Complex Manifolds and Chern Classes

Jonathan Pampel

29. April 2020

Definition (Real Vector Bundles)

An n-dimensional real vector bundle ω over a topological space B consists of

- a topological space E
- a continuous map $\pi: E \rightarrow B$
- an n-dimensional real vector space structure on each fiber $F_{b}=\pi^{-1}(b)$
such that for all $b \in B$ there is an open subset $U \ni b$ and a homeomorphism
$\left.E\right|_{U} \cong U \times \mathbb{R}^{n}$ that is fiberwise an \mathbb{R}-linear vector space isomorphism.

Definition (Complex Vector Bundles)

An n-dimensional complex vector bundle ω over a topological space B consists of

- a topological space E
- a continuous map $\pi: E \rightarrow B$
- an n-dimensional complex vector space structure on each fiber $F_{b}=\pi^{-1}(b)$ such that for all $b \in B$ there is an open subset $U \ni b$ and a homeomorphism $\left.E\right|_{U} \cong U \times \mathbb{C}^{n}$ that is fiberwise a \mathbb{C}-linear vector space isomorphism.

Definition (Complex Structure)

Let ω be an $2 n$-dimensional real vector bundle over a space B.

Definition (Complex Structure)

Let ω be an $2 n$-dimensional real vector bundle over a space B. A complex structure on ω is a homomorphism of vector bundles $J: E \longrightarrow \cong$ such that

Definition (Complex Structure)

Let ω be an $2 n$-dimensional real vector bundle over a space B. A complex structure on ω is a homomorphism of vector bundles $J: E \longrightarrow \cong$ such that on each fiber F_{b}, we have $J(J(v))=-v$.

Definition (Complex Structure)

Let ω be an $2 n$-dimensional real vector bundle over a space B. A complex structure on ω is a homomorphism of vector bundles $J: E \longrightarrow E$ such that on each fiber F_{b}, we have $J(J(v))=-v$.

Remark

We get a complex vector bundle with $(x+i y) \cdot v=x \cdot v+y \cdot J(v)$ on each fiber.

Example

Let $U \in \mathbb{C}^{n}$ be open, then the tangent bundle $\left.T \mathbb{C}^{n}\right|_{U}$ (with total space $U \times \mathbb{C}^{n}$) has a canonical complex structure given by

Example

Let $U \in \mathbb{C}^{n}$ be open, then the tangent bundle $\left.T \mathbb{C}^{n}\right|_{U}$ (with total space $U \times \mathbb{C}^{n}$) has a canonical complex structure given by $J_{0}(u, v)=(u, i v)$ for $u \in U, v \in \mathbb{C}^{n}$.

Definition (Almost Complex Structure on a Manifold)

Definition (Almost Complex Structure on a Manifold)

Let M be a smooth manifold of dimension $2 n$. An almost complex structure on M is a complex structure J on the tangent bundle $T M$.

Definition (Complex Manifold)

Let M be a smooth manifold of dimension $2 n$. A complex structure on M is a complex structure J on the tangent bundle $T M$ satisfying the following:

Definition (Complex Manifold)

Let M be a smooth manifold of dimension $2 n$. A complex structure on M is a complex structure J on the tangent bundle $T M$ satisfying the following: For all $p \in M$ there is an open neighbourhood $U \ni p$ and a diffeomorphism $h: U \rightarrow \hat{U}$ to an open subset $\hat{U} \subseteq \mathbb{C}^{n}$

Definition (Complex Manifold)

Let M be a smooth manifold of dimension $2 n$. A complex structure on M is a complex structure J on the tangent bundle $T M$ satisfying the following: For all $p \in M$ there is an open neighbourhood $U \ni p$ and a diffeomorphism $h: U \rightarrow \hat{U}$ to an open subset $\hat{U} \subseteq \mathbb{C}^{n}$ whose derivative $\mathrm{d} h$ is holomorphic, i. e. $J_{0} \circ \mathrm{~d} h=\mathrm{d} h \circ J$.

