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1 Stiefel Manifolds and Grassmannian Manifolds

Let F = R or C, and let F” be equipped with the standard inner product. The construction of Stiefel
manifolds requires the following theorem from differential geometry.

Theorem 1.1 (Preimage Theorem). Let f: X — Y be a smooth map between smooth manifolds with
dim X > dimY. Let y € Y be a regular value, then f~!(y) is a smooth submanifold of X. If y € f(X),
then dim f~1(y) = dim X — dim Y.

Construction 1.2 (Stiefel manifold). Let Vi (F™) (or Vi) be the set of all orthonormal k-frames in
F™. An orthonormal k-frame is an ordered set of k vectors which are orthonormal, so Vi (F") can
be identified with {A € M,«x(F) : ATA = I} (or equivalently the set L(F* F") of linear isometric
embeddings). We may give Vi (F") the structure of a smooth manifold as follows. Consider the map
[ Myxi(F) — Si(F), A~ ATA, where S (F) denotes the space of symmetric/Hermitian matrices. This
is a smooth map and I}, is a regular value. To see this, note that if f(A) = I, then for each C' € Si(F),
a solution to D f|4(H) = H'A+ ATH = C'is given by H = AC. Thus by preimage theorem, Vj,(F") is
a smooth manifold, and dim V;(R") = nk — 2k(k + 1) and dim Vi (C") = 2nk — k2. [Note that f~1(Iy)
is closed and bounded, so Vi (F™) is compact.]

Example 1.3.

(i) Vi(R") = Sn=1 V3 (Cn) = §2n— 1L,

(i) Va(R™) = O(n), Vo (C") = U(n).

(iii) Vo(R™) = S(T'S™1), the total space of the unit sphere bundle of T.S™~*.
) Vi

n—1(R™) 2 SO(n). (For each orthonormal (n — 1)-frame of R™, there is a unique choice of the nth
vector to extend to an orthonormal basis with positive orientation.)

(iv

Lemma 1.4. There is a fiber bundle Vi_ (F*~1) — Vi (F") & Vi (F™) (1 < k < n), where the projection
map p is defined by extracting the first vector in an orthonormal k-frame.

Sketch of proof. We proceed as in [2]. Each v € V1(R"™) defines a hyperplane by the equation (z,v) = 0.
To construct a trivialization near v, we must identify the fibers over points near v with the standard
Vi—1(R™) smoothly. To this end, we extend v to an orthonormal basis (v, wa, ..., wy,) of V, so (wa, ..., wy,)
form an orthonormal basis of v*. For all v in the open hemisphere U containing v, the orthogonal
projection @ : v+ — ut onto ut is a linear isomorphism, so {Q(ws), ..., Q(w,)} is linearly independent.
One can apply Gram-Schmidt process to this linearly independent set to get an orthonormal sequence.
This identifies v’ with R"~! isometrically for u in the open hemisphere containing v, and this depends
smoothly on u. Under this identification a (k — 1)-frame of u is identified with an orthonormal (k — 1)-
frame of R”~!, and this depends smoothly on . This is a local trivialization.
The complex case follows from similar argument.

O

Construction 1.5 (Grassmann manifold). Note that O(k) (resp. U(k)) acts on Vi(R™) (resp. V;(C™))
as follows. Given a linear isometry f : R¥ — R™ (resp. C¥ — C") and an element o € O(k) (resp.
U(k)), a acts on f by precomposition. Let Gy (F") (or Gy ) be the orbit space Vi, /O(k), which can
be identified with the set of k-dimensionall linear subspaces of F”. G,n can be given the structure

1Dimension here means dimg.



of a smooth manifold as follows. For each subset I = {i; < is < -+ < it} C {1,..,n} and n X k
matrix A, we introduce the notation A; to denote the submatrix of A obtained by deleting rows indexed
by {1,...,n} \ I and A; to denote the submatrix of A obtaiend by deleting rows indexed by I. Define
coordinate neighborhoods

= {linear subspace spanned by columns of A € M,,xx(F) : det Ay # 0}

Up to change of basis, each linear subspace in U; has a unique representative A s.t. A; = I, e.g., if
I={1,..,k}, then

Un,..ky = {linear subspace spanned by the columns matrices of the form ({f) }

Define ¢y : Uy —> F*("=F) by picking out the entries of A;. Given I,J C {1,...,n}. The transition
function ¢j o 7t picks k(n — k) entries to give a matrix A s.t. Ay = I, and det Ay # 0, then inverts Ay
and map to Fk{” %) by ;. Each coordinate is a rational function such that the denominator is det Aj,

so the transition maps are smooth.
We have dim Gry(R™) = k(n — k) and dim Gr,(C") = 2k(n — k).

Remark 1.6. The above construction of smooth atlas specializes to the standard affine charts on FP™ !
when k£ = 1.

