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Kapitel 1

Motivation

1.1 Beispiele

e Der Punkt {x}:

0 ;k<O
H((+ER) =R ; k=0
0 ;k>0
e Die n-Sphére S" (n > 1):
0 k<O
R ;k=0
HS™R)={0 ;0<k<n
R ;k=n
0 ;k>n
Vgl. Theorem 6.13 aus ,,6. HOMOTOPY*!!!
e Der 2-Torus 7':
0 s k<0
R k=
HYT;R)={R? ; k=1
R k=2
0 s k>

Bei diesen Beispielen fillt auf, dass sich die Kohomologie gewisser Mannigfaltigkeiten sym-
metrisch gegeniiber der Dimension der Mannigfaltigkeit verhilt, d. h. H?(M"; R) = H"?(M"; R).

Die Poincaré-Dualitéit formalisiert eben diese Symmetrie fiir eine ausgewéhlte Klasse von
Mannigfaltigkeiten — die Aussage die hier gezeigt werden soll lautet:

HP(M) = H."P(M)* fiir orientierbare glatte n-Mannigfaltigkeiten M

1.2 Gegenbeispiele

e Die projektive Ebene RP*:

kmp2. Ry ~ R
H*(RP~;R) =
0 ;k>1

Vgl. Beispiel 9.31 aus ,,9. DIFFERENTIAL FORMS ON SMOOTH MANIFOLDS*!"!



1.2. GEGENBEISPIELE

e Das Mdobiusband M:
M ist homotopiesquivalent zum Kreis S ' und damit gilt

R ; k=0
HM;R)={R k=1
0 ;k>2
e Die Kleinsche Flasche K:
R ; k=0

HK:R)={R :k=1

(e}
S
\%
\]

Fiir alle diese 2-dimensionale Mannigfaltigkeiten gilt HO(M;R) & H>(M;R).
Beobachte, dass in allen Gegenbeispielen die betrachteten Mannigfaltigkeiten nicht orientier-
bar sind.



Kapitel 2

Orientierbarkeit und Orientierung
einer Mannigfaltigkeit

2.1 Orientierung von Vektorraumen

Definition 2.1.1

Auf einem endlich-dimensionalen R-Vektorraum V sagen wir, dass zwei geordnete Basen A
und B dieselbe Orientierung definieren (und schreiben A ~ B), wenn det(T’ g) > 0 gilt.

In diesem Fall heif3t die Basiswechselmatrix Tg‘ orientierungserhaltend.

Bemerkung:

(a) Da Tg Basen auf Basen abbildet, hat die Matrix vollen Rang und es ist
det(Tg‘) #0

(b) Der Begriff, dieselbe Orientierung zu besitzen, derfiniert eine Aquivalenzrela-
tion auf der Menge der Basen eines gegebenen n-dimensionalen R-Vektorraums

Daraus ergeben sich genau zwei Aquivalenzklassen (Vorzeichen +) von Ori-
entierungen auf einem solchen Vektorraum

(¢) Eine Orientierung O von V ist also eine Aquivalenzklasse, bestehend aus Ba-
sen von V, die paarweise zueinander orientierungserhaltende Basiswechsel-
matrizen besitzen

2.2 Orientierbare Mannigfaltigkeiten

Definition 2.2.1

Sei M" eine glatte (bzw. c*) Mannigfaltigkeit, dann heifit eine Differentialform w € Q"(M")
vom Grade n, Orientierungsform auf M, falls fiir alle ¢ € M und jede Basis (¢;...&,) von
T M gilt: wy(éy;...6,) #0

M heif3t orientierbar, falls solch eine Orientierungsform auf M existiert.

Zwei Orientierungsformen w und 7 auf M heiflen dquivalent, falls 7 = f - w gilt fiir ein
f € QM) mit f(g) > 0 fiir alle g € M.

Eine Orientierung auf M ist eine Aquivalenzklasse von Orientierungsformen auf M unter
dieser Relation.

Definition 2.2.2
Sei M" eine glatte (bzw. C*-) Mannigfaltigkeit mit Orientierungsform w, dann heiBt eine
geordnete Basis (by;. ..;b,) von T,M positiv (negativ) orientiert beziiglich w, falls

wy(brs...;b,) >0 (wq(brs...:by) < 0)



2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Bemerkung:

(a) Da w eine Orientierungsform ist, besitzt wy(by;...;b,) entweder positives
oder negatives Vorzeichen

(b) Das Signum héngt blol von der von w definierten Orientierung ab (nicht von
w selbst):
Seit=f-wmit feQ%M)und f(qg) >0 Vg e M,dannist
T4(b1s...3by) = f(q) - wp(by;...50,) >0

Satz 2.2.3
Eine glatte (bzw. C*-) Mannigfaltigkeit M" ist genau dann orientierbar, wenn all ihre Zusam-
menhangskomponenten orientierbar sind.

Beweis:

Die eine Richtung ist klar.