Definition (Complex Manifold)

Let M be a smooth manifold of dimension $2 n$. A complex structure on M is a complex structure J on the tangent bundle $T M$ satisfying the following: For all $p \in M$ there is an open neighbourhood $U \ni p$ and a diffeomorphism $h: U \rightarrow \hat{U}$ to an open subset $\hat{U} \subseteq \mathbb{C}^{n}$ whose derivative $\mathrm{d} h$ is holomorphic, i. e. $J_{0} \circ \mathrm{~d} h=\mathrm{d} h \circ J$.
A manifold together with a given complex structure is called complex manifold.

Remark

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\left\{h_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\left\{V_{\alpha}\right\}_{\alpha \in A}$ an open covering of M) such that

Remark

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\left\{h_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\left\{V_{\alpha}\right\}_{\alpha \in A}$ an open covering of $M)$ such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Remark

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\left\{h_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\left\{V_{\alpha}\right\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Example

- Every one dimensional almost complex manifold is complex.

Remark

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\left\{h_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\left\{V_{\alpha}\right\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Example

- Every one dimensional almost complex manifold is complex.
- There is an almost complex but no complex structure[2] on $\left(S^{2} \times S^{2}\right) \#\left(S^{1} \times S^{3}\right) \#\left(S^{1} \times S^{3}\right)$.

Remark

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\left\{h_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\right\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\left\{V_{\alpha}\right\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Example

- Every one dimensional almost complex manifold is complex.
- There is an almost complex but no complex structure[2] on $\left(S^{2} \times S^{2}\right) \#\left(S^{1} \times S^{3}\right) \#\left(S^{1} \times S^{3}\right)$.
- For complex dimension ≥ 3, we do not know if there is an almost complex but not complex manifold.

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$
- naturality: $f^{*} w_{i}(\omega)=w_{i}\left(f^{*} \omega\right)$

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$
- naturality: $f^{*} w_{i}(\omega)=w_{i}\left(f^{*} \omega\right)$
- $w_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} w_{i}(\omega) \smile w_{k-i}(\eta)$

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$
- naturality: $f^{*} w_{i}(\omega)=w_{i}\left(f^{*} \omega\right)$
- $w_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} w_{i}(\omega) \smile w_{k-i}(\eta)$
- normalization: $w_{0}(\omega)=1$ and for γ_{1}^{1} the canonical line bundle over $\mathbb{R} P^{1}$, we have $w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$
- naturality: $f^{*} w_{i}(\omega)=w_{i}\left(f^{*} \omega\right)$
- $w_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} w_{i}(\omega) \smile w_{k-i}(\eta)$
- normalization: $w_{0}(\omega)=1$ and for γ_{1}^{1} the canonical line bundle over $\mathbb{R} P^{1}$, we have $w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

Definition (Chern Classes)

The Chern classes $c_{i}(\omega) \in H^{2 i}(B, \mathbb{Z})$ of a complex vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: c_{i}(\omega)=0$
- naturality: $f^{*} c_{i}(\omega)=c_{i}\left(f^{*} \omega\right)$
- $c_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} c_{i}(\omega) \smile c_{k-i}(\eta)$

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$
- naturality: $f^{*} w_{i}(\omega)=w_{i}\left(f^{*} \omega\right)$
- $w_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} w_{i}(\omega) \smile w_{k-i}(\eta)$
- normalization: $w_{0}(\omega)=1$ and for γ_{1}^{1} the canonical line bundle over $\mathbb{R} P^{1}$, we have $w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

Definition (Chern Classes)

The Chern classes $c_{i}(\omega) \in H^{2 i}(B, \mathbb{Z})$ of a complex vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: c_{i}(\omega)=0$
- naturality: $f^{*} c_{i}(\omega)=c_{i}\left(f^{*} \omega\right)$
- $c_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} c_{i}(\omega) \smile c_{k-i}(\eta)$
- normalization: $c_{0}(\omega)=1$ and the first Chern class of a line bundle is its Euler class.

