Complex Manifolds and Chern Classes

Jonathan Pampel

29. April 2020

Jonathan Pampel

(日) (日) (日) (日) (日) (日)

Definition (Real Vector Bundles)

An *n*-dimensional real vector bundle ω over a topological space *B* consists of

- a topological space E
- a continuous map $\pi: E \to B$

• an *n*-dimensional real vector space structure on each fiber $F_b = \pi^{-1}(b)$ such that for all $b \in B$ there is an open subset $U \ni b$ and a homeomorphism $E|_U \xrightarrow{\cong} U \times \mathbb{R}^n$ that is fiberwise an \mathbb{R} -linear vector space isomorphism. $\pi = \bigcup_{pr_1} v^{pr_1}$

Definition (Complex Vector Bundles)

An *n*-dimensional complex vector bundle ω over a topological space *B* consists of

- a topological space E
- a continuous map $\pi: E \to B$

• an *n*-dimensional complex vector space structure on each fiber $F_b = \pi^{-1}(b)$ such that for all $b \in B$ there is an open subset $U \ni b$ and a homeomorphism $E|_U \xrightarrow{\cong} U \times \mathbb{C}^n$ that is fiberwise a \mathbb{C} -linear vector space isomorphism. $\pi = \bigcup_{pr_1} pr_1$

Let ω be an 2*n*-dimensional real vector bundle over a space *B*.

Let ω be an 2*n*-dimensional real vector bundle over a space *B*. A complex structure on ω is a homomorphism of vector bundles $J : E \xrightarrow{\cong} E$ such that

Let ω be an 2*n*-dimensional real vector bundle over a space *B*. A complex structure on ω is a homomorphism of vector bundles $J : E \xrightarrow{\cong} E$ such that on each fiber F_b , we have J(J(v)) = -v.

Let ω be an 2*n*-dimensional real vector bundle over a space *B*. A complex structure on ω is a homomorphism of vector bundles $J : E \xrightarrow{\cong} E$ such that on each fiber F_b , we have J(J(v)) = -v.

Remark

We get a complex vector bundle with $(x + iy) \cdot v = x \cdot v + y \cdot J(v)$ on each fiber.

Example

Let $U \in \mathbb{C}^n$ be open, then the tangent bundle $T\mathbb{C}^n|_U$ (with total space $U \times \mathbb{C}^n$) has a canonical complex structure given by

Example

Let $U \in \mathbb{C}^n$ be open, then the tangent bundle $T\mathbb{C}^n|_U$ (with total space $U \times \mathbb{C}^n$) has a canonical complex structure given by $J_0(u, v) = (u, iv)$ for $u \in U$, $v \in \mathbb{C}^n$.

Definition (Almost Complex Structure on a Manifold)

Definition (Almost Complex Structure on a Manifold)

Let M be a smooth manifold of dimension 2n. An almost complex structure on M is a complex structure J on the tangent bundle TM.

Let M be a smooth manifold of dimension 2n. A complex structure on M is a complex structure J on the tangent bundle TM satisfying the following:

Let M be a smooth manifold of dimension 2n. A complex structure on M is a complex structure J on the tangent bundle TM satisfying the following: For all $p \in M$ there is an open neighbourhood $U \ni p$ and a diffeomorphism $h: U \to \hat{U}$ to an open subset $\hat{U} \subseteq \mathbb{C}^n$

Let M be a smooth manifold of dimension 2n. A complex structure on M is a complex structure J on the tangent bundle TM satisfying the following: For all $p \in M$ there is an open neighbourhood $U \ni p$ and a diffeomorphism $h: U \to \hat{U}$ to an open subset $\hat{U} \subseteq \mathbb{C}^n$ whose derivative dh is holomorphic, i. e. $J_0 \circ dh = dh \circ J$.

Let *M* be a smooth manifold of dimension 2*n*. A complex structure on *M* is a complex structure *J* on the tangent bundle *TM* satisfying the following: For all $p \in M$ there is an open neighbourhood $U \ni p$ and a diffeomorphism $h: U \to \hat{U}$ to an open subset $\hat{U} \subseteq \mathbb{C}^n$ whose derivative dh is holomorphic, i. e. $J_0 \circ dh = dh \circ J$. A manifold together with a given complex structure is called complex manifold.