Example 1.7.
(i) G1(R") 2RP" 1 G,(C") =CP L.

(ii) Gg(F™) =2 Gp—k(F™). Note that there is a map Gry , — Grp_k , sending a k-dimensional subspace
to its unique orthogonal complement.

Construction 1.8 (Oriented Grassmann manifold). Let G (R") (or G}.,,) be the orbit space V4 (R™)/SO(n).
To see that this is a smooth manifold, note that the cyclic group Cs acts freely on Gy, (R™) by flipping
the orientation. The quotient map G(R™) — Gj(R™) is a double cover, and one can lift the smooth
structure on G(R™) to a smooth structure on e (R™) such that the covering map is smooth.

Example 1.9.
(1) él,n = Sn71 = én—l,n-
(i) Grm = G bon-

2 Projectivization of Vector Bundles

Construction 2.1 (Projectivization). Let £ : E — M be a (smooth) F-vector bundle of rank n over a
smooth manifold M. We will construct a new fiber bundle called the projectivization of £, denoted by

P(§).
Define

E(P()) :={(p,L):pe M, L € P(&)}

where P(¢,) is the projective space of 1-dimensional F-linear subspaces of the fiber over p, ie., FP™.
The projection onto the first coordinate is a fiber bundle (the projectivization of §), denoted by P(&).
More generally, consider

E(Gr(&)) :={(p,V):pe M, V € Gr(&)}

The projection onto the first coordinate is a fiber bundle over M with fiber G (F"), and we denote this
bundle by G (§).
If € is an oriented real vector bundle of rank n, define

E(Gr(&) =={(p,V):pe M, V € Gr(&)}

The projection onto the first coordinate is a fiber bundle over M with fiber Gr(R™), and we denote this
bundle by Gg(§).



We construct local trivializations for these constructions. Let (U, ¢) be a local trivialization of & so

that for each p € U C M, we have an F-linear isomorphism &, % F. This induces a diffeomorphism
Gi(&) = G(F™) (resp. Gy(R™). Define v : E(Gr(E))ly — U x Gr(€), (0, V) > (p,6(V)), ie., the
map induced by ¢ by taking Grassmannian fiberwise. The topology on E(v(€)) is induced by glueing
together these local trivialization.

The total space is locally a product space, and one can give it a smooth structure such that the
projection 7 is a smooth map. When M is a point, we recover the definition of Grassmannian manifolds.

[3] claims that 7 is proper and left it as an exercise for the readers. We spell out the proof here, but
this will not be presented during the talk in the interest of time.

Lemma 2.2. The bundle projection 7 : E(Gj(€) — M (resp. 7 : E(Gr(£)) — M if £ is orientable) is
a proper map.

Proof. The proof is an exercise of point-set topology and consists of two steps.

Step 1: Suppose X,Y are topological spaces and f: X — Y a closed continuous map. If
f~(y) is compact for all y € Y, then f is proper. Let K C Y be compact. Let L{ {U i €I} be
an open cover of f~1(K). For each y € K, f~1(y) is compact, so we have f~1(y) C Um“ Ui, ;-
The set X \ W, is closed in in X, so f(X \ W,) is closed in Y. Since y ¢ f(X \ W ), we can find
an open nbd V, s.t. V, N f(X\W,) = &, so f~1(V,) C W,. We now have an open cover of K by
{V y € K}. By compactness of K, we can reduce to a finite subcover, say K C J;—, V. Then

HE) c U, Ui Ui, -

Step 2: Thus, it suffices to prove that 7 is a closed map. Take a closed set C' C E(Gg(£)).
We want to prove that M \ 7(C) is open. Let p € M \ m(C'). We take a local trivialization U, > p and
¢ : 7 HU,) = U, x Ggn. Consider the set A = ¢(C N7~ (U,)) C U, x Gy, which is closed in the
subspace topology. Since p ¢ m(C'), we have (p x Gin) N A = @. For each z € p x Gy, there exists
an open nbd V, x W, disjoint from A (regularity). Since G, is compact, p X G, C U:il Vs X W,
Take V), = (;_; Vi, then V N 7(A) = @. Hence p is an interior point of M \ 7(A). O

Remark. The proof of (ii) generalizes to prove that the bundle projection for any locally trivial fiber
bundle with compact fiber is a closed map.

Construction 2.3 (Tautological vector bundle). For each of the constructions above, one can define
E(§) ={(p,V,v):pe M, V € Gx(§), veV}

then the projection v;(§) : E(vx(§)) — E(Gr(£)), (p,V,v) — (p,V) is a k-plane bundle over E(Gj(€)).
If M is a point, the this recovers the construction of tautological vector bundle over G (). Similarly, if
¢ is an oriented vector bundle, then let

EFk(€) ={(p.V,v):pe M, V € Gy(&), veV}

and the projection ¥4 (€) : E(3,(€)) — E(G(€)) is a k-plane bundle.