Definition (Stiefel Whitney Classes)

The SW classes $w_{i}(\omega) \in H^{i}(B, \mathbb{Z} / 2)$ of a real vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: w_{i}(\omega)=0$
- naturality: $f^{*} w_{i}(\omega)=w_{i}\left(f^{*} \omega\right)$
- $w_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} w_{i}(\omega) \smile w_{k-i}(\eta)$
- normalization: $w_{0}(\omega)=1$ and for γ_{1}^{1} the canonical line bundle over $\mathbb{R} P^{1}$, we have $w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

Definition (Chern Classes)

The Chern classes $c_{i}(\omega) \in H^{2 i}(B, \mathbb{Z})$ of a complex vector bundle ω satisfy

- $\forall i>\operatorname{dim} \omega: c_{i}(\omega)=0$
- naturality: $f^{*} c_{i}(\omega)=c_{i}\left(f^{*} \omega\right)$
- $c_{k}(\omega \oplus \eta)=\sum_{i=0}^{k} c_{i}(\omega) \smile c_{k-i}(\eta)$
- normalization: $c_{0}(\omega)=1$ and the first Chern class of a line bundle is its Euler class.

Remark

The total Chern class $c(\omega)=\sum_{i=0}^{\infty} c_{i}(\omega)$ fulfils $c(\omega \oplus \eta)=c(\omega) \smile c(\eta)$.

Construction

Construction

Given a complex vector space

- choose complex basis u_{1}, \ldots, u_{n}
- get real basis $u_{1}, i u_{1}, \ldots, u_{n}, i u_{n}$
- get orientation, independent of choice of complex basis

Construction

Given a complex vector space

- choose complex basis u_{1}, \ldots, u_{n}
- get real basis $u_{1}, i u_{1}, \ldots, u_{n}, i u_{n}$
- get orientation, independent of choice of complex basis

Similarly, for each complex vector bundle ω, the underlying real vector bundle ω_{R} has a canonical orientation \Rightarrow well defined Euler class $e(\omega):=e\left(\omega_{R}\right)$.

Definition (Hermitian Metric)

Let ω be a complex vector bundle. A Hermitian metric on ω is an Euclidean metric on ω satisfying $|i v|=|v|$.

Definition (Hermitian Metric)

Let ω be a complex vector bundle. A Hermitian metric on ω is an Euclidean metric on ω satisfying $|i v|=|v|$.

Remark

From this, we get a complex inner product

$$
\begin{aligned}
& \langle v, w\rangle=\frac{1}{2}\left(|v+w|^{2}-|v|^{2}-|w|^{2}\right)+\frac{1}{2} i\left(|v+i w|^{2}-|v|^{2}-|i w|^{2}\right) . \\
& \text { - }\langle v, v\rangle=|v|>0 \\
& \text { - complex linear in } v:\langle\lambda v, w\rangle=\lambda\langle v, w\rangle,\langle v+\tilde{v}, w\rangle=\langle v, w\rangle+\langle\tilde{v}, w\rangle \\
& \text { - conjugate linear in } w:\langle v, \lambda w\rangle=\bar{\lambda}\langle v, w\rangle,\langle v, w+\tilde{w}\rangle=\langle v, w\rangle+\langle v, \tilde{w}\rangle
\end{aligned}
$$

Construction

Let ω be an n-dimensional complex vector bundle. We construct an $(n-1)$-dimensional bundle ω_{0} over $E_{0}=\left\{(b, v) \mid b \in B, v \in F_{b}, v \neq 0\right\}$.

Construction

Let ω be an n-dimensional complex vector bundle. We construct an ($n-1$)-dimensional bundle ω_{0} over $E_{0}=\left\{(b, v) \mid b \in B, v \in F_{b}, v \neq 0\right\}$. The fiber of ω_{0} over (b, v) is the orthogonal complement of v in F_{b}.

