
Seminar deRham-Kohomologie:
Poincaré-Dualität

Luis Moeselagen

August 2025



Inhaltsverzeichnis

1 Motivation 2
1.1 Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Gegenbeispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Orientierbarkeit und Orientierung einer Mannigfaltigkeit 4
2.1 Orientierung von Vektorräumen . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Orientierbare Mannigfaltigkeiten . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Poincaré-Dualität 11
3.1 deRham-Kohomologie mit kompakten Trägern . . . . . . . . . . . . . . . . 11
3.2 Konstruktion der Abbildung / Aussage . . . . . . . . . . . . . . . . . . . . . 13
3.3 Beweis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



Kapitel 1

Motivation

1.1 Beispiele
• Der Punkt {∗}:

Hk({∗};R) �


0 ; k < 0
R ; k = 0
0 ; k > 0

• Die n-Sphäre S n (n ≥ 1):

Hk(S n;R) �



0 ; k < 0
R ; k = 0
0 ; 0 < k < n
R ; k = n
0 ; k > n

Vgl. Theorem 6.13 aus „6. HOMOTOPY“[1]

• Der 2-Torus T :

Hk(T ;R) �



0 ; k < 0
R ; k = 0
R2 ; k = 1
R ; k = 2
0 ; k > 2

Bei diesen Beispielen fällt auf, dass sich die Kohomologie gewisser Mannigfaltigkeiten sym-
metrisch gegenüber der Dimension der Mannigfaltigkeit verhält, d. h. Hp(Mn;R) � Hn−p(Mn;R).

Die Poincaré-Dualität formalisiert eben diese Symmetrie für eine ausgewählte Klasse von
Mannigfaltigkeiten – die Aussage die hier gezeigt werden soll lautet:
Hp(M) � Hn−p

c (M)∗ für orientierbare glatte n-Mannigfaltigkeiten M

1.2 Gegenbeispiele

• Die projektive Ebene RP2:

Hk(RP2;R) �

R ; k = 0

0 ; k ≥ 1

Vgl. Beispiel 9.31 aus „9. DIFFERENTIAL FORMS ON SMOOTH MANIFOLDS“[1]
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1.2. GEGENBEISPIELE

• Das Möbiusband M:
M ist homotopieäquivalent zum Kreis S 1 und damit gilt

Hk(M;R) �


R ; k = 0

R ; k = 1

0 ; k ≥ 2

• Die Kleinsche Flasche K:

Hk(K;R) �


R ; k = 0

R ; k = 1

0 ; k ≥ 2

Für alle diese 2-dimensionale Mannigfaltigkeiten gilt H0(M;R) � H2(M;R).
Beobachte, dass in allen Gegenbeispielen die betrachteten Mannigfaltigkeiten nicht orientier-
bar sind.
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Kapitel 2

Orientierbarkeit und Orientierung
einer Mannigfaltigkeit

2.1 Orientierung von Vektorräumen
Definition 2.1.1
Auf einem endlich-dimensionalen R-Vektorraum V sagen wir, dass zwei geordnete Basen A
und B dieselbe Orientierung definieren (und schreiben A ∼ B), wenn det(T A

B ) > 0 gilt.
In diesem Fall heißt die Basiswechselmatrix T A

B orientierungserhaltend.

Bemerkung:

(a) Da T A
B Basen auf Basen abbildet, hat die Matrix vollen Rang und es ist

det(T A
B ) , 0

(b) Der Begriff, dieselbe Orientierung zu besitzen, derfiniert eine Äquivalenzrela-
tion auf der Menge der Basen eines gegebenen n-dimensionalenR-Vektorraums

Daraus ergeben sich genau zwei Äquivalenzklassen (Vorzeichen ±) von Ori-
entierungen auf einem solchen Vektorraum

(c) Eine Orientierung O von V ist also eine Äquivalenzklasse, bestehend aus Ba-
sen von V , die paarweise zueinander orientierungserhaltende Basiswechsel-
matrizen besitzen

2.2 Orientierbare Mannigfaltigkeiten
Definition 2.2.1
Sei Mn eine glatte (bzw. Ck-) Mannigfaltigkeit, dann heißt eine Differentialform ω ∈ Ωn(Mn)
vom Grade n, Orientierungsform auf M, falls für alle q ∈ M und jede Basis (ξ1; . . . ξn) von
TqM gilt: ωq(ξ1; . . . ξn) , 0
M heißt orientierbar, falls solch eine Orientierungsform auf M existiert.
Zwei Orientierungsformen ω und τ auf M heißen äquivalent, falls τ = f · ω gilt für ein
f ∈ Ω0(M) mit f (q) > 0 für alle q ∈ M.
Eine Orientierung auf M ist eine Äquivalenzklasse von Orientierungsformen auf M unter
dieser Relation.

Definition 2.2.2
Sei Mn eine glatte (bzw. Ck-) Mannigfaltigkeit mit Orientierungsform ω, dann heißt eine
geordnete Basis (b1; . . . ; bn) von TqM positiv (negativ) orientiert bezüglich ω, falls

ωq(b1; . . . ; bn) > 0
(
ωq(b1; . . . ; bn) < 0

)
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2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Bemerkung:

(a) Da ω eine Orientierungsform ist, besitzt ωq(b1; . . . ; bn) entweder positives
oder negatives Vorzeichen

(b) Das Signum hängt bloß von der von ω definierten Orientierung ab (nicht von
ω selbst):
Sei τ = f · ω mit f ∈ Ω0(M) und f (q) > 0 ∀q ∈ M, dann ist
τq(b1; . . . ; bn) = f (q) · ωp(b1; . . . ; bn) > 0

Satz 2.2.3
Eine glatte (bzw. Ck-) Mannigfaltigkeit Mn ist genau dann orientierbar, wenn all ihre Zusam-
menhangskomponenten orientierbar sind.