3 Cohomology of Fiber Bundles

The following theorem gives us an important tool to compute the cohomology of the total space of a fiber
bundle in terms of the cohomology of the fiber and the base. To simplify the notation, we will assume
H*(-) = HdR( ) unless stated otherwise.

If 7 : E — M is a smooth fiber bundle over a manifold M with fiber F', H*(E) has the structure of
a H*(M)-module via the product 7* (=) A —: H*(M) g H*(E) — H*(E).

Theorem 3.1 (Leray-Hirsch). Let 7 : E — M be a smooth fiber bundle over M with fiber F'. Suppose
there exists cohomology classes e; € H" (E) such that for all p € M, {i;(e;)} form a basis of H*(F),).
Then, the map

®: H*(M)@r H(F) — H*(E Zﬁk@m (e;) l—)Z?T (Bk) Aej

is an isomorphism of graded R-vector spaces. Moreover, ® is an isomorphism of H*(M)-module which
exhibits H*(E) is a free H*(M)-module with basis e;.
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Remark 3.2.

(i) The statement still holds if one replaces de Rham cohomology by singular cohomology with coeffi-
cients in a ring R and require H*(F'; R) to be a free R-module.

(ii) The theorem does not assert that the map & is an isomorphism of graded rings.

(iii) The condition of the theorem is non-trivial. Consider the Hopf fibration S' — $3 — S2. Then the
degree 1 class of S' does not arise as the restriction of any class on S®.

The proof relies on the following technical lemma which we have used in the proof of Poincare duality.

Technical Lemma 1. Let M be a smooth n-manifold equipped with an open cover V = {Vz : 8 € B}.
Suppose U is a collection of open subsets of M that satisfies the following conditions:

(i) & el.

(ii) If U C V3 is diffeomorphic to R™, then U € U.

(iii) If Uy, Us, Uy NUs € U, then Uy UUz € U.

(iv) If (Un)nen is a sequence of pairwise disjoint open subsets with U,, € U for alln € N, then J,, U, € U
Then, M™ € U.

Proof of Leray-Hirsch. Let V be an open cover of M by trivializing neighborhoods. Let U/ be the collec-
tion of open subsets of M for which the theorem holds. Condition (i) is trivial.

To verify condition (ii), fix some V3 € V and consider U C V3 diffeomorphic to R™. In this case,
we have H*(U) & H*(R"), so ® : R® H*(F) — H*(n~U) = H*(U x F) = H*(F) is given by
>N ®@i*(ejle—1v) = 325 Aj Aejlz-1p, where X € HO(U). This is clearly an isomorphism.

To verify condition (ii1), we use MV sequence. Suppose Uy, Us, Uy N Us € U. To simplify notation,
write U = U UUs and Uy = Uy NU,. Let By, By, E15, E be the total space of the bundle when restricted
Ui, Ua, Uy, U, respectively. Consider the MV sequence of the triad (U; Uy, Us).

e ax
11

s =) B gy o B U,) BT BR(U) —S s HPP(U) —— -

For each ¢, H1(F) is an R-vector space, so tensoring with HY(F) preserves exactness, so we get the
following LES

o —— HP(U) @ HY(F) —— (H"(Uy) © H(F)) & (H?(U) @ H(F))

e

H?(Upp) @ HY(F) ————— HP(U)® HY(F) ———— -+
Taking direct sums over p and ¢, one obtains the following.?

e —— @ HP(U) @ HI(F) —— @, 4=, (H"(U1) ® HI(F)) © (H?(Uz) @ H(F))

e

Dypsg=n A" (U12) @ HI(F) ———— D

ptg=n

ptg=n HPTHU) @ HI(F) ———————— -+

We claim that the map ® gives a map between the LES above and the MV sequence of the triad
(E; Eq, E3). This amounts to checking the commutativity of some diagrams.

DBy gen HP(U) @ HUF) —— @, o, (HP(U1) ® HI(F)) & (HP(U2) @ HI(F)) —— @44 H? (Ur2) @ HI(F)

°| | |

H"(E) H™(Ey) ® H"(E») H"(E12)

We must check that this diagram commutes. By assumption, there exist cohomology classes e; € H*(E)
which restrict to a basis of H*(F') over any point p € M. If we let e;|r denote the class e; restricted

2We allow p, ¢ negative.



to E, then ej|y also restricts to a basis of H*(F') over any p € U. Take an elementary tensor § ® a €
HP(U) ® H1(F). We compute

(i1,3)(®(B @ i"(ej]k))) = (i1, 35) (7" (B) A ej| k)
(17 (8) Nit(ejlr),ism™ (B) Nis(ejlr))
(7 (i18) A ejle,, ™ (i58) A el k)

In the last equality, we used that the following diagram of spaces commute.

7

E,— FE
.,
Uu —U

This shows that the left square commutes. One can apply the same argument to show that the other
square commutes as well.
It remains to verify that ® commutes with the coboundary operator.

