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The goal of this talk is to define Euler class of a real vector bundle ξ : E → M , and show some of
its properties. For this we need two additional tools - Pffafian polynomials and metric connections.

1 Pfaffian

Definition 1.1: Denote the set of skew-symmetric real n×nmatrices by son := {A ∈ Matn×n(R) |At =
−A} and the set of skew-hermitian by sun := {A ∈ Matn×n(C) | At = −A}. Clearly they are closed
under scaling and become a group under addition. It is remarkable, that they are not closed under
multiplication, but admit the structure of Lie-algebras under [A,B] = AB −BA.

Let A = (Aij) ∈ son. Consider the determinant of A

• if n is odd, then det(A) = det(At) = det(−A) = − det(A), and so det(A) = 0.

• if n is even, say n = 2k, then we know from the linear algebra course, that A is similar to the
diagonal block matrix

B = diag

((
0 b1

−b1 0

)
,

(
0 b2

−b2 0

)
, . . . ,

(
0 bk

−bk 0

))
Moreover, we can choose B such that the similarity transformation matrix G is orthogonal. In
particular, det(A) = det(B) = b21b

2
2 . . . b

2
k = (b1 . . . bk)

2, i.e. the square of some polynomial of
degree k in variables b1, . . . , bk. Dramatic is the fact that the determinant of A is always the
square of a polynomial depending on the entries Aij and not only in the special case! Let us
construct such a polynomial formally:

For A ∈ so2k+1 we set Pf = 0 and for A ∈ so2k, we let

ω(A) =
∑
i,j

Aijei ∧ ej ∈ Λ2(R2k),

and define Pf(A) by the equation

ω(A) ∧ · · · ∧ ω(A)︸ ︷︷ ︸
k-times

= 2kk!Pf(A)e1 ∧ e2 ∧ · · · ∧ e2k ∈ Λ2k(R2k) ∼= R.

For the block matrix

A = diag

((
0 a1

−a1 0

)
,

(
0 a2

−a2 0

)
, . . . ,

(
0 ak

−ak 0

))
a simple calculation gives

ω(A) = 2a1e1 ∧ e2 + 2a2e3 ∧ e4 + · · ·+ 2ake2k−1e2k,

and one can see that

ω(A) ∧ · · · ∧ ω(A) = 2kk!(a1a2 . . . ak)e1 ∧ · · · ∧ e2k

it follows that Pf(A) = a1a2 . . . ak and Pf(A)2 = det(A) in this case.
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Theorem 1.2: If A ∈ so2k and B is an arbitrary matrix then

(i) Pf(A)2 = det(A)

(ii) Pf(BABt) = Pf(A) det(B)

Proof. Because of the remarks above, (i) follows immediately from (ii), namely choose a similar diago-
nal block matrix with orthogonal transition matrix B, then Pf(A)2 = Pf(BAB−1)2 = det(BAB−1) =
det(A). In order to prove (ii), we consider the elements fi = Bei =

∑
ν Bνiei ∈ R2k, we have that

τ =
∑

Aijfi ∧ fj =
∑

BνiAijBµjeν ∧ eµ =
∑

(BABt)νµeν ∧ eµ

so that τ = ω(BABt). Hence

2kk!Pf(BABt)e1 ∧ · · · ∧ e2k = ω(BABt) ∧ · · · ∧ ω(BABt) = τ ∧ · · · ∧ τ = 2kk!Pf(A)f1 ∧ · · · ∧ f2k.

and from the linear algebra it is known that f1 ∧ · · · ∧ f2k = det(B)e1 ∧ · · · ∧ e2k (just from the
definition of the determinant), hence Pf(BABt) = Pf(A) det(B).

Corollary 1.3: For any A,B ∈ sok, we have Pf(A⊕B) = Pf(A)⊕ Pf(B)

Remark: One can show, that for A ∈ so2k the Pffafian has explicit form

Pf(A) =
1

2kk!

∑
σ∈S2k

sgn(σ)

k∏
i=1

aσ(2i−1),σ(2i)

Consider now the subset of skew-hermitian matrices sun ⊆ Mn(C) (i.e. At = −A). The realifica-
tion map Mn(C) → M2n(R) induces a map sun → so2n, denoted by A 7→ AR, and we have

Theorem 1.4: For A ∈ sun, Pf(AR) = (−i)n detC(A).

Proof. It is well known that a skew-hermitian matrix has an orthonormal basis of eigenvectors, so we
may assume that A is diagonal, namely A = diag(ia1, . . . , ian) with ai ∈ R. Now direct computation
yields Pf(AR) = (−1)na1 . . . an, and detC(A) = ina1 . . . an, thus Pf(AR) = (−i)n detC(A).