Seien also umgekehrt alle Zusammenhangskomponenten orientierbar. Es bezeichne X die
Menge der Zusammenhangskomponenten. Seien also fiir alle U € X Orientierungsformen
wy € Q'(U) gegeben. Withle eine glatte Zerlegung der Eins {py}yex beziiglich X. Dann

bildet
w = Z PuwWy
UeX
eine glatte n-Form auf M, die weiterhin nicht-degeneriert ist. O

Orientierungsiiberlagerung fiir Mannigfaltigkeiten:

Fiir eine Mannigfaltigkeit M" mit ¢ € M bezeichne Or(T,M) die zweielementige Menge
bestehend aus den Orientierungen auf dem Tangentialraum T, M. Betrachte nun den Raum

E:=| |ox(T,M)

qeM
Im Folgenden gilt es E so zu topologisieren, dass die Abbildung

n:E—-M
Or(T;M)sargq

eine 2-blittrige Uberlagerung wird.

Da die Menge Or(7,M) zweielementig ist, motiviert die Forderung den Ansatz, die Topologie
auf E so zu konstruieren, dass 7~ 1(U) = U x {+1}.

Betrachte zunichst eine Karte (U;¢) mit ¢ : U — R". Fiir jedes ¢ € U iibertrdgt dann
Dy : T;,M — R" jede Orientierung @ € Or(7,M) auf eine der Orientierungen von R”".
Definiere also

O—(U tp) U OI'(T M)

L (¢ @) {+1 ; Dy schickt @ auf die Standardorientierung des R”
q; @
qelU

-1 ; sonst
Nun lésst sich die Bijektion

Ty 7 (U) = Ux{£l}, (: @) = (¢ 0w:)(q: @)
konstruieren, so dass folgendes Diagramm kommutiert:

7' (U) —— Ux (=1}

\/

Hierbei wird also 7~ (U) C E so topologisiert, dass der Unterraum die Produkttopologie von
U x {1} tragt.

Die Mengen U* = v~! (U x {+1}) (fiir U C M offen) bilden folglich eine Basis der geforder-
ten Topologie auf E.



2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Abbildung 2.1: Orientierungsiiberlagerung am Beispiel einer Sphére

Satz 2.2.4 (Aquivalente Definitionen: Orientierbarkeit)
Fiir eine zusammenhingende glatte (bzw. CX-) Mannigfaltigkeit M” gilt dquivalent

(i) M ist orientierbar

(ii) Es gibt eine Familie {O,}pep von Orientierungen O, der Tangentialraume 7,M (im
Sinne der Orientierungen fiir Vektorrdaume), so dass zu jedem Punkt p € M eine auf
einer offenen Umgebung U von p definierte Karte ¢ : U — V € R" mit Koordinaten-
funktionen x' : U — R existiert, fiir die an jedem Punkt ¢ € U die durch die Karte
induzierte Basis

o). .0
axllg> "2 axlg

des Tangentialraums T, M beziiglich O, positiv orientiert ist

(iii) Es existiert ein Atlas A von M, so dass fiir alle Karten ¢, iy € A mit nichtleerem Schnitt
U,NUy # 0undalle x € y(U, N Uy) gilt:

det(Dy(poy™) >0

(iv) Fiir die Orientierungsiiberlagerung 7 : E — M ist der Totalraum E nicht zusammen-
hingend

(v) Alle Orientierungen der Tangentialriume 7, M bleiben unter Transport von Schleifen
erhalten, d. h. fiir alle Schleifen y € 1 (M: q) und @, € Or (T, M) gilt
L(7:(g: @) (0) = L(; (g: @) (1)

(vi) Die Orientierungsiiberlagerung 7 : E — M ist trivial

Beweis:

Es bezeichne im Folgenden fiir eine Karte (U; ¢) mit g € U die auf T,M induzierte Basis
¢ _ [0 | . .0

Bq —(ﬁq,...,wq).

1) = (i) :

Sei w € Q"(M") eine Orientierungsform von M. Fiir p € M, wihle eine Karte (U; ¢ = ..., x"))

mitpeU.Daquq(%q;...;ﬁin

q) stetig ist und w, # O fiir alle g € U erhalten wir

0 0
sgn(wq(ﬁb;...;wb)):ae{J_rl} YgeU

Setze nun O = {O,)} yeum, so dass fiir ein ¢ € M und einer in einer Umgebung von ¢ definierten
Karte i, die Basis Bﬁ beziiglich O, positiv orientiert ist, genau dann, wenn sie unter Auswer-
tung von w, ebenso das Vorzeichen o besitzt.



2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Es gilt nun lediglich zu zeigen, dass dies eine wohldefinierte Orientierung der Vektorrdume
T,M bildet, d. h.

sgn(wq(Bg)) oA det( Bj) >0 = sgn(wq(BV’)) =

Dazu berechne

O ) oS P (2 L5
A ol ool ) 5 ol 2]
El 0
= ;Snsgn(‘r)l—[ By T(l) W (@) w, (@L];..';ﬁ‘q)

0
= det(Tg) a)[,(a I | 8x”| )

P
wobei f = (fi;...;f,) =¢oy ' und ng = Dyg(p oy ist.