D, g HP(U12) @ HUF) —" @, H**(U) ® HI(F)

A Js

H™(En3) H"TY(E)

S*
Take a class w®i*a € @, ,—,, HP(U12)®H?(F) and pick a smooth partition of unity {p1, p2} subordinate
to {Uy,Us} (so that {m*p1,7*pa} is a smooth partition of unity subordinate to {E1, E2}). Recall® that

* d(plw) on Uy
0w =
—d(paw) on Uy

By direct computation, we have

md(pw) Na =dr*(pw) A on U

B(5* (w@ita)) = 76w Aa =
(0" (w®ia)) =T 0wAa {—W*d(pzw)AOéZdW*(P2w)/\a on Uz

and

- N T _Jd((m*p)m*w A a) = d(T (p1w) A @) = dr*(prw) Ao on By
T(@weita)) =o(r'wha) = {d((w*pQ)ﬂ'*w Aa) =d(m*(pew) A ) = dr*(paw) A on Es

In the last equality we used the fact that « is closed. This completes the proof of commutativity. By
hypothesis, ® is an isomorphism for Uy, Us, Uy, so we conclude that ® is an isomorphism for U by
5-lemma, so U = U; UU; € U.

To verify condition (iv), note that if (U,)nen is a sequence of pairwise disjoint sets in U, then we
have natural isomorphism of cohomology H*(UJ, U,) = [],, H*(U,), and the map ® is an isomorphism
on each factor, so |J,, U, € U.

Thus, M € U, and we are done. O]

4 Applications

Calculation of the cohomology of projective bundles:

Proposition 4.1. Let £ : E(§) = M be a complex vector bundle of rank n. Then H*(E(P(£))) is a
free H*(M )-module with basis {1,¢,c?, ...,c" 1}, where ¢ = ¢ (71 (£)).

Proof. Consider the following pullback diagram.

E(v1) —— E(Mm(9))
| |

CP ! —— E(P(¢))

3Tt seems that this was not mentioned in talk 4.



We observe that the tautological line bundle over E(P(£)) restricts to tautological line bundle over
CP"~!. By naturality of Chern class, we know that c1(y1(£)) € H?(E(P(£))) restricts to c1(y1) €
H?(CP" 1), s0 c1(71(€))? restricts to c1(y1)? € H2(CP™ 1) . Since H*(CP"™ 1) = Rlc1(m1)]/(c1(7)"),
we are exactly in the situation of Leray-Hirsch, and the result follows. O

Remark 4.2 (cf. Proposition 23.2 Bott-Tu [1]). In general, the tautological k-plane bundle 7 over
G;(C™) embeds as a subbundle of the trivial bundle G;(C™) x C", so it makes sense to consider the
orthogonal complement 'y,i-. In [1], some calculation using tools that we do not have time to introduce
shows that H*(Gr(C™)) 2 Rley, ., Cy C1y ooy Cnei)/((c1 + - cx)(é1 + -+ -+ Cn—p) — 1), where ¢; = ¢;(V)
and & = ¢;(7;-). Since the cohomology is generated by Chern classes which are natural w.r.t. pullback,
one can perform the same argument to show that H*(E(Gg(£))) is a free H*(M)-module with basis
given by Chern classes.

Theorem 4.3 (Splitting principle). For any complex vector bundle £ : E — M, there exists a manifold
T =T(£) and a proper smooth map f: T — M s.t.

(i) f*: H*(M) — H*(T) is injective;
(ii) f*¢ splits as a direct sum of complex line bundles.

Proof. Observe that if we can show that there exist 1" and proper smooth map f* : T — M s.t. f*is
injective and f*§ = ¢’ @ L for some line bundle L and vector bundle £, then we are done by repetitively
applying this procedure.

Let’s take T = E(P(§)) and f = 7 : E(P(£)) — M, which is a smooth proper map (lemma 2.2).
Consider the pullback square:

T E(§) —— E(€)
|
E(P(§) —— M

(i): Proposition 4.2 implies that 7* is injective in every degree.
(ii): There is an injective bundle map j : E(y1(§)) — 7*E(§) given by universal property:

T E(§) — E(¢)
E(PE) — M
More explicitly the map j sends (p, L,v) to ((p,L),v). Its image L = ~; is a subbundle of 7*¢, and it’s

a line bundle. If we let £ be the orthogonal complement of L in 7*¢, then n*¢ =2 ¢’ @ L. O

Remark 4.4. By proposition 4.1, we have some relation*
(=1)"¢" + A1 ()" + Ana ()" + -+ Xo(€) =0

In the proof above, we saw that 7 = & @ v1(£), so the total chern class satisfies 7*(c(§)) = e(n*§) =
c(y(€)e(€') = (1 + ¢)e(€'). We can solve for ¢(£'):
c(€) =7 (e(€)(1+ )7 =7 (c(€) Y _(=1)¢]
j=0
By considering elements of degree 2n, we get
0=cn(¢) = D> 7 (c(®)A(-1)d
i+j=n

