
1. Groups as metric spaces

Definition 1.1. Let G be a finitely generated group with generating system S.
The length function lS associated to S is defined as follows:

lS(g) := min{n ∈ N | ∃s1, .., sn ∈ S ∪ S−1 : g = s1 · . . . · sn}
The word metric dS is defined by d(g, h) := lS(g−1h).

Lemma 1.2. Let G be a group with finite generating system S. Then the word
metric dS is left-invariant, i.e. d(hg1, hg2) = d(g1, g2), and proper, i.e. balls are
proper (and thus finite since the space is discrete).

Proof. Left-invariance is obvious from the definition. For the second it suffices to
show that for each n there are only finitely many g with lS(g) = d(e, g) ≤ n. This
follows from the fact that S is finite and hence there are only finitely many words
of length at most n in S ∪ S−1. �

Definition 1.3. Two maps f, f ′ : X → Y are close if there exists c > 0 such that
for all x ∈ X we have d(f(x), f ′(x)) ≤ c.

Definition 1.4. Let X,Y be metric spaces, a map f : X → Y is a quasi-isometric
embedding if there exist constants A ≥ 1B ≥ 0 such that for all x, y ∈ X

1
AdX(x, y)−B ≤ dY (f(x), f(y)) < AdX(x, y) +B.

It is a quasi-isometry if there exists a quasi-isometric embedding g : Y → X such
that g ◦ f is close to idX and f ◦ g is close to idY .
X,Y are quasi-isometric if there exists a quasi-isometry f : X → Y .

Remark 1.5. Recall that an isometric embedding f : X → Y is a map with
d(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Lemma 1.6. Clara Prop 5.1.10

Lemma 1.7. Let G be a group and let S, T be finite generated systems. Then
(G, dS) and (G, dT ) are quasi-isometric.

Proof. By symmetry it suffices to show that there is A ≥ 1 with dS(g, h) ≤
AdT (g, h). Let A := max{lT (s) | s ∈ S}. For g ∈ G with lS(g) = n let
s1, .., sn ∈ S ∪ S−1 be such that g = s1 · .. · sn. Then each si can be expressed
as a word of length at most A in T ∪ T−1. Hence lT (g) ≤ An. It follows that

dS(g, h) = lS(g−1h) ≤ AlT (g−1h) = dT (g, h)

as needed. �

Hence the word metric allows us to view G as a metric space even without
specifying a generating system as long as we only consider properties that are
invariant under quasi-isometries.

Definition 1.8. Let G be a group with finite generating set S. The Cayley graph
C(G,S) is the graph with vertex set G and an edge between g, h if and only if
g−1h ∈ S ∪ S−1.

The inclusion of the vertex set G → C(G,S) gives a quasi-isometry between
(G, dS) and C(G,S) with the path metric in which every edge has length one. In
particular, up to quasi-isometry the Cayley graph with the path metric is indepen-
dent of the choice of S.
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Example 1.9. Let G be a free group, freely generated by S. Then C(G,S) is a
tree: Any path without backtracking is a reduced word, hence can’t be trivial/a
loop.

Theorem 1.10. Let G be a group and let S be a generating set of G. Then the
left translation action on the Cayley graph C(G,S) is free if and only if S does not
contain any elements of order 2.

Proof. The action on the vertices is nothing but the left translation action by G
on itself, which is free. It therefore suffices to study under which conditions the
action of G on the edges is free: If the action of G on the edges of the Cayley graph
C(G,S) is not free, then S contains an element of order 2: Let g, v, v′ ∈ G with
g 6= e, such that g fixes the edge between v and v′. Then gv = v′ and gv′ = v hence
g2 is trivial and g has order 2. Conversely, if s ∈ S has order 2, then s

fixes the edge between e and s. �

Definition 1.11. geodesic space
quasi-geodesic + examples graphs and groups with word metric
Svarc-Milnor Lemma

2. Ends of groups

Definition 2.1. Let X be a connected, locally finite CW complex. If K ⊆ K ′ are
finite subcomplexes, we have the inclusion X \K ′ → X \K. The space of ends of
X is

Ends(X) = lim
K⊆X fin.

π0(X \K)

with the inverse limit topology. (The system of finite subcomplexes with inclusion is
filtered. Hence the dual system of complements is cofiltered, thus this is an inverse
system.)

Lemma 2.2. If f : X → Y is continuous and proper, i.e. inverse images of com-
pact subspaces are compact, then it induces a (continuous) map f∗ : Ends(X) →
Ends(Y ).

Proof. For each K ⊆ Y finite, we have a map f : X \ f−1(K) → Y \ K. This
induces a continuous map on π0 (since both spaces are discrete). Hence we obtain
a continuous map

f∗ : lim
K⊆Y fin.

π0(X \ f−1(K))→ lim
K⊆Y fin.

π0(Y \K) = Ends(Y ).

