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2.1 Cotangent bundles and vector fields

Definition: Tangent bundle (Repetition)

Let M be a smooth manifold. Its tangent bundle TM is a vector bundle and the disjoint
union of the tangens spaces of M :

TM :=
⊔
x∈M

TxM.

The projection of the bundle is given by

π : TM −→ M

(x, v) 7−→ x.

Note that given an atlas of M , a bundle atlas can easily be derived. Consider a chart
(U, h,Ω). Define

H : p−1(U) = TU −→ U × Rn

(x, v) 7−→ H((x, v)) = (x,Dxh(v))

as the corresponding map in the bundle chart.

Definition: Cotangent bundle

Let M be a smooth mainfold. We saw that TxM has a vector space structure. Let T#
x M

be the corresponding dual vectorspace. We define

T#M :=
⊔
x∈M

T#
x M

as the cotangent bundle of M . The projection is given by

π# : T#M −→ M

(x, v#) 7−→ x.

Note that v# is just some vector in the cotangent space and has nothing to do with
the v from the tangent space.
Again, we can construct a bundle atlas given an atlas on M . Consider a chart (U, h,Ω).
Define

H : p−1(U) = T#U −→ U × (Rn)#

(x, v#) 7−→ H((x, v#)) = (x, (Dxh)
#(v#))

as the corresponding map in the bundle chart.

Definition: Function (Repetition)

Let M be a smooth manifold. A map f : M → Rn is called a function. The function is
smooth if for every chart (U, h,Ω), f ◦ h−1 is smooth.
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Definition: Section (vector bundel)

Remark: One could define this for fiber bundles. For our purpose, the definition applied
to vector bundles is enough.
Consider a vector bundle with total space E, base space B and projection p : E → B.
A section s : B → E in this vector bundle, is a right inverse of the projection:

p(s(x)) = x ∀ x ∈ B.

Definition: vector field

Let M be a smooth manifold. A vector field is a smooth section in the tangent bundle
TM . It is a function

v : M → TM with p ◦ v = IdM .

Therefore, v(x) ∈ TxM ∀ x ∈ M . We want v to be smooth (C∞). We denote the set
of all smooth vector fields with Γ∞(TM).

Example (trivial vector field)
We always have the trivial vector field on a smooth manifold that maps every x to
(x, 0).

Example (vector fields on S2)
There is no vector field on S2 that does not vanish. Therefore, TS2 cannot be trivial
(i.e. TS2 ∼= S2 × R2). If it was trivial, a non-vanishing vector field could easily be
constructed.

Example (gradient)
Consider Rn as a manifold. Each tangent space is Rn again. For a smooth f : Rn → R,
the map

∇f : x 7→
(

∂f

∂x1

· · · ∂f

∂xn

)
is a vector field. An example of this is the gradient of

f : R2 → R, (x, y) 7→ x2 − y2.

The gradient of this function looks like this:
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2.2 Differential forms

Definition: exterior algebra (repetition from Linear Algebra II)

Let V be a vector space. We define

T (V ) =
∞⊕
k=0

T k(V ) = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . .

Also, we definie I as the ideal generated by all x⊗ x for all x ∈ V . Then, we define∧
(V ) := T (V )/I.

Note that T (V ) is a ring with the tensor product as a multiplication. Define

α ∧ β = α⊗ β mod I.

We define
∧k(V ) as the vector subspace of

∧
(V ) spanned by all

x1 ∧ x2 ∧ · · · ∧ xk for xi ∈ V, i = 1, 2, . . . , k.

Definition: differential form

Let M be a smooth manifold. A differential form of degree k or k-form ω is a smooth
section in the k-th exterior power of the cotangent bundle of M :

ω : M → Λk(T#M) :=
⊔
x∈M

Λk(T#
x M).

Because ω is a section, we get

ω(x) ∈ Λk(T#
x M).
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We see that ω maps every point x ∈ M to an alternating multilinear form in TxM . We
often write ωx for ω(x). We see that

ωx : (TxM)k → R

is smoothly varying with x (we will see what that means).

Example (k-forms)

• smooth maps are 0-forms because Λ0(T#
x M) = R. Therefore Ω0(M) = C∞(M,R).

• Pfaffian forms are 1-forms because Λ1(T#
x M) = T#

x M . These are covector fiels
and each ωx is just a linear map TxM → R. Pfaffian forms are the dual concept for
vector fields because they are sections M → T#

x M instead of sections M → TxM .

Claim 2.1 Basis of Λk(T#
p M)

As we saw in the last talk, for a given chart (U, h,Ω) on an n-dimensional smooth
manifold M , the directional derivatives form a base of the tangent space. Based on this
basis, we construct the correspoinding dual basis of T#

p M with
(
x1 · · · xn

)
being a

vector representation in the basis given by the partial derivatives:

dxi : TpM −→ R
(x1, . . . , xn) 7−→ xi.

