Exercises for Algebraic Topology I – Sheet 10

Uni Bonn, WS 2018/19

Aufgabe 37. Let (X, A) be a relative CW-complex and Y be a (n-1)-connected space for $n \ge 2$. Suppose that $H^{q+1}(X, A; \pi_q(Y)) = 0$ for $n < q < \dim(X, A)$.

Prove or disprove that a map $f: A \to Y$ can be extended to X if and only if the primary obstruction $\gamma^{n+1}(f) \in H^{n+1}(X, A, \pi_n(Y))$ vanishes.

Aufgabe 38. Let G be an abelian group.

- (a) Show that there exists up to homotopy precisely one map $\mu: K(G, n) \times K(G, n) \to K(G, n)$ which induces on π_n the map $G \times G \to G$ sending (g_1, g_2) to $g_1 + g_2$, and up to homotopy precisely one map $i: K(G, n) \to K(G, n)$ which induces on π_n the map $G \to G$ sending g to -g.
- (b) Let X be a CW-complex. Construct using μ and i the structure of an abelian group on [X, K(G, n)].
- (c) Show that the bijection $[X, K(G, n)] \xrightarrow{\cong} H^n(X, G)$ sending [f] to $f^*\iota_n$ for the preferred element $\iota_n \in H^n(K(G, n); G)$ is an isomorphism of abelian groups.

Aufgabe 39. Let X be a CW-complex. We have defined for a 1-dimensional complex vector bundle ξ over a CW-complex X its first Chern class $c_1(\xi) \in H^2(X;\mathbb{Z})$. Prove or disprove:

- (a) Two 1-dimensional complex vector bundles over X are isomorphic if and only if they have the same first Chern class.
- (b) Every element in $H^2(X; \mathbb{Z})$ occurs as the first Chern class of a 1-dimensional complex vector over X.

Aufgabe 40. Classify up to homotopy all compact *n*-dimensional manifolds N (possibly with boundary and possibly non-connected) such that for every compact *n*-dimensional manifold M the map

$$[M, N] \to \hom_{\mathbb{Z}}(H_n(M; \mathbb{Z}), H_n(N; \mathbb{Z})), \quad [f] \mapsto H_n(f; \mathbb{Z})$$

is bijective.

handover on Wednesday, 18.12 in the lecture