Beweis:

Die eine Richtung ist klar.
Seien also umgekehrt alle Zusammenhangskomponenten orientierbar. Es bezeichne X die
Menge der Zusammenhangskomponenten. Seien also für alle U ∈ X Orientierungsformen
ωU ∈ Ω

n(U) gegeben. Wähle eine glatte Zerlegung der Eins {ρU}U∈X bezüglich X. Dann
bildet

ω =
∑
U∈X

ρUωU

eine glatte n-Form auf M, die weiterhin nicht-degeneriert ist. □

Orientierungsüberlagerung für Mannigfaltigkeiten:
Für eine Mannigfaltigkeit Mn mit q ∈ M bezeichne Or

(
TqM

)
die zweielementige Menge

bestehend aus den Orientierungen auf dem Tangentialraum TqM. Betrachte nun den Raum

E :=
⊔
q∈M

Or
(
TqM

)
Im Folgenden gilt es E so zu topologisieren, dass die Abbildung

π : E → M

Or
(
TqM

)
∋ α 7→ q

eine 2-blättrige Überlagerung wird.
Da die Menge Or

(
TqM

)
zweielementig ist, motiviert die Forderung den Ansatz, die Topologie

auf E so zu konstruieren, dass π−1(U) � U × {±1}.
Betrachte zunächst eine Karte (U;φ) mit φ : U → Rn. Für jedes q ∈ U überträgt dann
Dqφ : TqM → Rn jede Orientierung α ∈ Or

(
TqM

)
auf eine der Orientierungen von Rn.

Definiere also

σ(U;φ) :
⊔
q∈U

Or
(
TqM

)
→ {±1}, (q; α) 7→

+1 ; Dqφ schickt α auf die Standardorientierung des Rn

−1 ; sonst

Nun lässt sich die Bijektion

τ(U;φ) : π−1(U)→ U × {±1}, (q; α) 7→
(
q; σ(U;φ)(q;α)

)
konstruieren, so dass folgendes Diagramm kommutiert:

π−1(U) U × {±1}

U
π

�
τ

prU

Hierbei wird also π−1(U) ⊆ E so topologisiert, dass der Unterraum die Produkttopologie von
U × {±1} trägt.
Die Mengen U± = τ−1 (U × {±1}) (für U ⊆ M offen) bilden folglich eine Basis der geforder-
ten Topologie auf E.
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2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Abbildung 2.1: Orientierungsüberlagerung am Beispiel einer Sphäre

Satz 2.2.4 (Äquivalente Definitionen: Orientierbarkeit)
Für eine zusammenhängende glatte (bzw. Ck-) Mannigfaltigkeit Mn gilt äquivalent

(i) M ist orientierbar

(ii) Es gibt eine Familie {Op}p∈M von Orientierungen Op der Tangentialräume TpM (im
Sinne der Orientierungen für Vektorräume), so dass zu jedem Punkt p ∈ M eine auf
einer offenen Umgebung U von p definierte Karte φ : U → V ⊆ Rn mit Koordinaten-
funktionen xi : U → R existiert, für die an jedem Punkt q ∈ U die durch die Karte
induzierte Basis(
∂
∂x1

∣∣∣
q; . . . ; ∂

∂xn

∣∣∣
q

)
des Tangentialraums TqM bezüglich Oq positiv orientiert ist

(iii) Es existiert ein AtlasA von M, so dass für alle Karten φ, ψ ∈ Amit nichtleerem Schnitt
Uφ ∩ Uψ , ∅ und alle x ∈ ψ(Uφ ∩ Uψ) gilt:
det

(
Dx(φ ◦ ψ−1)

)
> 0

(iv) Für die Orientierungsüberlagerung π : E → M ist der Totalraum E nicht zusammen-
hängend

(v) Alle Orientierungen der Tangentialräume TpM bleiben unter Transport von Schleifen
erhalten, d. h. für alle Schleifen γ ∈ π1 (M; q) und αq ∈ Or

(
TqM

)
gilt

L
(
γ; (q;αq)

)
(0) = L

(
γ; (q;αq)

)
(1)

(vi) Die Orientierungsüberlagerung π : E → M ist trivial

Beweis:

Es bezeichne im Folgenden für eine Karte (U;φ) mit q ∈ U die auf TqM induzierte Basis

Bφq =
(
∂
∂x1

∣∣∣
q; . . . ; ∂

∂xn

∣∣∣
q

)
.

(i)⇒ (ii) :
Seiω ∈ Ωn(Mn) eine Orientierungsform von M. Für p ∈ M, wähle eine Karte

(
U;φ = (x1, . . . , xn)

)
mit p ∈ U. Da q 7→ ωq

(
∂
∂x1

∣∣∣
q; . . . ; ∂

∂xn

∣∣∣
q

)
stetig ist und ωq , 0 für alle q ∈ U erhalten wir

sgn
(
ωq

(
∂

∂x1

∣∣∣
q; . . . ;

∂

∂xn

∣∣∣
q

))
= σ ∈ {±1} ∀q ∈ U

Setze nun O = {Op}p∈M , so dass für ein q ∈ M und einer in einer Umgebung von q definierten
Karte ψ, die Basis Bψq bezüglich Oq positiv orientiert ist, genau dann, wenn sie unter Auswer-
tung von ωq ebenso das Vorzeichen σ besitzt.
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2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Es gilt nun lediglich zu zeigen, dass dies eine wohldefinierte Orientierung der Vektorräume
TqM bildet, d. h.

sgn
(
ωq

(
Bφq

))
= σ ∧ det

(
T Bφq

Bψq

)
> 0 =⇒ sgn

(
ωq

(
Bψq

))
= σ

Dazu berechne

ωq

(
∂

∂y1

∣∣∣
q; . . . ;

∂

∂yn

∣∣∣
q

)
= ωq

 n∑
j=1

∂ f j

∂y1 (ψ(q))
(
∂

∂x j

∣∣∣
q

)
; . . . ;

n∑
j=1

∂ f j

∂yn (ψ(q))
(
∂

∂x j

∣∣∣
q

)
=

∑
τ∈S n

sgn(τ)
n∏

i=1

∂ fi
∂yτ(i) (ψ(q)) ωq

(
∂

∂x1

∣∣∣
q; . . . ;

∂

∂xn

∣∣∣
q

)
= det

(
T A

B

)
ωq

(
∂

∂x1

∣∣∣
q; . . . ;

∂

∂xn

∣∣∣
q

)
wobei f = ( f1; . . . ; fn) = φ ◦ ψ−1 und T Bφq

Bψq
= Dψ(q)(φ ◦ ψ−1) ist.

