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1 Der Kohomologiering

Erinnerung: Das äußere Produkt der Differentialformen ist definiert wie folgt:

Ωp(M)× Ωq(M) → Ωp+q(M)

(ω, γ) 7→ ω ∧ γ

wobei
(ω ∧ γ)x := ωx ∧ γx

Dieses Produkt erfüllt folgende Eigenschaften:

1. graduierte Kommutativität: ω ∧ γ = (−1)pqγ ∧ ω, für ω ∈ Ωp(M) und γ ∈ Ωq(M)

2. Existenz eines neutralen Element: 1 ∈ Ω0(M)

3. Bilinearität

4. Bei Anwendung des äußeren Differential gilt die graduierte Leipniz Regel:
d(ω ∧ γ) = dω ∧ γ + (−1)pω ∧ dγ, für ω ∈ Ωp(M) und γ ∈ Ωq(M)

Damit lässt sich auch ein äußeres Produkt auf den Kohomologiegruppen definieren.

Definition 1.1: Das äußere Produkt der dRham-Kohomologie

Hp
dR(M)×Hq

dR(M) → Hp+q
dR (M)

([ω], [γ]) 7→ [ω] · [γ] := [ω ∧ γ]

Achtung: Wir müssen Wohldefiniertheit prüfen.

1. ω ∧ γ ∈ Hp+q
dR (M):

ω ∧ γ ist eine (p+ q)-Form. Nach der graduierten Leibniz-Regel gilt für geschlossene Formen:

d(ω ∧ γ) = dω︸︷︷︸
=0

∧γ + (−1)pω ∧ dγ︸︷︷︸
=0

= 0

2. [ω] = [ω′] und [γ] = [γ′] =⇒ [ω ∧ γ] = [ω′ ∧ γ′]:
Sei ω ∼ ω′. Dann unterscheiden sich die Formen nur um einen Korand: ω′ − ω = dα Für ein
α ∈ Hp−1

dR (M) Dann gilt:

ω ∧ γ = (ω′ − dα) ∧ γ = ω′ ∧ γ − dα ∧ γ
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also:
(ω′ ∧ γ)− (ω ∧ γ) = dα ∧ γ = d(α ∧ γ)− (−1)p−1α ∧ dγ︸︷︷︸

=0

= d(α ∧ γ)

=⇒ [ω ∧ γ] = [ω′ ∧ γ]. Der andere Fall folgt analog. □

Definition 1.2: Der Kohomologiering
Sei M eine glatte Mannigfaltigkeit der Dimension n. Wir definieren den Kohomologiering von M
als:

H∗
dR(M) =

n⊕
k=0

Hk
dR(M) = H0

dR(M)⊕ ...⊕Hn
dR(M)

wobei die Multiplikation durch das äußere Produkt gegeben ist.

Definition 1.3: Graduierter Ring
Ein graduierter Ring A ist ein Ring, der eine Darstellung als direkte Summe von abelschen Gruppen
hat:

A =
⊕
n∈N

An = A0 ⊕A1 ⊕A2 ⊕ · · ·

sodas AiAj ⊆ Ai+j . Elemente von Aj werden homogene Elemente vom Grad j genannt.

Beispiele: Polynomringe und die äußere Algebra Λ∗(V ) =
⊕

k∈N Λk(V ) sind graduierte Ringe.

Bemerkung 1.4: Der Kohomologiering ist ein graduiert kommutativer graduierter Ring mit neu-
tralem Element.
Das folgt direkt aus den Eigenschaften des äußeren Produkt auf Differentialformen. Das neutrale
Element ist die 0-Kohomologieklasse der konstanten Funktion [1] ∈ H0

dR(M).

Beispiele:

• H∗
dR(pt.)

∼= R. Die Multiplikation, die wir auf dem Kohomologiering definiert haben stimmt
hier mit der Multiplikation auf R überein.

• H∗
dR(Rn − {0}) ∼= R[c]/(c2), wobei c (mit |c| = n− 1) ein Erzeuger in Hn−1

dR (Rn − {0}) ist.
Für den Spezialfall n = 2 hatten wir in Tom Finkens Vortrag gesehen dass ein Erzeuger durch
c = [ω] mit ω(x, y) = −y

x2+y2
dx+ x

x2+y2
dy gegeben ist.

Im Folgenden betrachten wir den komplexen projektiven Raum CPn.