>ii) = (iii) :
Sei O = {0} pem eine Familie von Orientierungen der Tangentialrdume wie in (ii).
Definiere nun folgenden Atlas

= {( U; ¢) Karte von M | Bﬁ ist beziiglich O, positiv orientiert Vg € U } .

Fiir alle Karten ¢, ¢ in A mit nichtleerem Schnitt U, N Uy # 0, x = Y(g) mitg € U, N Uy,
gilt dann:

\p

det (Dx(tp o lp‘l)) = det(Dl,,(q)(<p o w-l)) det( e ) >0

q

>iii) = (vi) = (iv) :
Sei A ein Atlas von M wie in (iii), so ist die Abbildung o : E — {£1}, gegeben durch

+1 ; Dyg schickt a auf die Standardorientierung von R"
u Or (TqM) 5 (q; @) wobei U Umgebung von ¢ ist und (U; ¢) € A
<M -1 ; sonst

unabhingig von der Wahl der Karte ¢ auf ganz E wohldefiniert. Dies garantiert (iii), da fiir
Vi) e AmitUNV #0, x=¢p(g)undg e U NV gilt

Dy = Z—(q)dx— Dy o9 ) Dy

= Dy(b) = Dy o ¢ ) Dyp(b)) mit det(Dy(wog™))>0
Damit ist ebenso die Abbildung
T E > Mx (21}, (¢ @) o (¢ cwp@)
wohldefiniert, als auch bijektiv und es gilt folglich
E =M x{+1}

Damit ist die Orientierungsiiberlagerung r trivial, als auch der Totalraum E nicht zusammen-
hingend.
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@iv) = (vi) :
Da M lokal wegzusammenhingend ist, bildet auch 7 |c: C — M fiir jede Wegekomponente
C C E eine Uberlagerung mit konstanter Blitterzahl (da die Blitterzahl lokal konstant ist und
damit auf Zusammenhangskomponenten schon konstant).
Angenommen der Totalraum E sei nicht zusammenhingend und zerfalle in die Komponenten
E = E, U E,, so besitzen die Uberlagerungen 7 |g, bereits Blitterzahl 1 (sonst wire sie auf
ganz E; 2 und es folge aus & |1_5} (@) = {(g;@y);(q;@y)} Yg € M schon E; = E). Folglich
sind die r|g, bereits Homdomorphismen E; = M und es gilt E = M UM = M X {+1} und wir
erhalten die triviale Uberlagerung

E=2EUE, —=— % Mx{xl)}

(mlgy X=1; 7|, x+1)

M

v) = ({v):

Nehme per Kontraposition an, dass E zusammenhéngend wire, also sogar wegzusammenhin-
gend. Withle dann einen Weg ¥ in E von (g; @,) nach (g; @,), dann gilt nach der Eindeutigkeit
der Wegeliftung

L(7 o7 (g: ) (0) = (q: )
L(moi(g:ap) (1) = (g:@,)

also folglich
L(7:(g: @) (0) # L(; (g @) (1.

i) = (v):

Ist die Orientierungsiiberlagerung trivial, so gilt E = | |,¢) Or (T qM) = M X {+1} mittels der
trivialen Uberlagerung (g; @) — g. Wihle also fiir jedes g € M die eindeutige Orientierung
a, € Or (TqM ) die zu (g; +1) korrespondiert.

Damit zerfillt der Totalraum E in die zwei Komponenten O := {(¢; @g)}4ep und E \ O.
Somit gilt fiir y € 71 (M; ¢) und @, € Or (TqM)

(@ =) L(r:(g:09)©) = L(y@a)) D)
daaus o L(y; (q; a/q)) (1) = y(1) = g folgt, dass

L(y: (g ) (1) € 7 (q) = {(g @); (: @)}

wobei @, die umgekehrte Orientierung bezeichne (die, die in £ \ O enthalten ist).

i) = (@) :

Ist die Orientierungsiiberlagerung trivial, so ist die Abbildung o : E — {+1}, gegeben durch
+1 ; Dyg schickt  auf die Standardorientierung von R"

|_| Or (Tq M) 5(q; @) - wobei U Umgebung von g ist und (U; ¢) Karte von M

9<M -1 ; sonst

unabhingig von der Wahl der Karte ¢ auf ganz E wohldefiniert.
©
Damit gilt fiir die Basiswechselmatrizen Tll:j von Karten ¢, i mit nichtleerem Schnitt
U,NU, 3¢ !
B -1
det T.)= det (D¢(q)(<p oy )) >0

q
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Sei nun {p,}eea eine Zerlegung der Eins beziiglich der zugrundeliegenden Mengen des At-
lasses. Fiir jede Karte (Uy; 9o = (x);...;x")) definiert w, = dx! A ... A dx" eine nicht-
degenerierte n-Form auf U,. Weiterhin gilt auf den Uberschneidungen U, N Up # 0 mittels

9 _y du o
Kettenregel o = N, o2 3]
[ 7,1 (-2 10
() - ()
0 0
dx;/\.../\dxg R e = det
Oxg dxg y
n (o n (o
a’)ca(axl dxa(axn)
B B
Uy 05 9 Ly 0% 9
dx (Z/ ax! ol dxo |2 9, o
= det :
n (v 94 9 n (s 0x o
(2 555) (2B
oy Lol
é))c/l3 Oxg
= det o
Oxy . Ox
,Bxlli dx

= det (D((pa ) 90[;1)) >0

Folglich ist die n-Form },, p,w, auf ganz M wohldefiniert und weiter sogar iiberall von Null
verschieden, da w, = det (D(go(, o go’gl)) wg.
O

Satz 2.2.5
Sei M eine zusammenhéngende glatte Mannigfaltigkeit mit 7;(M) = {1}, dann ist M orien-
tierbar.