(ii)⇒ (iii) :
Sei O = {Op}p∈M eine Familie von Orientierungen der Tangentialräume wie in (ii).
Definiere nun folgenden Atlas

A :=
{
(U;φ) Karte von M | Bφq ist bezüglich Oq positiv orientiert ∀q ∈ U

}
.

Für alle Karten φ, ψ in A mit nichtleerem Schnitt Uφ ∩ Uψ , ∅, x = ψ(q) mit q ∈ Uφ ∩ Uψ

gilt dann:

det
(
Dx(φ ◦ ψ−1)

)
= det

(
Dψ(q)(φ ◦ ψ−1)

)
= det

(
T Bφq

Bψq

)
> 0

(iii)⇒ (vi)⇒ (iv) :
SeiA ein Atlas von M wie in (iii), so ist die Abbildung σ : E → {±1}, gegeben durch

⊔
q∈M

Or
(
TqM

)
∋ (q; α) 7→


+1 ; Dqφ schickt α auf die Standardorientierung von Rn

wobei U Umgebung von q ist und (U;φ) ∈ A

−1 ; sonst

unabhängig von der Wahl der Karte φ auf ganz E wohldefiniert. Dies garantiert (iii), da für
(V;ψ) ∈ A mit U ∩ V , ∅, x = φ(q) und q ∈ U ∩ V gilt

Dqψ =

n∑
i=1

∂ψ

∂xi (q)dxi = Dx(ψ ◦ φ−1) Dqφ

=⇒ Dqψ(bi) = Dx(ψ ◦ φ−1) Dqφ(bi) mit det
(
Dx(ψ ◦ φ−1)

)
> 0

Damit ist ebenso die Abbildung

τ : E → M × {±1}, (q; α) 7→
(
q; σ(U;φ)(α)

)
wohldefiniert, als auch bijektiv und es gilt folglich

E � M × {±1}

Damit ist die Orientierungsüberlagerung π trivial, als auch der Totalraum E nicht zusammen-
hängend.
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2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

(iv)⇒ (vi) :
Da M lokal wegzusammenhängend ist, bildet auch π |C: C → M für jede Wegekomponente
C ⊆ E eine Überlagerung mit konstanter Blätterzahl (da die Blätterzahl lokal konstant ist und
damit auf Zusammenhangskomponenten schon konstant).
Angenommen der Totalraum E sei nicht zusammenhängend und zerfalle in die Komponenten
E � E1 ⊔ E2, so besitzen die Überlagerungen π |Ei bereits Blätterzahl 1 (sonst wäre sie auf
ganz Ei 2 und es folge aus π |−1

Ei
(q) = {(q;αq); (q;αq)} ∀q ∈ M schon Ei = E). Folglich

sind die π |Ei bereits Homöomorphismen Ei � M und es gilt E � M ⊔M � M × {±1} und wir
erhalten die triviale Überlagerung

E � E1 ⊔ E2 M × {±1}

M
π

�

(π|E1×−1; π|E2×+1)

prM

(v)⇒ (iv) :
Nehme per Kontraposition an, dass E zusammenhängend wäre, also sogar wegzusammenhän-
gend. Wähle dann einen Weg γ̃ in E von (q;αq) nach (q;αq), dann gilt nach der Eindeutigkeit
der Wegeliftung

L
(
π ◦ γ̃; (q;αq)

)
(0) = (q;αq)

L
(
π ◦ γ̃; (q;αq)

)
(1) = (q;αq)

also folglich
L
(
γ; (q;αq)

)
(0) , L

(
γ; (q;αq)

)
(1).

(vi)⇒ (v) :
Ist die Orientierungsüberlagerung trivial, so gilt E =

⊔
q∈M Or

(
TqM

)
� M × {±1} mittels der

trivialen Überlagerung (q; α) 7→ q. Wähle also für jedes q ∈ M die eindeutige Orientierung
αq ∈ Or

(
TqM

)
die zu (q;+1) korrespondiert.

Damit zerfällt der Totalraum E in die zwei Komponenten O := {(q;αq)}q∈M und E \ O.
Somit gilt für γ ∈ π1 (M; q) und αq ∈ Or

(
TqM

)
(
(q;αq) =

)
L
(
γ; (q;αq)

)
(0) = L

(
γ; (q;αq)

)
(1)

da aus π ◦ L
(
γ; (q;αq)

)
(1) = γ(1) = q folgt, dass

L
(
γ; (q;αq)

)
(1) ∈ π−1(q) =

{
(q;αq); (q;αq)

}
wobei αq die umgekehrte Orientierung bezeichne (die, die in E \ O enthalten ist).

(vi)⇒ (i) :
Ist die Orientierungsüberlagerung trivial, so ist die Abbildung σ : E → {±1}, gegeben durch

⊔
q∈M

Or
(
TqM

)
∋ (q; α) 7→


+1 ; Dqφ schickt α auf die Standardorientierung von Rn

wobei U Umgebung von q ist und (U;φ) Karte von M

−1 ; sonst

unabhängig von der Wahl der Karte φ auf ganz E wohldefiniert.
Damit gilt für die Basiswechselmatrizen T Bφq

Bψq
von Karten φ, ψ mit nichtleerem Schnitt

Uφ ∩ Uψ ∋ q

det
(
T Bφq

Bψq

)
= det

(
Dψ(q)(φ ◦ ψ−1)

)
> 0
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2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

Sei nun {ρα}α∈A eine Zerlegung der Eins bezüglich der zugrundeliegenden Mengen des At-
lasses. Für jede Karte

(
Uα;φα = (x1

α; . . . ; xn
α)

)
definiert ωα = dx1

α ∧ . . . ∧ dxn
α eine nicht-

degenerierte n-Form auf Uα. Weiterhin gilt auf den Überschneidungen Uα ∩ Uβ , ∅ mittels

Kettenregel ∂
∂xi

β

=
∑

j
∂x j

α

∂xi
β

∂

∂x j
α

dx1
α ∧ . . . ∧ dxn

α

 ∂

∂x1
β

; . . . ;
∂

∂xn
β

 = det


dx1

α

(
∂
∂x1

β

)
· · · dx1

α

(
∂
∂xn

β

)
...

