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1 Der Kohomologiering
Erinnerung: Das duflere Produkt der Differentialformen ist definiert wie folgt:
QP (M) x QI(M) — QPTI(M)
(w,7) = wAy

wobel
(WAY)z = wg Az

Dieses Produkt erfiillt folgende Eigenschaften:
1. graduierte Kommutativitét: w A v = (=1)P9y A w, fiir w € QP(M) und v € Q4(M)
2. Existenz eines neutralen Element: 1 € Q°(M)
3. Bilinearitdt

4. Bei Anwendung des dufleren Differential gilt die graduierte Leipniz Regel:
dwA7y) =dwAvy+ (—1)Pw A dy, fir w € QP(M) und v € QI(M)

Damit lésst sich auch ein &uleres Produkt auf den Kohomologiegruppen definieren.
Definition 1.1: Das duflere Produkt der dRham-Kohomologie

HY (M) x Hip(M) — HYH(M)
(W], 7)) = [w] - 7] == [w A9
Achtung: Wir miissen Wohldefiniertheit priifen.

1. wAy € HFI(M):
w A7y ist eine (p+ q)-Form. Nach der graduierten Leibniz-Regel gilt fiir geschlossene Formen:

dwAy) =dw Ay + (—1)PwA dy =0
N -1
-0 -0

2. [w]=w]und [y] =[] = wAr] =" AY]:
Sei w ~ w’. Dann unterscheiden sich die Formen nur um einen Korand: w’ — w = da Fiir ein
a € HY2' (M) Dann gilt:

WAy =W —da)Ay=w Ay—da Ay
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also:
(W AY) —(wWAY)=dany=dlary)— (=P Lan dy =dlany)
-
=0
— [wA 7] = [w A~]. Der andere Fall folgt analog. O

Definition 1.2: Der Kohomologiering
Sei M eine glatte Mannigfaltigkeit der Dimension n. Wir definieren den Kohomologiering von M
als:

Hip(M) = @H§R<M) = Hip(M) ® ... ® Hyjp(M)
k=0
wobei die Multiplikation durch das duflere Produkt gegeben ist.

Definition 1.3: Graduierter Ring
Ein graduierter Ring A ist ein Ring, der eine Darstellung als direkte Summe von abelschen Gruppen
hat:
A=Pa=dhosiolo--
neN

sodas A;A; C A;yj. Elemente von A; werden homogene Elemente vom Grad j genannt.
Beispiele: Polynomringe und die dufiere Algebra A*(V) = @),y A*(V) sind graduierte Ringe.

Bemerkung 1.4: Der Kohomologiering ist ein graduiert kommutativer graduierter Ring mit neu-
tralem Element.

Das folgt direkt aus den Eigenschaften des dufleren Produkt auf Differentialformen. Das neutrale
Element ist die 0-Kohomologieklasse der konstanten Funktion [1] € Hl,(M).

Beispiele:

e Hj,(pt.) = R. Die Multiplikation, die wir auf dem Kohomologiering definiert haben stimmt
hier mit der Multiplikation auf R {iberein.

o Hip(R™ —{0}) = Rc]/(c?), wobei ¢ (mit |¢| = n — 1) ein Erzeuger in H}5 (R — {0}) ist.
Fiir den Spezialfall n = 2 hatten wir in Tom Finkens Vortrag gesehen dass ein Erzeuger durch

¢ = [w] mit w(z,y) = xQ;ny dx + zdy gegeben ist.

x
24y

Im Folgenden betrachten wir den komplexen projektiven Raum CP™.

2 Der komplexe projektive Raum CP"

Definition 2.1: CP"

CP":=C"" —{0}/z2~ Xz AeC-{0}
wobei CP™ mit der Quotiententopologie beziiglich p : C"*! — {0} — CP™ versehen ist.

Satz 2.2: CP" ist eine glatte Mannigfaltigkeit
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Beweis: Die Quotientenabbildung p ist abgeschlossen. CP" ist also Hausdorffsch und besitzt eine
abzihlbare Basis. Wir betrachten

Uj = {[ZO D Zn] S (CP"|z] #* O}

Die Menge (U;);—o, . bildet eine offene Uberdeckung. Definiere:

20 z Zn
hj : Uj — (Cn, [ZO Tt Zn] =l e, Ty e, —
Zj Zj Zj

diese Abbildung ist wohldefiniert und surjektiv, mit Umkehrung:
hj_l (C" = Uj, (21,00 20) = (21t 1t 2]

Als Ubergangsabbildungen erhalten wir hy o hj_l : hj(UpNU;j) = hy (U NU;) wobei komponenten-
weise z; auf z;/z,, oder 1/z,, abbgebildet wird, mit z,, # 0.