The set {f−1(K) | K ⊆ Y fin.} is cofinal in {K ′ | K ′ ⊆ X fin.}, i.e. for each
K ′ there exists K with K ′ ⊆ f−1(K) (e.g. K = f(K ′)). Hence the dual system of
complements is final. Therefore, limK⊆Y fin. π0(X \ f−1(K)) ∼= Ends(X). �

This turns Ends into a functor from connected, countable, locally finite CW
complexes with continuous and proper maps to the category of spaces.

Lemma 2.3. If H : X × [0, 1] → Y is a proper homotopy between f and g, then
f∗ = g∗.

Proof. Let ij : X → X × [0, 1] be the inclusion into the j = 0, 1 coordinate. Since
H◦ij = f, g is suffices to show that (ij)∗ is independent of j. This follows since K×I
is cofinal in the collection of finite subcomplexes of X × I and (ij)∗ : π0(X \K)→
π0((X × I) \ (K × I)) is independent of j. �
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Lemma 2.4. Let i : X(1) → X be the inclusion of the 1-skeleton, then i∗ is a
homeomorphism.

Proof. This follows since i∗ : π0(X(1) \ (X(1) ∩K)) → π0(X \K) is a bijection for
every finite subcomplex K ⊆ X. �

Lemma 2.5. Let f : X → Y be a quasi-isometric embedding between proper, geo-
desic metric spaces, then we obtain a map f∗ : Ends(X)→ Ends(Y ). This is again
natural.

Proof. Let f : X → Y be a quasi-isometry with
1
AdR(x, y)−B ≤ dS(f(x), f(y)) ≤ AdR(x, y) +B

for all x, y ∈ X. Let C := A(2B +A+ 1). Fix n ∈ R and a base point x0 ∈ X.
Let x, y ∈ X \ BCn+C(x0) be in the same connected component. Then there is

a path x = y0, y1, .., yk = y from x to y with d(yi, yi+1) ≤ 1 d(yi, x0) > Cn + C.
Hence

d(f(yi), f(x0)) ≥ 1
Ad(yi, x0)−B > 1

A (Cn+ C)−B > n+A+B.

Since d(yi, yi+1) ≤ 1, d(f(yi), f(yi+1)) ≤ A + B. Thus there is a geodesic path
connecting f(yi) and f(yi+1) of length at most A + B. This path then lies in
Y \ Bn(f(x0)). Hence f(x) and f(y) are in the same connected component of
Y \ Bn(f(x0)). This gives a map f∗ : π0(X \ BCn+C(x0)) → π0(Y \ Bn(f(x0))).
The systems {BCn+C(x0)} and {Bn(f(x0))} are cofinal in the compact/bounded
subspaces of X and Y respectively. Hence f∗ : Ends(X)→ Ends(Y ) is well-defined.

�

Lemma 2.6. If g, h : X → Y are close quasi-isometric embeddings between proper,
geodesic metric spaces. Then g∗ = h∗.

Proof. Let d(f(x), g(x)) ≤ C for all x ∈ X. For K ⊆ Y bounded let BC(K) denote
the C-neighborhood. Then f∗, g∗ : π0(X \ f−1(BC(K))) → π0(Y \ K) are equal.
This can be seen as follows. For any x ∈ X \ f−1(BC(K)) pick a geodesic between
f(x) and g(x). Since it has length at most C and f(x), g(X) are in Y \BC(K), the
geodesic is in Y \K. Hence f(x) and g(x) are in the same connected component. �

Corollary 2.7. If X,Y are quasi-isometric proper, geodesic spaces, then Ends(X) ∼=
Ends(Y ).

Corollary 2.8. Let G be a group with finite generating system S. Then Ends(G) :=
Ends(C(G,S)) is independent of S.

Corollary 2.9. If G,H are quasi-isometric groups, then Ends(G) ∼= Ends(H). For
example, H ≤ G of finite index.

Lemma 2.10. If X is locally finite and connected, then for every finite subcomplex
K the set π0(X \K) is finite.

Proof. We can again assume X is one-dimensional. Removing an edge can only
split one connected component into at most two. Removing a vertex can only split
a connected component into as many connected components as there were edges
attached to the vertex. �

Lemma 2.11. If X is locally finite and connected, then X is compact if and only
if Ends(X) is empty.
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Proof. ⇒ is obvious. If X is non-compact, fix an ascending, cofinal sequence of
compact subspaces Kn. Then π0(X \Kn) is non-empty and finite for each n. Then
the inverse limit is non-empty since in each step we can pick a point with infinitely
many pre-images. �

Definition 2.12. For a finitely generated group G we define e(G) := |Ends(G)|.
Corollary 2.13. G is finite if and only if e(G) = 0.

Example 2.14. If G is infinite and virtually cyclic, i.e. contains a cyclic subgroup
of finite index, then e(G) = 2.