Construction

Let ω be an n-dimensional complex vector bundle. We construct an ($n-1$)-dimensional bundle ω_{0} over $E_{0}=\left\{(b, v) \mid b \in B, v \in F_{b}, v \neq 0\right\}$. The fiber of ω_{0} over (b, v) is the orthogonal complement of v in F_{b}. For $i<2 n-1$, using the Gysin sequence $\left(\pi_{0}: E_{0} \rightarrow B\right)$

$$
\cdots \longrightarrow H^{i-2 n}(B) \xrightarrow{\smile e} H^{i}(B) \xrightarrow{\pi_{0}^{*}} H^{i}\left(E_{0}\right) \longrightarrow H^{i-2 n+1}(B) \longrightarrow \cdots
$$

Construction

Let ω be an n-dimensional complex vector bundle. We construct an ($n-1$)-dimensional bundle ω_{0} over $E_{0}=\left\{(b, v) \mid b \in B, v \in F_{b}, v \neq 0\right\}$. The fiber of ω_{0} over (b, v) is the orthogonal complement of v in F_{b}. For $i<2 n-1$, using the Gysin sequence $\left(\pi_{0}: E_{0} \rightarrow B\right)$

$$
\cdots \longrightarrow H^{i-2 n}(B) \xrightarrow{\smile e} H^{i}(B) \xrightarrow{\pi_{0}^{*}} H^{i}\left(E_{0}\right) \longrightarrow H^{i-2 n+1}(B) \longrightarrow \cdots
$$

and $H^{i-2 n}(B)=0, H^{i-2 n+1}(B)=0$, we find that $\pi_{0}^{*}: H^{i}(B) \rightarrow H^{i}\left(E_{0}\right)$ is an isomorphism.

Definition (Chern Classes)

Let ω be an n-dimensional complex vector bundle

- $\forall_{m>n} c_{m}(\omega)=0$

Definition (Chern Classes)

Let ω be an n-dimensional complex vector bundle

- $\forall_{m>n} c_{m}(\omega)=0$
- The top Chern class equals the Euler class of the underlying oriented real vector bundle: $c_{n}(\omega)=e\left(\omega_{R}\right)$.

Definition (Chern Classes)

Let ω be an n-dimensional complex vector bundle

- $\forall_{m>n} c_{m}(\omega)=0$
- The top Chern class equals the Euler class of the underlying oriented real vector bundle: $c_{n}(\omega)=e\left(\omega_{R}\right)$.
- Using the previous construction and the isomorphism $\pi_{0}^{*}: H^{i}(B) \rightarrow H^{i}\left(E_{0}\right)$, we define recursively $c_{i}(\omega)=\left(\pi_{0}^{*}\right)^{-1} c_{i}\left(\omega_{0}\right)$.

Definition (Conjugate Bundle)

Consider a complex vector bundle ω with the underlying real vector bundle ω_{R} and the complex structure J.

Definition (Conjugate Bundle)

Consider a complex vector bundle ω with the underlying real vector bundle ω_{R} and the complex structure J.
Then the conjugate bundle $\bar{\omega}$ is the complex vector bundle with the same underlying real bundle $\bar{\omega}_{R}=\omega_{R}$ and the conjugate complex structure $\bar{J}=-J$,

Definition (Conjugate Bundle)

Consider a complex vector bundle ω with the underlying real vector bundle ω_{R} and the complex structure J.
Then the conjugate bundle $\bar{\omega}$ is the complex vector bundle with the same underlying real bundle $\bar{\omega}_{R}=\omega_{R}$ and the conjugate complex structure $\bar{J}=-J$, i. e. for v in any fiber $\bar{F}_{b}=F_{b}$ and any $z \in \mathbb{C}$, we have $z \cdot \bar{\omega} v=\bar{z} \cdot \omega v$.

Example

Consider $\mathbb{C} P^{1} \simeq S^{2}$. Its tangent bundle $T \mathbb{C} P^{1}$ is not isomorphic to the conjugate bundle $\overline{T \mathbb{C} P^{1}}$.

Example

Consider $\mathbb{C} P^{1} \simeq S^{2}$. Its tangent bundle $T \mathbb{C} P^{1}$ is not isomorphic to the conjugate bundle $\overline{T C P^{1}}$.

Proof: Assume there were an isomorphism. On each fiber, this has to be the reflection in some line.

