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1 Stiefel Manifolds and Grassmannian Manifolds

Let F = R or C, and let Fn be equipped with the standard inner product. The construction of Stiefel
manifolds requires the following theorem from differential geometry.

Theorem 1.1 (Preimage Theorem). Let f : X → Y be a smooth map between smooth manifolds with
dimX ≥ dimY . Let y ∈ Y be a regular value, then f−1(y) is a smooth submanifold of X. If y ∈ f(X),
then dim f−1(y) = dimX − dimY .

Construction 1.2 (Stiefel manifold). Let Vk(Fn) (or Vk,n) be the set of all orthonormal k-frames in
Fn. An orthonormal k-frame is an ordered set of k vectors which are orthonormal, so Vk(Fn) can
be identified with {A ∈ Mn×k(F) : A†A = Ik} (or equivalently the set L(Fk,Fn) of linear isometric
embeddings). We may give Vk(Fn) the structure of a smooth manifold as follows. Consider the map
f :Mn×k(F) → Sk(F), A 7→ A†A, where Sk(F) denotes the space of symmetric/Hermitian matrices. This
is a smooth map and Ik is a regular value. To see this, note that if f(A) = Ik, then for each C ∈ Sk(F),
a solution to Df |A(H) = H†A+A†H = C is given by H = 1

2AC. Thus by preimage theorem, Vk(Fn) is
a smooth manifold, and dimVk(Rn) = nk − 1

2k(k + 1) and dimVk(Cn) = 2nk − k2. [Note that f−1(Ik)
is closed and bounded, so Vk(Fn) is compact.]

Example 1.3.

(i) V1(Rn) ∼= Sn−1, V1(Cn) ∼= S2n−1.

(ii) Vn(Rn) ∼= O(n), Vn(Cn) ∼= U(n).

(iii) V2(Rn) ∼= S(TSn−1), the total space of the unit sphere bundle of TSn−1.

(iv) Vn−1(Rn) ∼= SO(n). (For each orthonormal (n− 1)-frame of Rn, there is a unique choice of the nth
vector to extend to an orthonormal basis with positive orientation.)

Lemma 1.4. There is a fiber bundle Vk−1(Fn−1) → Vk(Fn)
p→ V1(Fn) (1 < k ≤ n), where the projection

map p is defined by extracting the first vector in an orthonormal k-frame.

Sketch of proof. We proceed as in [2]. Each v ∈ V1(Rn) defines a hyperplane by the equation ⟨x, v⟩ = 0.
To construct a trivialization near v, we must identify the fibers over points near v with the standard
Vk−1(Rn) smoothly. To this end, we extend v to an orthonormal basis (v, w2, ..., wn) of V , so (w2, ..., wn)
form an orthonormal basis of v⊥. For all u in the open hemisphere U containing v, the orthogonal
projection Q : v⊥ → u⊥ onto u⊥ is a linear isomorphism, so {Q(w2), ..., Q(wn)} is linearly independent.
One can apply Gram-Schmidt process to this linearly independent set to get an orthonormal sequence.
This identifies u⊥ with Rn−1 isometrically for u in the open hemisphere containing v, and this depends
smoothly on u. Under this identification a (k− 1)-frame of u⊥ is identified with an orthonormal (k− 1)-
frame of Rn−1, and this depends smoothly on u. This is a local trivialization.

The complex case follows from similar argument.

Construction 1.5 (Grassmann manifold). Note that O(k) (resp. U(k)) acts on Vk(Rn) (resp. Vk(Cn))
as follows. Given a linear isometry f : Rk → Rn (resp. Ck → Cn) and an element α ∈ O(k) (resp.
U(k)), α acts on f by precomposition. Let Gk(Fn) (or Gk,n) be the orbit space Vk,n/O(k), which can
be identified with the set of k-dimensional1 linear subspaces of Fn. Gk,n can be given the structure

1Dimension here means dimF.
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of a smooth manifold as follows. For each subset I = {i1 < i2 < · · · < ik} ⊆ {1, ..., n} and n × k
matrix A, we introduce the notation AI to denote the submatrix of A obtained by deleting rows indexed
by {1, ..., n} \ I and ÂI to denote the submatrix of A obtaiend by deleting rows indexed by I. Define
coordinate neighborhoods

UI = {linear subspace spanned by columns of A ∈Mn×k(F) : detAI ̸= 0}

Up to change of basis, each linear subspace in UI has a unique representative A s.t. AI = Ik, e.g., if
I = {1, ..., k}, then

U{1,...,k} =

{
linear subspace spanned by the columns matrices of the form

(
Ik
∗

)}

Define φI : UI → Fk(n−k) by picking out the entries of ÂI . Given I, J ⊆ {1, ..., n}. The transition
function φI ◦φ−1

J picks k(n− k) entries to give a matrix A s.t. AJ = Ik and detAI ̸= 0, then inverts AI
and map to Fk(n−k) by φI . Each coordinate is a rational function such that the denominator is detAI ,
so the transition maps are smooth.

We have dimGrk(Rn) = k(n− k) and dimGrk(Cn) = 2k(n− k).

Remark 1.6. The above construction of smooth atlas specializes to the standard affine charts on FPn−1

when k = 1.

Example 1.7.

(i) G1(Rn) ∼= RPn−1, G1(Cn) = CPn−1.

(ii) Gk(Fn) ∼= Gn−k(Fn). Note that there is a map Grk,n → Grn−k,n sending a k-dimensional subspace
to its unique orthogonal complement.

Construction 1.8 (Oriented Grassmann manifold). Let G̃k(Rn) (or G̃k,n) be the orbit space Vk(Rn)/SO(n).