2 Der komplexe projektive Raum CP n

Definition 2.1: CPn

CPn := Cn+1 − {0}/z ∼ λz λ ∈ C− {0}

wobei CPn mit der Quotiententopologie bezüglich p : Cn+1 − {0} → CPn versehen ist.

Satz 2.2: CPn ist eine glatte Mannigfaltigkeit
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Beweis: Die Quotientenabbildung p ist abgeschlossen. CPn ist also Hausdorffsch und besitzt eine
abzählbare Basis. Wir betrachten

Uj := {[z0 : ... : zn] ∈ CPn| zj ̸= 0}

Die Menge (Uj)j=0,..,n bildet eine offene Überdeckung. Definiere:

hj : Uj → Cn, [z0 : ... : zn] 7→
(
z0
zj
, ...,

ẑj
zj
, ...,

zn
zj

)
diese Abbildung ist wohldefiniert und surjektiv, mit Umkehrung:

h−1
j : Cn → Uj , (z1, ..., zn) 7→ [z1 : ... : 1 : ... : zn]

Als Übergangsabbildungen erhalten wir hk ◦ h−1
j : hj(Uk ∩Uj) → hk(Uk ∩Uj) wobei komponenten-

weise zl auf zl/zm oder 1/zm abbgebildet wird, mit zm ̸= 0.
Indem wir Cn mit R2n identifizieren erhalten wir Uj

∼= R2n glatt. Also ist CPn eine reelle Mannig-
faltigkeit der Dimension 2n. □

Bemerkung 2.3: Die Übergangsabbildungen sind nicht nur glatt, sondern auch holomorph. CPn

ist also sogar eine komplexe Mannigfaltigkeit.

Lemma 2.4: CPn ist kompakt und orientierbar.

Beweis: Wir können eine abgeschlossene Quotientenabbildung π : S2n+1 → CPn von der kom-
pakten Sphäre definieren.

π : S2n+1 → CPn, (z0, ..., zn) 7→ [z0 : ... : zn]

hierbei wird S2n+1 ⊆ R2n+2 als Teilmenge des Cn+1 aufgefasst.
Die Orientierbarkeit folgt daraus, dass die Übergangsabbildungen orientierungserhaltend sind. □.

Nun wollen wir die Kohomologie von CPn bestimmen. Dafür brauchen wir folgenden Satz:

Satz 2.5: Lange exakte Sequenz mit Komplementen
Sei (M,M0) ein Paar kompakter glatter Mannigfaltigkeiten. M0 ist also eine Untermannigfaltigkeit
von M und insbesondere auch abgeschlossen. Betrachte die Inklusionen:

i : (M \M0) ↪→ M, j : M0 ↪→ M

Dann existiert eine lange exakte Sequenz:

... → Hq−1
dR (M0)

δ−→ Hq
dR,c(M \M0)

i∗−→ Hq
dR(M)

j∗−→ Hq
dR(M0) → ...

Beweis:
Auf Übungsblatt 3 hatten wir gesehen, dass wir für ein Paar glatter Mannigfaltigkeiten (M,M0)
folgende exakte Sequenz erhalten:

... → Hq−1
dR (M0)

δ′−→ Hq
dR(M,M0) → Hq

dR(M)
j∗−→ Hq

dR(M0) → ...
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Wir müssen also nur einen Isomorphismus zwischen Hq
dR(M,M0) und Hq

dR,c(M \M0) finden.

Das Bild der induzierten Abbildung i∗ : Ω
q
c(M \M0) → Ωq

c(M) liegt in Ωq(M,M0).

i∗(ω)|M\M0
= ω, i∗(ω)|M0 = 0

Zu zeigen ist, dass i∗ : Ω
q
c(M \M0) → Ωq(M,M0) einen Isomorphismus Hq(i∗) : H

q
dR,c(M \M0) →

Hq
dR(M,M0) in der Kohomologie induziert.

Hilfslemma 2.5.1: Tubulare Umgebungen
Sei M ⊆ Rk eine glatte Mannigfaltigkeit der Dimension n. Dann existiert eine offene Umgebung
V ⊆ Rk und eine Retraktion r : V → M mit r|M = IdM . Die Inklusion i : M ↪→ V induziert dann
einen Isomorphismus Hq

dR(i) : H
q
dR(V ) → Hq

dR(M).

Beweis: Ausgelassen. In [M-T, 9] zu finden.