Beweis:

Da fiir jede zusammenhingende Uberlagerung # : E — M die Blitterzahl mit dem Index
[71(M) : m(E)] = 1 iibereinstimmen muss, kann die 2-blittrige Orientierungsiiberlagerung
keinen zusammenhédngenden Totalraum E besitzen. O

2.2.1 Beispiele

e Der euklidische Raum R":
Fiir den euklidischen Raum R” ist dx; A ... A dx, (wobei x; : R* — R die i-te Projekti-
on bezeichnet) eine Orientierungsform — welche die Standardorientierung auf dem R”
definiert.

e Die n-Sphiire S":
Definiere eine n-Form wqy € Q"(R™) via

Wox(Wi;...;wy) = det(x; wis ... s Wyet) fiir x € R™!.
Es gilt wo.(er;...;8;5...5€,) = (=1)*!x; und damit
n+l

wo = Z(—l)”lxidxl A ANdX AL A dxg
P

Fiir ein x € §” und eine Basis wy,...,w, € T,S" definiert x, wy,...,w, eine Basis des
R™! (Orthogonalitit: 0 = 4 |y[=2(y; &) fiiry : I - $" mit ¥(0) = x ).

Per Definition von wy (iiber die Determinante) folgt, dass wy eine Orientierungsform
auf S definiert.
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e Der reelle projektive Raum RP":

Fiir n ungerade, definiere wie Folgt eine Orientierungsform 7 auf RP":
Die n-Form 1 sei gegeben durch

Tap)(Dpr(§1); ... s Dpr(€n)) := wop(&1s ... 3€n) V& €T,S", peS”

(m: §™ — RP" bezeichnet die Projektion)
Wohldefiniertheit:
Fir p — —p, & — =£1,...,&, — —&, haben wir nach obiger Identifikation

Ta(—p)(D-pnt(=&1); . . . s D_pr(=&,)) = wo.—p(=&15 - . .5 —En)
Weiter gilt D_,n(=¢;) = D,n(&): Firy := —y : I — S" mit y(0) = p
D_,n([¥'(0)]) = [(r 0 7)'(0)] = [(w 0 ) (O)] = Dpr([y'(0)])

Folglich muss gelten:

Wop: .. €)= wop(—E15...i—E) VEET,S". pes”

(Bemerke, dass dies tatsdchlich die einzige Bedingung ist, die die Wohldefiniertheit von
T sicherstellt)
Per Definition von wy (gegeben durch det) ist die Bedingung fiir ungerade n erfiillt.

Da nun wy nicht-degeneriert ist, ist auch 7 nicht-degeneriert.
Umgekehrt kann man zeigen, dass RP" auch nur dann orientierbar ist, wenn n ungera-
de ist.

e Das Mdobiusband M:
Das M nicht orientierbar ist, folgt leicht visuell aus Satz 2.2.4 (v).

Abbildung 2.2: Mobius Band mit (parametrisiertem) Aquator

e Die Kleinsche Flasche K:
Analog zu M folgt auch, dass K nicht orientierbar ist.

Abbildung 2.3: Kleinsche Flasche!”!

10



Kapitel 3

Poincaré-Dualitéit

3.1 deRham-Kohomologie mit kompakten Trigern

Fiir eine glatte Mannigfaltigkeit M bezeichnet Q”(M) den Subkomplex des deRham-Komplexes,
der vom Grad p dem Vektorraum QF (M) aller p-Formen mit kompakten Triger entspricht.
Die (deRham-) Kohomologie-Gruppe mit kompakten Triger wird dann wie Folgt definiert:
Ker (d : Q2(M) — Q' (M))

H(M) =
0 Im (d : Q™' (M) — QF(M))

Wenn M kompakt ist gilt also Q7 (M) = Q*(M) und damit auch H:(M) = H*(M).