To see that this is a smooth manifold, note that the cyclic group C2 acts freely on G̃k(Rn) by flipping
the orientation. The quotient map G̃k(Rn) → Gk(Rn) is a double cover, and one can lift the smooth
structure on Gk(Rn) to a smooth structure on G̃k(Rn) such that the covering map is smooth.

Example 1.9.

(i) G̃1,n
∼= Sn−1 ∼= G̃n−1,n.

(ii) G̃k,n ∼= G̃n−k,n.

2 Projectivization of Vector Bundles

Construction 2.1 (Projectivization). Let ξ : E → M be a (smooth) F-vector bundle of rank n over a
smooth manifold M . We will construct a new fiber bundle called the projectivization of ξ, denoted by
P (ξ).

Define
E(P (ξ)) := {(p, L) : p ∈M, L ∈ P (ξp)}

where P (ξp) is the projective space of 1-dimensional F-linear subspaces of the fiber over p, i.e., FPn.
The projection onto the first coordinate is a fiber bundle (the projectivization of ξ), denoted by P (ξ).

More generally, consider

E(Gk(ξ)) := {(p, V ) : p ∈M, V ∈ Gk(ξp)}

The projection onto the first coordinate is a fiber bundle over M with fiber Gk(Fn), and we denote this
bundle by Gk(ξ).

If ξ is an oriented real vector bundle of rank n, define

E(G̃k(ξ)) := {(p, V ) : p ∈M, V ∈ G̃k(ξp)}

The projection onto the first coordinate is a fiber bundle over M with fiber G̃k(Rn), and we denote this
bundle by G̃k(ξ).

2



We construct local trivializations for these constructions. Let (U, ϕ) be a local trivialization of ξ so

that for each p ∈ U ⊆ M , we have an F-linear isomorphism ξp
ϕ→ Fn. This induces a diffeomorphism

Gk(ξp) ∼= Gk(Fn) (resp. G̃k(Rn)). Define ψ : E(Gk(ξ))|U → U × Gk(ξ), (p, V ) 7→ (p, ϕ(V )), i.e., the
map induced by ϕ by taking Grassmannian fiberwise. The topology on E(γk(ξ)) is induced by glueing
together these local trivialization.

The total space is locally a product space, and one can give it a smooth structure such that the
projection π is a smooth map. When M is a point, we recover the definition of Grassmannian manifolds.

[3] claims that π is proper and left it as an exercise for the readers. We spell out the proof here, but
this will not be presented during the talk in the interest of time.

Lemma 2.2. The bundle projection π : E(Gk(ξ) → M (resp. π : E(G̃k(ξ)) → M if ξ is orientable) is
a proper map.

Proof. The proof is an exercise of point-set topology and consists of two steps.
Step 1: Suppose X,Y are topological spaces and f : X → Y a closed continuous map. If

f−1(y) is compact for all y ∈ Y , then f is proper. Let K ⊆ Y be compact. Let U = {Ui : i ∈ I} be
an open cover of f−1(K). For each y ∈ K, f−1(y) is compact, so we have f−1(y) ⊆ Wy :=

⋃my

j=1 Uiy,j
.

The set X \ Wy is closed in in X, so f(X \ Wy) is closed in Y . Since y /∈ f(X \ Wy), we can find
an open nbd Vy s.t. Vy ∩ f(X \Wy) = ∅, so f−1(Vy) ⊆ Wy. We now have an open cover of K by
{Vy : y ∈ K}. By compactness of K, we can reduce to a finite subcover, say K ⊆

⋃m
k=1 Vyk . Then

f−1(K) ⊆
⋃m
k=1

⋃my

j=1 Uiy,j .
Step 2: Thus, it suffices to prove that π is a closed map. Take a closed set C ⊆ E(Gk(ξ)).

We want to prove that M \ π(C) is open. Let p ∈ M \ π(C). We take a local trivialization Up ∋ p and

ϕ : π−1(Up)
∼=→ Up × Gk,n. Consider the set A = ϕ(C ∩ π−1(Up)) ⊆ Up × Gk,n which is closed in the

subspace topology. Since p /∈ π(C), we have (p × Gk,n) ∩ A = ∅. For each x ∈ p × Gk,n, there exists
an open nbd Vx ×Wx disjoint from A (regularity). Since Gk,n is compact, p×Gk,n ⊆

⋃m
i=1 Vxi ×Wxi .

Take Vp =
⋂n
i=1 Vxi

, then V ∩ π(A) = ∅. Hence p is an interior point of M \ π(A).

Remark. The proof of (ii) generalizes to prove that the bundle projection for any locally trivial fiber
bundle with compact fiber is a closed map.

Construction 2.3 (Tautological vector bundle). For each of the constructions above, one can define

E(γk(ξ)) := {(p, V, v) : p ∈M, V ∈ Gk(ξp), v ∈ V }

then the projection γk(ξ) : E(γk(ξ)) → E(Gk(ξ)), (p, V, v) 7→ (p, V ) is a k-plane bundle over E(Gk(ξ)).
If M is a point, the this recovers the construction of tautological vector bundle over Gk(ξ). Similarly, if
ξ is an oriented vector bundle, then let

E(γ̃k(ξ)) := {(p, V, v) : p ∈M, V ∈ G̃k(ξp), v ∈ V }

and the projection γ̃k(ξ) : E(γ̃k(ξ)) → E(G̃(ξ)) is a k-plane bundle.

3 Cohomology of Fiber Bundles

The following theorem gives us an important tool to compute the cohomology of the total space of a fiber
bundle in terms of the cohomology of the fiber and the base. To simplify the notation, we will assume
H∗(−) = H∗

dR(−) unless stated otherwise.

