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The goal of this talk is to define Euler class of a real vector bundle ¢£: F — M, and show some of
its properties. For this we need two additional tools - Pffafian polynomials and metric connections.

1 Pfaffian

Definition 1.1: Denote the set of skew-symmetric real nxn matrices by s0,, := {A € Mat, x,(R) | A" =
—A} and the set of skew-hermitian by su,, := {A € Mat,«x,(C) | At = —A}. Clearly they are closed
under scaling and become a group under addition. It is remarkable, that they are not closed under
multiplication, but admit the structure of Lie-algebras under [A, B] = AB — BA.

Let A = (A;;) € s0,,. Consider the determinant of A
e if n is odd, then det(A) = det(A?) = det(—A) = —det(A), and so det(A) = 0.

e if n is even, say n = 2k, then we know from the linear algebra course, that A is similar to the
diagonal block matrix

ST 0 bl 0 b2 0 bk
peans (5, 6)-( 6) (0 B))

Moreover, we can choose B such that the similarity transformation matrix G is orthogonal. In
particular, det(A) = det(B) = b3b3...b7 = (b1 ...bx)?, i.e. the square of some polynomial of
degree k in variables by, ...,b;. Dramatic is the fact that the determinant of A is always the
square of a polynomial depending on the entries A4;; and not only in the special case! Let us
construct such a polynomial formally:

For A € s09541 we set Pf =0 and for A € sogy, we let

w(A) =Y Ajjei Nej € A(RF),
2%
and define Pf(A) by the equation
W(A)A - Aw(A) = 2PEIPf(A)ey Aeg A -+ Aegy, € AZF(R?F) = R.

k-times
For the block matrix

. 0 m 0 ay 0 ag
a=ana (5 5) (G §) (o %))

a simple calculation gives

w(A) =2a1e1 N es + 2ase3 N ey + -+ + 2aiea—1 €2k,
and one can see that
W(A)A - Aw(A) =28 (araz . .. ag)er A -+ A ey

it follows that Pf(A) = ajaz . ..a, and Pf(A)? = det(A) in this case.



Theorem 1.2: If A € s05, and B is an arbitrary matrix then
(i) Pf(A)? = det(A)
(ii) Pf(BAB?) = Pf(A)det(B)

Proof. Because of the remarks above, (i) follows immediately from (ii), namely choose a similar diago-
nal block matrix with orthogonal transition matrix B, then Pf(A)? = Pf(BAB™!)? = det(BAB™!) =
det(A). In order to prove (ii), we consider the elements f; = Be; =Y., B,;e; € R?*| we have that

=Y AijfiNfi = BuiAiBuje, Aey =Y (BAB'), e, Ae,
so that 7 = w(BAB?"). Hence
2"EIPf(BAB ey A -+ Negp = w(BABY) A --- Nw(BABY) =7 A--- A7 = 2FEIPF(A) fL A A for.

and from the linear algebra it is known that fi A -+ A fo, = det(B)egr A -+ A egx (just from the
definition of the determinant), hence Pf(BAB?) = Pf(A) det(B).

O
Corollary 1.3: For any A, B € so;,, we have Pf(A ® B) = Pf(A) ® Pf(B)
Remark: One can show, that for A € so0y;, the Pffafian has explicit form
1 k
PH(A) = 55 > sen(0) [ [ ao@iz1).0e
o€ Sar, i=1
Consider now the subset of skew-hermitian matrices su,, C M,,(C) (i.e. A* = —A). The realifica-

tion map M, (C) — My, (R) induces a map su,, — $09,,, denoted by A — Ag, and we have
Theorem 1.4: For A € su,, Pf(Agr) = (—i)" detc(A).

Proof. Tt is well known that a skew-hermitian matrix has an orthonormal basis of eigenvectors, so we
may assume that A is diagonal, namely A = diag(iay,...,ia,) with a; € R. Now direct computation
yields Pf(Ag) = (=1)"ay ...ay, and detc(A4) = i"ay ... ay,, thus P{(Ag) = (—i)" detc(A). O

2 Metric connection and the Euler class

Let £ be a smooth 2n real vector bundle over M with inner product (,). The inner product induces
a pairing

(): 94(6) @ 04(€) - 9 (A1)