Hilfslemma 2.5.2:

1. Sei ω ∈ Ωq(M0) geschlossen. Dann existiert eine q-Form τ ∈ Ωq(M) so dass j∗(τ) = ω und
dτ = 0 auf einer offenen Umgebung von M0 in M .

2. Sei τ ∈ Ωq(M) mit suppM (dτ) ∩ M0 = ∅ und j∗(τ) exakt. Dann existiert eine (q-1)-Form
σ ∈ Ωq−1(M) so dass τ − dσ = 0 auf einer offenen Umgebung von M0 in M .

Beweis:
Mit dem Whitney-Theorem aus Vortrag 1 können wir M als glatte Untermannigfaltigkeit des Rk

betrachten. Mit Hilfslemma 2.5.1 kriegen wir die Retraktionen (VM , iM , rM ) und (VM0 , iM0 , rM0)
mit VM0 ⊆ VM .
Wähle φ : M → [0, 1] mit supp(φ)M ⊆ M ∩VM0 und φ = 1 auf einer offenen Menge W ⊆ M ∩VM0

mit M0 ⊆ W .

Sei ω ∈ Ωq(M0) geschlossen. Setze ω̃ = r∗M0
(ω)|M ∈ Ωq(M ∩ VM0) und definiere τ ∈ Ωq(M)

als τ(x) = φω̃ für x ∈ VM0 und sonst τ = 0. Dann gilt j∗(τ) = φω̃|M0 = ω und dτ |W = 0.

Sei τ ∈ Ωq(M) mit suppM (dτ) ∩ M0 = ∅ und j∗(τ) exakt. Setze τ̃ = r∗M (τ)|VM0
∈ Ωq(VM0).

Dann gilt dr∗M (τ) = r∗M (dτ) = 0 auf einer Umgebung von M0, da suppM (dτ) ∩M0 = ∅. Wir ver-
kleinern gegebenenfalls VM0 so dass dτ̃ |VM0

= 0. Es gilt, dass i∗M0
(τ̃) = j∗(τ) also ist i∗M0

(τ̃) exakt
in Ωq(M0). Mit Hilfslemma 2.5.1 ist τ̃ auch exakt in Ωq(VM0). Daraus folgt, dass auch τ |M∩VM0

exakt ist. Wähle also σ0 ∈ Ωq−1(M ∩ VM0) mit dσ0 = τ |M∩VM0
und definiere σ ∈ Ωq−1(M) als φσ0

auf M ∩ VM0 und als 0 sonst. Dann ist τ − dσ|W = 0 □

Beweis von Satz 2.5:

1. Injektivität: Sei [ω] ∈ Ker(Hq(i∗)) mit Repräsentanten ω ∈ Ωq
c(M \M0) dann ist i∗(ω) = dτ

für ein τ ∈ Ωq−1(M,M0). Da j∗(τ) = 0 und suppM (dτ) = suppM (i∗(ω)) ⊆ (M \M0) erhalten
wir mit Anwendung von Hilfslemma 2.5.2 2. ein σ ∈ Ωq−2(M) sodass τ − dσ = 0 auf einer
offenen Umgebung vonM0. Damit existiert κ = (τ−dσ)|M\M0

∈ Ωq−1
c mit dκ = dτ |M\M0

= ω.

2. Surjektivität: Sei [ω] ∈ Hq
dR(M,M0) mit Repräsentanten ω ∈ Ωq(M,M0) geschlossen. Mit

Hilfslemma 2.5.2 2. wählen wir erneut ein σ ∈ Ωq−1(M) sodass ω − dσ = 0 auf einer offenen
Umgebung von M0.
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Es gilt d(j∗(σ)) = j∗(d(σ)) = j∗(ω) = 0 (j∗(σ) ist geschlossen). Wir finden also mit 2.5.2 1. ein
τ ∈ Ωq−1(M) mit j∗(τ) = j∗(σ) so dass dτ auf einer offenen Umegbung von M0 verschwindet.
Also gilt σ−τ ∈ Ωq−1(M,M0), und für κ := (ω−d(σ−τ))|M\M0

= (ω−dσ)|M\M0
+dτ |M\M0

∈
Ωq
c(M \M0). Somit ist [ω] = [ω − d(σ − τ)] = Hq(i∗)[κ] □

Satz 2.6: Die additive Struktur der Kohomologie von CPn ist

H2k
dR(CPn) = R, 0 ≤ k ≤ n

Hk
dR(CPn) = 0, sonst

Beweis
Wir verwenden die Sequenz von oben mit M = CPn, M0 = CPn−1 und j : CPn−1 ↪→ CPn. Dann
ist M \M0 = Un

∼= R2n und wir erhalten

... → Hq
c (R2n)

i∗−→ Hq(CPn)
j∗−→ Hq(CP n−1)

δ−→ Hq+1
c (R2n) → ...