If π : Ẽ → M is a smooth fiber bundle over a manifold M with fiber F , H∗(Ẽ) has the structure of
a H∗(M)-module via the product π∗(−) ∧ − : H∗(M)⊗R H

∗(E) → H∗(E).

Theorem 3.1 (Leray-Hirsch). Let π : Ẽ →M be a smooth fiber bundle over M with fiber F . Suppose
there exists cohomology classes ej ∈ Hnj (Ẽ) such that for all p ∈ M , {i∗p(ej)} form a basis of H∗(Fp).
Then, the map

Φ : H∗(M)⊗R H
∗(F ) → H∗(Ẽ),

∑
k,j

βk ⊗ i∗(ej) 7→
∑
k,j

π∗(βk) ∧ ej

is an isomorphism of graded R-vector spaces. Moreover, Φ is an isomorphism of H∗(M)-module which
exhibits H∗(Ẽ) is a free H∗(M)-module with basis ej .
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Remark 3.2.

(i) The statement still holds if one replaces de Rham cohomology by singular cohomology with coeffi-
cients in a ring R and require H∗(F ;R) to be a free R-module.

(ii) The theorem does not assert that the map Φ is an isomorphism of graded rings.

(iii) The condition of the theorem is non-trivial. Consider the Hopf fibration S1 → S3 → S2. Then the
degree 1 class of S1 does not arise as the restriction of any class on S3.

The proof relies on the following technical lemma which we have used in the proof of Poincare duality.

Technical Lemma 1. Let M be a smooth n-manifold equipped with an open cover V = {Vβ : β ∈ B}.
Suppose U is a collection of open subsets of M that satisfies the following conditions:

(i) ∅ ∈ U .

(ii) If U ⊆ Vβ is diffeomorphic to Rn, then U ∈ U .

(iii) If U1, U2, U1 ∩ U2 ∈ U , then U1 ∪ U2 ∈ U .

(iv) If (Un)n∈N is a sequence of pairwise disjoint open subsets with Un ∈ U for all n ∈ N, then
⋃
n Un ∈ U

Then, Mn ∈ U .

Proof of Leray-Hirsch. Let V be an open cover of M by trivializing neighborhoods. Let U be the collec-
tion of open subsets of M for which the theorem holds. Condition (i) is trivial.

To verify condition (ii), fix some Vβ ∈ V and consider U ⊆ Vβ diffeomorphic to Rn. In this case,
we have H∗(U) ∼= H∗(Rn), so Φ : R ⊗ H∗(F ) → H∗(π−1U) ∼= H∗(U × F ) ∼= H∗(F ) is given by∑
j λj ⊗ i∗(ej |π−1U ) 7→

∑
j λj ∧ ej |π−1U , where λ ∈ H0(U). This is clearly an isomorphism.

To verify condition (iii), we use MV sequence. Suppose U1, U2, U1 ∩ U2 ∈ U . To simplify notation,
write U = U1∪U2 and U12 = U1∩U2. Let E1, E2, E12, E be the total space of the bundle when restricted
U1, U2, U12, U , respectively. Consider the MV sequence of the triad (U ;U1, U2).

· · · Hp(U) Hp(U1)⊕Hp(U2) Hp(U12) Hp+1(U) · · ·
(j∗1 ,j

∗
2 ) i∗1−i

∗
2 δ∗

For each q, Hq(F ) is an R-vector space, so tensoring with Hq(F ) preserves exactness, so we get the
following LES

· · · Hp(U)⊗Hq(F ) (Hp(U1)⊗Hq(F ))⊕ (Hp(U2)⊗Hq(F ))

Hp(U12)⊗Hq(F ) Hp+1(U)⊗Hq(F ) · · ·

Taking direct sums over p and q, one obtains the following.2

· · ·
⊕

p+q=nH
p(U)⊗Hq(F )

⊕
p+q=n(H

p(U1)⊗Hq(F ))⊕ (Hp(U2)⊗Hq(F ))

⊕
p+q=nH

p(U12)⊗Hq(F )
⊕

p+q=nH
p+1(U)⊗Hq(F ) · · ·

We claim that the map Φ gives a map between the LES above and the MV sequence of the triad
(E;E1, E2). This amounts to checking the commutativity of some diagrams.⊕

p+q=nH
p(U)⊗Hq(F )

⊕
p+q=n(H

p(U1)⊗Hq(F ))⊕ (Hp(U2)⊗Hq(F ))
⊕

p+q=nH
p(U12)⊗Hq(F )

Hn(E) Hn(E1)⊕Hn(E2) Hn(E12)

Φ Φ Φ

We must check that this diagram commutes. By assumption, there exist cohomology classes ej ∈ H∗(Ẽ)
which restrict to a basis of H∗(F ) over any point p ∈ M . If we let ej |E denote the class ej restricted

2We allow p, q negative.
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to E, then ej |U also restricts to a basis of H∗(F ) over any p ∈ U . Take an elementary tensor β ⊗ α ∈
Hp(U)⊗Hq(F ). We compute

(i∗1, i
∗
2)(Φ(β ⊗ i∗(ej |E))) = (i∗1, i

∗
2)(π

∗(β) ∧ ej |E)
= (i∗1π

∗(β) ∧ i∗1(ej |E), i∗2π∗(β) ∧ i∗2(ej |E))
= (π∗(i∗1β) ∧ ej |E1

, π∗(i∗2β) ∧ ej |E2
)

In the last equality, we used that the following diagram of spaces commute.