Example

Consider $\mathbb{C} P^{1} \simeq S^{2}$. Its tangent bundle $T \mathbb{C} P^{1}$ is not isomorphic to the conjugate bundle $T \mathbb{C} P^{1}$.

Proof: Assume there were an isomorphism. On each fiber, this has to be the reflection in some line. This yields a continuous field of tangent lines, hence a continuous nowhere vanishing vector field on $\mathbb{C} P^{1} \simeq S^{2}$, in contradiction to the hairy ball theorem.

Proposition

$$
c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega) \text { for any complex vector bundle } \omega .
$$

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k>n=\operatorname{dim}(\omega): c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)=0$.

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k>n=\operatorname{dim}(\omega): c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)=0$.
- $k=n$:

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k>n=\operatorname{dim}(\omega): c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)=0$.
- $k=n$: Consider any fiber F_{b} and choose a complex basis u_{1}, \ldots, u_{n}.

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k>n=\operatorname{dim}(\omega): c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)=0$.
- $k=n$: Consider any fiber F_{b} and choose a complex basis u_{1}, \ldots, u_{n}. The orientation on ω_{R} (determined by the real basis $\left.u_{1}, i u_{1}, \ldots, u_{n}, i u_{n}\right)$

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k>n=\operatorname{dim}(\omega): c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)=0$.
- $k=n$: Consider any fiber F_{b} and choose a complex basis u_{1}, \ldots, u_{n}. The orientation on ω_{R} (determined by the real basis $u_{1}, i u_{1}, \ldots, u_{n}, i u_{n}$) is the same as the orientation on $\bar{\omega}_{R}$ (determined by $\left.u_{1},-i u_{1}, \ldots, u_{n},-i u_{n}\right)$ if and only if n is even.

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k>n=\operatorname{dim}(\omega): c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)=0$.
- $k=n$: Consider any fiber F_{b} and choose a complex basis u_{1}, \ldots, u_{n}. The orientation on ω_{R} (determined by the real basis $u_{1}, i u_{1}, \ldots, u_{n}, i u_{n}$) is the same as the orientation on $\bar{\omega}_{R}$ (determined by $\left.u_{1},-i u_{1}, \ldots, u_{n},-i u_{n}\right)$ if and only if n is even.
By choosing the opposite orientation, the Euler class changes its sign, so we get $c_{n}(\bar{\omega})=e(\bar{\omega})=(-1)^{n} e(\omega)=(-1)^{n} c_{n}(\omega)$.

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k<n$: Induction on n, starting at $n=0$.

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k<n$: Induction on n, starting at $n=0$. Construct ω_{0} as before. This is an ($n-1$)-dimensional bundle and by our induction hypothesis, we have $c_{k}\left(\bar{\omega}_{0}\right)=(-1)^{k} c_{k}\left(\omega_{0}\right)$.

Proposition

$c_{k}(\bar{\omega})=(-1)^{k} c_{k}(\omega)$ for any complex vector bundle ω.
Proof:

- $k<n$: Induction on n, starting at $n=0$. Construct ω_{0} as before. This is an ($n-1$)-dimensional bundle and by our induction hypothesis, we have $c_{k}\left(\bar{\omega}_{0}\right)=(-1)^{k} c_{k}\left(\omega_{0}\right)$.

From this, we get our conclusion

$$
c_{k}(\bar{\omega})=\pi_{0}^{*-1}\left(c_{k}\left(\bar{\omega}_{0}\right)\right)=\pi_{0}^{*-1}\left((-1)^{k} c_{k}\left(\omega_{0}\right)\right)=(-1)^{k} c_{k}(\omega)
$$

Definition (Dual Bundle)

For each complex vector bundle ω we define the dual bundle to be $\operatorname{Hom}_{\mathbb{C}}(\omega, \mathbb{C})$.

Definition (Dual Bundle)

For each complex vector bundle ω we define the dual bundle to be $\operatorname{Hom}_{\mathbb{C}}(\omega, \mathbb{C})$.