Theorem 2.15 (Freudenthal-Hopf). For a finitely generated group G, e(G) ∈
{0, 1, 2,∞}.
Proof. Let G be a group with e(G) > 2. Then there exists a finite, connected
subcomplex K of X := C(G,S) such that X \K has m ≥ 3 connected components
Vi and all components are unbounded. Pick g ∈ G with gK ⊆ V1. This exists since
G is infinite and acts freely on X. Since each gVi is connected to gK, all but the
one containing K are contained in V1. Hence V1 has at least 2 ends. The same
argument shows that each Vi has at least 2 ends. Hence e(G) ≥ 2m. Iterating the
argument shows that e(G) ≥ 2km for every k. �

Theorem 2.16. A group has two ends if and only if it is infinite and virtually
cyclic, i.e. it contains Z as a subgroup of finite index.

Proof. It is easy to see that Z has two ends. By Corollary 2.9, every group that
contains Z as a subgroup of finite index has two ends.

The converse is more involved.
Let S be a finite generating set of G. Consider the action of G on Ends(C(G,S)).

Since Ends(C(G,S)) consists of two points, the kernel of this action has index at
most two. Hence we can pass to the kernel and thus assume that the action is
trivial.

There exists a compact subset C of C(G,S) such that the complement has two
infinite components W−,W+ and no finite components. Since G is infinite and the
action of G on C(G,S) is proper, there exists g ∈ G such that C ∩ gC = ∅. We
assume that gC ⊆ W+. Then gW+ is a proper subspace of W+ since otherwise g
would swap the ends of C(G,S). Hence there is a proper decreasing chain

W+ ) gW+ ) g2W+ ) . . .

and g has infinite order. Similarly,

W− ) g−1W− ) g−2W− ) . . .

Let D be a compact subset containing C, gC and such that the complement has
exactly two components both of which are infinite, i.e.

C(G,S) := W+ ∪D ∪ gW+.

Suppose x ∈
⋂
i∈N g

iW+. Then there exists wi ∈ W+ with x = giwi. This implies

wi = g−ix. Since g−ix leaves any compact set it has to converge to an end and
by the above it has to converge to the end represented by W−. But wi ∈ W+, a
contradiction. Hence

⋂
i∈N g

iW+ is empty. Similarly,
⋂
i∈N g

−iW− is empty. We
have

C(G,S) = g−1W− ∪
⋃

−i≤j<i

gjD ∪ giW+.
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Thus,

C(G,S) =
⋃
j∈Z

gjD.

Therefore D contains a representative for each coset 〈g〉h and 〈g〉 has finite index
in G. �

Theorem 2.17 (Stallings). Let G be a finitely generated group with e(G) = ∞.
Then one of the following holds:

(1) The group G admits a splitting G = H ∗C K as a free product with amal-
gamation where C is a finite group such that C 6= H and C 6= K.

(2) The group G is an HNN extension G = 〈H, t | t−1ct = φ(c)〉 where C ≤ H
is finite and φ : C → H is injective.

We will use the condition e(G) = ∞ to show that G acts on a tree with at
most two orbits of vertices and one edge orbit. Furthermore, the edge orbit will
have finite isotropy. So obtain the theorem from this, we will need some Bass-Serre
theory. This will be developed in the next section before we return to the proof.

Corollary 2.18. Let G be a torsion-free, finitely generated group with e(G) =∞,
then G is a free product of two non-trivial groups H,K.

In particular, any torsion-free, finitely generated group is a finite free product of
groups Hi with e(Hi) = 1 or Hi

∼= Z.

Proof. The finite subgroup C includes in both cases into G. If G is torsion-free, C
has to be trivial. Hence G = H ∗K with H,K non-trivial in the first case and in
the second case G ∼= H ∗ Z. Here H is non-trivial since otherwise G ∼= Z would
have two ends. �

3. Bass-Serre theory

Definition 3.1. A graph of groups (G,T ) consists of an oriented graph T , a group
GP for every vertex P ∈ V (T ), a group Gy for every edge y ∈ E(T ), together
with monomorphisms φt,y : Gy → Gt(y) and φo,y : Gy → Go(y) where o(y) and t(y)
denote the starting and ending vertex of y respectively.

Example 3.2. A segment

(an edge y from P to Q) consists of a pair of monomorphisms φo,y : Gy → GP
and φt,y : Gy → GQ.

Example 3.3. A loop

consists of two monomorphisms from Gy to GP .

Definition 3.4. For a graph of groups (G, Y ) we define the group

F (G, Y ) := 〈{GP , y} | yφt,y(a)y−1 = φo,y(a)∀y ∈ E(Y ), a ∈ Gy〉.
We will see that GP → F (G, Y ) is injective for every P ∈ V (Y ).
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For an edge y we write y−1 for the edge with reversed orientation. Let c be a
path in Y whose origin is a vertex P0. We let yε11 , . . . , y

εn
n denote the edges of c,

where n = l(c), εi ∈ {±1} and ε = −1 if the path travels trough yi against the
chosen orientation. We put

Pi = t(yεii ) = o(y
εi+1

i+1 ).

Definition 3.5. A word of type c in F (G, Y ) is a pair (c, µ) where µ = (r0, . . . , rn)
is a sequence of elements ri ∈ GPi . The element

|c, µ| = r0y
ε0
0 r1 . . . rn−1y

εn
n rn ∈ F (G, Y )

is said to be associated with the word (c, µ).