Indem wir C" mit R?" identifizieren erhalten wir U; = R?" glatt. Also ist CP" eine reelle Mannig-
faltigkeit der Dimension 2n. ([

Bemerkung 2.3: Die Ubergangsabbildungen sind nicht nur glatt, sondern auch holomorph. CP"
ist also sogar eine komplexe Mannigfaltigkeit.

Lemma 2.4: CP" ist kompakt und orientierbar.

Beweis: Wir kénnen eine abgeschlossene Quotientenabbildung 7 : §?**! — CP" von der kom-
pakten Sphére definieren.

7S S CP™, (20,00 20) = [20 ¢ et 20)

hierbei wird S?**! C R?"*2 als Teilmenge des C"t! aufgefasst.
Die Orientierbarkeit folgt daraus, dass die Ubergangsabbildungen orientierungserhaltend sind. [J.

Nun wollen wir die Kohomologie von CP" bestimmen. Dafiir brauchen wir folgenden Satz:

Satz 2.5: Lange exakte Sequenz mit Komplementen
Sei (M, My) ein Paar kompakter glatter Mannigfaltigkeiten. My ist also eine Untermannigfaltigkeit
von M und insbesondere auch abgeschlossen. Betrachte die Inklusionen:

Z(M\Mo)%M, jMo%M
Dann existiert eine lange exakte Sequenz:

B 5 . "
o= HIH(Mo) & Hp (M \ My) = Hip(M) 2 Hip(Mo) — ...

Beweis:

Auf Ubungsblatt 3 hatten wir gesehen, dass wir fiir ein Paar glatter Mannigfaltigkeiten (M, M)

folgende exakte Sequenz erhalten:

_ & A
o= HIZN (M) & HIp (M, M) — Hip(M) Lo HI (M) — ...
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Wir miissen also nur einen Isomorphismus zwischen Hj, (M, My) und Hj, (M \ My) finden.
Das Bild der induzierten Abbildung i, : Qd(M \ My) — QI(M) liegt in QI(M, My).

(@) =w, (W) =0

Zu zeigen ist, dass i, : Q¢(M \ Mo) — Q94(M, My) einen Isomorphismus H9(i) : Hy, (M \ My) —
HY(M, Mp) in der Kohomologie induziert.

Hilfslemma 2.5.1: Tubulare Umgebungen

Sei M C RF eine glatte Mannigfaltigkeit der Dimension n. Dann existiert eine offene Umgebung
V C R* und eine Retraktion r : V — M mit r|ar = Idys. Die Inklusion ¢ : M < V induziert dann
einen Isomorphismus Hj, (i) : Hyp(V) = Hip(M).

Beweis: Ausgelassen. In [M-T, 9] zu finden.

Hilfslemma 2.5.2:

1. Sei w € Q%(Mj) geschlossen. Dann existiert eine q-Form 7 € Q9(M) so dass j*(7) = w und
dr = 0 auf einer offenen Umgebung von My in M.

2. Sei 7 € QI(M) mit suppas(dr) N My = 0 und j5*(7) exakt. Dann existiert eine (q-1)-Form
o € QI7Y(M) so dass T — do = 0 auf einer offenen Umgebung von M in M.

Beweis:

Mit dem Whitney-Theorem aus Vortrag 1 kénnen wir M als glatte Untermannigfaltigkeit des R*
betrachten. Mit Hilfslemma 2.5.1 kriegen wir die Retraktionen (Vas,ins, 7ar) und (Vasg, iasy, ")
mit Vi, C V.

Wiéhle ¢ : M — [0, 1] mit supp(¢)ar € M N Vi, und ¢ = 1 auf einer offenen Menge W C M N Vyy,
mit My C W.

Sei w € Q9(Mp) geschlossen. Setze @ = 1y, (W)l € QI(M N Vi) und definiere 7 € Q(M)
als 7(z) = ¢ fiir x € V), und sonst 7 = 0. Dann gilt j*(7) = ¢@|p, = w und dr|w = 0.

