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2.1 Cotangent bundles and vector fields

Definition: Tangent bundle (Repetition)

Let M be a smooth manifold. Its tangent bundle 7'M is a vector bundle and the disjoint
union of the tangens spaces of M:

TM = |_| T, M.

zeM

The projection of the bundle is given by

m:TM — M

(x,v) — 2.

Note that given an atlas of M, a bundle atlas can easily be derived. Consider a chart

(U, h,$2). Define

H:p?'(U)=TU — U xR"
(z,v) — H((z,v)) = (z, D;h(v))

as the corresponding map in the bundle chart.

Definition: Cotangent bundle

Let M be a smooth mainfold. We saw that T, M has a vector space structure. Let T M
be the corresponding dual vectorspace. We define

T#M = | | T#M

zeM
as the cotangent bundle of M. The projection is given by
™ T*M — M

(z,0%) — z.

Note that v is just some vector in the cotangent space and has nothing to do with
the v from the tangent space.
Again, we can construct a bundle atlas given an atlas on M. Consider a chart (U, h, ).
Define
H:p '(U)=T%U — U x (R")*
(z,v%) > H((z,v%)) = (z, (Dzh)* (v*))

as the corresponding map in the bundle chart.

Definition: Function (Repetition)

Let M be a smooth manifold. A map f: M — R" is called a function. The function is
smooth if for every chart (U, h,Q), f o h™! is smooth.
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Definition: Section (vector bundel)

Remark: One could define this for fiber bundles. For our purpose, the definition applied
to vector bundles is enough.

Consider a vector bundle with total space E, base space B and projection p : E — B.
A section s : B — FE in this vector bundle, is a right inverse of the projection:

p(s(z)) =z Ve B.

Definition: vector field

Let M be a smooth manifold. A vector field is a smooth section in the tangent bundle
TM. It is a function

v: M — TM with pov =1d, .

Therefore, v(z) € T,M Y x € M. We want v to be smooth (C*). We denote the set
of all smooth vector fields with I'**(T'M).

Example (trivial vector field)

We always have the trivial vector field on a smooth manifold that maps every x to
(z,0).

Example (vector fields on S?)

There is no vector field on S? that does not vanish. Therefore, TS? cannot be trivial
(ie. TS* = §* x R?). If it was trivial, a non-vanishing vector field could easily be
constructed.

Example (gradient)

Consider R" as a manifold. Each tangent space is R" again. For a smooth f : R" — R,
the map

| af af
Vf.x»—>(a—xl a%)

is a vector field. An example of this is the gradient of
f:R* =R, (z,y) — 2 — >

The gradient of this function looks like this:
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2.2 Differential forms

Definition: exterior algebra (repetition from Linear Algebra II)

Let V' be a vector space. We define
TWV)=PTV)=KevVae(VeV)e(VeVveV)e....
k=0

Also, we definie I as the ideal generated by all x ® x for all x € V. Then, we define

Note that T'(V) is a ring with the tensor product as a multiplication. Define
aANf=a® mod I.
We define A\"(V) as the vector subspace of A(V) spanned by all

Ty NTo NNz forax; eV,i=1,2,... k.

Definition: differential form

Let M be a smooth manifold. A differential form of degree k or k-form w is a smooth
section in the k-th exterior power of the cotangent bundle of M:
w: M — ANT#M) = | | ANTFM).
zeM

Because w is a section, we get

w(z) € A*(T#M).
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We see that w maps every point x € M to an alternating multilinear form in 7, M. We
often write w, for w(z). We see that

Wy (T,M)* = R

is smoothly varying with = (we will see what that means).

Example (k-forms)

e smooth maps are O-forms because A°(T# M) = R. Therefore Q"(M) = C*°(M, R).

e Pfaffian forms are 1-forms because A (T M) = T# M. These are covector fiels
and each w, is just a linear map T, M — R. Pfaffian forms are the dual concept for
vector fields because they are sections M — T# M instead of sections M — T, M.