We now give two definitions of the fundamental group of (G, Y ).

Definition 3.6. Let P0 be a vertex of Y . We let π1(G, Y, P0) be the set of elements
of F (G, Y ) of the form |c, µ|, where c is a loop at P0. Concatenation/Reversion of
path shows that π1(G, Y, P0) is a subgroup of F (G, Y ). It is called the fundamental
group of (G, Y ) at P0. When G is trivial, i.e. GP = {1} for every P ∈ V (P ),
the group π1(G, Y, P0) coincides with the fundamental group (in the usual sense)
π1(Y, P0) of the graph Y at the point P0.

In the general case, there is a surjective homomorphism π1(G, Y, P0)→ π1(Y, P0);
its kernel is the normal subgroup of π1(G, Y, P0) generated by the GP .

Definition 3.7. Let T be a maximal tree of Y . The fundamental group π1(G, Y, T )
of (G, Y ) at T is, by definition, the quotient of F (G, Y ) by the normal subgroup
generated by the edges y of T . In particular we have φt,y(a) = φo,y(a) for every
edge y of T .

Example 3.8. For a segment

we have π1(G, Y, Y ) ∼= GP ∼=Gy GQ and for a loop

π1(G, Y, P ) is the HNN extension of GP along φt,y(Gy) ∼= φo,y(Gy).

Proposition 3.9. Let (G, Y ) be a graph of groups, P0 a vertex and T a maximal
tree. The projection p : F (G, Y )→ π1(G, Y, T ) induces an isomorphism π1(G, Y, P0)→
π1(G, Y, T ).

Proof. For P ∈ V (Y ) let c be the geodesic path in T from P0 to P with edges
yε11 , . . . , y

εn
n . Define

yP := yε11 · · · yεnn ∈ F (G, Y ).

For x ∈ GP define

x′ := yPxy
−1
P

and for an edge y ∈ Y define

y′ := yo(y)yy
−1
t(y).
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The latter is the word belonging to a loop at P0 in Y that travels through y and
only through T otherwise. If y ∈ T , then y′ = 1 (easy). For a ∈ Gy we have

y′φt,y(a)′(y′)−1 = yo(y)yy
−1
t(y)yt(y)φt,y(a)y−1t(y)yt(y)y

−1y−1o(y)

= yo(y)yφt,y(a)y−1y−1o(y)

= yo(y)φo,y(a)y−1o(y)

= φo,y(a)′

Hence (−)′ defines a homomorphism

f : π1(G, Y, T )→ π1(G, Y, P0).

Since yP comes from a path in T for every P ∈ V (Y ), we have p ◦ f = id.
On the other hand, let c be a loop at P0, with edges y0, . . . , yn and vertices

Pj = o(yj+1) = t(yj); let (c, µ), with µ = (r0, . . . , rn), be a word of type c. We have

r′i = yPiriy
−1
Pi

and y′i = yPi−1
yiy
−1
Pi

. Furthermore yPn = yP0
= 1. Hence

r′0y
′
1 · · · y′nr′n = yP0

r0y
−1
P1
yP1

y1 · · · yny−1Pn yPnrny
−1
Pn

= r0y1 · · · ynrn.
We then have f ◦ p = id and the proof is complete. �

Definition 3.10. One says that (c, µ) is reduced if it satisfies the following condi-
tion:

(1) If n = 0, then r0 6= 1 and
(2) if yi = yi+1, εi = −1εi+1, then ri /∈ φt,yεii (Gyεii

).

In particular, every word whose type is a path of length ≥ 1 without backtracking
is reduced.

Theorem 3.11 (Serre, Thm 11). If (c, µ) is a reduced word, the associated element
|c, µ| of F (G, Y ) is nontrivial.

The special case where the length is zero gives:

Corollary 3.12. The homomorphisms GP → F (G, Y ) are injective.

Corollary 3.13. If (c, µ) is reduced and if l(c) ≥ 1, then |c, µ| /∈ GP0
, where

P0 = o(c).

Proof. If |c, µ| = x ∈ GP0
, the reduced word (c, µ′) with µ′ = (x−1r0, .., rn) would

have |c, µ′| = 1. �

Corollary 3.14. Let T be a maximal tree of Y , and let (c, µ) be a reduced word
whose type c is a closed path. Then the image of |c, µ| in π1(G, Y, T ) is non-trivial.

Proof. Let P0 = o(c). We have 1 6= |c, µ| ∈ π1(G, Y, P0). The corollary now follows
from the statement that the projection

π1(G, Y, P0)→ π1(G, Y, T )

is an isomorphism. �

We now want to construct a graph X̃ = X̃(G, Y, T ) such that π := π1(G, Y, T )

acts on X̃ with π\X̃ ∼= Y and ”vertex and edge stabilizers corresponding to GP ,
Gy”. For this we define

V (X̃) :=
∐

P∈V (Y )

π/GP , E(X̃) =
∐

y∈E(Y )

π/φo,y(Gy).
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We define a section Y → X̃ by sending P → [1] ∈ π/Gp and y → [1] ∈ π/Gy and

denote the images with P̃ and ỹ. Then for the stabilizers, we have πP̃ = GP and
πỹ = φo,y(Gy). Define

o(gỹ) = gõ(y), t(gỹ) = gyt̃(y).

