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Definition (Real Vector Bundles)
An n-dimensional real vector bundle ω over a topological space B consists of

a topological space E
a continuous map π : E → B
an n-dimensional real vector space structure on each fiber Fb = π−1(b)

such that for all b ∈ B there is an open subset U 3 b and a homeomorphism
E |U

∼= //

π
  

U × Rn

pr1
{{

U

that is fiberwise an R-linear vector space isomorphism.
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Definition (Complex Structure)
Let ω be an 2n-dimensional real vector bundle over a space B.

A complex
structure on ω is a homomorphism of vector bundles J : E

∼= //

π
��

E

π
��

B

such
that on each fiber Fb, we have J(J(v)) = −v .

Remark
We get a complex vector bundle with (x + iy) · v = x · v + y · J(v) on each fiber.
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Example
Let U ∈ Cn be open, then the tangent bundle TCn|U (with total space U × Cn)
has a canonical complex structure given by

J0(u, v) = (u, iv) for u ∈ U , v ∈ Cn.

Jonathan Pampel 8/70



Complex Manifolds and Chern Classes 29. April 2020
Complex Manifolds

Example
Let U ∈ Cn be open, then the tangent bundle TCn|U (with total space U × Cn)
has a canonical complex structure given by J0(u, v) = (u, iv) for u ∈ U , v ∈ Cn.

Jonathan Pampel 9/70



Complex Manifolds and Chern Classes 29. April 2020
Complex Manifolds

Definition (Almost Complex Structure on a Manifold)

Let M be a smooth manifold of dimension 2n. An almost complex structure on
M is a complex structure J on the tangent bundle TM.
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Definition (Complex Manifold)
Let M be a smooth manifold of dimension 2n. A complex structure on M is a
complex structure J on the tangent bundle TM satisfying the following:

For all p ∈ M there is an open neighbourhood U 3 p and a diffeomorphism
h : U → Û to an open subset Û ⊆ C

n whose derivative dh is holomorphic, i. e.
J0 ◦ dh = dh ◦ J .
A manifold together with a given complex structure is called complex manifold.
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n whose derivative dh is holomorphic, i. e.
J0 ◦ dh = dh ◦ J .
A manifold together with a given complex structure is called complex manifold.

Jonathan Pampel 15/70



Complex Manifolds and Chern Classes 29. April 2020
Complex Manifolds

Remark
Equivalently, a complex manifold is a manifold M such that there is a smooth
atlas {hα : Uα → Vα}α∈A (i.e. Uα ⊆ C

n open and {Vα}α∈A an open covering of
M) such that

the transition maps h−1β ◦ hα are holomorphic.

Example
Every one dimensional almost complex manifold is complex.
There is an almost complex but no complex structure[2] on
(S2 × S2)#(S1 × S3)#(S1 × S3).
For complex dimension ≥ 3, we do not know if there is an almost complex
but not complex manifold.
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Axiomatic Definition

Definition (Stiefel Whitney Classes)
The SW classes wi(ω) ∈ H i(B,Z/2) of
a real vector bundle ω satisfy
∀i > dimω : wi(ω) = 0
naturality: f ∗wi(ω) = wi(f ∗ω)
wk(ω⊕η) = ∑k

i=0 wi(ω) ^ wk−i(η)
normalization: w0(ω) = 1 and for
γ11 the canonical line bundle over
RP1, we have w1(γ11) 6= 0.

Definition (Chern Classes)
The Chern classes ci(ω) ∈ H2i(B,Z) of
a complex vector bundle ω satisfy
∀i > dimω : ci(ω) = 0
naturality: f ∗ci(ω) = ci(f ∗ω)
ck(ω ⊕ η) = ∑k

i=0 ci(ω) ^ ck−i(η)
normalization: c0(ω) = 1 and the
first Chern class of a line bundle is
its Euler class.