Ei E

Ui U

π π

This shows that the left square commutes. One can apply the same argument to show that the other
square commutes as well.

It remains to verify that Φ commutes with the coboundary operator.⊕
p+q=nH

p(U12)⊗Hq(F )
⊕

p+q=nH
p+1(U)⊗Hq(F )

Hn(E12) Hn+1(E)

δ∗

Φ Φ

δ̃∗

Take a class ω⊗i∗α ∈
⊕

p+q=nH
p(U12)⊗Hq(F ) and pick a smooth partition of unity {ρ1, ρ2} subordinate

to {U1, U2} (so that {π∗ρ1, π
∗ρ2} is a smooth partition of unity subordinate to {E1, E2}). Recall3 that

δ∗ω =

{
d(ρ1ω) on U1

−d(ρ2ω) on U2

By direct computation, we have

Φ(δ∗(ω ⊗ i∗α)) = π∗δ∗ω ∧ α =

{
π∗d(ρ1ω) ∧ α = dπ∗(ρ1ω) ∧ α on U1

−π∗d(ρ2ω) ∧ α = dπ∗(ρ2ω) ∧ α on U2

and

δ̃∗(Φ(ω ⊗ i∗α)) = δ̃∗(π∗ω ∧ α) =

{
d((π∗ρ1)π

∗ω ∧ α) = d(π∗(ρ1ω) ∧ α) = dπ∗(ρ1ω) ∧ α on E1

d((π∗ρ2)π
∗ω ∧ α) = d(π∗(ρ2ω) ∧ α) = dπ∗(ρ2ω) ∧ α on E2

In the last equality we used the fact that α is closed. This completes the proof of commutativity. By
hypothesis, Φ is an isomorphism for U1, U2, U12, so we conclude that Φ is an isomorphism for U by
5-lemma, so U = U1 ∪ U2 ∈ U .

To verify condition (iv), note that if (Un)n∈N is a sequence of pairwise disjoint sets in U , then we
have natural isomorphism of cohomology Hk(

⋃
n Un)

∼=
∏
nH

k(Un), and the map Φ is an isomorphism
on each factor, so

⋃
n Un ∈ U .

Thus, M ∈ U , and we are done.

4 Applications

Calculation of the cohomology of projective bundles:

Proposition 4.1. Let ξ : E(ξ) → M be a complex vector bundle of rank n. Then H∗(E(P (ξ))) is a
free H∗(M)-module with basis {1, c, c2, ..., cn−1}, where c = c1(γ1(ξ)).

Proof. Consider the following pullback diagram.

E(γ1) E(γ1(ξ))

CPn−1 E(P (ξ))

⌟

3It seems that this was not mentioned in talk 4.
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We observe that the tautological line bundle over E(P (ξ)) restricts to tautological line bundle over
CPn−1. By naturality of Chern class, we know that c1(γ1(ξ)) ∈ H2(E(P (ξ))) restricts to c1(γ1) ∈
H2(CPn−1), so c1(γ1(ξ))

j restricts to c1(γ1)
j ∈ H2j(CPn−1) . Since H∗(CPn−1) ∼= R[c1(γ1)]/(c1(γ)n),

we are exactly in the situation of Leray-Hirsch, and the result follows.

Remark 4.2 (cf. Proposition 23.2 Bott-Tu [1]). In general, the tautological k-plane bundle γk over
Gk(Cn) embeds as a subbundle of the trivial bundle Gk(Cn) × Cn, so it makes sense to consider the
orthogonal complement γ⊥k . In [1], some calculation using tools that we do not have time to introduce
shows that H∗(Gk(Cn)) ∼= R[c1, ..., ck, c̃1, ..., c̃n−k]/((c1 + · · · ck)(c̃1 + · · ·+ c̃n−k)− 1), where ci = ci(γk)
and c̃i = ci(γ

⊥
k ). Since the cohomology is generated by Chern classes which are natural w.r.t. pullback,

one can perform the same argument to show that H∗(E(Gk(ξ))) is a free H∗(M)-module with basis
given by Chern classes.

Theorem 4.3 (Splitting principle). For any complex vector bundle ξ : E →M , there exists a manifold
T = T (ξ) and a proper smooth map f : T →M s.t.

(i) f∗ : H∗(M) → H∗(T ) is injective;

(ii) f∗ξ splits as a direct sum of complex line bundles.

Proof. Observe that if we can show that there exist T and proper smooth map f∗ : T → M s.t. f∗ is
injective and f∗ξ ∼= ξ′ ⊕L for some line bundle L and vector bundle ξ′, then we are done by repetitively
applying this procedure.

Let’s take T = E(P (ξ)) and f = π : E(P (ξ)) → M , which is a smooth proper map (lemma 2.2).
Consider the pullback square:

π∗E(ξ) E(ξ)

E(P (ξ)) M

π̃

⌟
ξ

π

(i): Proposition 4.2 implies that π∗ is injective in every degree.
(ii): There is an injective bundle map j : E(γ1(ξ)) → π∗E(ξ) given by universal property:

E(γ1(ξ))

π∗E(ξ) E(ξ)

E(P (ξ)) M

j

⌟

More explicitly the map j sends (p, L, v) to ((p, L), v). Its image L ∼= γ1 is a subbundle of π∗ξ, and it’s
a line bundle. If we let ξ′ be the orthogonal complement of L in π∗ξ, then π∗ξ ∼= ξ′ ⊕ L.