By matching coefficients,

Xi(€) = (=1 en—;(6)

4This differs from the book [3] by a sign



Corollary 4.5. There is a ring isomorphism
H*(B(P(€))) = H*(M)[c]/(ca(€) = cn—1(§)c+ -+ (=1)"er(§)c" ™! + (=1)"c")

Proof. The relation derived in Remark 4.5 is the only non-trivial one. Suppose we have another relation
given by some polynomial equation p(c) = 0 for p € H*(M)[X], then it descends to a relation p(c) = 0,
where p=p mod ¢, (§)—cp_1() X+ -+ (=1)""Ley (€)X 1+ (=1)"X", then p = 0 since {1, ¢, ...,c" "1}
is a free H*(M)-basis. O

There is a splitting principle for oriented real vector bundles. This requires the calculation of
H*(G2(R™)), which can be done by a geometric argument.

There is an embedding j : RP"™! — CP"™ !, [z1: -+ x,] = [z1: -+ 1 2], so we can think of
RP"! as a submanifold of CP™~1.

Proposition 4.6. There is a homotopy equivalence G (R") ~ W,, := CP"~1\ RP"!

Lemma 4.7. Let Q = {A € GL2(R) : AT = A, det A =1, tr A > 0}, i.e., the space of positive definite
symmetric matrices with determinant 1.

(i) There is a homeomorphism ¢ : Q x C* — GLJ (R), (A, re'?) — rARy.

(i) @ is contractible via F(A,t) = A* (exponentiation). Moreover, this homotopy is equivariant with
respect to the action of S1 2 SO(2) on Q by conjugation.

Sketch of proof. (i): This is the statement that polar decomposition exists and is unique.
(ii) If A € Q, then by spectral theorem, R? has orthogonal decomposition in terms of eigenspaces, i.e.,

1
R? = V, &V, -1, where A > 0. If P denotes the orthogonal projection onto Vy, then A = AP+\~"1(I—P).
Then A' = NP+ X7'(I — P) = A7'T + (A — A" P at least away form I, and this has a continuous
extension to I. To see that this map is equivariant w.r.t. the action of S, we compute

F(RyYARg,t) = AT+ (N — AR, 'PRy = Ry F(A, )Ry
The first equality follows from change of basis. O

Proof of 4.7 (Sketch). We work with the embedding ¢ : Vo, — S?"~1 C C"\ 0, (z,y) — %(m —1y).
This map equivariant with respect to the action of S* on Va,, by rotation matrices and the action on
S$?n=1 by multiplication and it descends to an embedding @ : G, — CP"~!. This information can be

summarized in the following diagram of maps of fiber bundles.

Sl id Sl incl o

l | l

Vo —2—s §2n-1 I, cn\

)

Gan —5— Pt — CP!

To see that the image of the embedding ¢ lies in W,,, we note that CP™~! has an involution given by
complex conjugation, whose fixed point set is the embedded copy of RP"~! and the imaginary part of
anything in @(G2,) cannot be zero. Define

®: Vo, x GLF(R) — C™\ 0,

<(m, Y), (‘g fz)) = (az + by) —i(cz + dy)

Note that when the matrix is 27121, we recover ¢, so we can think of ¢ as a slice of ®. One can check
that im® = 7~ 1W,,.

Note that S acts on Va, x GL$(R) by change of coordinates, which means (z,y,A) - Ry =
((x,y)Ro, Re_lA). Note that each orbit of this action parametrizes exactly the fiber over ®(z,y, A), so we
get a bijection ¥ : Vs, x 51 GL§ (R) — 7~ 1W,, C C™\ 0. We note that re’® € C* acts on Vs, x GL§ (R)
by (z,y, A) = (z,y, A(rRg)), which induces an action on the orbit space Vs, x 51 GL3 (R), and the map
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VU is equivariant w.r.t. this action and the standard action on C™\ 0 so that this descends to a map to
W,,. This gives the following commutative diagram, where the horizontal maps are diffeomorphisms.