We see that dxi ∈ T#
p M and because every linear form TpM → R can be written as

n∑
i=1

aixi,

the dxi are a basis of T#
p M . We therefore see, that a basis of the k-forms is

{dxi1 ∧ dxi2 ∧ . . . ∧ dxik for 1 ≤ i1 < i2 < . . . < ik ≤ n}

and that dimΛk(T#
p M) =

(
n

k

)
. We see that every k-form can be written as

ωx =
∑

i1<...<ik

fi1,...,ik(x)dxi1 ∧ . . . ∧ dxik .

The smoothness of the k-form now just means that all the fi1,...,ik are smooth for every
chart.
We especially see that a basis of the n-forms is just

dx1 ∧ . . . ∧ dxn

and therefore every n-form can be written as

ωx = f(x)dx1 ∧ . . . ∧ dxn

for some smooth f ∈ C∞(M,R).
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Example (differential forms on S2)

• 0-Form: ωp = f(p)

• 1-Form: ωp = f1(p)dx1 + f2(p)dx2

• 2-Form: ωp = f(p)dx1 ∧ dx2

• 3-forms: constant 0 because TxM ∼= R2 so every alternating 3-form has already 2
linearly dependent parts that cancel

“Wedging”:

(f1(p)dx1 + f2(p)dx2) ∧ (g1(p)dx1 + g2(p)dx2)

= ((f1(p) · g1(p))(dx1 ∧ dx1) + (f1(p) · g2(p))(dx1 ∧ dx2)

+ (f2(p) · g1(p))(dx2 ∧ dx1) + (f2(p) · g2(p))(dx2 ∧ dx2))

= (f1(p) · g2(p)− f2(p) · g1(p))(dx1 ∧ dx2).

Example (dx1 ∧ dx2)
What does this mean? This must be an alternating bilinearform that takes 2 vectors
and only considers their first 2 components and should be normed.

dx1 ∧ dx2 :

((
v1
v2

)
,

(
w1

w2

))
7→ ?

From Linear Algebra I we then know that this can only be the determinant. Therefore((
v1
v2

)
,

(
w1

w2

))
7→ det

(
v1 w1

v2 w2

)
.

We get analogue identities with determinantes of k× k-matrices that contain the com-
ponents i1, . . . , ik for dxi1 ∧ . . . ∧ dxik .

Definition: Ωk(M)

The k-forms on M form a vector space as we can add them pointwise and multiply
them by scalars pointwise as well. We call the usually infinite-dimensional vector space
of the k-forms Ωk(M). We set

Ω(M) =
∞⊕
k=1

Ωk(M).

Note that for finite dimensional manifolds, this sum is finite since Ωk(M) is trivial for
k > dimM .
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Definition: exterior power of the differential forms

The product in the exterior power defines maps

Ωk(M)× Ωℓ(M) → Ωk+ℓ(M), (ω, µ) 7→ ω ∧ µ

with

(ω ∧ µ)x := ωx ∧ µx.

Definition: orientable

A smooth manifold M of dimension n is called orientable if there exists ω ∈ Ωn(M) with
ωx ̸= 0 for all x ∈ M . Such an ω is called an orientation form on M . Two orientation
forms ω, τ on M are equivalent if τ = f · ω for some f ∈ Ω0(M) with f(x) > 0 for all
x ∈ M . An orientation of M is an equivalence class of orientation forms on M .

Remark

An orientation form is either everywhere positive or negative for a given basis. Therefore,
on a connected orientable manifold, there are just 2 orientations. An orientation form
orients a given basis by plugging the basis vectors into the form and checking the
resulting value for its sign. If the determinant of a basis transformation is positive, the
basis have the same orientations for a given orientation form.

2.3 Integration on manifolds

Definition: Integration on Rn

Consider Rn as an n-dimensional manifold with the standard orientation (the canonical
basis of the partial derivatives should be positivly oriented). We saw that dx1∧ . . .∧dxn

is a basis of the n-forms. We write

ω ∈ Ωn
c (Rn) as f(x)dx1 ∧ . . . ∧ dxn.

f ∈ C∞(Rn,R) should have compact support here. We define
ˆ
Rn

f(x)dx1 ∧ . . . ∧ dxn =

ˆ
Rn

f(x)dµn

using the usual Lebesgue measure dµn on Rn.

Definition: Integration on open subsets

We can extend the definition from before for ω ∈ Ωn
c (V ) for V ⊆ Rn open because we

can smoothly extend ω and f to Rn by setting them equal to 0 on Rn − suppV (ω).
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Example (3.12(ii) in [M-T])
Let φ : U1 → U2 be a smooth map between open sets in Rn. Then

φ∗(dx1 ∧ . . . ∧ dxn) = det(Dxφ)dx1 ∧ . . . ∧ dxn.

