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Problem 1 (10 points). Let M and N be connected, closed, d-dimensional, oriented mani-
folds, and f : M → N a map of degree 1.

Show that f induces a surjection on fundamental groups (for all basepoints).

Hint: Consider covering spaces.

Proof. Let p : N̂ → N be the covering space corresponding to the image of f∗ : π1(M,m)→
π1(N, f(m)) for some m ∈ M . The number of sheets of this covering space is equal to the
index of im(f∗) ⊆ π1(N, f(m)), so the surjectivity of f∗ is equivalent to p being single sheeted.
Now, f tautologically lifts to a map f̂ :M → N̂ over p by the lifting criterion for maps. If the
covering had an infinite number of sheets then N̂ is a connected, non-compact manifold and
thus Hd(N̂) = 0. In particular, f∗[M ] = p∗f̂∗[M ] = 0, forcing deg(f) = 0 in contradiction
to the assumption. Thus the covering has finitely many sheets and by the local formula for
mapping degrees, the number of sheets is deg(p), upon giving N̂ the orientation induced from
N along p. But then

1 = deg(f) = deg(p) · deg(f̂)

forcing 1 = deg(p) as desired.
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Problem 2 (10 points). Let M be a connected, closed, non-orientable, 3-manifold.

Show that H1(M ;Q) 6= 0.

Proof no. 1. SinceM has odd dimension its Euler characteristic vanishes by Poincaré duality
for (co)homology with Z/2-coefficients; recall that the Euler characteristic can be computed
with any field coefficients. Furthermore, as M is non-orientable H3(M ;Q) = 0. But then if
H1(M ;Q) = 0, we would find χ(M) = 1 + dimQH2(M ;Q) > 0.

A little more brute force is:

Proof no. 2. The integral homology ofM is finitely generated by a result of the lecture. From
the universal coefficient theorem with base Z we then find

dimZ/2H1(M ;Z/2) = dimQH1(M ;Q) + dimZ/2H1(M ;Z)/2
dimZ/2H2(M ;Z/2) = dimQH2(M ;Q) + dimZ/2H2(M ;Z)/2 + dimZ/2H1(M ;Z)/2
dimZ/2H3(M ;Z/2) = dimQH3(M ;Q) + dimZ/2H2(M ;Z)/2

But Poincaré duality, the universal coefficient theorem with base Z/2 and non-orientability
imply

dimZ/2H3(M ;Z/2) = 1, dimQH3(M ;Q) = 0

and dimZ/2H1(M ;Z/2) = dimZ/2H
2(M ;Z/2) = dimZ/2H2(M ;Z/2),

so
dimZ/2H2(M ;Z)/2 = 1

and finally
dimQH1(M ;Q) = dimQH2(M ;Q) + 1 > 0

as desired.
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Problem 3 (10 points). Consider the counit evX : |SingX| → X of the adjunction

| − | : Top←→ sSet : Sing.

Show that evX is a homotopy equivalence if and only if the functor

[X,−] : Top→ Set

sends weak homotopy equivalences to bijections.

Recall that [X,Y ] denotes the set of homotopy classes of maps X → Y . Furthermore, recall
that evX always is a weak homotopy equivalence.

Proof. (⇒) If evX is a homotopy equivalence, then it induces a natural isomorphism [X,−]⇒
[|SingX|,−]. But |SingX| admits a canonical cell structure, so by Whitehead’s theorem
the right hand functor sends weak homotopy equivalences to bijections.

(⇐) Since evX is a weak homotopy equivalence, so the map (evX)∗ : [X, |SingX|]→ [X,X] is
bijective by assumption. Therefore, there is a unique homotopy class of maps f : X → Y
such that evX ◦f ' idX . To see that also f ◦evX is homotopic to the identity of |SingX|,
consider

(evX)∗ : [|SingX|, |SingX|]→ [|SingX|, X].