We have to check that this is independent of the choice of g: For h = φo,y(a) ∈
πỹ = φo,y(Gy) ⊆ Go(y), we have

o(hỹ) = φt,y(a)õ(y) = õ(y) = o(ỹ)

and

t(hỹ) = hyt̃(y) = φo,y(a)yt̃(y) = yφt,y(a)t̃(y) = yt̃(y) = t(ỹ).

If y ∈ T , then 1 = y ∈ π. Hence t(ỹ) = t̃(y). So we have a lift T̃ of T in X̃.

Theorem 3.15. Let (G, Y ) be a connected graph of groups with at least one edge

and let T be a maximal tree of Y . Then the graph X̃ = X̃(G, Y, T ) constructed
above is a tree.

Proof. For every y ∈ E(Y ) we have o(ỹ) = (̃o(y)) ∈ T̃ . Hence the subgraph W

containing all the ỹ with y ∈ E(Y ) is connected. By construction πW = X̃. It now
suffices to show that there is a generating set S such that W ∪ sW is connected for
all s ∈ S; since then

W ∪ s1W ∪ s1s2W ∪ . . . ∪ s1 · · · snW

is connected for all s1, .., sn ∈ S ∪ S−1. If s ∈ GP for P ∈ V (Y ), then W and sW

both contain P̃ ∈ T̃ . Similarly,

yt(ỹ) = t̃(y) ∈ yW ∩W.

This shows that X̃ is connected.
To show that X is a tree, it now suffices to prove that X does not contain

any closed path of length n > 0 without backtracking. Let c be such a path, let
(s1ỹ

ε1
1 , .., snỹ

εn
n ) be the sequence of its edges, and let (P0, .., Pn) be the sequence of

vertices of the projection c of c̃ in Y ; we have P0 = Pn. We have

t(skỹ
εk
k ) = sky

(1+ε)/2
k t̃(yεkk )

and

o(skỹ
εk
k ) = sky

(1−ε)/2
k õ(yεkk ).

Define qk := sky
(1−εk)/2
k , then q−1k qk+1 = yεkk rk for some rk ∈ GPk since c is a path.

Hence

yε11 r1 · · · yεnn rn = 1.

To obtain a contradiction, it remains to show that (c, µ) with µ = (0, r1, .., rn)
is reduced.

Suppose yi = yi+1 and εi = −εi+1. Then from

siy
(1+εi)/2
i ri = si+1y

(1−εi+1)/2
i+1 = si+1y

(1+εi)/2
i

it follows that

ri = y
−(1+εi)/2
i s−1i si+1y

−(1+εi)/2
i .
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We have to show that ri /∈ φt,yεii (Gyεi ). Hence that s−1i si+1 /∈ φo,yεi (Gyεi ). But if

s−1i si+1 ∈ φo,yεi (Gyεi ), then siỹ
εi
i and si+1ỹ

εi+1

i+1 = si+1ỹ
−εi
i were inverse and the

path c̃ had backtracking. �

Let G be a group which acts without inversion on a connected graph X. We can
pick an orientation on X compatible with the G action. We want to show that, if
X is tree, then G can be identified with the fundamental group of a certain graph
of groups (G, Y ), where Y = G\X with the orientation induced from X. We first
want to construct (G, Y ). Let T be a maximal tree of Y and let j : T → X be a lift
of T . For y ∈ Y \ T , pick jy ∈ X with o(jy) ∈ V (jT ), then o(jy) = jo(y). Choose
γy ∈ G with t(jy) = γyjt(y). This is possible since t(jy) and jt(y) both project to
t(y) in Y . Put γy = 1 for y ∈ T . Then we have

o(jy) = jo(y), t(jy) = γyjt(y)

for all y ∈ Y . Define GP := GjP , where GjP denotes the stabilizer of jP and
Gy := Gjy with homomorphism φo,y : Gy → Go(y) given by the inclusion, while

φt,y : Gy → Gt(y) is given by a 7→ γ−1y aγy. The latter is well defined since Gjy ⊆
Gγyjt(y) = γyGjt(y)γ

−1
y .

Let ψ : π1(G, Y, T ) → G be defined by the inclusions GP → G and ψ(y) = γy.

Let Ψ: X̃(G, Y, T )→ X be defined by

Ψ(gP̃ ) = ψ(g)jP, Ψ(gỹ) = ψ(g)jy.

By construction, Ψ is equivariant with respect to ψ.
We first want to see that ψ and Ψ are surjective. Let W be the smallest subgraph

of X containing jy for all y ∈ E(Y ). Then o(jy) = jo(y) ∈ V (jT ) and GW = X.

