Fabian Hebestreit Daniel Kasprowski Summer term 2019

Exam - Topology II

September 27th 2019

Name:

Immatriculation no.:

Points:	1	2	3	4	5	Σ
						/50

Grade:

Problem 1 (10 points). Let M and N be connected, closed, d-dimensional, oriented manifolds, and $f: M \to N$ a map of degree 1.

Show that f induces a surjection on fundamental groups (for all basepoints).

Hint: Consider covering spaces.

Proof. Let $p: \hat{N} \to N$ be the covering space corresponding to the image of $f_*: \pi_1(M, m) \to \pi_1(N, f(m))$ for some $m \in M$. The number of sheets of this covering space is equal to the index of $\operatorname{im}(f_*) \subseteq \pi_1(N, f(m))$, so the surjectivity of f_* is equivalent to p being single sheeted. Now, f tautologically lifts to a map $\hat{f}: M \to \hat{N}$ over p by the lifting criterion for maps. If the covering had an infinite number of sheets then \hat{N} is a connected, non-compact manifold and thus $H_d(\hat{N}) = 0$. In particular, $f_*[M] = p_*\hat{f}_*[M] = 0$, forcing deg(f) = 0 in contradiction to the assumption. Thus the covering has finitely many sheets and by the local formula for mapping degrees, the number of sheets is deg(p), upon giving \hat{N} the orientation induced from N along p. But then

$$1 = \deg(f) = \deg(p) \cdot \deg(f)$$

forcing $1 = \deg(p)$ as desired.

Problem 2 (10 points). Let M be a connected, closed, non-orientable, 3-manifold. Show that $H_1(M; \mathbb{Q}) \neq 0$.

Proof no. 1. Since M has odd dimension its Euler characteristic vanishes by Poincaré duality for (co)homology with $\mathbb{Z}/2$ -coefficients; recall that the Euler characteristic can be computed with any field coefficients. Furthermore, as M is non-orientable $H_3(M; \mathbb{Q}) = 0$. But then if $H_1(M; \mathbb{Q}) = 0$, we would find $\chi(M) = 1 + \dim_{\mathbb{Q}} H_2(M; \mathbb{Q}) > 0$. \Box

A little more brute force is:

Proof no. 2. The integral homology of M is finitely generated by a result of the lecture. From the universal coefficient theorem with base \mathbb{Z} we then find

$$\dim_{\mathbb{Z}/2} H_1(M; \mathbb{Z}/2) = \dim_{\mathbb{Q}} H_1(M; \mathbb{Q}) + \dim_{\mathbb{Z}/2} H_1(M; \mathbb{Z})/2$$

$$\dim_{\mathbb{Z}/2} H_2(M; \mathbb{Z}/2) = \dim_{\mathbb{Q}} H_2(M; \mathbb{Q}) + \dim_{\mathbb{Z}/2} H_2(M; \mathbb{Z})/2 + \dim_{\mathbb{Z}/2} H_1(M; \mathbb{Z})/2$$

$$\dim_{\mathbb{Z}/2} H_3(M; \mathbb{Z}/2) = \dim_{\mathbb{Q}} H_3(M; \mathbb{Q}) + \dim_{\mathbb{Z}/2} H_2(M; \mathbb{Z})/2$$

But Poincaré duality, the universal coefficient theorem with base $\mathbb{Z}/2$ and non-orientability imply $\dim_{\mathbb{Z}} H(M;\mathbb{Z}/2) = 1 \quad \dim_{\mathbb{Z}} H(M;\mathbb{Q}) = 0$

$$\dim_{\mathbb{Z}/2} H_3(M;\mathbb{Z}/2) = 1, \quad \dim_{\mathbb{Q}} H_3(M;\mathbb{Q}) = 0$$

and
$$\dim_{\mathbb{Z}/2} H_1(M; \mathbb{Z}/2) = \dim_{\mathbb{Z}/2} H^2(M; \mathbb{Z}/2) = \dim_{\mathbb{Z}/2} H_2(M; \mathbb{Z}/2),$$

 \mathbf{SO}

$$\dim_{\mathbb{Z}/2} H_2(M;\mathbb{Z})/2 = 1$$

and finally

$$\dim_{\mathbb{Q}} H_1(M;\mathbb{Q}) = \dim_{\mathbb{Q}} H_2(M;\mathbb{Q}) + 1 > 0$$

as desired.

