M_{0}, M_{1}\right) \mapsto \tau\left(W, M_{0}\right)$
is a bijection.

- $I\left(\omega, M_{0}\right)=[A] \quad \therefore$ doesn't doped on handle) dy decomposition
- doesn't depend on choice of lifts,...

$$
\cdot\left(\omega, M_{0}, M_{1}\right),\left(\omega, M_{1}, M_{2}\right) h \text {-cosordisms } \Rightarrow \tau\left(\omega_{M_{1}} \omega_{1}^{\prime}, M_{0}\right)=\tau\left(\omega_{1} M_{0}\right)+\tau\left(\omega_{1}^{\prime} M_{1}\right)
$$

## References

Diarmuid Crowley, Wolfgang Lueck, and Tibor Macko, Surgery theory: Foundations, Springer, 2019.

國 Morris Hirsch, Differential topology, Springer-Verlag, 1976.
John Milnor, Lectures on the h-cobordism theorem, Princeton University Press, 1965.
囯 Andrew Mackie-Mason, The h-cobordism theorem.