Claim 2.1 Basis of A]‘"(TP#ZW)

As we saw in the last talk, for a given chart (U, h,{2) on an n-dimensional smooth
manifold M, the directional derivatives form a base of the tangent space. Based on this
basis, we construct the correspoinding dual basis of Tf M with (xl xn) being a
vector representation in the basis given by the partial derivatives:

do;: T,M — R

(X1, ...y Tp) — T

We see that dx; € Tf M and because every linear form 7,/ — R can be written as

n
Z QaiZs,
i=1
the dz; are a basis of Tf M. We therefore see, that a basis of the k-forms is

n

and that dim A*(T# M) = (k

). We see that every k-form can be written as

11<...<if

The smoothness of the k-form now just means that all the f;, ; are smooth for every
chart.
We especially see that a basis of the n-forms is just

dzy N ... Ndxy,
and therefore every n-form can be written as
wy = f(z)dzy A ... ANy,

for some smooth f € C*°(M,R).
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Example (differential forms on S?)

e 0-Form: w, = f(p)
e 1-Form: w, = fi(p)dx1 + fa(p)das
e 2-Form: w, = f(p)dxy A dxs

e 3-forms: constant 0 because T, M = R? so every alternating 3-form has already 2
linearly dependent parts that cancel

“Wedging”

(fulp)dz1 + fa(p)dz2) A (g1(p)dz1 + g2(p)da2)
= ((f1(p) - g1(p))(dz1 A dz1) + (f1(p) - 92(p))(d21 A o)
+ (f2(p) - 91(p))(dz2 A dz1) + (f2(p) - 92(P))(dz2 A d2))
= (fi(p) - 92(p) — fo(p) - 1(p))(dz1 A dzs).

Example (dz; A dz,)
What does this mean? This must be an alternating bilinearform that takes 2 vectors
and only considers their first 2 components and should be normed.

dri Adzy : ((Ul) , (wl)) 7
V2 W2
From Linear Algebra I we then know that this can only be the determinant. Therefore
(G- (@)= )
U2 W2 V2 W2

We get analogue identities with determinantes of k£ x k-matrices that contain the com-
ponents 4, ..., for dr;,, A ... ANdz,,.

Definition: QF(M)

The k-forms on M form a vector space as we can add them pointwise and multiply
them by scalars pointwise as well. We call the usually infinite-dimensional vector space
of the k-forms QF(M). We set

=
=
I
P
2
5

k=1

Note that for finite dimensional manifolds, this sum is finite since Q*(M) is trivial for
k> dim M.
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Definition: exterior power of the differential forms

The product in the exterior power defines maps

OF(M) x QY(M) = Q(M), (w, 1) = w A p
with

(WA W)y =Wy A Ly

Definition: orientable

A smooth manifold M of dimension n is called orientable if there exists w € Q"(M) with
w, # 0 for all x € M. Such an w is called an orientation form on M. Two orientation
forms w, 7 on M are equivalent if 7 = f - w for some f € Q°(M) with f(x) > 0 for all
x € M. An orientation of M is an equivalence class of orientation forms on M.

Remark

An orientation form is either everywhere positive or negative for a given basis. Therefore,
on a connected orientable manifold, there are just 2 orientations. An orientation form
orients a given basis by plugging the basis vectors into the form and checking the
resulting value for its sign. If the determinant of a basis transformation is positive, the
basis have the same orientations for a given orientation form.

2.3 Integration on manifolds

Definition: Integration on R"

Consider R" as an n-dimensional manifold with the standard orientation (the canonical
basis of the partial derivatives should be positivly oriented). We saw that dz; A. .. Adx,
is a basis of the n-forms. We write

we QNR") as f(x)dxy A ... Ndx,.
f € C(R", R) should have compact support here. We define
fx)dxy A ... Ndx, = f(x)duy,
R™ R”

using the usual Lebesgue measure dyu,, on R".