Bemerkung:

(a) H; isti.A. kein kontravarianter Funktor mehr auf der Kategorie der glatten
Mannigfaltigkeiten zusammen mit allen glatten Abbildungen
(Fiir w € QF(N), ¢ : M — N glatt, hat Q*(¢)(w) nicht notwendigerweise
kompakten Tréiger)

(b) Wenn ¢ aber eine glatte und eigentliche Abbildung ist (d. h. ¢~!(K) kompakt
fiir alle K kompakt), dann gilt

suppy, (Q(¢)(w)) € ¢~ (suppy w)

und damit hat Q”(¢)(w) einen kompakten Triger wenn immer w einen kom-
pakten Triger besitzt

(¢) Damit wird die Abbildung ¢* zu einer Kettenabbildung Q*(N) — Q’(M) und
induziert eine Abbildung

H{(¢) : H/(N) — HI(M)

und es wird H} zu einem kontravarianten Funktor auf der Kategorie der glat-
ten Mannigfaltigkeiten zusammen mit den glatten eigentlichen Abbildungen

(d) Isty : M — N ein Diffeomorphismus, also insbesondere eigentlich, so gilt
schon HY(M) = H?(N)

Aus dem Kapitel ,,10. INTEGRATION ON MANIFOLDS*“!! ist bekannt, dass fiir orientier-
bare glatte Mannigfaltigkeiten M" die Sequenz
Qi 25 Qa5 B — 0

exakt ist.
Daraus folgt sofort

f CH'(M") S R.
M

11



3.1. DERHAM-KOHOMOLOGIE MIT KOMPAKTEN TRAGERN

Seien V C U offene Teilmengen einer glatten Mannigfaltigkeit M und sei i : V — U die
Inklusion. Dadurch wird eine Kettenabbildung

i 2 QUV) = QU(U)

induziert, definiert via
L(wly=w, i(w) |U\supp(a))= 0
fiir w € Q7(V). Damit einher kommt die lineare Abbildung

i H(V) > HI(U)

Fiir eine weitere offene Teilmenge W C V mit Inklusion j : W — V gilt (i o j).(w) =

(ix 0 jo)(w).
Dies definiert einen kovarianten Funktor auf der Kategorie der offenen Teilmengen und In-
klusionen einer gegebenen glatten Mannigfaltigkeit M.

Seien Uy, U, € M offen mit Uy U U, = U und Inklusionen i, : U, < Uund j, : Uy N U, —
U,, dann ist die Sequenz

0 — QXU N Uy —25 QXU © Q(Us) —23 QL (U) —3 0
exakt, wobei
Jo(@) = (j1u(@): —jpe(@)) und  L(wiiwn) = i1.(@)) + izu()).

Zunichst ist klar, dass J, injektiv. Fiir die Surjektivitit von I,, wihle beziiglich der Uber-
deckung {Uy; U,} eine Zerlegung der Eins {p,},-1, und setze fiir ein gegebenes w € QL(U)
wy 1= (py - W) |u,, 80 gilt Ip(w1; w2) = prw + prw = w.

Weiter gilt
Iy 0 Jp)(w) = i1:(j1:(w)) + i2:( = ja2:(w))
= (i1 o j1),(w) = (i2 © o), (W)
=0
also im(J,) € ker(/,). Ist hingegen (wy; wy) € ker(l,,), so gilt ij.(w;) = —iz(w>). Daraus
folgt suppy (wy) € Uy N U und wy |y,nu,= —w2 luynu,- Fir = wy |y,ny, gilt dann

Jp(w) = (wr; w)).

Theorem 3.1.1 (Mayer-Vietoris)
Obige Abbildungen induzieren eine exakte Sequenz

. — HY(U N Uy -2 HY(U) @ HY(Uy) —=5 HY(U) —2 B UL Uy — .

Zur Erinnerung ist 8, ([w]) fiir w € QZ(U) wie Folgt definiert:

Zerlege w = w; + wy mit w, € QF(U) und supp,(w,) € U,, dann ist 7 := dw; |y,nv,=
—dws |y,nu, (da w geschlossen ist) und 7 € Qf”(U 1 N U,) geschlossen und reprisentiert

d. ([w)) € HI*' (U 0 Uy).

Der kontravariante Funktor der einen Vektorraum A auf den dualen Vektorraum A* = Homg (A; K)
schickt, ist exakt, d. h. fiir eine exakte Sequenz von Vektorrdumen

A—tsp-Yyc
ist auch

Ly By g

12



3.2. KONSTRUKTION DER ABBILDUNG / AUSSAGE

exakt: Es ist klar, dass ¢* o y* = 0 gilt.
Sei umgekehrt f € ker(¢*), also f o ¢ = 0. Definiere nun g : im(y) — K via g(c) := f(b) fiir
Y(b) = c. Die Wohldefiniertheit folgt aus folgender Berechnung

(D) = y(b) = b —b" € ker(y) = im(¢p)
=  f(b-b)=0
=  f(b)=f@).

Nun lisst sich die lineare Abbildung g zu einer auf ganz C fortsetzen (- ist C co-dimensional
so geschieht dies unter Verwendung von Zorns-Lemma).

Dementsprechend induziert die lange exakte Sequenz aus Theorem 3.1.1 die dualisierte ex-
akte Sequenz

= BN U N Uy - B - BP(UYY @ HE(Uo) =L HP(U, N Uy — .

mit
@) = ((1)'(@): (20 (@) und T (@r:a2) = (1) (@) = (j2.) (@2)

(Hierbei bezeichnet fiir eine lineare Abbildung F : V — W, F* die duale Abbildung
W* — V* zu F gegeben durch F*(f) = fo F.)