(note the different meaning of (evX)∗ compared to the first line). As |SingX| is a cell
complex [|SingX|,−] sends weak homotopy equivalences to bijections (again by White-
head’s theorem), so the above map is also bijective, in particular injective. Moreover,
we see that

(evX)∗[f ◦ evX ] = [evX ◦ f ◦ evX ] = [evX ] = (evX)∗[id|SingX|]

yielding the claim.
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Problem 4 (10 points). Let W,V be connected, compact manifolds of the same dimension
with partitions ∂W = ∂0W t ∂1W and ∂V = ∂0V t ∂1V into connected components. Let
φ : ∂1W → ∂0V be a homeomorphism. Assume that (W,∂0W ) and (V, ∂0V ) are k-connected.

Show that (W ∪φ V, ∂0W ) is k-connected.

You may use that (W ∪φ V,W, V ) is an excisive triad.

Proof. By assumption the pair (V, ∂0V ) is k-connected and the pair (W,∂1W ) is 0-connected.
Thus by the Blakers-Massey theorem the map

πi(V, ∂0V ) −→ πi(W ∪φ V,W )

is a surjection for i ≤ k, so also (W ∪φ V,W ) is k-connected. But then the triple sequence of
(W ∪φ V,W, ∂0W ) implies that the map

πi(W,∂0W ) −→ πi(W ∪φ V, ∂0W )

is a surjection for i ≤ k as well. Since the source vanishes in that range of degrees we are
done.
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Problem 5 (10 points). Let Gr2(R4) denote the Grassmannian of 2-planes in R4.

Decompose π2(Gr2(R4), g) into cyclic groups for g ∈ Gr2(R4).

Recall Grk(Rn) ∼= O(n)/(O(k) × O(n − k)) and how we computed π2(Gr2(Rn)) ∼= Z for all
other n ≥ 3.

Proof. Since Grassmannians are path connected, it suffices to treat g = R2× 0. Consider the
bundle O(4)→ Gr2(R4) with typical fibre O(2)×O(2). For any lift M ∈ O(4) of g, its long
exact sequence in homotopy groups reads

π2(O(4), e) −→ π2(Gr2(R4),R2 × 0) −→ π1(O(2)×O(2), e) −→ π1(O(4), e).

In the lecture we showed that the first term vanishes (for example since SO(4) has universal
cover S3×S3), the third term is Z×Z, since O(2) ∼= S1+S1, and the final term is Z/2. This
already forces π2Gr2(R4) = Z×Z without determining the map Z×Z→ Z/2 more explicitely.
But we also showed in the lecture that the inclusions O(n)→ O(n+1) are surjections on π1
for n ≥ 1 (and isomorphisms for n ≥ 2), so the map Z×Z→ Z/2 identifies with the addition
on Z reduced modulo 2.
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Bonus problem (3 points). Determine the action of π1(Gr2(R4), g) on π2(Gr2(R4), g).

Hint: Recall that a generator for π1(Gr2(Rn),R2×0) = Z/2 is given by rotating R2×0 about
an angle of π around the first axis in R3 × 0.

Proof. It is readily checked straight from the definitions that for any fibration E → B, with
simple fibre F over b ∈ B, the boundary map

πn(B, b) −→ πn−1(F )

is equivariant, if we let [w] ∈ π1(B, b) act on πn−1(F ) by the fibre transport along w; recall
that this the homotopy class of maps F → F , determined by taking the end of any lift in

F
incl //

��

E

��

F × I
w◦pr2 //

;;

B.

(Note that the fibre transport is only well-defined up to unbased homotopy, so in order to
obtain a well-defined map one needs the simplicity of F ).

In the present situation, the fibre is O(2) × O(2), certainly simple as a topological group.
Furthermore, using the description of the generator of π1(Gr2(R4),R2×0), the fibre transport
is given by the multiplication on O(2)×O(2) with the matrix

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


in O(4) describing the rotation. As this matrix has determinant 1, it preserves SO(2)×SO(2)
and under the diffeomorphism with S1 × S1 corresponds to complex conjugation in both
factors. Thus it induces the negative of the identity on π1. Since the map

π2(Gr2(R4), g) −→ π1(O(2)×O(2))

is injective, the same is true in the source.

7