(w1 ® s1, w2 ® S2) = (51, 8$2) w1 A ws
where (s1,s2) € Q°(M) defined by p — (s1(p), s2(p)), and wy € QY (M), ws € QI (M).
Definition 2.1: A connection V on (&, (,)) is said to be metric or orthogonal if

d<817 52> = <V817 82> + <81, V52>

We express this condition locally in terms of the connection form A associated to an orthonormal
frame. Let e1,...,ea, € Q°(&) be sections over U, so that e;(p),...,ea,(p) forms an orthonormal
basis of & for p € U. Let A be the associated connection form,

V(el) = ZA” ® €j.
J

For every pair (i, k) we have (e;, ex) = 0 (on U), so d{e;, ex) = 0. If V is metric connection one gets

0=d(ej,er) =(E;4;; Qej,ep) + (€, XAk Re;
=X Aii(e), ex) + XAk (i) = Aix + Api.



Thus the connection matrix with respect to an orthonormal frame is skew-symmetric. If conversely
A is skew-symmetric with respect to an orthonormal frame, then V is metric

(Vsi1, s2) + (s1,Vsa) = < (Z azez> Zb 61> + <Z a;e;, V (Z bjej)>
= <Z dae; + Z a;Ve;, Z biei> + <Z a;e;, Z dbje; + Z ijej>

= Z (bida; + a;db;) + Zal (Vei,e;) + (e;, Vej)

where (Ve;, e;) + (e;, Ve;) = 0 because A is skew-symmetric.
Let FV € Q2(HOM(¢, €)) be the curvature form associated to a metric connection. After choice
of an orthonormal frame e for &y,

Q*(HOM(E, )ur) = Man(2*(U)).
In the Talk 10 we have seen that the corresponding matrix of 2-forms F'V (e) was calculated to be
FV(e)=dA—ANA

where A is the connection form associated to e. In particular, F'V (e) is skew-symmetric, and we can
apply the Pfaffian polynomial to FV(e) to get

Pf(FY (e)) € Q**(U).
In another orthonormal frame ¢’ over U, we have

FY(e")p = BpFY (e)B,

where By, is the orthogonal transition matrix between e(p) and ¢'(p), in particular B! = Bl
From now on, we suppose additionally that the vector bundle £ is oriented, and that e and ¢’ are
in the orientation class, that is B, € SOay,, and by Theorem

Pf(FY (e)) = Pf(FY ().

It follows that Pf(FY) becomes a well-defined global 2n-form on M.

Proposition 2.2: For the Pfaffian polynomial, and any metric connection V, Pf(FY) € Q**(M) is
a closed form.

Proof. We follow the same proof as for invariant polynomials in [MT97]. Choose a frame for £ over
U, and let V have the connection matrix A = (A;;), so that F¥ =dA — AN A = (Fg) Define a
matrix

) = ()

then one can show the commutativity Pf'(B)B = BPf'(B) for all skew-symmetric matrices B. To-
gether with Bianchi’s identity dFY = AA FY — FV A A we get

OPf
DA;;
=Tr (Pt'(FY)ANANFY =P (FY)AFY A A)

=Tr (Pf'(FY)ANAANFY — FYV APF(FY)ANA) =0

dPf(FV) =

(FV)ANdFy = Te(Pt'(FY) NdFY)

O

We must verify that its cohomology class is independent of the choice of metric on £ and of the
metric connection. First note that connections can be glued together by a partition of unity:



Lemma 2.3: Let (V;);er be a family of metric connections, and (p;);c; be a smooth partition of
unity on M, then V =" p;V, defines a metric connection.

Proof. straightforward, if
d(s1,s2) = (Vis1, s2) + (51, Vis2)

then

(Vs1,82) + (s1,Vs2) = > (piVis1,s2) + (51,0 Vis2)
=D pi(Visi,s2) + (51, Visa))
=D pid(s1,s2) = d(s1,59).
O

In the calculations above we have used only that V; is metric on the supp,,(p;), and not necessarily
on all of M. This is crucial for us.

Corollary 2.4: For all real vector bundles (&, (,)) over M there exists a compatible metric connec-
tion.

Proof. Pick an open covering {U,};cr of M, such that £ is trivial on each U;. Define V; such that
over each U; the connection matrix A; is skew-symmetric, e.g. A; = 0. The paracompactness of M
and previous lemma end the proof. O

Consider the maps
M 5
i
1

MxR—"—— M

with iq(2) = (z,a) and 7(z,t) = z, and let £ = 7*(£) be induced vector bundle over M x R. Then

clear i%(&) = & for « = 0,1 and we have:

Lemma 2.5: For any choice of inner products and metric connections ¢, Vs (o = 0,1) on the
smooth real vector bundle £ over M, there is an inner product g on £ and a metric connection V

compatible with g such that i, (g) = g, and i, (V) = V,.