3.2 Konstruktion der Abbildung / Aussage

Fiir eine glatte Mannigfaltigkeit M" definiert das duflere Produkt eine bilineare Abbildung
QP (M) x Q7"(M) — QM)

da supp(w; A wy) € supp(w) N supp(w,) und induziert damit eine bilineare Abbildung
HP(M) x H!™P(M) — H]'(M)

Ist M nun weiter auch orientierbar, so ist Integration auf M wohldefiniert und wir erhalten
eine Bilinearform

B, H'(M)x H. "(M) = R, ([w1]; [w2]) & f w1 A wy
M
welche dann kanonisch die Abbildung
DY, : H' (M) — H."(MY', [w] - ([7] - B} (w; 7))

induziert.
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3.3. BEWEIS

Theorem 3.2.1 (Poincaré-Dualitiit)
Fiir eine orientierbare glatte n-Mannigfaltigkeit M definiert die Abbildung

D}, : H'(M) — H; " (M)*

fiir alle p einen Isomorphismus.

3.3 Beweis

Die Methodik des Beweises der Poincaré-Dualitiit basiert auf dem Leitmotiv von folgendem

Satz 3.3.1 (Induktion iiber offene Mengen)
Sei M" eine glatte Mannigfaltigkeit mit offener Uberdeckung V = (Vj)ep. Sei weiter U eine
Familie offener Teilmengen von M die den folgenden Bedingungen geniigen:

i 0eUu
(ii) Jede offene Teilmenge U C Vj diffeomorph zu R" ist in U enthalten
(iii) Wenn Uy, U, und U; N U, in U enthalten sind, dann gilt auch U; U U, € U
(iv) Ist Uy, U, ... eine Folge paarweiser disjunkter offener Teilmengen mit U; € U, dann
gilt auch ,-g; Uel

Dann gehort M zu U.

Im Folgenden sei M stets eine orientierbare glatte n-Mannigfaltigkeit.

Lemma 3.3.2
R ;p=
HY(R") = { p=n
0 ; sonst
Beweis:
—Fiirp=0:

Beobachte, dass der Vektorraum H?(R") aus den lokal konstanten Funktionen f : R” — R
mit kompakten Tridger besteht. Da der R” zusammenhingend ist, muss so eine Funktion f
schon global konstant sein und da nun R” nicht kompakt ist, muss schon f = 0 gelten.
-Fir0O< p<n:

Betrachte statt dem R” den, via der stereographischen Projektion, diffeomorphen Raum S” \
{x0}. Der Kettenkomplex Q7 (S” \ {xo}) aufgefasst als Subkomplex von Q*(S") besteht aus
allen Differentialformen, die in einer Umgebung von x verschwinden.

Sei w € QF(S" \ {x0}) eine geschlossene Form. Bekanntlich gilt H?(S™) = HP(S") = 0,
womit w in Q7(S") exakt ist. Folglich gibt es ein 7 € fol(S") mit dt = w. Es gentigt nun
zu zeigen, dass 7 so modifiziert werden kann, dass die Abbildung in einer Umgebung von xq
verschwindet.

Sei also W eine offene Umgebung von x, diffeomorph zu R”, so dass w|w= 0.

Im Falle p = 1 ist 7 eine Funktion auf S”, die konstant auf W ist, sei also 7|y= a. Dann gilt
fir v’ ;= 7 —a € Q%S" \ {xo}) sowohl 7’ |y= 0 als auch d7’ = w.

Ist hingegen 2 < p < n, so bemerke, dass H?~'(W) = HP~'(R") = 0 und damit 7 |y eine
geschlossene Form ist — sei also o € QP~2(W) mit do = 7|y. Wihle nun eine glatte Funktion
@ : S" — [0; 1] mit suppg.(¢) € W, welche den Wert 1 auf einer kleineren offenen Umgebung
U < W von xo. Die Form -0 auf W kann auf ganz S” zu einer Form & € QP~2(S") fortgesetzt
werden, indem sie auf S” \ W Null gesetzt wird. Fiir die Form 7’ := 7 — d¢ gilt dann sowohl
7' |y= 0 als auch dv’ = dt = w.

In beiden Fillen ist w also auch in Q*(S" \ {xo}) exakt.
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3.3. BEWEIS

—Fiirp =n:
Die Bemerkung vom Anfang des Kapitels liefert fiir die orientierbare glatte Mannigfaltigkeit
M = R" sofort

f : H'(R") S R.

Lemma 3.3.3
Seien V € U € M offene Teilmengen, so kommutiert folgendes Diagramm

H/(U) —2s Hr(v)
DP

A I
vy L 5wy
Beweis:

Seien w € QP(U),t € Q. (V) geschlossene Formen mit Kohomologie-Klassen [w], [7], so
gilt

(DY o HP()) (Iw))(I7]) = DY( [i* ()] )([7]) = f @ AT

Vv

(6" 0 D) Ghird = Dfllin@] = [ wnio

U

Da weiter supp,, (w A i.(1)) € suppy (i.(1)) = suppy(7) gilt, geniigt es im zweiten Integral
iiber V zu integrieren. Nun geniigt es zu bemerken, dass die n-Formen i*(w) A 7 und w A i..(T)
auf V libereinstimmen.