Im letzten Vortrag hatten wir gesehen, dass Hq
c (R2n) = R genau dann wenn q = 2n und sonst 0.

Induktiv können wir jetzt die Kohomologiegruppen bestimmen. Wir nehmen erstmal an der Satz
gelte für CPn−1.

1. q = 2k, 0 ≤ k ≤ n− 1

... → 0
i∗−→ Hq

dR(CP
n)

j∗−→ R δ−→ 0 → ...

=⇒ j∗ ist ein Isomorphismus und Hq
dR(CP

n) = Hq
dR(CP

n−1) = R

2. q = 2n

→ 0
δ−→ R i∗−→ Hq

dR(CP
n)

j∗−→ 0
δ−→ ...

=⇒ i∗ ist ein Isomorphismus und Hq
dR(CP

n) = R

3. q > 2n =⇒ Hq
dR(CP

n) = 0 aus Dimensionsgründen

4. q = 2k + 1, 0 ≤ k ≤ n− 1

...
δ−→ 0

i∗−→ Hq
dR(CP

n)
j∗−→ 0 → ...

=⇒ Hq
dR(CP

n) = 0

Den Induktionanfang kriegen wir direkt durch Hq
dR(CP

0) = Hq
dR(pt.) □

Satz 2.7: Der multiplikative Struktur des Kohomologiering von CPn ist gegeben durch

H∗
dR(CPn) = R[c]/(cn+1) |c| = 2

wobei c eine erzeugende Klasse in H2
dR(CPn) ist.

Beweis
Wir wollen wieder eine Induktion über n durchführen. Sei also der Satz für CPn−1 bewiesen.
Im Beweis Oben hatten wir gesehen, dass j : CPn−1 ↪→ CPn auf den Kohomologiegruppen einen
Isomorphismus j∗ : Hk

dR(CPn) → Hk
dR(CPn−1) induziert für 0 ≤ k ≤ 2n− 2.

Ein Erzeuger c′ von H2
dR(CPn−1) wird also auf einen Erzeuger c ∈ H2

dR(CPn) abgebildet und es
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folgt, dass ck ̸= 0 in H2k
dR(CPn) für k ≤ n− 1.

Um zu zeigen, dass cn nicht trivial ist, verwenden wir die Poincaré Dualität. Damit gilt dann:

D2
CPn : H2

dR(CPn)
∼=−→ H2n−2

dR (CPn)∗

c ∈ H2
dR(CPn) ist nicht trivial, es gilt also D2

CPn(c) ̸= 0. Da wie oben gesehen cn−1 ̸= 0 in
H2n−2

dR (CPn) folgt dann ∫
CPn

c ∧ cn−1 ̸= 0 also auch 0 ̸= cn ∈ H2n
dR(CPn)

Den Induktionsanfang kriegen wir mit CP 1 ∼= S2. □

3 Ein Erzeuger von H2
dR(CP n)

Jetzt kann man sich natürlich fragen wie ein solcher Erzeuger c aussieht. Dafür brauchen wir erst
noch einige andere Beobachtungen.

Lemma 3.1

1. Für p ∈ CPn und v ∈ π−1(p) existiert eine offene Umgebung U und eine glatte Abbildung
s : U → S2n+1 sodass s(p) = v und π ◦ s = id|U

2. Für v ∈ S2n+1 und p = π(v) induziert das Differential Dvπ einen R-linearen Isomorphismus
von (Cv)⊥ nach TpCPn

3. Auf TpCPn existiert eine wohldefinierte Struktur als n-dimensionaler C-Vektorraum mit einem
Skalarprodukt. Der Isomorphismus in 2. wird damit zu einer C-linearen Isometrie.

Beweis

1. Wähle U = Uj sodass p ∈ Uj . Definiere sj : Uj → S2n+1, [z0 : ... : zn] 7→
(∑n

k=0 |zk|2
)−1/2

(z0, ..., zn)
mit zj = 1. Setzte λ := v/sj(p) ∈ S1 und s := λsj .