Proof. We can pullback by 7* the metric g, and the metric connections V,, to E Let {po, p1} be
a partition of unity on M x R subordinate to the cover M X (—o00,3/4) and M x (1/4,00). Then
G = por*(go) + p17*(g1) is a metric on & which agrees with 7 (go) over M x (—o0,1/4) and with
7 (g1) on M x (3/4,00). In particular %, (§) = ga-
Let V be any metric connection on & compatible with §. We have connections 7*(Vo), V and 7* (V)
compatible with g over M x (—o0,1/4), M x (1/8,7/8) and M x (3/4,00) respectively. We use a
partition of unity, subordinate to this cover, to glue together the three connections to construct a
connection V over M x R. This is metric (7*(Vy) and 7*(V1) are metric with respect to induced
metric, for example because the induced connection matrix is also skew-symmetric) with respect to

g by construction, and zj;% =Va. O

Corollary 2.6: The cohomology class [Pf(FV)| € H?*(M) is independent of the metric and the
compatible metric connection.

Proof. Let (go, Vo) and (g1, V1) be two different choices and let (g, V) be the metric and connection
of the previous lemma. Then i} (FV) = FVe, and hence i, Pf(FV) = Pf(FVe). The maps iy and
i1 are homotopic, so i§ = i}: H"(M x R) — H"(M). Thus the cohomology classes of Pf(FVo) and
Pf(FV1) agree:

[PE(FY0)] = i {Pf(FV)} =it [Pf(FV)} = [PE(FVY)]



Definition 2.7: Let £ be a real oriented n-dimensional vector bundle. The cohomology class

\Y

e(é) = {Pf (‘; ﬂ e H"(M)

is called the Euler class.

Example 2.8: Suppose M is an oriented surface with Riemannian metric and that £ = 7* = 7 is
the cotangent bundle. Let ej,es be an oriented orthonormal frame for QO(TF;J) = QY(U), such that
e1 Neg =vol on U. Let ay,as be the smooth functions on U determined by

d€1 = a1(61 AN 62)7d€2 = a2(€1 A\ 62)

and let Ajo = aje; + asea. We give TGJ the connection form

o 0 A12
A= (_A12 0 )
so that V(e1) = Aj2 ® ez and V(ez) = —Aj2 ® e;. This is so-called Levi-Civita connection. The
associated curvature form is

v . o 0 dA12
FY =dA A/\A_<dA12 0

since AAA = (aje; +asgez)A(are;+azes) = 0. In this case Pf(FV) = dA;3 is called the Gauss-Bonnet
form, and the Gaussian curvature x € Q°(M) is defined by the formula

—rey Aey = PE(FY).

Definition 2.9: Let £ be a complex vector bundle over M equipped with a hermitian metric (, )¢ .
A connection on (&, (,)¢) is called metric or hermitian, if

d(s1,s2)c = (Vs1,52)c + (51, Vsa)c.

Analogously as for the inner product, the connection V is hermitian with respect to (&, (,)¢) if and
only if the connection form A is skew-hermitian, i.e., 4;; + A;; = 0 or in matrix terms 4* + A = 0.
Given a hermitian smooth vector bundle (&, (,)c) of complex dimension n with a hermitian con-
nection V¢, the underlying real vector bundle &g is 2n naturally oriented real vector bundle, and
inherits an inner product {,)r = Re({(, )c) and an orthogonal connection Vg = Re(V¢).
If Ac is the hermitian connection form of (&, (,)c) with respect to an orthonormal frame e, then
the connection form associated with the underlying real situation is Ag, the matrix of 1-forms given
by the usual embedding of M, (C) < My, (R). This embedding sends skew-hermitian matrices into
skew-symmetric matrices, and

PE(EY (e)r) = (—i)" det(FY (e)) (1)

by Theorem For a complex vector bundle we write e(§) instead of e(&gr) for the Euler class.
Then we have

Theorem 2.10: (i) For a complex n-dimensional vector bundle ¢, e({) = ¢, (().
(ii) For oriented real vector bundles & and &, e(&1 @ &2) = e(&1)e(&2).
(iii) For oriented real vector bundle &, e(f*(£)) = f*e(£).