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\{h_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\{V_{\alpha}\}_{\alpha \in A}$ an open covering of M) such that

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\{h_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\{V_{\alpha}\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\{h_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^{n}$ open and $\{V_{\alpha}\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Example

• Every one dimensional almost complex manifold is complex.

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\{h_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^n$ open and $\{V_{\alpha}\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Example

- Every one dimensional almost complex manifold is complex.
- There is an almost complex but no complex structure[2] on $(S^2 \times S^2) # (S^1 \times S^3) # (S^1 \times S^3)$.

Equivalently, a complex manifold is a manifold M such that there is a smooth atlas $\{h_{\alpha} : U_{\alpha} \to V_{\alpha}\}_{\alpha \in A}$ (i.e. $U_{\alpha} \subseteq \mathbb{C}^n$ open and $\{V_{\alpha}\}_{\alpha \in A}$ an open covering of M) such that the transition maps $h_{\beta}^{-1} \circ h_{\alpha}$ are holomorphic.

Example

- Every one dimensional almost complex manifold is complex.
- There is an almost complex but no complex structure[2] on $(S^2 \times S^2) # (S^1 \times S^3) # (S^1 \times S^3)$.
- For complex dimension \geq 3, we do not know if there is an almost complex but not complex manifold.

Jonathan Pampel

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

• $\forall i > \dim \omega : w_i(\omega) = 0$

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

• $\forall i > \dim \omega : w_i(\omega) = 0$

• naturality:
$$f^*w_i(\omega) = w_i(f^*\omega)$$

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

- $\forall i > \dim \omega : w_i(\omega) = 0$
- naturality: $f^*w_i(\omega) = w_i(f^*\omega)$

•
$$w_k(\omega \oplus \eta) = \sum_{i=0}^k w_i(\omega) \smile w_{k-i}(\eta)$$

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

- $\forall i > \dim \omega : w_i(\omega) = 0$
- naturality: $f^*w_i(\omega) = w_i(f^*\omega)$

•
$$w_k(\omega \oplus \eta) = \sum_{i=0}^k w_i(\omega) \smile w_{k-i}(\eta)$$

• normalization: $w_0(\omega) = 1$ and for γ_1^1 the canonical line bundle over $\mathbb{R}P^1$, we have $w_1(\gamma_1^1) \neq 0$.

26/70

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

- $\forall i > \dim \omega : w_i(\omega) = 0$
- naturality: $f^*w_i(\omega) = w_i(f^*\omega)$

•
$$w_k(\omega \oplus \eta) = \sum_{i=0}^k w_i(\omega) \smile w_{k-i}(\eta)$$

• normalization: $w_0(\omega) = 1$ and for γ_1^1 the canonical line bundle over $\mathbb{R}P^1$, we have $w_1(\gamma_1^1) \neq 0$.

Definition (Chern Classes)

The Chern classes $c_i(\omega) \in H^{2i}(B, \mathbb{Z})$ of a complex vector bundle ω satisfy

- $\forall i > \dim \omega : c_i(\omega) = 0$
- naturality: $f^*c_i(\omega) = c_i(f^*\omega)$

•
$$c_k(\omega \oplus \eta) = \sum_{i=0}^k c_i(\omega) \smile c_{k-i}(\eta)$$

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

• $\forall i > \dim \omega : w_i(\omega) = 0$

• naturality:
$$f^* w_i(\omega) = w_i(f^*\omega)$$

•
$$w_k(\omega \oplus \eta) = \sum_{i=0}^k w_i(\omega) \smile w_{k-i}(\eta)$$

• normalization: $w_0(\omega) = 1$ and for γ_1^1 the canonical line bundle over $\mathbb{R}P^1$, we have $w_1(\gamma_1^1) \neq 0$.