2. Aus 1. folgt, dass Dvπ : TvS2n+1 → TpCPn surjektiv ist, da Dvπ ◦ Dps = idTpCPn . Mit
Dimensionformel folgt, dass dimR(Ker(Dpπ)) = 1. Der Weg γ : (−1, 1) → S2n+1, γ(t) = veit

liegt im Kern dieser Abbildung, da π(eitv) = [eitv] = konst. Definiere den Isomorphismus:

ϕ : TvS2n+1 →
{
w ∈ Cn+1|Re⟨w, v⟩ = 0

}
, [α] 7→ d

dt
α|t=0

Es gilt
{
w ∈ Cn+1|Re⟨w, v⟩ = 0

}
= (Cv)⊥ ⊕ spanR(iv) und ϕ(γ) = iv. Damit folgt

TvS2n+1/spanR(iv)
∼= (Cv)⊥ ∼= TpCPn.

3. Auf TpCPn lässt mittels Dvπ die Vektorraumstruktur sowie das Skalarprodukt von (Cv)⊥
übernehmen. Für ξ1, ξ2 ∈ TpCPn mit Urbildern w1, w2 ∈ (Cv)⊥, µ ∈ C :

µ · ξ1 := Dvπ(µw1), ⟨ξ1, ξ2⟩ := ⟨w1, w2⟩

Zu prüfen ist die Wohldefiniertheit.
Betrachte den Diffeomoprhismus ϕ : S2n+1 → S2n+1, x 7→ λx für ein λ ∈ S1. Das folgende
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Diagramm kommutiert dann:

TvS2n+1 Dvϕ //

Dvπ %%

TλvS2n+1

Dλvπyy
TpCPn

und es gilt ⟨λw1, λw2⟩ = λλ⟨w1, w2⟩ = ⟨w1, w2⟩. □

Notation: Für C-Vektorraum V definiert rV den zugrundeliegenden R-Vektorraum. Eine C-lineare
Abbildung F : V → W induziert eine R-lineare Abbildung rF : rV → rW

Lemma 3.2 Sei V eine endlich-dimensionaler C-Vektorraum und F : V → V eine C-lineare
Abbildung. Dann gilt: det(rF ) = |detF |2

Beweis per Induktion über m = dimC(V ). □

Korollar 3.3: Sei V ein m-dimensionaler C-Vektorraum mit Basis B = {b1, ..., bm}. Dann er-
gibt sich auf rV mit der reellen Basis rB = {b1, ib1, ..., bm, ibm} eine natürliche Orientierung.

Beweis:
Sei {b′1, ..., b′m} eine beliebige andere Basis von V . Sei F definiert durch F (bi) = b′i Dann ist mit
Korollar 3.2 det(rF ) > 0 also sind {b′1, ib′1, ..., b′m, ib′m} und {b1, ib1, ..., bm, ibm} gleich orientiert. □

Proposition 3.4: Sei V ein m-dimensionaler C-Vektorraum mit Skalarprodukt
〈
·, ·
〉
. Dann gilt

1. g(v1, v2) := Re
〈
v1, v2

〉
definiert ein Skalarprodukt auf rV und ω(v1, v2) := −Im

〈
v1, v2

〉
defi-

niert ein Element in Λ2(rV #)

2. Sei vol ∈ Λ2m(rV #) das Volumenelement gegeben durch g und der Standard-Orientierung

aus Korollar 3.3., also volg =
√

G(v1, ..., v2m)v#1 ∧ ...∧ v#2m, wobei {v1, ..., v2m} eine Basis von

rV (orientiert wie in 3.3) darstellt mit dualer Basis{v#1 , ..., v#2m} und

G(v1, ..., v2m) = det

 g(v1, v1) · · · g(v1, v2m)
...

...
g(v2m, v1) · · · g(v2m, v2m)


(Die Volumenform ist dann bis auf Orientierung unabhängig von gewählter Basis.) Dann gilt
ωm = m!vol.

Beweis:

1. Positiv-definitheit und R-Bilinearität haben wir direkt und g(v1, v2) = g(v2, v1) = g(v2, v1).
Es gilt ω(v, v) = −Im

〈
v, v

〉
= 0 und die Bilinearität folgt aus der Bilinearität von

〈
·, ·
〉
.