. . .
...

dxn
α

(
∂
∂x1

β

)
· · · dxn

α

(
∂
∂xn

β

)


= det


dx1

α

(∑
j
∂x j

α

∂x1
β

∂

∂x j
α

)
· · · dx1

α

(∑
j
∂x j

α

∂xn
β

∂

∂x j
α

)
...

. . .
...

dxn
α

(∑
j
∂x j

α

∂x1
β

∂

∂x j
α

)
· · · dxn

α

(∑
j
∂x j

α

∂xn
β

∂

∂x j
α

)


= det


∂x1

α

∂x1
β

· · ·
∂x1

α

∂xn
β

...
. . .

...
∂xn

α

∂x1
β

· · ·
∂xn

α

∂xn
β


= det

(
D(φα ◦ φ−1

β )
)
> 0

Folglich ist die n-Form
∑
α ραωα auf ganz M wohldefiniert und weiter sogar überall von Null

verschieden, da ωα = det
(
D(φα ◦ φ−1

β )
)
ωβ.

□

Satz 2.2.5
Sei M eine zusammenhängende glatte Mannigfaltigkeit mit π1(M) = {1}, dann ist M orien-
tierbar.

Beweis:

Da für jede zusammenhängende Überlagerung π̃ : Ẽ → M die Blätterzahl mit dem Index
[π1(M) : π1(Ẽ)] = 1 übereinstimmen muss, kann die 2-blättrige Orientierungsüberlagerung
keinen zusammenhängenden Totalraum E besitzen. □

2.2.1 Beispiele
• Der euklidische Raum Rn:

Für den euklidischen Raum Rn ist dx1 ∧ . . .∧ dxn (wobei xi : Rn → R die i-te Projekti-
on bezeichnet) eine Orientierungsform – welche die Standardorientierung auf dem Rn

definiert.

• Die n-Sphäre S n:
Definiere eine n-Form ω0 ∈ Ω

n(Rn+1) via

ω0,x(w1; . . . ; wn) = det(x; w1; . . . ; wn+1) für x ∈ Rn+1.

Es gilt ω0,x(e1; . . . ; êi; . . . ; en) = (−1)i+1xi und damit

ω0 =

n+1∑
i=1

(−1)i+1xi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+1

Für ein x ∈ S n und eine Basis w1, . . . ,wn ∈ TxS n definiert x,w1, . . . ,wn eine Basis des
Rn+1

(
Orthogonalität: 0 = d

dt |γ |
2= 2

〈
γ; dγ

dt

〉
für γ : I → S n mit γ(0) = x

)
.

Per Definition von ω0 (über die Determinante) folgt, dass ω0 eine Orientierungsform
auf S n definiert.

9



2.2. ORIENTIERBARE MANNIGFALTIGKEITEN

• Der reelle projektive Raum RPn:
Für n ungerade, definiere wie Folgt eine Orientierungsform τ auf RPn:
Die n-Form τ sei gegeben durch

τπ(p)(Dpπ(ξ1); . . . ; Dpπ(ξn)) := ω0,p(ξ1; . . . ; ξn) ∀ξi ∈ TpS n, p ∈ S n

(π : S n → RPn bezeichnet die Projektion)
Wohldefiniertheit:
Für p 7→ −p, ξ1 7→ −ξ1, . . . , ξn 7→ −ξn haben wir nach obiger Identifikation

τπ(−p)(D−pπ(−ξ1); . . . ; D−pπ(−ξn)) = ω0,−p(−ξ1; . . . ;−ξn)

Weiter gilt D−pπ(−ξi) = Dpπ(ξi): Für γ̃ := −γ : I → S n mit γ(0) = p

D−pπ([γ̃′(0)]) = [(π ◦ γ̃)′(0)] = [(π ◦ γ)′(0)] = Dpπ([γ′(0)])

Folglich muss gelten:

ω0,p(ξ1; . . . ; ξn) !
= ω0,−p(−ξ1; . . . ;−ξn) ∀ξi ∈ TpS n, p ∈ S n

(Bemerke, dass dies tatsächlich die einzige Bedingung ist, die die Wohldefiniertheit von
τ sicherstellt)
Per Definition von ω0 (gegeben durch det) ist die Bedingung für ungerade n erfüllt.
Da nun ω0 nicht-degeneriert ist, ist auch τ nicht-degeneriert.

Umgekehrt kann man zeigen, dass RPn auch nur dann orientierbar ist, wenn n ungera-
de ist.

• Das Möbiusband M:
Das M nicht orientierbar ist, folgt leicht visuell aus Satz 2.2.4 (v).

Abbildung 2.2: Möbius Band mit (parametrisiertem) Äquator

• Die Kleinsche Flasche K:
Analog zu M folgt auch, dass K nicht orientierbar ist.

Abbildung 2.3: Kleinsche Flasche[2]

10



Kapitel 3

Poincaré-Dualität

3.1 deRham-Kohomologie mit kompakten Trägern
Für eine glatte Mannigfaltigkeit M bezeichnetΩ∗c(M) den Subkomplex des deRham-Komplexes,
der vom Grad p dem Vektorraum Ωp

c (M) aller p-Formen mit kompakten Träger entspricht.
Die (deRham-) Kohomologie-Gruppe mit kompakten Träger wird dann wie Folgt definiert:

Hp
c (M) =

Ker
(
d : Ωp

c (M)→ Ωp+1
c (M)

)
Im

(
d : Ωp−1

c (M)→ Ωp
c (M)

)
Wenn M kompakt ist gilt also Ω∗c(M) = Ω∗(M) und damit auch H∗c (M) = H∗(M).