Lemma 2.2 Integrals under diffeomorphisms
Let φ : V → W be a diffeomorphism between open subsets V and W of Rn and
assume that the Jacobi determinant det(Dxφ) is of constant sign δ = ±1 for x ∈ V . For
ω ∈ Ωn

c (W ) we have
ˆ
V

φ∗(ω) = δ ·
ˆ
W

ω.

Note that φ∗(ω) is the pullback. It means that we express ω in the coordinates of the map φ.

Proof. If ω is written as

ω = f(x)dx1 ∧ . . . ∧ dxn

with f ∈ C∞
c (W,R) it follows from example 3.13(ii) in the book that

φ∗(ω) = f(φ(x)) det(Dxφ)dx1 ∧ . . . ∧ dxn = δf(φ(x)) |det(Dxφ)| dx1 ∧ . . . ∧ dxn.

The lemma then follows from the transforation of integrals that statesˆ
W

f(x)dµn =

ˆ
V

f(φ(x)) |det(Dxφ)| dµn.

Proposition 2.3 Integrals on manifolds
For an arbitrary oriented n-dimensional smooth manifold M of dimension n there exists
a unique linear map

ˆ
M

: Ωn
c (M) → R

with the following property: If ω ∈ Ωn
c (M) has support contained in U , where (U, h,Ω)

is a posivitly oriented C∞-chart, then
ˆ
M

ω =

ˆ
h(U)

(h−1)∗ω.

Again, this means expressing ω in coordinates from the chart h.

Proof: First, considere ω ∈ Ωn
c (M) with support such that suppM(ω) is contained in a

coordinate patch. Then (U, h,Ω) can be chosen as above and the integral is determined. We
must show that the right-hand side is independent of the choice of chart. Assume (Ũ , h̃, Ω̃) is
another positively oriented C∞-chart with suppM(ω) ⊆ Ũ .
The diffeomorphism φ : V → W from V = h(U ∩ Ũ) to W = h̃(U ∩ Ũ) given by φ = h̃ ◦ h−1

has everywhere positive Jacobi determinant. Since

supph(U)((h
−1)ω) ⊆ V, supph̃(Ũ)((h̃

−1)∗ω) ⊆ W
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and φ∗(h̃−1)∗ω. The Lemma about the diffeomorphisms shows that
ˆ
h(U)

(h−1)∗ω =

ˆ
h̃(Ũ)

(h̃−1)∗ω.

So for ω ∈ Ωn
c (M) with support in a coordinate patch, the integral defined in the proposition

is independent of the chart.
Now choose a smooth partition of unity (ρα)α∈A on M subordinate to an oriented C∞-atlas
on M . For ω ∈ Ωn

c (M) we have that

ω =
∑
α∈A

ραω

where every term ραω ∈ Ωn
c (M) has support in a coordinate patch and where only finitely

many terms are non-zero. We define

I(ω) =
∑
α∈A

ˆ
M

ραω

where the term associated to α ∈ A is given by the integral defined in the proposition,
applied to a Uα with suppM(ρα) ⊆ Uα. It is obvious that I is a linear operator on Ωn

c (M). If,
in particular, suppM(ω) ⊆ U where (U, h,Ω) is a positivly oriented C∞-chart, the terms of
the sum can be calculated by the integral applied to (U, h,Ω). This yields

I(ω) =

ˆ
M

ω

which shows that I is a linear operator with the desired properties. Uniqueness follows ana-
logously.

Remark

Note that in the proof we showed that by a partition of unity, we can integrate over
more than a single coordinate patch.

Example
Consider S1 and the map h−1 : (0, 2π) → S1, t 7→ (cos(t), sin(t)). Let ω = xdy restricted
to the upper semicircle (supp(ω) = [0, t]). We want to integrate ω over S1. We see that

x = cos t y = sin t dy = cos tdt.

Therefore, in the coordinates of out chart

(h−1)∗ω = cos(t) cos(t)dt.

Then ˆ
S1
ω =

ˆ π

0

cos2(t)dt =
π

2
.
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Lemma 2.4 properties of the Integral

(i)
ˆ
M

ω changes sign when the orientation of M is reversed.

(ii) If ω ∈ Ωn
c (M) has support contained in an open set W ⊂ M then

ˆ
M

ω =

ˆ
W

ω

when W is given the orientation induced by M .

(iii) If φ : N → M is an orientation-preserving diffeomorphism, then we have that
ˆ
M

ω =

ˆ
N

φ∗(ω)

for ω ∈ Ωn
c (M).
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