Remark 4.4. By proposition 4.1, we have some relation4

(−1)ncn + λn−1(ξ)c
n−1 + λn−2(ξ)c

n−2 + · · ·+ λ0(ξ) = 0

In the proof above, we saw that π∗ξ ∼= ξ′ ⊕ γ1(ξ), so the total chern class satisfies π∗(c(ξ)) = c(π∗ξ) =
c(γ(ξ))c(ξ′) = (1 + c)c(ξ′). We can solve for c(ξ′):

c(ξ′) = π∗(c(ξ))(1 + c)−1 = π∗(c(ξ))
∑
j≥0

(−1)jcj

By considering elements of degree 2n, we get

0 = cn(ξ
′) =

∑
i+j=n

π∗(ci(ξ)) ∧ (−1)jcj

By matching coefficients,
λj(ξ) = (−1)jcn−j(ξ)

4This differs from the book [3] by a sign
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Corollary 4.5. There is a ring isomorphism

H∗(E(P (ξ))) ∼= H∗(M)[c]/(cn(ξ)− cn−1(ξ)c+ · · ·+ (−1)n−1c1(ξ)c
n−1 + (−1)ncn)

Proof. The relation derived in Remark 4.5 is the only non-trivial one. Suppose we have another relation
given by some polynomial equation p(c) = 0 for p ∈ H∗(M)[X], then it descends to a relation p̃(c) = 0,
where p̃ = p mod cn(ξ)−cn−1(ξ)X+· · ·+(−1)n−1c1(ξ)X

n−1+(−1)nXn, then p̃ = 0 since {1, c, ..., cn−1}
is a free H∗(M)-basis.

There is a splitting principle for oriented real vector bundles. This requires the calculation of
H∗(G̃2(Rn)), which can be done by a geometric argument.

There is an embedding j : RPn−1 ↪→ CPn−1, [x1 : · · · : xn] 7→ [x1 : · · · : xn], so we can think of
RPn−1 as a submanifold of CPn−1.

Proposition 4.6. There is a homotopy equivalence G̃2(Rn) ≃Wn := CPn−1 \ RPn−1

Lemma 4.7. Let Q = {A ∈ GL2(R) : AT = A, detA = 1, trA > 0}, i.e., the space of positive definite
symmetric matrices with determinant 1.

(i) There is a homeomorphism ψ : Q× C× → GL+
2 (R), (A, reiθ) 7→ rARθ.

(ii) Q is contractible via F (A, t) = At (exponentiation). Moreover, this homotopy is equivariant with
respect to the action of S1 ∼= SO(2) on Q by conjugation.

Sketch of proof. (i): This is the statement that polar decomposition exists and is unique.
(ii) If A ∈ Q, then by spectral theorem, R2 has orthogonal decomposition in terms of eigenspaces, i.e.,

R2 = Vλ
⊥
⊕Vλ−1 , where λ > 0. If P denotes the orthogonal projection onto Vλ, then A = λP+λ−1(I−P ).

Then At = λtP + λ−t(I − P ) = λ−tI + (λt − λ−t)P at least away form I, and this has a continuous
extension to I. To see that this map is equivariant w.r.t. the action of S1, we compute

F (R−1
θ ARθ, t) = λ−tI + (λt − λ−t)R−1

θ PRθ = R−1
θ F (A, t)Rθ

The first equality follows from change of basis.

Proof of 4.7 (Sketch). We work with the embedding φ : V2,n → S2n−1 ⊆ Cn \ 0, (x, y) 7→ 1√
2
(x − iy).

This map equivariant with respect to the action of S1 on V2,n by rotation matrices and the action on

S2n−1 by multiplication and it descends to an embedding φ̃ : G̃2,n → CPn−1. This information can be
summarized in the following diagram of maps of fiber bundles.

S1 S1 C×

V2,n S2n−1 Cn \ 0

G̃2,n CPn−1 CPn−1

id incl

φ

π0

incl

π1 π

φ̃ id

To see that the image of the embedding φ̃ lies in Wn, we note that CPn−1 has an involution given by
complex conjugation, whose fixed point set is the embedded copy of RPn−1 and the imaginary part of
anything in φ̃(G̃2,n) cannot be zero. Define

Φ : V2,n ×GL+
2 (R) → Cn \ 0,(

(x, y),

(
a c
b d

))
7→ (ax+ by)− i(cx+ dy)

Note that when the matrix is 2−1/2I, we recover φ, so we can think of φ as a slice of Φ. One can check
that imΦ = π−1Wn.

Note that S1 acts on V2,n × GL+
2 (R) by change of coordinates, which means (x, y,A) · Rθ :=

((x, y)Rθ, R
−1
θ A). Note that each orbit of this action parametrizes exactly the fiber over Φ(x, y,A), so we

get a bijection Ψ : V2,n×S1 GL+
2 (R) → π−1Wn ⊆ Cn \0. We note that reiθ ∈ C× acts on V2,n×GL+

2 (R)
by (x, y,A) 7→ (x, y,A(rRθ)), which induces an action on the orbit space V2,n×S1 GL+

2 (R), and the map
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Ψ is equivariant w.r.t. this action and the standard action on Cn \ 0 so that this descends to a map to
Wn. This gives the following commutative diagram, where the horizontal maps are diffeomorphisms.

V2,n ×S1 GL+
2 (R) π−1Wn

(V2,n ×GL+
2 (R))/C× Wn

Ψ

Ψ̃

Recall from lemma 4.8 that ψ : Q × C× ∼= GL+
2 (R), which induces a diffeomorphism V2,n × GL+

2 (R) ∼=
V2,n×(Q×C×). Define an action of S1 on V2,n×Q×C× by ((x, y), B, reiγ)·Rθ = ((x, y)Rθ, R

−1
θ BRθ, re

iγ).