Definition (Chern Classes)

The Chern classes $c_i(\omega) \in H^{2i}(B, \mathbb{Z})$ of a complex vector bundle ω satisfy

- $\forall i > \dim \omega : c_i(\omega) = 0$
- naturality: $f^*c_i(\omega) = c_i(f^*\omega)$
- $c_k(\omega \oplus \eta) = \sum_{i=0}^k c_i(\omega) \smile c_{k-i}(\eta)$
- normalization: $c_0(\omega) = 1$ and the first Chern class of a line bundle is its Euler class.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Definition (Stiefel Whitney Classes)

The SW classes $w_i(\omega) \in H^i(B, \mathbb{Z}/2)$ of a real vector bundle ω satisfy

• $\forall i > \dim \omega : w_i(\omega) = 0$

• naturality:
$$f^* w_i(\omega) = w_i(f^*\omega)$$

•
$$w_k(\omega \oplus \eta) = \sum_{i=0}^k w_i(\omega) \smile w_{k-i}(\eta)$$

• normalization: $w_0(\omega) = 1$ and for γ_1^1 the canonical line bundle over $\mathbb{R}P^1$, we have $w_1(\gamma_1^1) \neq 0$.

Definition (Chern Classes)

The Chern classes $c_i(\omega) \in H^{2i}(B, \mathbb{Z})$ of a complex vector bundle ω satisfy

- $\forall i > \dim \omega : c_i(\omega) = 0$
- naturality: $f^*c_i(\omega) = c_i(f^*\omega)$
- $c_k(\omega\oplus\eta)=\sum_{i=0}^k c_i(\omega)\smile c_{k-i}(\eta)$
- normalization: c₀(ω) = 1 and the first Chern class of a line bundle is its Euler class.

Remark

The total Chern class $c(\omega) = \sum_{i=0}^{\infty} c_i(\omega)$ fulfils $c(\omega \oplus \eta) = c(\omega) \smile c(\eta)$.

Jonathan Pampel

Jonathan Pampel

Given a complex vector space

- choose complex basis u_1, \ldots, u_n
- get real basis $u_1, iu_1, \ldots, u_n, iu_n$
- get orientation, independent of choice of complex basis

Given a complex vector space

- choose complex basis u_1, \ldots, u_n
- get real basis $u_1, iu_1, \ldots, u_n, iu_n$
- get orientation, independent of choice of complex basis

Similarly, for each complex vector bundle ω , the underlying real vector bundle ω_R has a canonical orientation \Rightarrow well defined Euler class $e(\omega) := e(\omega_R)$.

Definition (Hermitian Metric)

Let ω be a complex vector bundle. A Hermitian metric on ω is an Euclidean metric on ω satisfying |iv| = |v|.

Definition (Hermitian Metric)

Let ω be a complex vector bundle. A Hermitian metric on ω is an Euclidean metric on ω satisfying |iv| = |v|.

Remark

From this, we get a complex inner product $\langle v, w \rangle = \frac{1}{2}(|v + w|^2 - |v|^2 - |w|^2) + \frac{1}{2}i(|v + iw|^2 - |v|^2 - |iw|^2).$ • $\langle v, v \rangle = |v| > 0$

- complex linear in $v: \langle \lambda v, w \rangle = \lambda \langle v, w \rangle$, $\langle v + \tilde{v}, w \rangle = \langle v, w \rangle + \langle \tilde{v}, w \rangle$
- conjugate linear in w: $\langle v, \lambda w \rangle = \overline{\lambda} \langle v, w \rangle$, $\langle v, w + \tilde{w} \rangle = \langle v, w \rangle + \langle v, \tilde{w} \rangle$

Let ω be an n-dimensional complex vector bundle. We construct an (n-1)-dimensional bundle ω_0 over $E_0 = \{(b, v) | b \in B, v \in F_b, v \neq 0\}$.

Let ω be an n-dimensional complex vector bundle. We construct an (n-1)-dimensional bundle ω_0 over $E_0 = \{(b, v) | b \in B, v \in F_b, v \neq 0\}$. The fiber of ω_0 over (b, v) is the orthogonal complement of v in F_b .