By definition, W is contained in Ψ(X̃) and φ induces an isomorphism between the

stabilizers of corresponding vertices and edges in X̃ and X. Because X is connected,
it suffices to show that an edge w with origin/target in ψ(π)W belongs to ψ(π)W .
By translating w by an element of ψ(π), if necessary, we can assume that o(w) or
t(w) belongs to V (jT ). Since GW = X, there is g ∈ G such that gw ∈ W , i.e.
gw = jy for some y ∈ E(Y ). It suffices to show that g ∈ ψ(π).

We have o(gw) ∈ V (jT ). If o(w) ∈ V (jT ), then o(w) = o(gw) = go(w) and
g ∈ Go(w) ⊆ ψ(π). If t(w) ∈ V (jT ), then γ−1y t(gw) = γ−1y γyj(t(y)) ∈ V (jT ) and

t(w) = γ−1y t(gw) = γ−1y gt(w). Hence γ−1y g ∈ Gt(w) and g ∈ ψ(π).
Since ψ induces isomorphisms between the stabilizers, Ψ is locally injective:

Suppose Ψ(ỹ) = Ψ(gỹ′) with P̃ := o(ỹ) = o(ỹ′). Since the projection to Y agree,
ỹ′ = ỹ and thus g ∈ πP̃ and ψ(g) ∈ Gjy. Hence there is h ∈ πỹ with ψ(h) = ψ(g).
But since the inclusionGjy → GjP is injective and ψ : πP̃ → GjP is an isomorphism,
h = g, hence ỹ = gỹ′.

Theorem 3.16. The following are equivalent:

(1) X is a tree.

(2) Ψ: X̃ → X is an isomorphism.
(3) ψ : π1(G, Y, T )→ G is an isomorphism.

We are mostly interested in (1)⇒ (3).

Proof. (1)⇒ (2):
We already know that Ψ is surjective. It remains to show that it is injective. It
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suffices to show that for every injective path c in X̃ also Ψ ◦ c is injective. Since X
is a tree, it suffices to check that Ψ◦ c has no backtracking. But the latter property
follows immediately from the fact that c is injective and Ψ is locally injective.

(2)⇒ (1):
Follows from Theorem 3.15.

(2)⇒ (3):
It remains to show injectivity. Let N be the kernel of ψ. Let P ∈ V (Y ), we have
N ∩GP = {1} because ψ defines an isomorphism between GP and GjP . If n ∈ N
is non-trivial, P̃ and nP̃ are hence distinct but have the same image under Ψ.

(3)⇒ (2):
clear �

Corollary 3.17. A group which acts freely on a tree is free.

Proof. If the action is free, all stabilizers are trivial by definition. Hence π1(G, Y, T )
is the free groups generated by the edges of Y that don’t belong to T . �

Corollary 3.18 (Nielsen-Schreier Theorem). Subgroups of free groups are free.

Proof. For a group G with free generating set S the Cayley graph C(G,S) is a tree
with a free G action. Restricting the action to any subgroup H yields a free action
of H on a tree. Hence H is free by the last corollary. �

The following is a strengthened version of the Nielsen-Schreier Theorem.

Lemma 3.19. Let F be a free group of rank n, and let G ≤ F be a subgroup of
index k. Then G is a free group of rank (n − 1)k + 1. In particular, finite index
subgroups of free groups of finite rank are finitely generated.

Proof. Let S be a free generating set of F . Then C(F, S) is a regular tree of degree
2n. Since G has index k in F , there are k G-orbits of vertices in C(F, S). Hence
Y := G\C(F, S) has k vertices. Pick one representative for each orbit in C(F, S).
Each edge y of C(F, S) can be translated by a unique element of G so that o(y)
is a representative and another unique element (it might be the same) so that t(y)
is a representative. Hence from the 2nk edges going out of the representative, 2
always belong to the same orbit (or are the same edge). Hence Y has nk edges.
Since Y has k vertices, a maximal tree has k− 1 edges. Hence π1(G, Y, T ) is freely
generated by nk − k + 1 elements. �

Corollary 3.20. A free group of rank n ≥ 2 contains a free group of rank k for
any k ∈ N.

Proof. Consider any surjection onto Z and the preimage of k′Z to obtain a subgroup
of index k′ and thus a free subgroup of rank (n−1)k′+1. Since a free group obviously
contains a free group of any lower rank, this proves the corollary. �

Corollary 3.21. Finite index subgroups of finitely generated groups are finitely
generated.

Proof. Let G be a finitely generated group, and let H be a finite index subgroup
of G. If S is a finite generating set of G, then the universal property of the free
group F(S) freely generated by S provides us with a surjective homomorphism
φ : F (S)→ G. Let H0 be the preimage of H under φ; so H0 is a subgroup of F (S)
of index [G : H]. Hence H0 is finite generated; but then also the image H = φ(H0)
is finitely generated. �
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4. Proof of Stalling’s theorem

We will now prove Theorem 2.17 using Theorem 3.16. Recall Theorem 2.17:

Theorem (Stallings). Let G be a finitely generated group with e(G) = ∞. Then
one of the following holds:

(1) The group G admits a splitting G = H ∗C K as a free product with amal-
gamation where C is a finite group such that C 6= H and C 6= K.