Bemerkung:

(a) H∗c ist i. A. kein kontravarianter Funktor mehr auf der Kategorie der glatten
Mannigfaltigkeiten zusammen mit allen glatten Abbildungen(
Für ω ∈ Ωp

c (N), φ : M → N glatt, hat Ω∗(φ)(ω) nicht notwendigerweise
kompakten Träger

)
(b) Wenn φ aber eine glatte und eigentliche Abbildung ist

(
d. h. φ−1(K) kompakt

für alle K kompakt
)
, dann gilt

suppM
(
Ω∗(φ)(ω)

)
⊆ φ−1(suppN ω)

und damit hat Ωp(φ)(ω) einen kompakten Träger wenn immer ω einen kom-
pakten Träger besitzt

(c) Damit wird die Abbildung φ∗ zu einer Kettenabbildung Ω∗c(N)→ Ω∗c(M) und
induziert eine Abbildung

Hp
c (φ) : Hp

c (N)→ Hp
c (M)

und es wird H∗c zu einem kontravarianten Funktor auf der Kategorie der glat-
ten Mannigfaltigkeiten zusammen mit den glatten eigentlichen Abbildungen

(d) Ist φ : M → N ein Diffeomorphismus, also insbesondere eigentlich, so gilt
schon Hp

c (M) � Hp
c (N)

Aus dem Kapitel „10. INTEGRATION ON MANIFOLDS“[1] ist bekannt, dass für orientier-
bare glatte Mannigfaltigkeiten Mn die Sequenz

Ωn−1
c (M) Ωn

c(M) R 0d
∫

M

exakt ist.
Daraus folgt sofort ∫

M
: Hn

c (Mn)
�
−→ R.

11



3.1. DERHAM-KOHOMOLOGIE MIT KOMPAKTEN TRÄGERN

Seien V ⊆ U offene Teilmengen einer glatten Mannigfaltigkeit M und sei i : V ↪→ U die
Inklusion. Dadurch wird eine Kettenabbildung

i∗ : Ω∗c(V)→ Ω∗c(U)

induziert, definiert via
i∗(ω) |V= ω, i∗(ω) |U\supp(ω)= 0

für ω ∈ Ω∗c(V). Damit einher kommt die lineare Abbildung

i∗ : Hp
c (V)→ Hp

c (U)

Für eine weitere offene Teilmenge W ⊆ V mit Inklusion j : W ↪→ V gilt (i ◦ j)∗(ω) =
(i∗ ◦ j∗)(ω).
Dies definiert einen kovarianten Funktor auf der Kategorie der offenen Teilmengen und In-
klusionen einer gegebenen glatten Mannigfaltigkeit M.

Seien U1,U2 ⊆ M offen mit U1 ∪U2 = U und Inklusionen iν : Uν ↪→ U und jν : U1 ∩U2 ↪→
Uν, dann ist die Sequenz

0 Ω
p
c (U1 ∩ U2) Ω

p
c (U1) ⊕Ωp

c (U2) Ω
p
c (U) 0

Jp Ip

exakt, wobei

Jp(ω) =
(
j1∗(ω); − j2∗(ω)

)
und Ip(ω1;ω2) = i1∗(ω1) + i2∗(ω2).

Zunächst ist klar, dass Jp injektiv. Für die Surjektivität von Ip, wähle bezüglich der Über-
deckung {U1; U2} eine Zerlegung der Eins {ρν}ν=1,2 und setze für ein gegebenes ω ∈ Ωp

c (U)
ων := (ρν · ω) |Uν

, so gilt Ip(ω1;ω2) = ρ1ω + ρ2ω = ω.
Weiter gilt

(Ip ◦ Jp)(ω) = i1∗
(
j1∗(ω)

)
+ i2∗

(
− j2∗(ω)

)
=

(
i1 ◦ j1

)
∗(ω) −

(
i2 ◦ j2

)
∗(ω)

= 0

also im(Jp) ⊆ ker(Ip). Ist hingegen (ω1; ω2) ∈ ker(Ip), so gilt i1∗(ω1) = −i2∗(ω2). Daraus
folgt suppUν

(ων) ⊆ U1 ∩ U2 und ω1 |U1∩U2= −ω2 |U1∩U2 . Für ω := ω1 |U1∩U2 gilt dann
Jp(ω) = (ω1; ω2).

Theorem 3.1.1 (Mayer-Vietoris)
Obige Abbildungen induzieren eine exakte Sequenz

. . . Hp
c (U1 ∩ U2) Hp

c (U1) ⊕ Hp
c (U2) Hp

c (U) Hp+1
c (U1 ∩ U2) . . .

J∗ I∗ ∂∗

Zur Erinnerung ist ∂∗ ([ω]) für ω ∈ Ωp
c (U) wie Folgt definiert:

Zerlege ω = ω1 + ω2 mit ων ∈ Ω
p
c (U) und suppU(ων) ⊆ Uν, dann ist τ := dω1 |U1∩U2=

−dω2 |U1∩U2 (da ω geschlossen ist) und τ ∈ Ω
p+1
c (U1 ∩ U2) geschlossen und repräsentiert

∂∗ ([ω]) ∈ Hp+1
c (U1 ∩ U2).

Der kontravariante Funktor der einen Vektorraum A auf den dualen Vektorraum A∗ = HomK(A;K)
schickt, ist exakt, d. h. für eine exakte Sequenz von Vektorräumen

A B C
φ ψ

ist auch
C∗ B∗ A∗

ψ∗ φ∗

12



3.2. KONSTRUKTION DER ABBILDUNG / AUSSAGE

exakt: Es ist klar, dass φ∗ ◦ ψ∗ = 0 gilt.
Sei umgekehrt f ∈ ker(φ∗), also f ◦ φ = 0. Definiere nun g : im(ψ)→ K via g(c) := f (b) für
ψ(b) = c. Die Wohldefiniertheit folgt aus folgender Berechnung

ψ(b) = ψ(b′) =⇒ b − b′ ∈ ker(ψ) = im(φ)

=⇒ f (b − b′) = 0

⇐⇒ f (b) = f (b′).

Nun lässt sich die lineare Abbildung g zu einer auf ganz C fortsetzen (– ist C ∞-dimensional
so geschieht dies unter Verwendung von Zorns-Lemma).
Dementsprechend induziert die lange exakte Sequenz aus Theorem 3.1.1 die dualisierte ex-
akte Sequenz

. . . Hp+1
c (U1 ∩ U2)∗ Hp

c (U)∗ Hp
c (U1)∗ ⊕ Hp

c (U2)∗ Hp
c (U1 ∩ U2)∗ . . .