Construction

Let ω be an n-dimensional complex vector bundle. We construct an (n-1)-dimensional bundle ω_0 over $E_0 = \{(b, v) | b \in B, v \in F_b, v \neq 0\}$. The fiber of ω_0 over (b, v) is the orthogonal complement of v in F_b . For i < 2n - 1, using the Gysin sequence $(\pi_0 : E_0 \rightarrow B)$

$$\cdots \longrightarrow H^{i-2n}(B) \xrightarrow{\smile e} H^{i}(B) \xrightarrow{\pi_{0}^{*}} H^{i}(E_{0}) \longrightarrow H^{i-2n+1}(B) \longrightarrow \cdots$$

Construction

Let ω be an n-dimensional complex vector bundle. We construct an (n-1)-dimensional bundle ω_0 over $E_0 = \{(b, v) | b \in B, v \in F_b, v \neq 0\}$. The fiber of ω_0 over (b, v) is the orthogonal complement of v in F_b . For i < 2n - 1, using the Gysin sequence $(\pi_0 : E_0 \rightarrow B)$

$$\cdots \longrightarrow H^{i-2n}(B) \xrightarrow{\smile e} H^i(B) \xrightarrow{\pi_0^*} H^i(E_0) \longrightarrow H^{i-2n+1}(B) \longrightarrow \cdots$$

and $H^{i-2n}(B) = 0$, $H^{i-2n+1}(B) = 0$, we find that $\pi_0^* : H^i(B) \to H^i(E_0)$ is an isomorphism.

Definition (Chern Classes)

Let ω be an *n*-dimensional complex vector bundle

•
$$\forall_{m>n}c_m(\omega) = 0$$

Definition (Chern Classes)

Let ω be an *n*-dimensional complex vector bundle

- $\forall_{m>n}c_m(\omega)=0$
- The top Chern class equals the Euler class of the underlying oriented real vector bundle: c_n(ω) = e(ω_R).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Definition (Chern Classes)

Let ω be an *n*-dimensional complex vector bundle

•
$$\forall_{m>n}c_m(\omega)=0$$

- The top Chern class equals the Euler class of the underlying oriented real vector bundle: c_n(ω) = e(ω_R).
- Using the previous construction and the isomorphism $\pi_0^* : H^i(B) \to H^i(E_0)$, we define recursively $c_i(\omega) = (\pi_0^*)^{-1} c_i(\omega_0)$.

Definition (Conjugate Bundle)

Consider a complex vector bundle ω with the underlying real vector bundle ω_R and the complex structure J.

Definition (Conjugate Bundle)

Consider a complex vector bundle ω with the underlying real vector bundle ω_R and the complex structure J.

Then the conjugate bundle $\overline{\omega}$ is the complex vector bundle with the same underlying real bundle $\overline{\omega}_R = \omega_R$ and the conjugate complex structure $\overline{J} = -J$,

Definition (Conjugate Bundle)

Consider a complex vector bundle ω with the underlying real vector bundle ω_R and the complex structure J.

Then the conjugate bundle $\overline{\omega}$ is the complex vector bundle with the same underlying real bundle $\overline{\omega}_R = \omega_R$ and the conjugate complex structure $\overline{J} = -J$, i. e. for v in any fiber $\overline{F}_b = F_b$ and any $z \in \mathbb{C}$, we have $z \cdot_{\overline{\omega}} v = \overline{z} \cdot_{\omega} v$.

Example

Consider $\mathbb{C}P^1 \simeq S^2$. Its tangent bundle $T\mathbb{C}P^1$ is not isomorphic to the conjugate bundle $\overline{T\mathbb{C}P^1}$.

Example

Consider $\mathbb{C}P^1 \simeq S^2$. Its tangent bundle $T\mathbb{C}P^1$ is not isomorphic to the conjugate bundle $\overline{T\mathbb{C}P^1}$.

Proof: Assume there were an isomorphism. On each fiber, this has to be the reflection in some line.

Example

Consider $\mathbb{C}P^1 \simeq S^2$. Its tangent bundle $T\mathbb{C}P^1$ is not isomorphic to the conjugate bundle $\overline{T\mathbb{C}P^1}$.

Proof: Assume there were an isomorphism. On each fiber, this has to be the reflection in some line. This yields a continuous field of tangent lines, hence a continuous nowhere vanishing vector field on $\mathbb{C}P^1 \simeq S^2$, in contradiction to the hairy ball theorem.