Remark

If we have a Hermitian metric on ω, we have an isomorphism

$$
\begin{aligned}
\bar{\omega} & \simeq \operatorname{Hom}_{\mathbb{C}}(\omega, \mathbb{C}) \\
v & \mapsto\langle-, v\rangle .
\end{aligned}
$$

Theorem

Consider the tangent bundle τ^{n} of the projective space $\mathbb{C} P^{n}$. Its total Chern class is $c\left(\tau^{n}\right)=(1+a)^{n+1}$, with $a \in H^{2}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)$ being a Generator.

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}.

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}. Let ω^{n} be the orthogonal complement of γ^{1} using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$ is isomorphic to τ^{n}.

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}. Let ω^{n} be the orthogonal complement of γ^{1} using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$ is isomorphic to τ^{n}.

Proof (Proposition):

- take $L \in \mathbb{C} P^{n} \rightarrow$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1}.

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}. Let ω^{n} be the orthogonal complement of γ^{1} using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$ is isomorphic to τ^{n}.

Proof (Proposition):

- take $L \in \mathbb{C} P^{n} \rightarrow$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1}.
- $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right) \hookrightarrow \mathbb{C} P^{n}$ (identify a map with its graph)

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}. Let ω^{n} be the orthogonal complement of γ^{1} using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$ is isomorphic to τ^{n}.

Proof (Proposition):

- take $L \in \mathbb{C} P^{n} \rightarrow$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1}.
- $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right) \hookrightarrow \mathbb{C} P^{n}$ (identify a map with its graph)
- \rightarrow homeomorphism from $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right)$ to some open neighbourhood of L

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}. Let ω^{n} be the orthogonal complement of γ^{1} using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$ is isomorphic to τ^{n}.

Proof (Proposition):

- take $L \in \mathbb{C} P^{n} \rightarrow$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1}.
- $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right) \hookrightarrow \mathbb{C} P^{n}$ (identify a map with its graph)
- \rightarrow homeomorphism from $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right)$ to some open neighbourhood of L
- $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right)$ is a vector space, hence the tangent space at L.

Proposition

Let $\gamma^{1}=\gamma^{1}\left(\mathbb{C} P^{n}\right)$ be the tautological line bundle over $\mathbb{C} P^{n}$. This is a subbundle of the trivial complex bundle ϵ^{n+1}. Let ω^{n} be the orthogonal complement of γ^{1} using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$ is isomorphic to τ^{n}.

Proof (Proposition):

- take $L \in \mathbb{C} P^{n} \rightarrow$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1}.
- $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right) \hookrightarrow \mathbb{C} P^{n}$ (identify a map with its graph)
- \rightarrow homeomorphism from $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right)$ to some open neighbourhood of L
- $\operatorname{Hom}_{\mathbb{C}}\left(L, L^{\perp}\right)$ is a vector space, hence the tangent space at L.
- get a map of vector bundles that is fiberwise an isomorphism and hence an isomorphism of vector bundles

Theorem

Consider the tangent bundle τ^{n} of the projective space $\mathbb{C} P^{n}$. Its total Chern class is $c\left(\tau^{n}\right)=(1+a)^{n+1}$, with $a \in H^{2}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)$ being a Generator.

Theorem

Consider the tangent bundle τ^{n} of the projective space $\mathbb{C} P^{n}$. Its total Chern class is $c\left(\tau^{n}\right)=(1+a)^{n+1}$, with $a \in H^{2}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)$ being a Generator.

Proof (Theorem): We have $\tau^{n} \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$. Adding the one dimensional trivial bundle $\epsilon^{1} \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \gamma^{1}\right)$, we get

$$
\tau^{n} \oplus \epsilon^{1} \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n} \oplus \gamma^{1}\right) \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \epsilon^{n+1}\right) \simeq \bigoplus_{i=1}^{n+1} \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \epsilon^{1}\right) \simeq \bigoplus_{i=1}^{n+1} \bar{\gamma}^{1}
$$

Theorem

Consider the tangent bundle τ^{n} of the projective space $\mathbb{C} P^{n}$. Its total Chern class is $c\left(\tau^{n}\right)=(1+a)^{n+1}$, with $a \in H^{2}\left(\mathbb{C} P^{n}, \mathbb{Z}\right)$ being a Generator.