(2) The group G is an HNN extension G = 〈H, t | t−1ct = φ(c)〉 where C ≤ H
is finite and φ : C → H is injective.

Fix a group G with finite, symmetric generating set S and let X := C(G,S) be
the Cayley graph.

Definition 4.1. For a subset U ⊆ G we define

• |U | ⊆ X to be the full subgraph with vertex set U .
• ∂U to be the set of edges connecting U and U c := G \ U .

We call U almost invariant if ∂U is finite and U,U c are infinite.

Lemma 4.2. If e(G) ≥ 2, then there exists an almost invariant subset.

Proof. Let K ⊆ X be a finite subgraph such that X \K has at least two connected
unbounded component and let U be one of them. Then U is almost invariant
since each edge between U and U c has to have at least one vertex in K, i.e. ∂U is
finite. �

Definition 4.3. We define

width(G,S) = inf{k | ∃U almost invariant with ∂U = k}.
An almost invariant subset U is narrow if it realizes the width, i.e. if ∂U has
width(G,S) many elements.

Lemma 4.4. If U is narrow, |U | and |U c| are connected.

Proof. |U | can only have finitely many components since each has to be connected
to U c and ∂U is finite. One of them has to be infinite since U is infinite. This
component with vertex set U ′ is also almost invariant since ∂U ′ ⊆ ∂U . If U ′ 6= U ,
then ∂U ′ is smaller than ∂U since every other component of U has to be connected to
U c with at least one edge. This contradicts the assumption that U was narrow. �

Lemma 4.5. Let U1 ! U2 ! . . . be a strictly decreasing sequence of narrow sets.
Then U∞ :=

⋂∞
n=1 Un is empty.

Proof. Let k := width(G,S). If U∞ is non-empty, then so is ∂U∞. Since U∞  U1

and U1 is connected, there exists at least one edge e1 from U∞ to U1 \ U∞.
There exists i > 1 such that for all j ≥ i, e1 is an edge from Uj to U1 \Uj . Hence

e1 ∈ ∂Uj for j ≥ i. Now pick an edge e2 from U∞ to Ui \U∞. Again there is some
i′ such that e2 is an edge between Uj and Ui \ Uj for every j ≥ i′. Hence e2 ∈ ∂Uj
for j ≥ i′. Moreover e1 6= e2 since e1 has a vertex in U1 \ Ui while e2 ⊆ Ui.

After k + 1 steps we have found k + 1 distinct edges contained in ∂Uj for j big
enough. This contradicts the assumption that Uj is narrow. �

Lemma 4.6. If e(G) ≥ 2, then for each vertex v ∈ V (X) there is a minimal narrow
subset U containing v.
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Proof. Let N be the set of narrow subsets containing v; ordered by inclusion. Let
U be narrow, then v ∈ U or v ∈ U c (which is also narrow). Hence N is non-empty.
By Lemma 4.5, every chain in N has a lower bound. By Zorn’s Lemma, there exists
a minimal element as claimed. �

We will now see how the tree is constructed. It is easier to work with graph
with the set of oriented edges, i.e. each edge appears twice; each with different
orientation. Let U be a minimal narrow set containing e. It exists by Lemma 4.6.
Let E := {gU, gU c | g ∈ G} and define an equivalence relation S ∼ S′ if S ∩ (S′)c

and S′ ∩ Sc are finite. The set E := E/ ∼ will be the set of oriented edges. Here

[Sc] will be [S], the edge with the other orientation. Define [S] ≤ [T ] if S ∩ T c is
finite.

Remark 4.7. Note that ≤ is transitive and reflexive and [S] ≤ [T ], [T ] ≤ [S]
implies [S] = [T ] by definition of ∼.

Also note that [S] ≤ [T ] means T c ∩ S = S ∩ T c is finite. Hence [T c] ≤ [Sc].

Lemma 4.8. For each [S], [T ] ∈ E one of [S] ≤ [T ], [S] ≤ [T c], [Sc] ≤ [T ] or
[Sc] ≤ [T c] holds.

Proof. Let v ∈ S be such that S is minimal containing v. Suppose W1 := S ∩
T,W2 := S ∩ T c,W3 := Sc ∩ T and W4 := Sc ∩ T c are all infinite. Note that they
partition G. Let k = #∂S = #∂T . Each edge in ∂S and ∂T appears in exactly
two of the sets ∂Wi. Furthermore, ∂Wi ⊆ ∂S ∪ ∂T .