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Jonathan Pampel

$$c_k(\overline{\omega}) = (-1)^k c_k(\omega)$$
 for any complex vector bundle ω .

Proof:

•
$$k > n = \dim(\omega)$$
: $c_k(\overline{\omega}) = (-1)^k c_k(\omega) = 0$.

$$c_k(\overline{\omega}) = (-1)^k c_k(\omega)$$
 for any complex vector bundle ω .

Proof:

•
$$k > n = \dim(\omega)$$
: $c_k(\overline{\omega}) = (-1)^k c_k(\omega) = 0$.
• $k = n$:

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

•
$$k > n = \dim(\omega)$$
: $c_k(\overline{\omega}) = (-1)^k c_k(\omega) = 0$.

• k = n: Consider any fiber F_b and choose a complex basis u_1, \ldots, u_n .

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

•
$$k > n = \dim(\omega)$$
: $c_k(\overline{\omega}) = (-1)^k c_k(\omega) = 0$.

k = n: Consider any fiber F_b and choose a complex basis u₁,..., u_n. The orientation on ω_R (determined by the real basis u₁, iu₁,..., u_n, iu_n)

(日) (日) (日) (日) (日) (日)

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

•
$$k > n = \dim(\omega)$$
: $c_k(\overline{\omega}) = (-1)^k c_k(\omega) = 0$.

• k = n: Consider any fiber F_b and choose a complex basis u_1, \ldots, u_n . The orientation on ω_R (determined by the real basis $u_1, iu_1, \ldots, u_n, iu_n$) is the same as the orientation on $\overline{\omega}_R$ (determined by $u_1, -iu_1, \ldots, u_n, -iu_n$) if and only if n is even.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

•
$$k > n = \dim(\omega)$$
: $c_k(\overline{\omega}) = (-1)^k c_k(\omega) = 0$.

• k = n: Consider any fiber F_b and choose a complex basis u_1, \ldots, u_n . The orientation on ω_R (determined by the real basis $u_1, iu_1, \ldots, u_n, iu_n$) is the same as the orientation on $\overline{\omega}_R$ (determined by $u_1, -iu_1, \ldots, u_n, -iu_n$) if and only if n is even.

By choosing the opposite orientation, the Euler class changes its sign, so we get $c_n(\overline{\omega}) = e(\overline{\omega}) = (-1)^n e(\omega) = (-1)^n c_n(\omega)$.

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

• k < n: Induction on n, starting at n = 0.

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

k < n: Induction on n, starting at n = 0. Construct ω₀ as before. This is an (n − 1)-dimensional bundle and by our induction hypothesis, we have c_k(w
₀) = (−1)^kc_k(ω₀).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

 $c_k(\overline{\omega}) = (-1)^k c_k(\omega)$ for any complex vector bundle ω .

Proof:

k < n: Induction on n, starting at n = 0. Construct ω₀ as before. This is an (n − 1)-dimensional bundle and by our induction hypothesis, we have c_k(w
₀) = (−1)^kc_k(ω₀).

From this, we get our conclusion

$$c_k(\overline{\omega}) = \pi_0^{*-1}(c_k(\overline{\omega}_0)) = \pi_0^{*-1}((-1)^k c_k(\omega_0)) = (-1)^k c_k(\omega).$$

Definition (Dual Bundle)

For each complex vector bundle ω we define the dual bundle to be $\operatorname{Hom}_{\mathbb{C}}(\omega, \mathbb{C})$.

Definition (Dual Bundle)

For each complex vector bundle ω we define the dual bundle to be $\operatorname{Hom}_{\mathbb{C}}(\omega, \mathbb{C})$.

Remark

If we have a Hermitian metric on ω , we have an isomorphism

$$\overline{\omega} \simeq \operatorname{Hom}_{\mathbb{C}}(\omega, \mathbb{C})$$
$$\mathbf{v} \mapsto \langle -, \mathbf{v} \rangle.$$

・ロ・・聞・・叫・ きょうくり

Consider the tangent bundle τ^n of the projective space $\mathbb{C}P^n$. Its total Chern class is $c(\tau^n) = (1 + a)^{n+1}$, with $a \in H^2(\mathbb{C}P^n, \mathbb{Z})$ being a Generator.