Proof. For the first assertion, recall that

() = [ak <1FV>} € H**(M;C)
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and for k = n, we have 0,,(FV) = det(FV) so by (1)
(=1)"/(2m)"PE(FY)
i"/(2m)" det(FY)
i"/(270)" 0 (FY)

Pf(—Fy /27)

)
)

when FV is the curvature of a hermitian connection on (¢, (,)c). Thus
Pf(—Fy /27) = o1, (iFY /27).
This proves (i).
The second assertion is similar to the case of the Chern class. Let V1, V, be metric connections
for &1 and &. Then Vi @ Vs is a metric connection for &1 @ &», and the same for the curvature
FY =FY1aFY2.

We end the proof by noting Pf(FV:FV2) = Pf(FV1)Pf(FV2)
Finally assertion (iii) follows from the 10-th Talk, namely from the fact that f*(FV) = F/ (V)

w0 )R e () e

Proposition 2.11: Let { be an oriented 2n-dimensional vector bundle over M. And let §~ be the
same vector bundle, with the opposite orientation. Then e(§) = —e(§) € H?*™(M)

O

Proof. Immediately from the fact that Pf(FV (¢’)) = Pf(FV (e))det(B) = —Pf(FV (e)), where B is
the orthogonal transition matrix between e and €’. O

Proposition 2.12: Let £ be an oriented vector bundle over M that possesses a nowhere zero section
s: M — E, then the Euler class e(§) must be zero.

Proof. Let (,) be an inner product on . Denote by ¢ the line bundle spanned by the nowhere
vanishing section s of £&. Then ¢ = £ @ e+, where £ is orthogonal vector bundle to € in (€, (,)).
Hence by Theorem [2.10

e(§) =e(c@er) = e(e)e(c™) = 0.

O

Theorem 2.13 (Chern-Gauss-Bonnet theorem): Let M be a connected orientable compact smooth
manifold, and T'M its tangent bundle. Then
_FV
Pf ( ) = x(M)
1

21

D(e(TM)) = /

M

where x(M) is the Euler characteristic of M, and D: H"(M) — H°(M)* 2 R is the isomorphism
from the Poincaré-duality. For the oriented surface from Example 2.8] and its Gaussian curvature we
have

/ Kkep Ney =2mx (M)
M
Proof. Omitted. See for example [Mor01]. O

Corollary 2.14: Let M be a connected orientable compact smooth manifold of dimension n, and
TM its tangent bundle. Denote by [wps] € H™(M) the volume form, then

e(TM) = x(M)[wn].

Corollary 2.15: The tangent bundles of manifolds with x(M) # 0 do not admit a nowhere zero
section.



2.1 Uniqueness of Euler classes To prove the uniqueness of Euler classes we need a
version of the splitting principle for real oriented vector bundles, namely

Theorem 2.16 (Real splitting principle): For any oriented real vector bundle ¢ over M there exists
a manifold T'(¢) and a smooth proper map f: T({) — M such that

(i) f*: H*(M) — H*(T) is injective.

(i) f*Q)=m® - ®v, when dim(¢) = 2n, and f*({) =71 @ B, ®et when dim(¢) =2n+1,
where 71, ..., v, are oriented 2-plane bundles, and &' is the trivial line bundle.

Theorem 2.17 (Uniqueness of Euler classes): Suppose that to each oriented isomorphism class of
2n-dimensional oriented real vector bundle ¢ we have associated a class é(¢) € H?"(M) that satisfies

(i) f*(e(Q)) =é(f*(Q)) for a smooth map f: N - M

(ii) é(¢1 @ ¢2) = é(¢1)é(¢a) for oriented even-dimensional vector bundles (1, s over the same base
space.

Then there exists a real constant a € R such that é(¢) = ae(().

Proof. Given a complex line bundle L over M, we can define ¢(L) = é(Lg). Then f*c(L) = ¢(f*L),
and the argument for uniqueness of Chern classes shows that ¢(L) = aci(L). Thus é(y) = ae(y) for
each oriented 2-plane bundle v. Indeed, an oriented 2-plane bundle is of the form Lg for a complex
line bundle which is uniquely determined up to isomorphism. One simply defines multiplication by ¢
to be a positive rotation by /2.

If{=7®- - ®v, is asum of oriented 2-plane bundles then we can use (ii) and Theore to
see that é(¢) = a™e({). Finally Theorem implies the result in general. O
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