2. Sei {b1, ..., bm} eine orthonormale Basis bezüglich
〈
·, ·
〉
. Wir erhalten {b1, ib1, ..., bm, ibm} als

positiv orientierte orthonormale Basis von rV bezüglich g(·, ·). Sei {ϵ1, τ1, ..., ϵm, τm} die dazu
duale Basis von Λ1(rV #) = rV #. Es gilt ω(bj , ibj) = 1, ω(ibj , bj) = −1 und ω = 0 für alle
anderen Paare, also folgt

ω(x, y) =

m∑
k=1

(ϵk ∧ τk)(x, y) =

m∑
k=1

(ϵk(x)τk(y)− ϵk(y)τk(x))
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Es gilt vol = ϵ1 ∧ τ1 ∧ ... ∧ ϵm ∧ τm und ωm = (ϵ1 ∧ τ1 + ...+ ϵm ∧ τm)m = m!vol. □

Bemerkung 3.5: Für V = Cn+1 mit Standard Basis und standard Skalarprodukt gilt

ω =
n∑

k=0

dxk ∧ dyk =: ωCn+1 ∈ Ω2(rCn+1)

wobei xj und yj reelle und imaginäre Komponente von zj ∈ C sind.

Jetzt lässt sich Proposition 3.4 auf TpCPn mit der komplexen Vektorraumstruktur aus Lemma
3.1 anwenden. Wir erhalten für jedes p ∈ CPn ein relles Skalarprodukt gp auf TpCPn und ein

ωp ∈ Λ2(T#
p CPn).

Satz 3.6: ω := (ωp)p∈CPn definiert eine geschlossene 2-Form auf CPn und es gilt ωn = n!volCPn .

Beweis:
Sei p ∈ CPn und v ∈ S2n+1 mit π(v) = p. Wähle s als lokale Umkehrung wie im Lemma 3.1 also
π ◦ s = id|U und s(p) = v. Ziel ist es zu zeigen, dass

ω|U = s∗(ωCn+1)

Aus der Darstellung in Bemerkung 3.5 folgt dann

dω|U = ds∗(ωCn+1) = 0 da dωCn+1 = 0

Seien ξ1, ξ2 ∈ TpCPn und Dps(ξi) = ti + ui wobei ui ∈ (Cv)⊥ und ti ∈ spanR(iv). Dann gilt:

ξi = Dvπ ◦Dps(ξi) = Dvπ(ti + ui) = Dvπ(ui)

Beobachte, dass ωp(Dvπ(.), Dvπ(.)) genau die Einschränkung von ωCn+1(v) auf r(Cv)⊥ ist, also
ωp(ξ1, ξ2) = ωCn+1(u1, u2). Wir erhalten dann:

s∗(ωCn+1)(ξ1, ξ2) = ωCn+1(Dps(ξ1), Dps(ξ2)) = ωCn+1(t1 + u1, t2 + u2)

= ωCn+1(t1, t2) + ωCn+1(u1, u2) + ωCn+1(t1, u2) + ωCn+1(u1, t2) = ωCn+1(u1, u2)

da t1, t2 linear abhängig und jeweils orthogonal zu den ui. Damit ist die erste Aussage gezeigt. Es
folgt die Glattheit von ω aus der Glattheit des Schnitts und von ωCn+1 . Damit ist auch die Abbil-
dung p 7→ gp glatt, da gp(ξ1, ξ2) = −ωp(iξ1, ξ2) und wir haben eine Riemannsche Mannigfaltigkeit.
Die Gleichheit ωn = n!volCPn folgt direkt aus Proposition 3.4. □

Satz 3.7: Die geschlossene Form auf CPn aus Satz 3.6 ist ein Basiselement für den Kohomo-
logiering.

Beweis:
Die Volumenform volCPn inH2n

dR(CPn) ist nicht trivial. Angenommen es existiert ein η ∈ Ω2n−1(CPn)
mit dη = volCPn . Dann folgt mit Satz von Stokes:∫

CPn

volCPn =

∫
CPn

dη =

∫
∂CPn

η = 0

volCPn ist aber überall positiv und erfüllt somit
∫
CPn volCPn > 0. Also ist volCPn nicht exakt. In

Satz 3.6 hatten wir gesehen, dass
[ω]n = n![volCPn ]

Also ist [ω]n ̸= 0 und auch [ω]k ̸= 0, 0 ≤ k ≤ n und wir haben unseren Erzeuger! □
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