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} .

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} . Let ω^n be the orthogonal complement of γ^1 using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$ is isomorphic to τ^n .

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} . Let ω^n be the orthogonal complement of γ^1 using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$ is isomorphic to τ^n .

Proof (Proposition):

• take $L \in \mathbb{C}P^n \to$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} . Let ω^n be the orthogonal complement of γ^1 using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$ is isomorphic to τ^n .

Proof (Proposition):

- take $L \in \mathbb{C}P^n \to$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1} .
- $\operatorname{Hom}_{\mathbb{C}}(L, L^{\perp}) \hookrightarrow \mathbb{C}P^n$ (identify a map with its graph)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ▶

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} . Let ω^n be the orthogonal complement of γ^1 using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$ is isomorphic to τ^n .

Proof (Proposition):

- take $L \in \mathbb{C}P^n \to$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1} .
- $\operatorname{Hom}_{\mathbb{C}}(L, L^{\perp}) \hookrightarrow \mathbb{C}P^n$ (identify a map with its graph)
- ullet \to homeomorphism from $\operatorname{Hom}_{\mathbb{C}}(L,L^{\perp})$ to some open neighbourhood of L

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆□

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} . Let ω^n be the orthogonal complement of γ^1 using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$ is isomorphic to τ^n .

Proof (Proposition):

- take $L \in \mathbb{C}P^n \to$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1} .
- $\operatorname{Hom}_{\mathbb{C}}(L, L^{\perp}) \hookrightarrow \mathbb{C}P^n$ (identify a map with its graph)
- ullet \to homeomorphism from $\operatorname{Hom}_{\mathbb C}(L,L^{\perp})$ to some open neighbourhood of L
- $\operatorname{Hom}_{\mathbb{C}}(L, L^{\perp})$ is a vector space, hence the tangent space at L.

Let $\gamma^1 = \gamma^1(\mathbb{C}P^n)$ be the tautological line bundle over $\mathbb{C}P^n$. This is a subbundle of the trivial complex bundle ϵ^{n+1} . Let ω^n be the orthogonal complement of γ^1 using the standard Hermitian metric. Then $\operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$ is isomorphic to τ^n .

Proof (Proposition):

- take $L \in \mathbb{C}P^n \to$ orthogonal complement L^{\perp} in \mathbb{C}^{n+1} .
- $\operatorname{Hom}_{\mathbb{C}}(L, L^{\perp}) \hookrightarrow \mathbb{C}P^n$ (identify a map with its graph)
- ullet \to homeomorphism from $\operatorname{Hom}_{\mathbb C}(L,L^{\perp})$ to some open neighbourhood of L
- $\operatorname{Hom}_{\mathbb{C}}(L, L^{\perp})$ is a vector space, hence the tangent space at L.
- get a map of vector bundles that is fiberwise an isomorphism and hence an isomorphism of vector bundles

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶ ▲□

Consider the tangent bundle τ^n of the projective space $\mathbb{C}P^n$. Its total Chern class is $c(\tau^n) = (1 + a)^{n+1}$, with $a \in H^2(\mathbb{C}P^n, \mathbb{Z})$ being a Generator.

Consider the tangent bundle τ^n of the projective space $\mathbb{C}P^n$. Its total Chern class is $c(\tau^n) = (1 + a)^{n+1}$, with $a \in H^2(\mathbb{C}P^n, \mathbb{Z})$ being a Generator.

Proof (Theorem): We have $\tau^n \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$. Adding the one dimensional trivial bundle $\epsilon^1 \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^1, \gamma^1)$, we get

$$\tau^{n} \oplus \epsilon^{1} \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^{1}, \omega^{n} \oplus \gamma^{1}) \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^{1}, \epsilon^{n+1}) \simeq \bigoplus_{i=1}^{n+1} \operatorname{Hom}_{\mathbb{C}}(\gamma^{1}, \epsilon^{1}) \simeq \bigoplus_{i=1}^{n+1} \overline{\gamma}^{1}.$$

Consider the tangent bundle τ^n of the projective space $\mathbb{C}P^n$. Its total Chern class is $c(\tau^n) = (1 + a)^{n+1}$, with $a \in H^2(\mathbb{C}P^n, \mathbb{Z})$ being a Generator.