Vaon Xg1 GLT (R) —L— 7-1W,

! |

Recall from lemma 4.8 that ¢ : @ x C* = GLg (R), which induces a diffeomorphism V5, x GLj (R) =
Vo, % (QxC*). Define an action of S* on Vs, xQxC* by ((z,y), B,7e")-Rg = ((x,y)Rg, R, BRg, 7e").
Van x Q x CF — Y 4 v, % GLT(R) Van xs1 GLY(R) — YL — 71w,
Vo X1 Q x CX —— Vo, xg1 GLF (R) (Van xs1 GLF (R))/CX —¥ s W,

| | g
VQ,n X g1 Q T> (‘/27774 X g1 GL;(R))/(CX ‘/2771 X g1 Q

(Diagram on the left) The map id x is equivariant w.r.t. the actions of S*. To see this, note that for
A € GL (R), the symmetric part of the unique polar decomposition is given by B = det(A)~*(AA")1/2.
The action of € € S' on Vo x GLF (R) on A translates to

det(Ry*A) Y ((Ry 1 A)(RgA)1)Y? = det(A) "1 (Ry ' AATRg)Y/? = det(A) 'Ry ' (AAN)/2Ry = R;'BRy

where the second to last equality uses the fact that (R, ' AATRp)'/2 and Ry(AAT)Y/2Ry are both positive
definite square root of RgAATRg, so they must be equal. This map first descends to a diffeomorphism
Vo X1 Q x C* 2V, ,, xg1 GLF (R). Then we check that this map is equivariant w.r.t. the action of C*
on the C* factor of the domain and the C*-action on the target defined earlier and get a diffeomorphism
Vo Xg1 Q2 (Va,, xg1 GLF (R))/C*. (Diagram on the right) We define ® to be the map induced from
¥ using the diffeomorphism obtained by the left diagram, so ® is a diffeomorphism. Using the above
construction, one can obtain an explicit formula for P:

® {’Ey (g f)] = [(az + By) —i(Bx +yy)] € CP" !

We now analyze the space Vs, Xg1 Q. The conjugation action on @ fixes the identity matrix, so
we have an inclusion 4o : Go,, = (Vo x {I})/S' < W, given by ig[x,y,I] = [z — iy], which coincides
with the map ¢ : égm — CP™! defined earlier. We claim that ig is a homotopy equivalence. For this
purpose, we consider

dXF: Vo, xQx[0,1] = Vo, xQ
Using the equivariance part of lemma 4.8(ii), this descends to a well-defined map
‘/2,77, Xs1 Q X [Oa 1] — ‘/2,71 X g1 Q

which is a homotopy between the identity and the inclusion of the subspace (Vs ,, x {I})/S*. This proves
the proposition. O

Lemma 4.8. Let i : W,, — CP"! be the inclusion. We get an induced map i, : H?(W,,) — HP(CP"1).
i, is an isomorphism except the following cases:

(i) if p =0, then H?(W,,) = 0;
(ii) if p =n and n is even, then we have SES

0—R— HYW,) = H*(CP" ') =0



Proof (Sketch). We have exact sequence®

-k

. —— HP(W,) —=— HP(CP" ') —L— HP(RP"!) — HPF(W,) — -

(1) For p # 0,n, we have HP(RP"~1) = HP~L(RP"~1) = 0, so i, is an iso.

(2) When p =0, H?(W,,) = 0 since W, is not compact.

(3) For p=n and n odd, H" 1(RP"~!) 2 0 and i, is still an isomorphism.

(4) For p=n and n even, H" " }(RP"~!) 2 R, so we get the desired SES.

O

Remark. If M is a smooth compact manifold and NV is a smooth compact submanifold of M, then there
is an exact sequence of (co)chain complexes:

0 — Q*(M,N) — Q*(M) 2 Q*(N) = 0

where j is the inclusion and Q*(M, N) is defined to be ker j*, i.e., those forms on M which restrict
to 0 on N. This gives rise to a LES of cohomology. The inclusion i : M \ N — M induces a map
ix (M \ N) = Q*(M, N) called extension by 0. It can be shown that i, induces isomorphism on
cohomology, so one can replace the term H*(Q*(M,N)) by HX(M \ N), which gives exactly the LES
used in the proof of this lemma.

Proposition 4.9. We have H*~1(W,,) = 0 for all p, and

R?2 2p=m —2
H?»(W,)={R 0<2p<2m—4and2p#2m—2

0 otherwise

Proof. Note that W, is an open subset of CP"~!, so an orientation of CP™~! restricts to an orientation
on W,,. This means that Poincare duality applies. Consider the following commutative diagram®

*

HP(CP™ ') ———— HP(W,)

| |

H2n—2—p(CPn—l)* (@)" Hc2n—2—p(Wn)*

1) If p # 2n — 2, n — 2, lemma 4.9 implies that HP(CP"~!) = HP(W,,).

2) W, is path-connected by the homotopy equivalence proved earlier (Proposition 4.7), so H°(W,,) = R.

3) If p=n—2 and n odd, then ¢* is still an isomorphism.

o~

4) If p = n—2 and n even, then we note that the SES from the preceding lemma splits, so H?(W,,) = R?.
By Poincare duality, H™"(W,,) = R2.

(1)
(2)
3)
(4)

By (1), (3), the odd cohomology groups are trivial. By (1), (2), (4), we get the desired pattern of even
cohomology groups. O

To prove the next result about H*(Go(R™)), we need Pontrjagin classes.”