Proof (Theorem): We have $\tau^{n} \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n}\right)$. Adding the one dimensional trivial bundle $\epsilon^{1} \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \gamma^{1}\right)$, we get

$$
\tau^{n} \oplus \epsilon^{1} \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \omega^{n} \oplus \gamma^{1}\right) \simeq \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \epsilon^{n+1}\right) \simeq \bigoplus_{i=1}^{n+1} \operatorname{Hom}_{\mathbb{C}}\left(\gamma^{1}, \epsilon^{1}\right) \simeq \bigoplus_{i=1}^{n+1} \bar{\gamma}^{1}
$$

Therefore, using $a=-c_{1}\left(\gamma^{1}\right)$, we get

$$
c\left(\tau^{n}\right)=c\left(\tau^{n} \oplus \epsilon^{1}\right)=c\left(\bar{\gamma}^{1}\right)^{n+1}=\left(1+c_{1}\left(\bar{\gamma}^{1}\right)\right)^{n+1}=\left(1-c_{1}\left(\gamma^{1}\right)\right)^{n+1}=(1+a)^{n+1}
$$

目 John W. Milnor, James D. Stasheff, Characteristic Classes
: Aleksandar Milivojevic, Examples of almost complex four manifolds with no complex structure

Thank You for Your attention!

Part of the proof of the linearity of the Hermitian product:

Claim

$\langle v+\tilde{v}, w\rangle=\langle v, w\rangle+\langle\tilde{v}, w\rangle$
Proof: From $|v|=|i v|$, we get $|v|^{2}=\Re(v)^{2}+\Im(v)^{2}$ with respect to some complex basis. In a real Euklidean vector space, we have

$$
\begin{aligned}
& |v+\tilde{v}+w|^{2}=v^{2}+\tilde{v}^{2}+w^{2}+2 v \tilde{v}+2 v w+2 \tilde{v} w \\
& \left.=\left(v^{2}+2 v \tilde{v}+\tilde{v}^{2}\right)+\left(v^{2}+2 v w+w^{2}\right)+\tilde{v}^{2}+2 \tilde{v} w+w^{2}\right)-v^{2}-\tilde{v}^{2}-w^{2} \\
& =|v+\tilde{v}|^{2}+|v+w|^{2}+|\tilde{v}+w|^{2}-|v|^{2}-|\tilde{v}|^{2}-|w|^{2}
\end{aligned}
$$

In the complex case, we get
$\Re(v+\tilde{v}+w)^{2}=\Re(v+\tilde{v})^{2}+\Re(v+w)^{2}+\Re(\tilde{v}+w)^{2}+\Re(v)^{2}+\Re(\tilde{v})^{2}+\Re(w)^{2}$ and
$\Im(v+\tilde{v}+w)^{2}=\Im(v+\tilde{v})^{2}+\Im(v+w)^{2}+\Im(\tilde{v}+w)^{2}+\Im(v)^{2}+\Im(\tilde{v})^{2}+\Im(w)^{2}$ and therefore $|v+\tilde{v}+w|^{2}=|v+\tilde{v}|^{2}+|v+w|^{2}+|\tilde{v}+w|^{2}-|v|^{2}-|\tilde{v}|^{2}-|w|^{2}$. From this, we get

$$
\begin{aligned}
& \langle v+\tilde{v}, w\rangle=\frac{1}{2}\left(|v+\tilde{v}+w|^{2}-|v+\tilde{v}|^{2}-|w|^{2}\right)+\frac{1}{2} i(\ldots) \\
& =\frac{1}{2}\left(|v+w|^{2}+|\tilde{v}+w|^{2}-|v|^{2}-|\tilde{v}|^{2}-2|w|^{2}\right)+\frac{1}{2} i(\ldots) \\
& =\langle v, w\rangle+\langle\tilde{v}, w\rangle .
\end{aligned}
$$