Proof (Theorem): We have $\tau^n \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^1, \omega^n)$. Adding the one dimensional trivial bundle $\epsilon^1 \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^1, \gamma^1)$, we get

$$\tau^{n} \oplus \epsilon^{1} \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^{1}, \omega^{n} \oplus \gamma^{1}) \simeq \operatorname{Hom}_{\mathbb{C}}(\gamma^{1}, \epsilon^{n+1}) \simeq \bigoplus_{i=1}^{n+1} \operatorname{Hom}_{\mathbb{C}}(\gamma^{1}, \epsilon^{1}) \simeq \bigoplus_{i=1}^{n+1} \overline{\gamma}^{1}.$$

Therefore, using $a = -c_1(\gamma^1)$, we get

$$c(au^n)=c(au^n\oplus\epsilon^1)=c(\overline{\gamma}^1)^{n+1}=(1+c_1(\overline{\gamma}^1))^{n+1}=(1-c_1(\gamma^1))^{n+1}=(1+a)^{n+1}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

John W. Milnor, James D. Stasheff, *Characteristic Classes*

Aleksandar Milivojevic, *Examples of almost complex four manifolds with no complex structure*

Thank You for Your attention!

Part of the proof of the linearity of the Hermitian product:

$\begin{array}{l} \mathsf{Claim} \\ \langle \pmb{v} + \pmb{\tilde{v}}, \pmb{w} \rangle = \langle \pmb{v}, \pmb{w} \rangle + \langle \pmb{\tilde{v}}, \pmb{w} \rangle \end{array}$

Proof: From |v| = |iv|, we get $|v|^2 = \Re(v)^2 + \Im(v)^2$ with respect to some complex basis. In a real Euklidean vector space, we have

$$\begin{aligned} |v + \tilde{v} + w|^2 &= v^2 + \tilde{v}^2 + w^2 + 2v\tilde{v} + 2vw + 2\tilde{v}w \\ &= (v^2 + 2v\tilde{v} + \tilde{v}^2) + (v^2 + 2vw + w^2) + \tilde{v}^2 + 2\tilde{v}w + w^2) - v^2 - \tilde{v}^2 - w^2 \\ &= |v + \tilde{v}|^2 + |v + w|^2 + |\tilde{v} + w|^2 - |v|^2 - |\tilde{v}|^2 - |w|^2 \end{aligned}$$

In the complex case, we get $\Re(v + \tilde{v} + w)^2 = \Re(v + \tilde{v})^2 + \Re(v + w)^2 + \Re(\tilde{v} + w)^2 + \Re(v)^2 + \Re(\tilde{v})^2 + \Re(w)^2$ and $\Im(v + \tilde{v} + w)^2 = \Im(v + \tilde{v})^2 + \Im(v + w)^2 + \Im(\tilde{v} + w)^2 + \Im(v)^2 + \Im(v)^2 + \Im(v)^2$ and therefore $|v + \tilde{v} + w|^2 = |v + \tilde{v}|^2 + |v + w|^2 + |\tilde{v} + w|^2 - |v|^2 - |\tilde{v}|^2 - |w|^2$. From this, we get

$$\langle \mathbf{v} + \tilde{\mathbf{v}}, \mathbf{w} \rangle = \frac{1}{2} \left(|\mathbf{v} + \tilde{\mathbf{v}} + \mathbf{w}|^2 - |\mathbf{v} + \tilde{\mathbf{v}}|^2 - |\mathbf{w}|^2 \right) + \frac{1}{2} i (\dots)$$

= $\frac{1}{2} \left(|\mathbf{v} + \mathbf{w}|^2 + |\tilde{\mathbf{v}} + \mathbf{w}|^2 - |\mathbf{v}|^2 - |\tilde{\mathbf{v}}|^2 - 2|\mathbf{w}|^2 \right) + \frac{1}{2} i (\dots)$
= $\langle \mathbf{v}, \mathbf{w} \rangle + \langle \tilde{\mathbf{v}}, \mathbf{w} \rangle.$