Definition 4.10. Suppose ¢ is a real vector bundle of rank n over M. We define the k-th Pontrjagin
class of £ by
pr(€) = (=) car(éc) € H*™ (M)

The total Pontrjagin class is defined as the formal sum

(&) =14 pi(&) + p2(&) + -

5Proposition 13.11 in [3] but was not introduced in the previous talks.

6¢cf. lemma 3.3.3 talk 7, or chapter 13 of [3].

"Various properties of Pontrjagin classes are introduced in chapter 18 and 19 of [3]. They were not mentioned in the
preceding talks, so we will quickly define the concepts and collect some useful properties.
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Recall from talk 11 that the odd Chern classes of the complexification of a real vector bundle are
trivial, so we only use the even Chern classes in the definition above.
We collect some useful properties of Pontrjagin classes in the following proposition.

Proposition 4.11.

(i) The Pontrjagin class is natural with respect to pullback. The total Pontrjagin class is exponential,
that is, for real vector bundles £ and 7, p(§¢ ® 1) = p(§)p(n).

(ii) If ¢ is an oriented real vector bundle of rank 2k, then py(£) = e(&)?

Sketch of proof. (i) is essentially a consequence of the same statement for Chern classes. (ii) is proposition
19.9 of [3]. O

Proposition 4.12. Let ¢ = e(32) be the Euler class of the tautological 2-plane bundle over Ga(R™).
When n is even, let e = e(73).

(i) If n is odd and n > 3, then H*(Gy.,,) = Rc]/(c"1).
(ii) If n is even and n > 4, then H*(Gy2,) = Rle,e]/(c" 1, ce, e® + (—1)"/2c"2)

Proof. (i): Let n be odd and n > 3. We discover from the proof of the preceding proposition that
i* « H*(CP" 'y — H*(W,) is bijective other than in degree 2n — 2. This immediately gives us the
cohomology ring structure on W,, and thus égyn by homotopy invariance. It suffices to show that the
first Chern class ¢1(y1) € H2(CP"~1) pulls back to ¢ = e(72). For this purpose we consider the following
diagram.

E(%2) — E(n)

l |

Gop —— CP"!

The top map is given by (V' = span(vy, v2), Avy +pvg € V) i (C{vy —iva), (A+1ip)(v1 —ive)) In fact, this
is a pullback square, given by restricting the tautological line bundle (regarded as a real 2-plane bundle)
to the embedded copy of ég’n. By naturality, the Euler class ¢1(y1) pulls back to ¢ = e(42) along the
embedding.

(ii): By the same argument as (i), the relation ¢™~! = 0 holds in H*(G2,,). The relation ce = 0
follows from the fact that 5, ® 75~ = ™. To establish e 4 (—1)"/2¢"~2 = 0, we use Pontrjagin class. We
have

(I+p1(32)A+p1(F) + -+ 4 Pnje—1(32)) =1

since Yo @ 75~ = €™. This gives us the relation p;(75-) = (—=1)?p1(52)?. By proposition 4.11(ii), we also
have
€ =pnja-1(33) = (1) py(2)"/7!

By naturality, p1(52) is the pullback of the first Pontrjagin class of (y1)r over CP" !, regarded as a real
vector bundle. We have the direct sum decomposition (71)r ®r C = v1 ® ~f (lemma 16.19(ii) of [3]),
so we can compute p1((y1)r) = —c1(71)(—c1(m1)) = c1(m1)?. Hence, p1(72) = . Substitute, and get
e? = (=) 12 e, € + (=1)V2e" 2 = 0.

We claim that 1,¢,c?,...,¢" 2, e form an additive basis of H* (ézn) To see this, note that the only
way this could fail is when e and the class ¢/2~! are linearly dependent, so let’s assume ¢™/271 = \e
for some A € R. Then ¢*/? = Ace = 0, but this is a contradiction. Now, by comparing vector space

dimension, we deduce that H*(Ga.,) 2 R[c,e]/(c"~, ce, e? + (—1)"/2¢"2). O

Proposition 4.13. For any oriented real vector bundle & over M, H*(G5(€)) is a free H*(M)-module
with basis

Le(€),e(€)?,..,e(§) % e(éh) ifm=2n>4

Le(€),e(&)?,...,e(6)m 2 ifm=2n+1>3

Proof. Apply Leray-Hirsch. O

Theorem 4.14 (Real splitting principle). For any oriented real vector bundle £ over M, there exists a
manifold T'= T'(§) and a smooth proper map f: T — M s.t.
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(i) f*: H*(M) — H*(T) is injective,

(i) f*¢ =Ly & - ® Ly if rank(§) is even, and f*¢ = Ly & --- & L, @ &' if rank(€) is odd, where each
L; is an oriented 2-plane bundle.