Lemma 3.3.4
Seien Uj, U, € M offen mit Vereinigung U, dann ist das Diagramm

HP(Uy N Uy) #) Hp+1(U)

V4 +1
Dumuzl lD?/

H (U, 0 Uyt ——— HPN Uy

(71)[}4—1 ({?*)*

kommutativ.

Beweis:

Seien w € QP(U; N U,), T € Q’Z*’H(U) geschlossene Formen. Schreibe nun w = jj(wr) —
J5(w2) mit w, € QP(U,) und j, : Uy N U, = U,, die natiirlichen Inklusionen. Sei « €
QP+1(U) die (p + 1)-Form mit iy(k) = dw,, wobei i, : U, — U die Inklusionen seien, sodass
[«] = 0" ([w]) gilt. Daraus folgt

DV 0 8")([wh (7)) = DI (kD) (x) = f KAt

U
Um einen Reprisentanten fiir 3,([7]) € H. ”(U; N U,) zu finden, schreibe T = 7| + 7, mit
7, € QP N(U) und  suppy(r,) C U,
und setze dann o = jj(dt1) = —j;(d7,). Dann ist o eine geschlossene (n — p)-Form mit

[o] = d.([7]). Folglich gilt

((@.)" 0 Dy, )[w([]) = f wAC

UinU,

Nun gilt es die beiden Integrale zu vergleichen:
Wegen supp,(t,) C U, gilt

fK/\T:fK/\Tl—i-fK/\‘rz:f dwl/\‘rl—i-f dwsy A Ty
U U U U, U,
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3.3. BEWEIS

Weiter gilt bekanntlich d(w, A 7,) = dw, A 7 + (-1)Pw, A dt, als auch

f dlw, AN1,)=0
U,

(nach Stokes Theorem — M besitzt keinen Rand) und damit

(—l)prK/\T:(—l)’H'lf d(ul/\T1+(—1)p+l‘fv dwg/\TQZf a)l/\dT1+f wy AdT.
U U, U, U, U,

Weiterhin gilt aber dt; |y, = ji.(0) und d73 |y, = —j2.(0), also

fwl/\d‘r]+fwg/\dn:fu)]/\j]*(a')—f 0)2/\j2*(0')
U1 U2 Ul U2
=f J'T(wl)/\cr—f ) Ao
UNnU, UinU»

=f wANo
UNnU,

Proposition 3.3.5
Fiir eine Familie paarweise disjunkter offener Teilmengen {U,},ca einer glatten Mannigfal-
tigkeit M mit Vereinigung U sind folgende Abbildungen Isomorphismen:

(i) H'(U) — [1 H(Uy), [w] = ([i(0)])yer

acA

(i) HY(U) = [T H (Ua)', B ((i0e)*(B))

aEA acA

Beweis:

Betrachte zunichst die Isomorphismen

O U) > [ [Q W), @ (i)

a€eA

a€cA

¥, - DO = QLU @adaen = ) ianl@0)

acA acA

Weiter definieren diese Abbildungen Isomorphismen von Kettenkomplexen, wobei das Dif-
ferential auf [] Q*(U,) gegeben ist durch

acA

d((T(Z)(ZEA) = (dTa)aEA
und EB QN(U,) € 1 Qi(Uy) € [ ©Q7(U,) als Subkomplex aufgefasst wird.
€A

a€cA acA
Daraus erhalten wir (i) als auch einen Isomorphismus

P HI W) S HIW), (@aldaea = ) iaellwal).

a€eA acA

Da nun ein direktes Produkt zu einem direkten Produkt dualisiert wird, d. h.

(EPve) =[]V £ (Fotadoens

acA a€cA

folgt (ii).
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3.3. BEWEIS

Korollar 3.3.6

(i) Jede offene Teilmenge U C M, diffeomorph zu R”, erfiillt die Poincaré-Dualitit.

(i) Seien Uy, U, € M offen und nehme an, dass Uy, U, und U N U, die Poincaré-Dualitt
erfiillen, dann auch U = U; U U,.

(iii) Sei (Ug)qea eine Familie paarweise disjunkter offener Teilmengen von M und nehme

an jedes U, erfiillt die Poincaré-Dualitét, dann auch U = | U,.
a€cA

Beweis:
Fiir (i) bemerke, dass H?(U) = HP(R") und H. P(U) = H. " (R"), wobei nun bekanntlich

R ;p=0
HP(R") = { P
0 ; sonst
und nach Lemma 3.3.2
_ R ;p=0
HIP(RY) = { P
0 ; sonst

gilt. Damit geniigt es zu zeigen, dass D(l)] : HO(U) — H™(U)* ein Isomorphismus ist. Beob-
achte dafiir, dass D(L), die konstante 1-Funktion auf U auf den Basisvektor

f :H!/(U) > R
U
von H!(R") = R abbildet.