Remark
The total Chern class c(ω) = ∑∞

i=0 ci(ω) fulfils c(ω ⊕ η) = c(ω) ^ c(η).
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Construction

Given a complex vector space
choose complex basis u1, . . . , un

get real basis u1, iu1, . . . , un, iun

get orientation, independent of choice of complex basis
Similarly, for each complex vector bundle ω, the underlying real vector bundle ωR
has a canonical orientation ⇒ well defined Euler class e(ω) := e(ωR).
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Definition (Hermitian Metric)
Let ω be a complex vector bundle. A Hermitian metric on ω is an Euclidean
metric on ω satisfying |iv | = |v |.

Remark
From this, we get a complex inner product
〈v ,w〉 = 1

2(|v + w |2 − |v |2 − |w |2) + 1
2 i(|v + iw |2 − |v |2 − |iw |2).

〈v , v〉 = |v | > 0
complex linear in v : 〈λv ,w〉 = λ〈v ,w〉, 〈v + ṽ ,w〉 = 〈v ,w〉+ 〈ṽ ,w〉
conjugate linear in w: 〈v , λw〉 = λ〈v ,w〉, 〈v ,w + w̃〉 = 〈v ,w〉+ 〈v , w̃〉
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Partially Explicit Construction

Construction
Let ω be an n-dimensional complex vector bundle. We construct an
(n − 1)-dimensional bundle ω0 over E0 = {(b, v)|b ∈ B, v ∈ Fb, v 6= 0}.

The fiber of ω0 over (b, v) is the orthogonal complement of v in Fb.
For i < 2n − 1, using the Gysin sequence (π0 : E0 → B)

· · · // H i−2n(B) ^e // H i(B)
π∗
0 // H i(E0) // H i−2n+1(B) // · · ·

and H i−2n(B) = 0, H i−2n+1(B) = 0, we find that π∗0 : H i(B)→ H i(E0) is an
isomorphism.
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Definition (Chern Classes)
Let ω be an n-dimensional complex vector bundle
∀m>ncm(ω) = 0

The top Chern class equals the Euler class of the underlying oriented real
vector bundle: cn(ω) = e(ωR).
Using the previous construction and the isomorphism π∗0 : H i(B)→ H i(E0),
we define recursively ci(ω) = (π∗0)−1ci(ω0).
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we define recursively ci(ω) = (π∗0)−1ci(ω0).
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Definition (Conjugate Bundle)
Consider a complex vector bundle ω with the underlying real vector bundle ωR
and the complex structure J .

Then the conjugate bundle ω is the complex vector bundle with the same
underlying real bundle ωR = ωR and the conjugate complex structure J = −J ,
i. e. for v in any fiber F b = Fb and any z ∈ C, we have z ·ω v = z ·ω v .
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Example
Consider CP1 ' S2. Its tangent bundle TCP1 is not isomorphic to the conjugate
bundle TCP1.

Proof: Assume there were an isomorphism. On each fiber, this has to be the
reflection in some line. This yields a continuous field of tangent lines, hence a
continuous nowhere vanishing vector field on CP1 ' S2, in contradiction to the
hairy ball theorem.
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Proposition
ck(ω) = (−1)kck(ω) for any complex vector bundle ω.

Proof:
k > n = dim(ω): ck(ω) = (−1)kck(ω) = 0.
k = n: Consider any fiber Fb and choose a complex basis u1, . . . , un. The
orientation on ωR (determined by the real basis u1, iu1, . . . , un, iun) is the
same as the orientation on ωR (determined by u1,−iu1, . . . , un,−iun) if and
only if n is even.
By choosing the opposite orientation, the Euler class changes its sign, so we
get cn(ω) = e(ω) = (−1)ne(ω) = (−1)ncn(ω).
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Proposition
ck(ω) = (−1)kck(ω) for any complex vector bundle ω.

Proof:
k < n: Induction on n, starting at n = 0.

Construct ω0 as before. This is an
(n − 1)-dimensional bundle and by our induction hypothesis, we have
ck(ω0) = (−1)kck(ω0).