Sei 7 € QI(M) mit supppy(dr) N Mo = 0 und j*(7) exakt. Setze 7 = 73,(7)|lvy,, € (Vi)
Dann gilt dr}, (1) = r};(dr) = 0 auf einer Umgebung von My, da supps(dr) N My = 0. Wir ver-
kleinern gegebenenfalls Vi, so dass d7|y,, = 0. Es gilt, dass i}, (7) = j*(7) also ist i}, (7) exakt
in Q9(Mp). Mit Hilfslemma 2.5.1 ist 7 auch exakt in Q9(Viy,). Daraus folgt, dass auch 7{anv,,
exakt ist. Wihle also og € Q471 (M NVyy,) mit dog = 7| MV, und definiere o € Q=1 (M) als poq
auf M N V), und als 0 sonst. Dann ist 7 — do|w =0 O

Beweis von Satz 2.5:

1. Injektivitét: Sei [w] € Ker(H(i.)) mit Repréisentanten w € Q&(M \ My) dann ist i, (w) = dr
fiir ein 7 € Q971 (M, My). Da j*(7) = 0 und suppas(d7) = supp,, (i«(w)) C (M \ Mp) erhalten
wir mit Anwendung von Hilfslemma 2.5.2 2. ein o € Q972(M) sodass 7 — do = 0 auf einer
offenen Umgebung von My. Damit existiert £ = (7—do )|y, € Q4! mit dk = dr|a\mp = w-

2. Surjektivitét: Sei [w] € HI(M, My) mit Repréisentanten w € Q4(M, My) geschlossen. Mit
Hilfslemma 2.5.2 2. wihlen wir erneut ein o € Q471(M) sodass w — do = 0 auf einer offenen
Umgebung von M.
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Es gilt d(j*(0)) = 7*(d(0)) = j*(w) = 0 (j* (o) ist geschlossen). Wir finden also mit 2.5.2 1. ein
7€ QI Y(M) mit j*(7) = j*(o ) so dass dr auf einer offenen Umegbung von My verschwindet.
Also gilt o—7 € Q471 (M, My), und fiir £ := (w—d(o—7))| s\, = (w—do)|an\ e +d7 A, €
QLM \ My). Somit ist [w] = [w —d(o — 7)] = HI(ix)[K] O

Satz 2.6: Die additive Struktur der Kohomologie von CP"™ ist
H&(CPY=R, 0<k<n
HE(CP") =0, sonst

Beweis
Wir verwenden die Sequenz von oben mit M = CP", My = CP™ ! und j : CP"~! < CP". Dann
ist M \ My = U, = R*" und wir erhalten

. — HYR™) = gocpr) 25 goepr) 5 gI(R™) -

Im letzten Vortrag hatten wir gesehen, dass HZ(R?") = R genau dann wenn ¢ = 2n und sonst 0.
Induktiv kénnen wir jetzt die Kohomologiegruppen bestimmen. Wir nehmen erstmal an der Satz
gelte fiir CP"~ 1,

l.g=2k, 0<k<n-1
o0 Py DRG0
—> j* ist ein Isomorphismus und HJ,(CP") = Hl,(CP" ') =R

2. ¢q=2n

sk

03RS HL P L0
= i, ist ein Isomorphismus und Hj,(CP") =R
3. ¢>2n = HI,(CP") =0 aus Dimensionsgriinden
4. ¢q=2k+1, 0<k<n-1
505 HI@©PY) S50
— HI,(CP") =0
Den Induktionanfang kriegen wir direkt durch Hi,(CP°) = Hl,(pt.) O
Satz 2.7: Der multiplikative Struktur des Kohomologiering von CP"™ ist gegeben durch
Hip(CP") =R[c]/(c"™")  |c| =2
wobei ¢ eine erzeugende Klasse in H7,(CP") ist.

Beweis

Wir wollen wieder eine Induktion {iber n durchfiihren. Sei also der Satz fiir CP"~! bewiesen.

Im Beweis Oben hatten wir gesehen, dass j : CP*~! — CP™ auf den Kohomologiegruppen einen
Isomorphismus j* : H5,(CP™) — HE,(CP™ 1) induziert fiir 0 < k < 2n — 2.

Ein Erzeuger ¢ von H3,(CP" ') wird also auf einen Erzeuger ¢ € H3,(CP™) abgebildet und es
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folgt, dass c* # 0 in H2%(CP") fiir k <n — 1.
Um zu zeigen, dass ¢" nicht trivial ist, verwenden wir die Poincaré Dualitéit. Damit gilt dann:

(a3

DEpn : Hig(CP™) — Hp 2(CP™)*
¢ € H3,(CP™) ist nicht trivial, es gilt also DZp,.(c) # 0. Da wie oben gesehen ¢! # 0 in
Hgﬁ_Q(CP”) folgt dann

/ cAc" ! #£ 0 also auch 0 # ¢" € HIL(CP™)
cpr

Den Induktionsanfang kriegen wir mit CP! = S2. U

3 Ein Erzeuger von H3,(CP")

Jetzt kann man sich natiirlich fragen wie ein solcher Erzeuger ¢ aussieht. Dafiir brauchen wir erst
noch einige andere Beobachtungen.