V2,n ×Q× C× V2,n ×GL+
2 (R) V2,n ×S1 GL+

2 (R) π−1Wn

V2,n ×S1 Q× C× V2,n ×S1 GL+
2 (R) (V2,n ×S1 GL+

2 (R))/C× Wn

V2,n ×S1 Q (V2,n ×S1 GL+
2 (R))/C× V2,n ×S1 Q

id×ψ Ψ

π

Ψ̃

∼=

∼=
Φ̃

(Diagram on the left) The map id×ψ is equivariant w.r.t. the actions of S1. To see this, note that for
A ∈ GL+

2 (R), the symmetric part of the unique polar decomposition is given by B = det(A)−1(AA†)1/2.
The action of eiθ ∈ S1 on V2 ×GL+

2 (R) on A translates to

det(R−1
θ A)−1((R−1

θ A)(RθA)
†)1/2 = det(A)−1(R−1

θ AA†Rθ)
1/2 = det(A)−1R−1

θ (AA†)1/2Rθ = R−1
θ BRθ

where the second to last equality uses the fact that (R−1
θ AA†Rθ)

1/2 and Rθ(AA
†)1/2Rθ are both positive

definite square root of RθAA
†Rθ, so they must be equal. This map first descends to a diffeomorphism

V2,n×S1 Q×C× ∼= V2,n×S1 GL+
2 (R). Then we check that this map is equivariant w.r.t. the action of C×

on the C× factor of the domain and the C×-action on the target defined earlier and get a diffeomorphism
V2,n ×S1 Q ∼= (V2,n ×S1 GL+

2 (R))/C×. (Diagram on the right) We define Φ̃ to be the map induced from

Ψ̃ using the diffeomorphism obtained by the left diagram, so Φ̃ is a diffeomorphism. Using the above
construction, one can obtain an explicit formula for Φ̃:

Φ̃

[
x, y,

(
α β
β γ

)]
= [(αx+ βy)− i(βx+ γy)] ∈ CPn−1

We now analyze the space V2,n ×S1 Q. The conjugation action on Q fixes the identity matrix, so

we have an inclusion i0 : G̃2,n
∼= (V2,n × {I})/S1 ↪→ Wn given by i0[x, y, I] = [x − iy], which coincides

with the map φ̃ : G̃2,n ↪→ CPn−1 defined earlier. We claim that i0 is a homotopy equivalence. For this
purpose, we consider

id×F : V2,n ×Q× [0, 1] → V2,n ×Q

Using the equivariance part of lemma 4.8(ii), this descends to a well-defined map

V2,n ×S1 Q× [0, 1] → V2,n ×S1 Q

which is a homotopy between the identity and the inclusion of the subspace (V2,n×{I})/S1. This proves
the proposition.

Lemma 4.8. Let i :Wn → CPn−1 be the inclusion. We get an induced map i∗ : Hp
c (Wn) → Hp(CPn−1).

i∗ is an isomorphism except the following cases:

(i) if p = 0, then Hp
c (Wn) = 0;

(ii) if p = n and n is even, then we have SES

0 → R → Hn
c (Wn) → Hn(CPn−1) → 0

8



Proof (Sketch). We have exact sequence5

· · · Hp
c (Wn) Hp(CPn−1) Hp(RPn−1) Hp+1

c (Wn) · · ·i∗ j∗ δ

(1) For p ̸= 0, n, we have Hp(RPn−1) = Hp−1(RPn−1) = 0, so i∗ is an iso.

(2) When p = 0, Hp
c (Wn) = 0 since Wn is not compact.

(3) For p = n and n odd, Hn−1(RPn−1) ∼= 0 and i∗ is still an isomorphism.

(4) For p = n and n even, Hn−1(RPn−1) ∼= R, so we get the desired SES.

Remark. IfM is a smooth compact manifold and N is a smooth compact submanifold ofM , then there
is an exact sequence of (co)chain complexes:

0 → Ω∗(M,N) → Ω∗(M)
j∗→ Ω∗(N) → 0

where j is the inclusion and Ω∗(M,N) is defined to be ker j∗, i.e., those forms on M which restrict
to 0 on N . This gives rise to a LES of cohomology. The inclusion i : M \ N → M induces a map
i∗ : Ω∗

c(M \ N) → Ω∗(M,N) called extension by 0. It can be shown that i∗ induces isomorphism on
cohomology, so one can replace the term H∗(Ω∗(M,N)) by H∗

c (M \ N), which gives exactly the LES
used in the proof of this lemma.

Proposition 4.9. We have H2p−1(Wn) = 0 for all p, and

H2p(Wn) ∼=


R2 2p = m− 2

R 0 ≤ 2p ≤ 2m− 4 and 2p ̸= 2m− 2

0 otherwise

Proof. Note that Wn is an open subset of CPn−1, so an orientation of CPn−1 restricts to an orientation
on Wn. This means that Poincare duality applies. Consider the following commutative diagram6

Hp(CPn−1) Hp(Wn)

H2n−2−p(CPn−1)∗ H2n−2−p
c (Wn)

∗

i∗

∼= ∼=
(i∗)

∗

(1) If p ̸= 2n− 2, n− 2, lemma 4.9 implies that Hp(CPn−1) ∼= Hp(Wn).

(2) Wn is path-connected by the homotopy equivalence proved earlier (Proposition 4.7), so H0(Wn) ∼= R.

(3) If p = n− 2 and n odd, then i∗ is still an isomorphism.

(4) If p = n−2 and n even, then we note that the SES from the preceding lemma splits, soHn
c (Wn) ∼= R2.

By Poincare duality, Hn(Wn) ∼= R2.