∂! I! J!

mit
I!(α) =

(
(i1∗)∗(α); (i2∗)∗(α)

)
und J!(α1;α2) = ( j1∗)∗(α1) − ( j2∗)∗(α2)(

Hierbei bezeichnet für eine lineare Abbildung F : V → W, F∗ die duale Abbildung
W∗ → V∗ zu F gegeben durch F∗( f ) = f ◦ F.

)
3.2 Konstruktion der Abbildung / Aussage
Für eine glatte Mannigfaltigkeit Mn definiert das äußere Produkt eine bilineare Abbildung

Ωp(M) ×Ωn−p
c (M)→ Ωn

c(M)

da supp(ω1 ∧ ω2) ⊆ supp(ω1) ∩ supp(ω2) und induziert damit eine bilineare Abbildung

Hp(M) × Hn−p
c (M)→ Hn

c (M)

Ist M nun weiter auch orientierbar, so ist Integration auf M wohldefiniert und wir erhalten
eine Bilinearform

Bp
M : Hp(M) × Hn−p

c (M)→ R,
(
[ω1]; [ω2]

)
7→

∫
M
ω1 ∧ ω2

welche dann kanonisch die Abbildung

Dp
M : Hp(M)→ Hn−p

c (M)∗, [ω] 7→
(
[τ] 7→ Bp

M (ω; τ)
)

induziert.
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3.3. BEWEIS

Theorem 3.2.1 (Poincaré-Dualität)
Für eine orientierbare glatte n-Mannigfaltigkeit M definiert die Abbildung

Dp
M : Hp(M)→ Hn−p

c (M)∗

für alle p einen Isomorphismus.

3.3 Beweis

Die Methodik des Beweises der Poincaré-Dualität basiert auf dem Leitmotiv von folgendem

Satz 3.3.1 (Induktion über offene Mengen)
Sei Mn eine glatte Mannigfaltigkeit mit offener ÜberdeckungV = (Vβ)β∈B. Sei weiterU eine
Familie offener Teilmengen von M die den folgenden Bedingungen genügen:

(i) ∅ ∈ U

(ii) Jede offene Teilmenge U ⊆ Vβ diffeomorph zu Rn ist inU enthalten

(iii) Wenn U1,U2 und U1 ∩ U2 inU enthalten sind, dann gilt auch U1 ∪ U2 ∈ U

(iv) Ist U1,U2, . . . eine Folge paarweiser disjunkter offener Teilmengen mit Ui ∈ U, dann
gilt auch

⋃
i∈N

Ui ∈ U

Dann gehört M zuU.

Im Folgenden sei M stets eine orientierbare glatte n-Mannigfaltigkeit.

Lemma 3.3.2

Hp
c (Rn) =

R ; p = n
0 ; sonst

Beweis:

– Für p = 0:
Beobachte, dass der Vektorraum H0

c (Rn) aus den lokal konstanten Funktionen f : Rn → R
mit kompakten Träger besteht. Da der Rn zusammenhängend ist, muss so eine Funktion f
schon global konstant sein und da nun Rn nicht kompakt ist, muss schon f ≡ 0 gelten.
– Für 0 < p < n:
Betrachte statt dem Rn den, via der stereographischen Projektion, diffeomorphen Raum S n \

{x0}. Der Kettenkomplex Ω∗c (S n \ {x0}) aufgefasst als Subkomplex von Ω∗(S n) besteht aus
allen Differentialformen, die in einer Umgebung von x0 verschwinden.
Sei ω ∈ Ωp

c
(
S n \ {x0}

)
eine geschlossene Form. Bekanntlich gilt Hp

c (S n) = Hp(S n) = 0,
womit ω in Ω∗c(S n) exakt ist. Folglich gibt es ein τ ∈ Ωp−1

c (S n) mit dτ = ω. Es genügt nun
zu zeigen, dass τ so modifiziert werden kann, dass die Abbildung in einer Umgebung von x0
verschwindet.
Sei also W eine offene Umgebung von x0, diffeomorph zu Rn, so dass ω |W= 0.
Im Falle p = 1 ist τ eine Funktion auf S n, die konstant auf W ist, sei also τ |W= a. Dann gilt
für τ′ := τ − a ∈ Ω0

c
(
S n \ {x0}

)
sowohl τ′ |W≡ 0 als auch dτ′ = ω.

Ist hingegen 2 ≤ p ≤ n, so bemerke, dass Hp−1(W) � Hp−1(Rn) = 0 und damit τ |W eine
geschlossene Form ist – sei also σ ∈ Ωp−2(W) mit dσ = τ |W . Wähle nun eine glatte Funktion
φ : S n → [0; 1] mit suppS n (φ) ⊆ W, welche den Wert 1 auf einer kleineren offenen Umgebung
U ⊊ W von x0. Die Form φ·σ auf W kann auf ganz S n zu einer Form σ̃ ∈ Ωp−2(S n) fortgesetzt
werden, indem sie auf S n \W Null gesetzt wird. Für die Form τ′ := τ − dσ̃ gilt dann sowohl
τ′ |U≡ 0 als auch dτ′ = dτ = ω.
In beiden Fällen ist ω also auch in Ω∗c

(
S n \ {x0}

)
exakt.
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3.3. BEWEIS

– Für p = n:
Die Bemerkung vom Anfang des Kapitels liefert für die orientierbare glatte Mannigfaltigkeit
M = Rn sofort ∫

Rn
: Hn

c (Rn)
�
−→ R.

Lemma 3.3.3
Seien V ⊆ U ⊆ M offene Teilmengen, so kommutiert folgendes Diagramm

Hp(U) Hp(V)

Hn−p
c (U)∗ Hn−p

c (V)∗

Dp
U

Hp(i)

Dp
V

(i∗)∗

Beweis:

Seien ω ∈ Ωp(U), τ ∈ Ωn−p
c (V) geschlossene Formen mit Kohomologie-Klassen [ω], [τ], so

gilt (
Dp

V ◦ Hp(i)
)

([ω])([τ]) = Dp
V
( [

i∗(ω)
] )

([τ]) =
∫

V
i∗(ω) ∧ τ(

(i∗)∗ ◦ Dp
U

)
([ω])([τ]) = Dp

U([ω])
[
i∗(τ)

]
=

∫
U
ω ∧ i∗(τ)

Da weiter suppU
(
ω ∧ i∗(τ)

)
⊆ suppU

(
i∗(τ)

)
= suppV (τ) gilt, genügt es im zweiten Integral

über V zu integrieren. Nun genügt es zu bemerken, dass die n-Formen i∗(ω)∧ τ und ω∧ i∗(τ)
auf V übereinstimmen.