Lemma 3.1

1. Fiir p € CP" und v € 7 !(p) existiert eine offene Umgebung U und eine glatte Abbildung
s:U — S sodass s(p) = v und wo s = id|y

2. Fiir v € §?"*! und p = 7(v) induziert das Differential D, 7 einen R-linearen Isomorphismus
von (Cv)* nach T,CP"

3. Auf T,,CP" existiert eine wohldefinierte Struktur als n-dimensionaler C-Vektorraum mit einem
Skalarprodukt. Der Isomorphismus in 2. wird damit zu einer C-linearen Isometrie.

Beweis

1. Wahle U = Uj sodass p € U;. Definiere s; : U; — S*, [20: ...t 2] = (3f_, ]zk|2)71/2 (20, ..

mit z; = 1. Setzte A :=v/s;(p) € S! und s := As;.

2. Aus 1. folgt, dass Dy : T,§*" ™! — T,CP" surjektiv ist, da Dym o Dps = idp,cpr. Mit
Dimensionformel folgt, dass dimg (Ker(D,7)) = 1. Der Weg v : (—1,1) — §?"*1 ~(¢) = velt

liegt im Kern dieser Abbildung, da 7(e®v) = [¢®'v] = konst. Definiere den Isomorphismus:

d
¢ : T, - {we C" " Re(w,v) = 0}, [o]— %(ﬂt:o

Es gilt {w € C"*}Re(w,v) = 0} = (Cv)* & spang (iv) und ¢(7y) = iv. Damit folgt
T,S?"*! /spang (iv) = (Cv)+ = T,CP™.

3. Auf T,CP" lisst mittels D,7 die Vektorraumstruktur sowie das Skalarprodukt von (Cv)*
ibernehmen. Fiir &, & € T,CP" mit Urbildern wy,wsy € ((CU)J‘, uweC:

p- &1 = Dym(pawr),  (§1,62) = (w1, w2)

Zu priifen ist die Wohldefiniertheit.
Betrachte den Diffeomoprhismus ¢ : S?"1 — §2"*1 4 s Xz fiir ein A € S'. Das folgende
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Diagramm kommutiert dann:

TUS2n+1 Dyg T)\US2n+1
Dy A
,cprr
und es gilt (Awr, Aws) = A\ (w, wa) = (wy, ws). O

Notation: Fiir C-Vektorraum V definiert 7V den zugrundeliegenden R-Vektorraum. Eine C-lineare
Abbildung F : V — W induziert eine R-lineare Abbildung rF : rV — rW

Lemma 3.2 Sei V eine endlich-dimensionaler C-Vektorraum und F' : V. — V eine C-lineare
Abbildung. Dann gilt: det(rF) = |detF|?

Beweis per Induktion iiber m = dim¢(V). t

Korollar 3.3: Sei V' ein m-dimensionaler C-Vektorraum mit Basis B = {bi, ..., b, }. Dann er-
gibt sich auf rV mit der reellen Basis 7B = {by,ib1, ..., by, iby, } eine natiirliche Orientierung.

Beweis:
Sei {b],...,b),} eine beliebige andere Basis von V. Sei F definiert durch F(b;) = b, Dann ist mit
Korollar 3.2 det(rF) > 0 also sind {¥},b}, ..., 0}, ib),} und {by,ibi, ..., by, iby, } gleich orientiert. OJ

Proposition 3.4: Sei V ein m-dimensionaler C-Vektorraum mit Skalarprodukt <~, > Dann gilt

1. g(vy,v9) := Re<v1,v2> definiert ein Skalarprodukt auf rV und w(vy,vs) := —Im<v1,vg> defi-
niert ein Element in A%(rV#)

2. Sei vol € A?™(rV#) das Volumenelement gegeben durch g und der Standard-Orientierung
aus Korollar 3.3., also vol; = y/G(vy, ..., Ugm)v# A... /\vfm, wobei {v1, ..., V2, } eine Basis von

rV (orientiert wie in 3.3) darstellt mit dualer Basis{v#, ey vfm} und
glvi,v1) - g(vi,vam)
G(Ul,...,vgm) = det
g(”?mvvl) g(”?ma”Qm)
(Die Volumenform ist dann bis auf Orientierung unabhéingig von gewihlter Basis.) Dann gilt
w™ = mlvol.