Proof. The proof is the same as complex splitting principle. We take f = 7 : E(é2(§)) — M which is
a smooth proper map. The pullback bundle along this map splits as the direct sum of a 2-plane bundle
(the image of the tautological bundle) and another vector bundle. Depending on the parity of the rank,
we can iterate this procedure until the bundle splits as direct sums of oriented 2-plane bundles or there
is a line bundle left, say &.

Argument 1: At the last step, we take one more pullback along the projection 7 of the total
space of the unit sphere bundle of £&. The pullback 7*¢ has a nowhere vanishing global section given by
((p,€), Ae) — €, where e = £1 and (p, €) € S(§). Hence, after one more pullback, the vector bundle splits
as a direct sum of oriented 2-plane bundle and a trivial line bundle.

Argument 2: Alternatively, an orientation of a vector bundle £ amounts to a continuous choice of
oriented basis of fibers. This is equivalent to the existence of a nowhere-vanishing global section of the
bundle A™¥(P)(E) 2 det(E). If we have two bundles £ and F such that E and E® F are both orientable,
then e! = AKE)VHKIE) (B @ ) = AKE)(E) @ AR (F) =2 AF)(F), so F is also orientable. Back
to this theorem, £ is an orientable line bundle by the argument using determinant bundle, so it has to
be trivial as orientation in the case of line bundle precisely means the existence of a nowhere vanishing
global section. O

If time permits, we will also calculate the cohomology ring of some Stiefel manifolds.

Proposition 4.15. For 1 < k < n, there exists ring isomorphism

H*(Vi,(C")) = Alzon—2k41, Tan—2k43s - T2n—1]
where |z;| = j.

Proof. We proceed by induction on k. The base case is clear.

Suppose the statement is true for Vi_1 n—1, i.e., Hjp(Vic1,n—1) = AlTon—2k+1, Tan—2k+3, s T2n—3]-

We claim without proof that the fiber bundle Vi_1,-1 — Vi, — S?"~! satisfies the hypothesis
of Leray-Hirsch theorem. Moreover, the inclusion of fiber i : Vy_1,-1 — Vi, induces isomorphisms
i* : H (Vi) = HI(Vi—1,n—1) for j < 2n—3. Therefore, the inclusion of fiber completely determines the
subring of H*(Vj ) generated by yon—2k+1, - Y2n—3 as AlYan—2k+1, ---, Y2n—3). In particular, there exists
cohomology classes Yon—2k+1, - Yon—3 on Vi, which restrict to xop—ox+1, ..., Tan—3, S0 we are exactly
in the situation of Leray-Hirsch. Therefore, H* (V) is a free H*(S?"~!)-module with basis given
by products of distinct elements from {yo,—2x+1, -, Y2n—3}. Let yo,—1 be the pullback of a generator
of HI~'(S?"~1), then an additive basis of H(Vi,,) is given by products of distinct elements from
{y2n72k+17 ~~'7y2n71}~

We claim that Hj,(Vin) is the exterior algebra on yon—2x41, ..., Y2n—1. There is a surjective ring
homomorphism Alyzn—2k+1, - Y2n—1] = H*(Vk,n) by sending y; to the cohomology class with the same
label. By comparing dimg, we see that this is an isomorphism. O

Remark 4.16. It takes a non-trivial amount of work to prove that Vi_; ,,—1 = Vi — 52n—1 gatisfies
the hypothesis of Leray-Hirsch. This is mainly because we do not have the cohomology structure of V4,
to begin with. However, with some help from homotopy theory, one can deduce certain information on
the homotopy groups of Vi ,. Using the Hurewicz map, which relates homotopy groups and integral
homology groups (and hence cohomology via universal coefficient theorem), we can actually show that
the inclusion of fiber V4_; ,_1 — V4, induces isomorphism on cohomology groups up to sufficiently high
degree so that Leray-Hirsch applies.
Consider the fiber sequence Vi1 -1 = Vi — 52n—1. The long exact sequence reads

e — 7Tj+1(52n71) — ﬂj(vk_lm_l) k) ﬂj(vkvn) — Wj(52n71) —

Claim 1: The space V;, is simple (the action of m; on =, is trivial for all n > 1) for
1 <k <n. If kK = n, then both spaces are H-spaces and hence simple. Otherwise, by induction on k
(using the LES above), we see that Vj ,, is simply connected.

The map ix : mj(Vik—1.n—1) — 7;(Vi,n) is an isomorphism if j < 2n — 2 and an epimorphism if
Jj = 2n — 2, so the pair (Vin, Vk—1,n—1) is (2n — 2)-connected. By claim 1, the relative Hurewicz map
hemi(Vin, Vicin—1) = Hj(Vin, Vik—1.n—1;Z) is an isomorphism if j < 2n — 3.
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This argument does not compute H*(Vj(R™)). The connectedness of the pair (Vi (R"), Vi_1(R"~1))
is not sufficient to deduce that the analogous fiber bundle satisfies the hypothesis of Leray-Hirsch.
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