Problem 3 (10 points). Consider the counit ev_X : $|Sing X| \to X$ of the adjunction

|-|: Top \leftrightarrow sSet: Sing.

Show that ev_X is a homotopy equivalence if and only if the functor

 $[X, -]: \operatorname{Top} \to \operatorname{Set}$

sends weak homotopy equivalences to bijections.

Recall that [X, Y] denotes the set of homotopy classes of maps $X \to Y$. Furthermore, recall that ev_X always is a weak homotopy equivalence.

- *Proof.* (\Rightarrow) If ev_X is a homotopy equivalence, then it induces a natural isomorphism $[X, -] \Rightarrow [|SingX|, -]$. But |SingX| admits a canonical cell structure, so by Whitehead's theorem the right hand functor sends weak homotopy equivalences to bijections.
- (⇐) Since ev_X is a weak homotopy equivalence, so the map $(ev_X)_* : [X, |SingX|] \to [X, X]$ is bijective by assumption. Therefore, there is a unique homotopy class of maps $f : X \to Y$ such that $ev_X \circ f \simeq id_X$. To see that also $f \circ ev_X$ is homotopic to the identity of |SingX|, consider

$$(ev_X)_* : [|SingX|, |SingX|] \rightarrow [|SingX|, X].$$

(note the different meaning of $(ev_X)_*$ compared to the first line). As |Sing X| is a cell complex [|Sing X|, -] sends weak homotopy equivalences to bijections (again by Whitehead's theorem), so the above map is also bijective, in particular injective. Moreover, we see that

$$(\operatorname{ev}_X)_*[f \circ \operatorname{ev}_X] = [\operatorname{ev}_X \circ f \circ \operatorname{ev}_X] = [\operatorname{ev}_X] = (\operatorname{ev}_X)_*[\operatorname{id}_{|\operatorname{Sing}X|}]$$

yielding the claim.

Problem 4 (10 points). Let W, V be connected, compact manifolds of the same dimension with partitions $\partial W = \partial_0 W \sqcup \partial_1 W$ and $\partial V = \partial_0 V \sqcup \partial_1 V$ into connected components. Let $\phi: \partial_1 W \to \partial_0 V$ be a homeomorphism. Assume that $(W, \partial_0 W)$ and $(V, \partial_0 V)$ are k-connected.

Show that $(W \cup_{\phi} V, \partial_0 W)$ is k-connected.

You may use that $(W \cup_{\phi} V, W, V)$ is an excisive triad.

Proof. By assumption the pair $(V, \partial_0 V)$ is k-connected and the pair $(W, \partial 1W)$ is 0-connected. Thus by the Blakers-Massey theorem the map

$$\pi_i(V,\partial_0 V) \longrightarrow \pi_i(W \cup_{\phi} V, W)$$

is a surjection for $i \leq k$, so also $(W \cup_{\phi} V, W)$ is k-connected. But then the triple sequence of $(W \cup_{\phi} V, W, \partial_0 W)$ implies that the map

$$\pi_i(W, \partial_0 W) \longrightarrow \pi_i(W \cup_{\phi} V, \partial_0 W)$$

is a surjection for $i \leq k$ as well. Since the source vanishes in that range of degrees we are done.

Problem 5 (10 points). Let $\operatorname{Gr}_2(\mathbb{R}^4)$ denote the Grassmannian of 2-planes in \mathbb{R}^4 .