Lemma 3.3.4
Seien U1,U2 ⊆ M offen mit Vereinigung U, dann ist das Diagramm

Hp(U1 ∩ U2) Hp+1(U)

Hn−p
c (U1 ∩ U2)∗ Hn−p−1

c (U)∗

∂∗

Dp
U1∩U2

Dp+1
U

(−1)p+1(∂∗)∗

kommutativ.

Beweis:

Seien ω ∈ Ωp(U1 ∩ U2), τ ∈ Ωn−p−1
c (U) geschlossene Formen. Schreibe nun ω = j∗1(ω1) −

j∗2(ω2) mit ων ∈ Ωp(Uν) und jν : U1 ∩ U2 ↪→ Uν, die natürlichen Inklusionen. Sei κ ∈
Ωp+1(U) die (p + 1)-Form mit i∗ν(κ) = dων, wobei iν : Uν ↪→ U die Inklusionen seien, sodass
[κ] = ∂∗

(
[ω]

)
gilt. Daraus folgt(

Dp+1
U ◦ ∂∗

)
([ω])([τ]) = Dp+1

U ([κ])(τ) =
∫

U
κ ∧ τ

Um einen Repräsentanten für ∂∗([τ]) ∈ Hn−p
c (U1 ∩ U2) zu finden, schreibe τ = τ1 + τ2 mit

τν ∈ Ω
n−p−1
c (U) und suppU(τν) ⊆ Uν

und setze dann σ = j∗1(dτ1) = − j∗2(dτ2). Dann ist σ eine geschlossene (n − p)-Form mit
[σ] = ∂∗([τ]). Folglich gilt(

(∂∗)∗ ◦ DU1∩U2

)
([ω])([σ]) =

∫
U1∩U2

ω ∧ σ

Nun gilt es die beiden Integrale zu vergleichen:
Wegen suppU(τν) ⊆ Uν gilt∫

U
κ ∧ τ =

∫
U
κ ∧ τ1 +

∫
U
κ ∧ τ2 =

∫
U1

dω1 ∧ τ1 +

∫
U2

dω2 ∧ τ2
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3.3. BEWEIS

Weiter gilt bekanntlich d(ων ∧ τν) = dων ∧ ττ + (−1)pων ∧ dτν als auch∫
Uν

d(ων ∧ τν) = 0

(nach Stokes Theorem – M besitzt keinen Rand) und damit

(−1)p+1
∫

U
κ∧τ = (−1)p+1

∫
U1

dω1∧τ1+(−1)p+1
∫

U2

dω2∧τ2 =

∫
U1

ω1∧dτ1+

∫
U2

ω2∧dτ2.

Weiterhin gilt aber dτ1 |U1= j1∗(σ) und dτ2 |U2= − j2∗(σ), also∫
U1

ω1 ∧ dτ1 +

∫
U2

ω2 ∧ dτ2 =

∫
U1

ω1 ∧ j1∗(σ) −
∫

U2

ω2 ∧ j2∗(σ)

=

∫
U1∩U2

j∗1(ω1) ∧ σ −
∫

U1∩U2

j∗2(ω2) ∧ σ

=

∫
U1∩U2

ω ∧ σ

□

Proposition 3.3.5
Für eine Familie paarweise disjunkter offener Teilmengen {Uα}α∈A einer glatten Mannigfal-
tigkeit M mit Vereinigung U sind folgende Abbildungen Isomorphismen:

(i) Hp(U)→
∏
α∈A

Hp(Uα), [ω] 7→
([

i∗α(ω)
])
α∈A

(ii) Hp
c (U)∗ →

∏
α∈A

Hp
c (Uα)∗, β 7→

(
(iα∗)∗(β)

)
α∈A

Beweis:

Betrachte zunächst die Isomorphismen

Φp : Ωp(U)→
∏
α∈A

Ωp(Uα), ω 7→
(
i∗α(ω)

)
α∈A

Ψp :
⊕
α∈A

Ω
p
c (Uα)→ Ωp

c (U), (ωα)α∈A 7→
∑
α∈A

iα∗(ωα)

Weiter definieren diese Abbildungen Isomorphismen von Kettenkomplexen, wobei das Dif-
ferential auf

∏
α∈A
Ω∗(Uα) gegeben ist durch

d
(
(τα)α∈A

)
= (dτα)α∈A

und
⊕
α∈A
Ω∗c(Uα) ⊆

∏
α∈A
Ω∗c(Uα) ⊆

∏
α∈A
Ω∗(Uα) als Subkomplex aufgefasst wird.

Daraus erhalten wir (i) als auch einen Isomorphismus⊕
α∈A

Hp
c (Uα)

�
→ Hp

c (U), ([ωα])α∈A 7→
∑
α∈A

iα∗([ωα]) .

Da nun ein direktes Produkt zu einem direkten Produkt dualisiert wird, d. h.(⊕
α∈A

Vα

)∗ �
−→

∏
α∈A

V∗α, f 7→ ( f ◦ ια)α∈A ,

folgt (ii).
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3.3. BEWEIS

Korollar 3.3.6

(i) Jede offene Teilmenge U ⊆ M, diffeomorph zu Rn, erfüllt die Poincaré-Dualität.

(ii) Seien U1,U2 ⊆ M offen und nehme an, dass U1,U2 und U1 ∩U2 die Poincaré-Dualität
erfüllen, dann auch U = U1 ∪ U2.

(iii) Sei (Uα)α∈A eine Familie paarweise disjunkter offener Teilmengen von M und nehme
an jedes Uα erfüllt die Poincaré-Dualität, dann auch U =

⋃
α∈A

Uα.