Hence
∑

#∂Wi ≤ 4k. Since all Wi are infinite, they are almost invariant and
hence #∂Wi ≥ k. Thus, #∂Wi = k for all i and the sets are narrow. Either U ∩ V
or U ∩ V c contains v. Since both are infinite, they are proper subsets of U . A
contradiction to the minimality of U . �

If [S] ≤ [S′], define

[[S], [S′]] := {[T ] ∈ E | [S] ≤ [T ] ≤ [S′]}.
And [S] a [T ] if [S] ≤ [T ], [S] 6= [T ] and [[S], [T ]] = {[S], [T ]}. Now define [S] ∼V [T ]
if [S] = [T ] or [S] a [T c].

Lemma 4.9. ∼V is an equivalence relation.

Proof. Obviously, [S] ∼V [S] and [S] ∼V [T ]⇒ [T ] ∼V [S]. For simplicity call the
elements of E e, f, g. Suppose e ∼V f and f ∼V g with e 6= f and f 6= g. Then
e ` f c and f ` gc.

Claim e ≤ gc or e = g:
If e ≤ gc doesn’t hold, then one of the following holds:

(1) e ≤ g: From f ≤ gc it follows that g ≤ f c. Hence e ≤ g ≤ f c. By
[e, f c] = {e, f c} we have e = g or g = f c. But f ` gc implies f 6= gc. Hence
e = g.

(2) ec ≤ gc: Then g ≤ e ≤ f c and thus f ≤ ec ≤ gc. Since [f, gc] = {f, gc} and
e 6= f c, this implies ec = gc and thus e = g.

(3) ec ≤ g: Then f ≤ gc ≤ e ≤ f c. This can’t be true since f is infinite.

So we can assume e ≤ gc. It remains to show that e 6= gc and [e, gc] = {e, gc}. We
already saw that ec ≤ g can’t hold, hence e 6= gc.

Let e ≤ b ≤ gc. By the previous lemma one of the following conditions hold:
b ≤ f , b ≤ f c, bc ≤ f or bc ≤ f c.
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• b ≤ f implies e ≤ b ≤ f hence e ∩ f c is finite. But by assumption e ≤ f c

and e ∩ f is finite. This contradicts e infinite.
• bc ≤ f implies f c ≤ b ≤ gc which contradicts f ≤ gc as above.
• b ≤ f c implies e ≤ b ≤ f c. Hence either e = b or b = f c. In the latter case
f c ≤ gc, same contradiction as above.
• bc ≤ f c implies f ≤ b ≤ gc and hence f = b or b = gc. In the first case
e ≤ f contradicts e ≤ f c as above. �

Define the vertex set V := E/ ∼V and let t([S]) = [[S]]. This implies o([S]) =

[[Sc]]. Since not both [S] ≤ [T ] and [S] ≤ [T c] hold, E
(o,t)−−−→ V × V is injective.

Hence (V,E) is a graph.
By definition (E, V ) is a graph with a G-action which is transitive on the edge

set. It remains to show that (E, V ) is a tree and the edge stabilizer is finite.

Lemma 4.10. Let U, V,W be narrow. Then there are only finitely many g ∈ G
with U ∩ gW c and gW ∩ V c finite.

In particular (U = V = W ), the edge stabilizer is finite.

Proof. Arguing as in the proof of Freudenthal-Hopf, both U and V c contain at
least two ends. Let L := ∂U ∪ ∂V . Then there exists L ⊆ C ⊆ X finite, connected
such that U ∩ (X \C) and V c ∩ (X \C) both contain at least two unbounded path
components.

Let K be a finite, connected complex containing ∂W . For almost all g ∈ G,
gK ⊆ X \ C and gK is contained in an unbounded component Zg of X \ C. Since
C is connected and gK ∩ C = ∅, only gW or gW c can intersect C. Hence either
gW ⊆ Zg or gW c ⊆ Zg. Hence for almost all g one of the following holds.

(1) If gW ⊆ Zg ⊆ X \ C, then gW c must contain one unbounded component
of U ∩Cc since there are two of them and gW lies in at most one of them.
Thus, gW c ∩ U is infinite.

(2) If gW c ⊆ Zg, then gW must contain one unbounded component of V c∩Cc.
Hence gW ∩ V c is infinite. �

The following lemma completes the proof of Stalling’s theorem.

Lemma 4.11. (E, V ) is a tree.

Proof. By an edge path, we mean a path of edges e1, .., en with t(ei) = o(ei+1) and
without backtracking.

First we show that (E, V ) is connected. By Lemma 4.8, it suffices to show that
[S] ≤ [T ] implies that there is an edge path from [S] to [T ]. By Lemma 4.10,
[[S], [T ]] is finite and forms a chain [S] = e1 ` e2 ` . . . ` en = [T ]. By definition,
t(ei) = t(eci+1) = o(ti+1).

If (E, V ) is not a tree, there exists an edge path e1, .., en = e1. Then t(ei) =
o(ei+1) = t(eci+1). Hence ei ∼V eci+1. Since there is no backtracking, ei ` ei+1 and
hence ei ≤ ei+1. We can’t have t(e1) = o(e1) by definition: Would imply e1 = ec1
(not true) or e1 ` e1 which is excluded by definition. Hence there is f 6= e1 with
e1 ≤ f ≤ e1 but this can’t happen. �
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