From this, we get our conclusion

ck(ω) = π∗−10 (ck(ω0)) = π∗−10 ((−1)kck(ω0)) = (−1)kck(ω).
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Conjugate and Dual Bundle

Definition (Dual Bundle)
For each complex vector bundle ω we define the dual bundle to be HomC(ω,C).

Remark
If we have a Hermitian metric on ω, we have an isomorphism

ω ' HomC(ω,C)
v 7→ 〈−, v〉.
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Theorem
Consider the tangent bundle τ n of the projective space CPn. Its total Chern class
is c(τ n) = (1 + a)n+1, with a ∈ H2(CPn,Z) being a Generator.
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Proposition
Let γ1 = γ1(CPn) be the tautological line bundle over CPn. This is a subbundle
of the trivial complex bundle εn+1.

Let ωn be the orthogonal complement of γ1
using the standard Hermitian metric. Then HomC(γ1, ωn) is isomorphic to τ n.

Proof (Proposition):
take L ∈ CPn → orthogonal complement L⊥ in Cn+1.
HomC(L, L⊥) ↪→ CPn (identify a map with its graph)
→ homeomorphism from HomC(L, L⊥) to some open neighbourhood of L
HomC(L, L⊥) is a vector space, hence the tangent space at L.
get a map of vector bundles that is fiberwise an isomorphism and hence an
isomorphism of vector bundles
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Theorem
Consider the tangent bundle τ n of the projective space CPn. Its total Chern class
is c(τ n) = (1 + a)n+1, with a ∈ H2(CPn,Z) being a Generator.

Proof (Theorem): We have τ n ' HomC(γ1, ωn). Adding the one dimensional
trivial bundle ε1 ' HomC(γ1, γ1), we get

τ n ⊕ ε1 ' HomC(γ1, ωn ⊕ γ1) ' HomC(γ1, εn+1) '
n+1⊕
i=1

HomC(γ1, ε1) '
n+1⊕
i=1

γ1.

Therefore, using a = −c1(γ1), we get

c(τ n) = c(τ n ⊕ ε1) = c(γ1)n+1 = (1 + c1(γ1))n+1 = (1− c1(γ1))n+1 = (1 + a)n+1.
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Thank You for Your attention!
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Part of the proof of the linearity of the Hermitian product:

Claim
〈v + ṽ ,w〉 = 〈v ,w〉+ 〈ṽ ,w〉

Proof: From |v | = |iv |, we get |v |2 = <(v)2 + =(v)2 with respect to some
complex basis. In a real Euklidean vector space, we have

|v + ṽ + w |2 = v 2 + ṽ 2 + w2 + 2v ṽ + 2vw + 2ṽw
= (v 2 + 2v ṽ + ṽ 2) + (v 2 + 2vw + w2) + ṽ 2 + 2ṽw + w2)− v 2 − ṽ 2 − w2

= |v + ṽ |2 + |v + w |2 + |ṽ + w |2 − |v |2 − |ṽ |2 − |w |2
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In the complex case, we get
<(v + ṽ +w)2 = <(v + ṽ)2 +<(v +w)2 +<(ṽ +w)2 +<(v)2 +<(ṽ)2 +<(w)2
and
=(v + ṽ +w)2 = =(v + ṽ)2 +=(v +w)2 +=(ṽ +w)2 +=(v)2 +=(ṽ)2 +=(w)2
and therefore |v + ṽ + w |2 = |v + ṽ |2 + |v + w |2 + |ṽ + w |2 − |v |2 − |ṽ |2 − |w |2.
From this, we get

〈v + ṽ ,w〉 = 1
2
(
|v + ṽ + w |2 − |v + ṽ |2 − |w |2

)
+ 1

2 i (. . . )

= 1
2
(
|v + w |2 + |ṽ + w |2 − |v |2 − |ṽ |2 − 2|w |2

)
+ 1

2 i (. . . )

= 〈v ,w〉+ 〈ṽ ,w〉.
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