Beweis:

Für (i) bemerke, dass Hp(U) � Hp(Rn) und Hn−p
c (U) � Hn−p

c (Rn), wobei nun bekanntlich

Hp(Rn) =

R ; p = 0
0 ; sonst

und nach Lemma 3.3.2

Hn−p
c (Rn) =

R ; p = 0
0 ; sonst

gilt. Damit genügt es zu zeigen, dass D0
U : H0(U) → Hn

c (U)∗ ein Isomorphismus ist. Beob-
achte dafür, dass D0

U die konstante 1-Funktion auf U auf den Basisvektor∫
U

: Hn
c (U)→ R

von Hn
c (Rn) � R abbildet.

Für (ii) genügt es, dass folgende kommutative Diagramm zu betrachten:

Hp(U)
∏
α∈A

Hp(Uα)

Hn−p
c (U)∗

∏
α∈A

Hn−p
c (Uα)∗

�

Dp
U

∏
α

Dp
Uα

�

mit den horizontalen Isomorphismen aus Proposition 3.3.5. Nach Voraussetzung von (ii) ist∏
α

Dp
Uα

ein Isomorphismus und damit auch Dp
U .

Betrachte nun für (iii) das Diagramm

. . . Hp(U) Hp(U1) ⊕ Hp(U2) Hp(U1 ∩ U2) Hp+1(U) . . .

. . . Hn−p
c (U)∗ Hn−p

c (U1)∗ ⊕ Hn−p
c (U2)∗ Hn−p

c (U1 ∩ U2)∗ Hn−p−1
c (U)∗ . . .

I∗

Dp
U

J∗

Dp
U1
⊕Dp

U2

∂∗

Dp
U1∩U2

Dp+1
U

I! J! (−1)p+1(∂∗)∗

Dieses Diagramm kommutiert nach den vorausgehenden zwei Lemmata.
Die Voraussetzungen von (i) bedeuten, dass Dp

U1
⊕Dp

U2
und Dp

U1∩U2
für alle p Isomorphismen

sind. Dass dann auch Dp
U für alle p ein Isomorphismus ist, folgt aus dem

5-Lemma:
Sind für ein kommutatives Diagramm in einer abelschen Kategorie (hier: Vektorräume)

A B C D E

A′ B′ C′ D′ E′

f

l

g

m

h

n

j

p q

r s t u

die Zeilen exakt, m und p Isomorphismen, l ein Epimorphismus und q ein Monomor-
phismus, dann ist n ein Isomorphismus.
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3.4. ANWENDUNGEN

BEWEIS von Theorem 3.2.1 (Poincaré-Dualität):
Betrachte die triviale ÜberdeckungV = (M) zusammen mit der Kollektion

U =
{
U ⊆ M | U offen, Dp

U ist ein Isomorphismus ∀p
}

Nach Korollar 3.3.6 sind alle Voraussetzungen von Satz 3.3.1 erfüllt und es folgt M ∈ U.

3.4 Anwendungen

Beispiel: Berechnung der Kohomologiegruppen von RP3:

(i) Da RP3 zusammenhängend ist, gilt H0
dR(RP3) = R

(ii) Weiter wissen wir, dass π1(RP3) � π1(RP2) � Z/2Z. Nun ist Z/2Z bereits abelsch und
es folgt H1(RP3;Z) � Z/2Z. Da Z torsionsfrei ist, erhalten wir nach dem universellen
Koeffiziententheorem H1

sing(RP3;Z) = 0 und zusammen mit dem Satz von de Rham
H1

dR(RP3) = 0.

(iii) Die Poincaré-Dualität liefert nun sofort die übrigen Kohomologiegruppen:

Hp
dR(RP3) =

R ; p = 0, 3
0 ; sonst

Definition 3.4.1
Sei Mn eine glatte Untermannigfaltigkeit mit endlichdimensionaler Kohomologie, dann ist
die i-te Betti-Zahl gegeben durch

bi(M) = dimR Hi(Mn).

Die Euler-Charakteristik von Mn ist definiert als

χ(M) =
n∑

i=0

(−1)ibi(M).

Korollar 3.4.2
Sei M eine kompakte orientierbare glatte n-Mannigfaltigkeiten, so gilt für alle k

bk(M) = bn−k(M)

Satz 3.4.3
Jede kompakte (orientierbare) glatte Mannigfaltigkeit M von ungerader Dimension besitzt
die Euler-Charakteristik χ(M) = 0.

Beweis:

Sei M eine kompakte glatte Mannigfaltigkeit von ungerader Dimension n, die zusätzlich noch
orientierbar sei, so gilt nach der Poincaré-Dualität (Theorem 3.2.1) Hi(Mn) � Hn−i(Mn)∗ und
folglich bi(M) = bn−i(M) für alle i. Daraus folgt

χ(M) =
n∑

i=0

(−1)ibi(M) =
n∑

i=0

(−1)ibn−i(M) = (−1)n
n∑

j=0

(−1)− jb j(M) = −
n∑

j=0

(−1) jb j(M)

=⇒ χ(M) = 0
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3.4. ANWENDUNGEN

Im Falle, dass M nicht orientierbar ist, verwenden wir die Multiplikativität der Euler-
Charakterstik unter Überlagerungen und erhalten für die 2-blättrige Orientierungsüber-
lagerung

χ(E) = 2 · χ(M).

Hierbei gilt es für den Totalraum Folgendes zu bemerken:

– E bildet eine glatte Mannnigfaltigkeit, da die Orientierungsüberlagerung lokal ein
Homöomorphismus ist

– E ist kompakt, da endlich-blättrige Überlagerungen von Mannigfaltigkeiten ei-
gentliche Abbildungen sind

– E ist orientierbar:
Konstruiere hierfür eine nichtdegenerierte n-Form ω̃ auf E – wähle dafür auf jeder
Karte (U;φ) lokal eine (nichtverschwindende) Volumenform ωU und setze dann
für q ∈ U, α ∈ Or

(
TqM

)
ω̃ (q; α) := σ(U;φ)(q;α) · p∗(ωU)(q; α)

Damit ist der Fall M nicht orientierbar auf den Fall E orientierbar zurückzuführen.
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