Decompose $\pi_2(\operatorname{Gr}_2(\mathbb{R}^4), g)$ into cyclic groups for $g \in \operatorname{Gr}_2(\mathbb{R}^4)$.

Recall $\operatorname{Gr}_k(\mathbb{R}^n) \cong \operatorname{O}(n)/(\operatorname{O}(k) \times \operatorname{O}(n-k))$ and how we computed $\pi_2(\operatorname{Gr}_2(\mathbb{R}^n)) \cong \mathbb{Z}$ for all other $n \geq 3$.

Proof. Since Grassmannians are path connected, it suffices to treat $g = \mathbb{R}^2 \times 0$. Consider the bundle $O(4) \to Gr_2(\mathbb{R}^4)$ with typical fibre $O(2) \times O(2)$. For any lift $M \in O(4)$ of g, its long exact sequence in homotopy groups reads

$$\pi_2(\mathcal{O}(4), e) \longrightarrow \pi_2(\operatorname{Gr}_2(\mathbb{R}^4), \mathbb{R}^2 \times 0) \longrightarrow \pi_1(\mathcal{O}(2) \times \mathcal{O}(2), e) \longrightarrow \pi_1(\mathcal{O}(4), e).$$

In the lecture we showed that the first term vanishes (for example since SO(4) has universal cover $S^3 \times S^3$), the third term is $\mathbb{Z} \times \mathbb{Z}$, since $O(2) \cong S^1 + S^1$, and the final term is $\mathbb{Z}/2$. This already forces $\pi_2 \operatorname{Gr}_2(\mathbb{R}^4) = \mathbb{Z} \times \mathbb{Z}$ without determining the map $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/2$ more explicitely. But we also showed in the lecture that the inclusions $O(n) \to O(n+1)$ are surjections on π_1 for $n \ge 1$ (and isomorphisms for $n \ge 2$), so the map $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/2$ identifies with the addition on \mathbb{Z} reduced modulo 2.

Bonus problem (3 points). Determine the action of $\pi_1(\operatorname{Gr}_2(\mathbb{R}^4), g)$ on $\pi_2(\operatorname{Gr}_2(\mathbb{R}^4), g)$.

Hint: Recall that a generator for $\pi_1(\operatorname{Gr}_2(\mathbb{R}^n), \mathbb{R}^2 \times 0) = \mathbb{Z}/2$ is given by rotating $\mathbb{R}^2 \times 0$ about an angle of π around the first axis in $\mathbb{R}^3 \times 0$.

Proof. It is readily checked straight from the definitions that for any fibration $E \to B$, with simple fibre F over $b \in B$, the boundary map

$$\pi_n(B,b) \longrightarrow \pi_{n-1}(F)$$

is equivariant, if we let $[w] \in \pi_1(B, b)$ act on $\pi_{n-1}(F)$ by the fibre transport along w; recall that this the homotopy class of maps $F \to F$, determined by taking the end of any lift in

(Note that the fibre transport is only well-defined up to unbased homotopy, so in order to obtain a well-defined map one needs the simplicity of F).

In the present situation, the fibre is $O(2) \times O(2)$, certainly simple as a topological group. Furthermore, using the description of the generator of $\pi_1(\operatorname{Gr}_2(\mathbb{R}^4), \mathbb{R}^2 \times 0)$, the fibre transport is given by the multiplication on $O(2) \times O(2)$ with the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

in O(4) describing the rotation. As this matrix has determinant 1, it preserves $SO(2) \times SO(2)$ and under the diffeomorphism with $S^1 \times S^1$ corresponds to complex conjugation in both factors. Thus it induces the negative of the identity on π_1 . Since the map

$$\pi_2(\operatorname{Gr}_2(\mathbb{R}^4), g) \longrightarrow \pi_1(\operatorname{O}(2) \times \operatorname{O}(2))$$

is injective, the same is true in the source.