By (1), (3), the odd cohomology groups are trivial. By (1), (2), (4), we get the desired pattern of even
cohomology groups.

To prove the next result about H∗(G̃2(Rn)), we need Pontrjagin classes.7

Definition 4.10. Suppose ξ is a real vector bundle of rank n over M . We define the k-th Pontrjagin
class of ξ by

pk(ξ) = (−1)kc2k(ξC) ∈ H4k(M)

The total Pontrjagin class is defined as the formal sum

p(ξ) = 1 + p1(ξ) + p2(ξ) + · · ·
5Proposition 13.11 in [3] but was not introduced in the previous talks.
6cf. lemma 3.3.3 talk 7, or chapter 13 of [3].
7Various properties of Pontrjagin classes are introduced in chapter 18 and 19 of [3]. They were not mentioned in the

preceding talks, so we will quickly define the concepts and collect some useful properties.

9



Recall from talk 11 that the odd Chern classes of the complexification of a real vector bundle are
trivial, so we only use the even Chern classes in the definition above.

We collect some useful properties of Pontrjagin classes in the following proposition.

Proposition 4.11.

(i) The Pontrjagin class is natural with respect to pullback. The total Pontrjagin class is exponential,
that is, for real vector bundles ξ and η, p(ξ ⊕ η) = p(ξ)p(η).

(ii) If ξ is an oriented real vector bundle of rank 2k, then pk(ξ) = e(ξ)2

Sketch of proof. (i) is essentially a consequence of the same statement for Chern classes. (ii) is proposition
19.9 of [3].

Proposition 4.12. Let c = e(γ̃2) be the Euler class of the tautological 2-plane bundle over G̃2(Rn).
When n is even, let e = e(γ̃⊥2 ).

(i) If n is odd and n ≥ 3, then H∗(G̃2,n) ∼= R[c]/(cn−1).

(ii) If n is even and n ≥ 4, then H∗(G̃2,n) ∼= R[c, e]/(cn−1, ce, e2 + (−1)n/2cn−2)

Proof. (i): Let n be odd and n ≥ 3. We discover from the proof of the preceding proposition that
i∗ : H∗(CPn−1) → H∗(Wn) is bijective other than in degree 2n − 2. This immediately gives us the
cohomology ring structure on Wn and thus G̃2,n by homotopy invariance. It suffices to show that the
first Chern class c1(γ1) ∈ H2(CPn−1) pulls back to c = e(γ̃2). For this purpose we consider the following
diagram.

E(γ̃2) E(γ1)

G̃2,n CPn−1

The top map is given by (V = span(v1, v2), λv1+µv2 ∈ V ) 7→ (C⟨v1− iv2⟩, (λ+ iµ)(v1− iv2)) In fact, this
is a pullback square, given by restricting the tautological line bundle (regarded as a real 2-plane bundle)
to the embedded copy of G̃2,n. By naturality, the Euler class c1(γ1) pulls back to c = e(γ̃2) along the
embedding.

(ii): By the same argument as (i), the relation cm−1 = 0 holds in H∗(G̃2,n). The relation ce = 0
follows from the fact that γ̃2 ⊕ γ̃⊥2 = εn. To establish e2 +(−1)n/2cn−2 = 0, we use Pontrjagin class. We
have

(1 + p1(γ̃2))(1 + p1(γ̃
⊥
2 ) + · · ·+ pn/2−1(γ̃

⊥
2 )) = 1

since γ̃2 ⊕ γ̃⊥2 = εn. This gives us the relation pj(γ̃
⊥
2 ) = (−1)jp1(γ̃2)

j . By proposition 4.11(ii), we also
have

e2 = pn/2−1(γ̃
⊥
2 ) = (−1)n/2−1p1(γ̃2)

n/2−1

By naturality, p1(γ̃2) is the pullback of the first Pontrjagin class of (γ1)R over CPn−1, regarded as a real
vector bundle. We have the direct sum decomposition (γ1)R ⊗R C ∼= γ1 ⊕ γ∗1 (lemma 16.19(ii) of [3]),
so we can compute p1((γ1)R) = −c1(γ1)(−c1(γ1)) = c1(γ1)

2. Hence, p1(γ̃2) = c2. Substitute, and get
e2 = (−1)n/2−1cn−2, i.e., e2 + (−1)n/2cn−2 = 0.

We claim that 1, c, c2, ..., cn−2, e form an additive basis of H∗(G̃2,n). To see this, note that the only
way this could fail is when e and the class cn/2−1 are linearly dependent, so let’s assume cn/2−1 = λe
for some λ ∈ R. Then cn/2 = λce = 0, but this is a contradiction. Now, by comparing vector space
dimension, we deduce that H∗(G̃2,n) ∼= R[c, e]/(cn−1, ce, e2 + (−1)n/2cn−2).

Proposition 4.13. For any oriented real vector bundle ξ over M , H∗(G̃2(ξ)) is a free H∗(M)-module
with basis {

1, e(ξ), e(ξ)2, ..., e(ξ)m−2, e(ξ⊥) if m = 2n ≥ 4

1, e(ξ), e(ξ)2, ..., e(ξ)m−2 if m = 2n+ 1 ≥ 3

Proof. Apply Leray-Hirsch.

Theorem 4.14 (Real splitting principle). For any oriented real vector bundle ξ over M , there exists a
manifold T = T (ξ) and a smooth proper map f : T →M s.t.

10



(i) f∗ : H∗(M) → H∗(T ) is injective,

(ii) f∗ξ ∼= L1 ⊕ · · · ⊕ Ln if rank(ξ) is even, and f∗ξ ∼= L1 ⊕ · · · ⊕ Ln ⊕ ε1 if rank(ξ) is odd, where each
Li is an oriented 2-plane bundle.