Beweis:

1. Positiv-definitheit und R-Bilinearitit haben wir direkt und g(v1, v2) = g(ve,v1) = g(ve, v1).
Es gilt w(v,v) = —Im<v, v> = 0 und die Bilinearitét folgt aus der Bilinearitdt von <-7 >

2. Sei {b,...,by} eine orthonormale Basis beziiglich <-, > Wir erhalten {by,ib1, ..., by, iby} als
positiv orientierte orthonormale Basis von 7V beziiglich g(-,-). Sei {€1, 71, ..., €m, Tm } die dazu
duale Basis von A(rV#) = rV#. Es gilt w(b;,ib;) = 1, w(ibj,b;) = —1 und w = 0 fiir alle
anderen Paare, also folgt

wiz,y) =D (ax Am)(x,y) = Y (el@)mi(y) — enly)m(z))

k=1 k=1

7
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Esgilt vol=e1 AT Ao Aey ATy und W™ = (61 AT1 + oo + €y A Ti)™ = mlvol. O
Bemerkung 3.5: Fiir V = C"*! mit Standard Basis und standard Skalarprodukt gilt

w= Z dxy, A dyy =: weni1 € Q*(rC" )
k=0

wobei z; und y; reelle und imaginidre Komponente von z; € C sind.

Jetzt ldsst sich Proposition 3.4 auf 7,CP™ mit der komplexen Vektorraumstruktur aus Lemma
3.1 anwenden. Wir erhalten fiir jedes p € CP" ein relles Skalarprodukt g, auf 7,CP" und ein
w, € A2(TF CP™).

Satz 3.6: w := (wp)pecpn definiert eine geschlossene 2-Form auf CP" und es gilt w” = nlvolcpn.

Beweis:
Sei p € CP™ und v € S*"*! mit 7(v) = p. Wihle s als lokale Umkehrung wie im Lemma 3.1 also
mos =1id|y und s(p) = v. Ziel ist es zu zeigen, dass

wly = 5™ (wen+1)
Aus der Darstellung in Bemerkung 3.5 folgt dann
dwly = ds*(wen+1) =0 da  dwen+r =0
Seien &1, & € T,CP™ und Dps(&;) = t; + u; wobei u; € (Cv)t und t; € spang (iv). Dann gilt:
i = Dym o Dps(&i) = Dym(ti + u;) = Dym(uy)

Beobachte, dass w,(D,7(.), Dy7(.)) genau die Einschrinkung von wga+1(v) auf r(Cv)t ist, also
wp(&1,&2) = wen+1 (w1, uz). Wir erhalten dann:

£1,62) = went1(Dps(&1), Dps(§2)) = wenr (t1 4 u1, ta + ug)

+ wen+1 (ul, UQ) + wen+1 (tl, U2) + wen+1 (ul, tg) = Wentt (ul, UQ)

s" (wen+1)(
= Wen+1 (tl, tg)
da t1,ts linear abhingig und jeweils orthogonal zu den w;. Damit ist die erste Aussage gezeigt. Es
folgt die Glattheit von w aus der Glattheit des Schnitts und von wgn+1. Damit ist auch die Abbil-
dung p — g, glatt, da g,(&1,62) = —wp(i€1,&2) und wir haben eine Riemannsche Mannigfaltigkeit.
Die Gleichheit w™ = nlvolcpn folgt direkt aus Proposition 3.4. U

Satz 3.7: Die geschlossene Form auf CP" aus Satz 3.6 ist ein Basiselement fiir den Kohomo-
logiering.

Beweis:
Die Volumenform volgpn in H3%(CP™) ist nicht trivial. Angenommen es existiert ein n € Q2"~1(CP")
mit dn = volgpn. Dann folgt mit Satz von Stokes:

/ VO](CPn:/ dn:/ n=20
cpr cpr acpn

volgpn ist aber tiberall positiv und erfiillt somit f(CP” volgpr > 0. Also ist volgpr nicht exakt. In
Satz 3.6 hatten wir gesehen, dass
[w]™ = nl[volcpn]

Also ist [w]™ # 0 und auch [w]® # 0, 0 < k < n und wir haben unseren Erzeuger! O
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