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Problem 1 (10 points). Let M and N be connected, closed, d-dimensional, oriented mani-
folds, and f: M — N a map of degree 1.

Show that f induces a surjection on fundamental groups (for all basepoints).
Hint: Consider covering spaces.

Proof. Let p: N — N be the covering space corresponding to the image of fi: w1 (M, m) —
m1(N, f(m)) for some m € M. The number of sheets of this covering space is equal to the
index of im(f,) C 71 (V, f(m)), so the surjectivity of f, is equivalent to p being single sheeted.
Now, f tautologically lifts to a map f : M — N over p by the lifting criterion for maps. If the
covering had an infinite number of sheets then N is a connected, non-compact manifold and
thus Hy(N) = 0. In particular, f,[M] = p,f.[M] = 0, forcing deg(f) = 0 in contradiction
to the assumption. Thus the covering has finitely many sheets and by the local formula for
mapping degrees, the number of sheets is deg(p), upon giving N the orientation induced from
N along p. But then

1 = deg(f) = deg(p) - deg(f)
forcing 1 = deg(p) as desired. O



Problem 2 (10 points). Let M be a connected, closed, non-orientable, 3-manifold.

Show that Hy(M;Q) # 0.

Proof no. 1. Since M has odd dimension its Euler characteristic vanishes by Poincaré duality
for (co)homology with Z/2-coefficients; recall that the Euler characteristic can be computed
with any field coefficients. Furthermore, as M is non-orientable Hs(M;Q) = 0. But then if
Hi(M;Q) =0, we would find x(M) =1+ dimg Ha(M;Q) > 0. O

A little more brute force is:

Proof no. 2. The integral homology of M is finitely generated by a result of the lecture. From
the universal coefficient theorem with base Z we then find

dimZ/ng(M; Z/2) = dimQHl(M; @) + dimZ/2H1 (]\47 Z)/2
dimg /o Hao(M;Z/2) = dimgHa(M; Q) + dimg, /o Ha(M;7Z)/2 + dimg o Hy (M; Z) /2
ditng oy (M; 7,/2) = dimg Hy(M; Q) + dimg, o Ho(M; 7) /2

But Poincaré duality, the universal coefficient theorem with base Z/2 and non-orientability

imply
dimZ/QHg(M; Z/2) = 1, dlmQHg(M,Q) =0

and  dimg o Hy(M;Z/2) = dimg s H*(M;Z/2) = dimg o Hy(M; Z,/2),

SO
dimg o Ha(M;Z)/2 =1
and finally
dimgH;(M;Q) = dimgH2(M;Q)+1>0
as desired. ]



Problem 3 (10 points). Consider the counit evx : [SingX| — X of the adjunction

| —|: Top <— sSet: Sing.

Show that evx is a homotopy equivalence if and only if the functor
[X, —]: Top — Set

sends weak homotopy equivalences to bijections.

Recall that [X,Y] denotes the set of homotopy classes of maps X — Y. Furthermore, recall
that evx always is a weak homotopy equivalence.

Proof. (=) If evx is a homotopy equivalence, then it induces a natural isomorphism [X, —] =
[|Sing X |, —]. But |SingX| admits a canonical cell structure, so by Whitehead’s theorem
the right hand functor sends weak homotopy equivalences to bijections.

(<) Since evy is a weak homotopy equivalence, so the map (evx) : [X, |SingX|] — [X, X]is
bijective by assumption. Therefore, there is a unique homotopy class of maps f : X — Y
such that evxof ~idx. To see that also foevx is homotopic to the identity of |Sing X,
consider

(evx)s : [|SingX]|, [Sing X|] — [|SingX |, X].

(note the different meaning of (evy ). compared to the first line). As [SingX]| is a cell
complex [|Sing X |, —] sends weak homotopy equivalences to bijections (again by White-
head’s theorem), so the above map is also bijective, in particular injective. Moreover,
we see that

(evx)«[foevx]| =[evx o foevx] = [evx]| = (evx)«[idsingx|]

yielding the claim.



Problem 4 (10 points). Let W,V be connected, compact manifolds of the same dimension
with partitions OW = W U W and OV = 9V LU NV into connected components. Let
¢: OW — 0oV be a homeomorphism. Assume that (W,00W') and (V,00V) are k-connected.

Show that (W Ug V,00W) is k-connected.
You may use that (W Uy, V, W, V) is an excisive triad.

Proof. By assumption the pair (V,9pV) is k-connected and the pair (W, 91W) is 0-connected.
Thus by the Blakers-Massey theorem the map

7_‘_2(‘/’ a()V) — ﬂ'z(W U¢ VY, W)

is a surjection for i < k, so also (W Ug V, W) is k-connected. But then the triple sequence of
(W Uy V,W,00W) implies that the map

7Tl(1/V, 80W) — TFZ'(W Uy V, a()W)

is a surjection for ¢ < k as well. Since the source vanishes in that range of degrees we are

done. O



Problem 5 (10 points). Let Gra(R*) denote the Grassmannian of 2-planes in R*.

Decompose ma(Gra(R*), g) into cyclic groups for g € Gro(R?).

Recall Grg(R™) = O(n)/(O(k) x O(n — k)) and how we computed m2(Gra(R™)) = Z for all
other n > 3.

Proof. Since Grassmannians are path connected, it suffices to treat g = R? x 0. Consider the
bundle O(4) — Gry(R?*) with typical fibre O(2) x O(2). For any lift M € O(4) of g, its long
exact sequence in homotopy groups reads

m2(0(4), €) — mp(Cra(R*Y),R? x 0) — 71 (0(2) x O(2),€e) — m1(0(4), e).

In the lecture we showed that the first term vanishes (for example since SO(4) has universal
cover S3 x $3), the third term is Z x Z, since O(2) = S + 5!, and the final term is Z/2. This
already forces moGra(R*) = Zx Z without determining the map Zx Z — Z/2 more explicitely.
But we also showed in the lecture that the inclusions O(n) — O(n + 1) are surjections on
for n > 1 (and isomorphisms for n > 2), so the map Z x Z — 7 /2 identifies with the addition
on Z reduced modulo 2. O



Bonus problem (3 points). Determine the action of w1 (Gra(R*), g) on ma(Gra(R%), g).

Hint: Recall that a generator for 71 (Gra(R™), R? x 0) = Z/2 is given by rotating R? x 0 about
an angle of 7 around the first axis in R? x 0.

Proof. 1t is readily checked straight from the definitions that for any fibration £ — B, with
simple fibre F' over b € B, the boundary map

Tn(B,b) — mp—1(F)

is equivariant, if we let [w] € 7m1(B,b) act on m,—_1(F') by the fibre transport along w; recall
that this the homotopy class of maps F' — F', determined by taking the end of any lift in
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(Note that the fibre transport is only well-defined up to unbased homotopy, so in order to
obtain a well-defined map one needs the simplicity of F').

In the present situation, the fibre is O(2) x O(2), certainly simple as a topological group.
Furthermore, using the description of the generator of 71 (Gra(R*),R% x 0), the fibre transport
is given by the multiplication on O(2) x O(2) with the matrix

10 0 O
0 -1 0 0
0 0 -1 0
0 0 0 1

in O(4) describing the rotation. As this matrix has determinant 1, it preserves SO(2) x SO(2)
and under the diffeomorphism with S' x S' corresponds to complex conjugation in both
factors. Thus it induces the negative of the identity on ;. Since the map

m2(Gra(RY), g) — m1(0(2) x O(2))

is injective, the same is true in the source. O