Proof. The proof is the same as complex splitting principle. We take f = π : E(G̃2(ξ)) → M which is
a smooth proper map. The pullback bundle along this map splits as the direct sum of a 2-plane bundle
(the image of the tautological bundle) and another vector bundle. Depending on the parity of the rank,
we can iterate this procedure until the bundle splits as direct sums of oriented 2-plane bundles or there
is a line bundle left, say ξ.

Argument 1: At the last step, we take one more pullback along the projection π of the total
space of the unit sphere bundle of ξ. The pullback π∗ξ has a nowhere vanishing global section given by
((p, ϵ), λϵ) 7→ ϵ, where ϵ = ±1 and (p, ϵ) ∈ S(ξ). Hence, after one more pullback, the vector bundle splits
as a direct sum of oriented 2-plane bundle and a trivial line bundle.

Argument 2: Alternatively, an orientation of a vector bundle E amounts to a continuous choice of
oriented basis of fibers. This is equivalent to the existence of a nowhere-vanishing global section of the
bundle Λrk(E)(E) ∼= det(E). If we have two bundles E and F such that E and E⊕F are both orientable,
then ε1 ∼= Λrk(E)+rk(F )(E ⊕ F ) ∼= Λrk(E)(E) ⊗ Λrk(F )(F ) ∼= Λrk(F )(F ), so F is also orientable. Back
to this theorem, ξ is an orientable line bundle by the argument using determinant bundle, so it has to
be trivial as orientation in the case of line bundle precisely means the existence of a nowhere vanishing
global section.

If time permits, we will also calculate the cohomology ring of some Stiefel manifolds.

Proposition 4.15. For 1 ≤ k ≤ n, there exists ring isomorphism

H∗(Vk(Cn)) ∼= Λ[x2n−2k+1, x2n−2k+3, ..., x2n−1]

where |xj | = j.

Proof. We proceed by induction on k. The base case is clear.
Suppose the statement is true for Vk−1,n−1, i.e., H

∗
dR(Vk−1,n−1) ∼= Λ[x2n−2k+1, x2n−2k+3, ..., x2n−3].

We claim without proof that the fiber bundle Vk−1,n−1 → Vk,n → S2n−1 satisfies the hypothesis
of Leray-Hirsch theorem. Moreover, the inclusion of fiber i : Vk−1,n−1 → Vk,n induces isomorphisms
i∗ : Hj(Vk,n) → Hj(Vk−1,n−1) for j ≤ 2n−3. Therefore, the inclusion of fiber completely determines the
subring of H∗(Vk,n) generated by y2n−2k+1, ..., y2n−3 as Λ[y2n−2k+1, ..., y2n−3]. In particular, there exists
cohomology classes y2n−2k+1, ..., y2n−3 on Vk,n which restrict to x2n−2k+1, ..., x2n−3, so we are exactly
in the situation of Leray-Hirsch. Therefore, H∗(Vk,n) is a free H∗(S2n−1)-module with basis given
by products of distinct elements from {y2n−2k+1, .., y2n−3}. Let y2n−1 be the pullback of a generator
of H2n−1

dR (S2n−1), then an additive basis of H∗
dR(Vk,n) is given by products of distinct elements from

{y2n−2k+1, ..., y2n−1}.
We claim that H∗

dR(Vk,n) is the exterior algebra on y2n−2k+1, ..., y2n−1. There is a surjective ring
homomorphism Λ[y2n−2k+1, ..., y2n−1] → H∗(Vk,n) by sending yj to the cohomology class with the same
label. By comparing dimR, we see that this is an isomorphism.

Remark 4.16. It takes a non-trivial amount of work to prove that Vk−1,n−1 → Vk,n → S2n−1 satisfies
the hypothesis of Leray-Hirsch. This is mainly because we do not have the cohomology structure of Vk,n
to begin with. However, with some help from homotopy theory, one can deduce certain information on
the homotopy groups of Vk,n. Using the Hurewicz map, which relates homotopy groups and integral
homology groups (and hence cohomology via universal coefficient theorem), we can actually show that
the inclusion of fiber Vk−1,n−1 → Vk,n induces isomorphism on cohomology groups up to sufficiently high
degree so that Leray-Hirsch applies.

Consider the fiber sequence Vk−1,n−1 → Vk,n → S2n−1. The long exact sequence reads

· · · → πj+1(S
2n−1) → πj(Vk−1,n−1)

i∗→ πj(Vk,n) → πj(S
2n−1) → · · ·

Claim 1: The space Vk,n is simple (the action of π1 on πn is trivial for all n ≥ 1) for
1 ≤ k ≤ n. If k = n, then both spaces are H-spaces and hence simple. Otherwise, by induction on k
(using the LES above), we see that Vk,n is simply connected.

The map i∗ : πj(Vk−1,n−1) → πj(Vk,n) is an isomorphism if j < 2n − 2 and an epimorphism if
j = 2n − 2, so the pair (Vk,n, Vk−1,n−1) is (2n − 2)-connected. By claim 1, the relative Hurewicz map
h : πj(Vk,n, Vk−1,n−1) → Hj(Vk,n, Vk−1,n−1;Z) is an isomorphism if j ≤ 2n− 3.
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This argument does not compute H∗(Vk(Rn)). The connectedness of the pair (Vk(Rn), Vk−1(Rn−1))
is not sufficient to deduce that the analogous fiber bundle satisfies the hypothesis of Leray-Hirsch.
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