Fiir (ii) geniigt es, dass folgende kommutative Diagramm zu betrachten:

HP(U) —— [1 H(U,)

a€A
»
D U\L \L];[ Dy,

HU) —> T1 H (U

acA

mit den horizontalen Isomorphismen aus Proposition 3.3.5. Nach Voraussetzung von (ii) ist
E[ D}, ein Isomorphismus und damit auch DJ}.

Betrachte nun fiir (iii) das Diagramm

I

HP(U) HP(Up) @ HP(Uy) ——X—— HP(U, N Uy) —L— HPY(U) ——— ...

p 4 4 3 p+1
lD’,, lu 7, @Dy, lD 010 v, lD’l,*

, ‘ iy
o HIU) —L— HIP(U) @ YUy —— HIP(U Uy S U ——
Dieses Diagramm kommutiert nach den vorausgehenden zwei Lemmata.
. . P p p .o L3
Die Voraussetzungen von (i) bedeuten, dass Dy, @ Dy, und Dy; ., fiir alle p Isomorphismen
sind. Dass dann auch DZ fiir alle p ein Isomorphismus ist, folgt aus dem

S5-Lemma:
Sind fiir ein kommutatives Diagramm in einer abelschen Kategorie (hier: Vektorrdiume)

Ayptycsp_isE
A N [ [
A= B O D' E

die Zeilen exakt, m und p Isomorphismen, / ein Epimorphismus und g ein Monomor-
phismus, dann ist n ein Isomorphismus.
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3.4. ANWENDUNGEN

BEWEIS von Theorem 3.2.1 (Poincaré-Dualitiit):
Betrachte die triviale Uberdeckung V = (M) zusammen mit der Kollektion

U= {U C M | U offen, D’;] ist ein Isomorphismus Vp}

Nach Korollar 3.3.6 sind alle Voraussetzungen von Satz 3.3.1 erfiillt und es folgt M € U.

3.4 Anwendungen

Beispiel: Berechnung der Kohomologiegruppen von RP’:
(i) DaRP? zusammenhingend ist, gilt HSR(RPS) =R

(i) Weiter wissen wir, dass 7;(RP?) = 7, (RP?) = Z/2Z. Nun ist Z/27Z bereits abelsch und
es folgt H; (RP3;Z) = Z/2Z. Da Z torsionsfrei ist, erhalten wir nach dem universellen
Koeffiziententheorem H'. (RP*;Z) = 0 und zusammen mit dem Satz von de Rham

sing
3y _
H},(RP’) = 0.
(iii) Die Poincaré-Dualitét liefert nun sofort die iibrigen Kohomologiegruppen:

R ;p=0,3

H? (RP?) =
dR( ) {O ; sonst

Definition 3.4.1
Sei M" eine glatte Untermannigfaltigkeit mit endlichdimensionaler Kohomologie, dann ist
die i-te Betti-Zahl gegeben durch

bi(M) = dimg H'(M™).

Die Euler-Charakteristik von M" ist definiert als
X(M) = " (=1)bi(M).
i=0

Korollar 3.4.2
Sei M eine kompakte orientierbare glatte n-Mannigfaltigkeiten, so gilt fiir alle k

b(M) = by(M)

Satz 3.4.3
Jede kompakte (orfentierbare) glatte Mannigfaltigkeit M von ungerader Dimension besitzt
die Euler-Charakteristik y(M) = 0.

Beweis:

Sei M eine kompakte glatte Mannigfaltigkeit von ungerader Dimension n, die zusétzlich noch
orientierbar sei, so gilt nach der Poincaré-Dualitit (Theorem 3.2.1) H'(M") = H""{(M")* und
folglich b;(M) = b,,_;(M) fiir alle i. Daraus folgt

n n n n

X(M) = Y (=DBiM) = 3 (= Dby (M) = (=1)" Y (=1)7by(M) = = ) (= 1)b,(M)
i=0 i=0 =0 j=0
= M) =0
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3.4. ANWENDUNGEN

| Im Falle, dass M nicht orientierbar ist, verwenden wir die Multiplikativitit der Euler-
Charakterstik unter Uberlagerungen und erhalten fiir die 2-blittrige Orientierungsiiber-
lagerung

X(E) =2 x(M).

Hierbei gilt es fiir den Totalraum Folgendes zu bemerken:

— E bildet eine glatte Mannnigfaltigkeit, da die Orientierungsiiberlagerung lokal ein
Homoomorphismus ist

— E ist kompakt, da endlich-blittrige Uberlagerungen von Mannigfaltigkeiten ei-
gentliche Abbildungen sind

— E ist orientierbar:
Konstruiere hierfiir eine nichtdegenerierte n-Form @ auf E — wihle dafiir auf jeder
Karte (U; ¢) lokal eine (nichtverschwindende) Volumenform wy und setze dann
firg € U, @ € Or(T,M)
@ (q; @) = ow:p)(q; @) - p(wu)(g; @)

Damit ist der Fall M nicht orientierbar auf den Fall E orientierbar zuriickzufiihren. I
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