Definition: Integration on open subsets

We can extend the definition from before for w € Q7 (V) for V- C R" open because we
can smoothly extend w and f to R™ by setting them equal to 0 on R" — supp, (w).
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Example (3.12(ii) in [M-T])
Let ¢ : Uy — Uy be a smooth map between open sets in R". Then

o (dxy A ... Ndzy,) = det(Dyp)dxy A ... Adxy,.

Lemma 2.2 Integrals under diffeomorphisms

Let ¢ : V — W be a diffeomorphism between open subsets V' and W of R" and
assume that the Jacobi determinant det(D,) is of constant sign § = £1 for x € V. For

w € QW) we have
/gp*(w):5-/ w.
1% W

Note that ¢*(w) is the pullback. It means that we express w in the coordinates of the map .

Proof. If w is written as
w= f(x)dx; A ... Ndx,
with f € C(W,R) it follows from example 3.13(ii) in the book that
" (w) = fle(x))det(Dyp)dry A ... Adxy, = 6 f(p(2)) |[det(Dyp)| dzy A ..o A day,.

The lemma then follows from the transforation of integrals that states

/W F (@) dpin = / £((2)) |det(Dap) | djin.

Proposition 2.3 Integrals on manifolds
For an arbitrary oriented n-dimensional smooth manifold M of dimension n there exists
a unique linear map

/M:QZ(M)—HR

with the following property: If w € Q7 (M) has support contained in U, where (U, h, Q)
is a posivitly oriented C'*°-chart, then

Again, this means expressing w in coordinates from the chart h.

Proof: First, considere w € QI (M) with support such that supp,,(w) is contained in a
coordinate patch. Then (U, h,2) can be chosen as above and the integral is determined. We
must show that the right-hand side is independent of the choice of chart. Assume (U, h, Q) is
another positively oriented C*-chart with supp,,(w) C U.

The diffeomorphism ¢ : V — W from V = h(UNU) to W = h(U NU) given by ¢ = ho h™}
has everywhere positive Jacobi determinant. Since

Supph(U)((h_l)w) cvV, suppﬁ(g)((h_l)*w) cw

7
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and ¢*(h™')*w. The Lemma about the diffeomorphisms shows that

/hw)(hl)*w - /ﬁ(m(ﬁl)*w'

So for w € Q7(M) with support in a coordinate patch, the integral defined in the proposition
is independent of the chart.

Now choose a smooth partition of unity (p,)aca on M subordinate to an oriented C'*°-atlas
on M. For w € Q' (M) we have that

w:Zpaw

acA

where every term pow € QI (M) has support in a coordinate patch and where only finitely
many terms are non-zero. We define

-3 /M ot

where the term associated to a € A is given by the integral defined in the proposition,
applied to a U, with supp,;(pa) C U,. It is obvious that I is a linear operator on Q7 (M). If,
in particular, supp,,;(w) € U where (U, h,(?) is a positivly oriented C*°-chart, the terms of
the sum can be calculated by the integral applied to (U, h, §2). This yields

I(w):/Mw

which shows that [ is a linear operator with the desired properties. Uniqueness follows ana-
logously. O]

Remark

Note that in the proof we showed that by a partition of unity, we can integrate over
more than a single coordinate patch.

Example
Consider S' and the map h™* : (0,27) — S, ¢ — (cos(t),sin(t)). Let w = xdy restricted
to the upper semicircle (supp(w) = [0,¢]). We want to integrate w over S'. We see that

xr=cost y=sint dy = costdt.
Therefore, in the coordinates of out chart

(h1)*w = cos(t) cos(t)dt.

/ w :/ cos? (t)dt = T
st 0 2

Then
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Lemma 2.4 properties of the Integral

(i) / w changes sign when the orientation of M is reversed.
M

(i) If w € Q7 (M) has support contained in an open set W C M then

Je=J

when W is given the orientation induced by M.

(iii) If ¢ : N — M is an orientation-preserving diffeomorphism, then we have that

/Mw=/N<p*(w)

for w € QN (M).
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