2 Metric connection and the Euler class

Let ξ be a smooth 2n real vector bundle over M with inner product ⟨ , ⟩. The inner product induces
a pairing

⟨ , ⟩ : Ωi(ξ)⊗ Ωj(ξ) → Ωi+j(M);

⟨ω1 ⊗ s1, ω2 ⊗ s2⟩ = ⟨s1, s2⟩ω1 ∧ ω2

where ⟨s1, s2⟩ ∈ Ω0(M) defined by p 7→ ⟨s1(p), s2(p)⟩, and ω1 ∈ Ωi(M), ω2 ∈ Ωj(M).

Definition 2.1: A connection ∇ on (ξ, ⟨ , ⟩) is said to be metric or orthogonal if

d⟨s1, s2⟩ = ⟨∇s1, s2⟩+ ⟨s1,∇s2⟩.

We express this condition locally in terms of the connection form A associated to an orthonormal
frame. Let e1, . . . , e2n ∈ Ω0(ξ) be sections over U , so that e1(p), . . . , e2n(p) forms an orthonormal
basis of ξ for p ∈ U . Let A be the associated connection form,

∇(ei) =
∑
j

Aij ⊗ ej .

For every pair (i, k) we have ⟨ei, ek⟩ = δik (on U), so d⟨ei, ek⟩ = 0. If ∇ is metric connection one gets

0 = d⟨ei, ek⟩ = ⟨ΣjAij ⊗ ej , ek⟩+ ⟨ei,ΣjAkj ⊗ ej

= ΣjAij⟨ej , ek⟩+ΣjAkj⟨ei, ej⟩ = Aik +Aki.
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Thus the connection matrix with respect to an orthonormal frame is skew-symmetric. If conversely
A is skew-symmetric with respect to an orthonormal frame, then ∇ is metric

⟨∇s1, s2⟩+ ⟨s1,∇s2⟩ =
〈
∇
(∑

aiei

)
,
∑

biei

〉
+

〈∑
aiei,∇

(∑
bjej

)〉
=

〈∑
daiei +

∑
ai∇ei,

∑
biei

〉
+

〈∑
aiei,

∑
dbjej +

∑
bj∇ej

〉
=

∑
i

(bidai + aidbi) +
∑
i.j

aibj(⟨∇ei, ej⟩+ ⟨ei,∇ej⟩

=
∑
i

d(aibi) = d⟨s1, s2⟩

where ⟨∇ei, ej⟩+ ⟨ei,∇ej⟩ = 0 because A is skew-symmetric.
Let F∇ ∈ Ω2(HOM(ξ, ξ)) be the curvature form associated to a metric connection. After choice

of an orthonormal frame e for ξU ,

Ω2(HOM(ξ, ξ)|U ) ∼= M2n(Ω
2(U)).

In the Talk 10 we have seen that the corresponding matrix of 2-forms F∇(e) was calculated to be

F∇(e) = dA−A ∧A

where A is the connection form associated to e. In particular, F∇(e) is skew-symmetric, and we can
apply the Pfaffian polynomial to F∇(e) to get

Pf(F∇(e)) ∈ Ω2n(U).

In another orthonormal frame e′ over U , we have

F∇(e′)p = BpF
∇(e)B−1

p

where Bp is the orthogonal transition matrix between e(p) and e′(p), in particular B−1
p = Bt

p.
From now on, we suppose additionally that the vector bundle ξ is oriented, and that e and e′ are

in the orientation class, that is Bp ∈ SO2n, and by Theorem 1.2

Pf(F∇(e)) = Pf(F∇(e′)).

It follows that Pf(F∇) becomes a well-defined global 2n-form on M .

Proposition 2.2: For the Pfaffian polynomial, and any metric connection ∇, Pf(F∇) ∈ Ω2n(M) is
a closed form.

Proof. We follow the same proof as for invariant polynomials in [MT97]. Choose a frame for ξ over
U , and let ∇ have the connection matrix A = (Aij), so that F∇ = dA − A ∧ A = (F∇

ij ). Define a
matrix

Pf ′(A) =

(
∂Pf

∂Aij
(A)

)t

,

then one can show the commutativity Pf ′(B)B = BPf ′(B) for all skew-symmetric matrices B. To-
gether with Bianchi’s identity dF∇ = A ∧ F∇ − F∇ ∧A we get

dPf(F∇) =
∑ ∂Pf

∂Aij
(F∇) ∧ dF∇

ij = Tr(Pf ′(F∇) ∧ dF∇)

= Tr
(
Pf ′(F∇) ∧A ∧ F∇ − Pf ′(F∇) ∧ F∇ ∧A

)
= Tr

(
Pf ′(F∇) ∧A ∧ F∇ − F∇ ∧ Pf ′(F∇) ∧A

)
= 0

We must verify that its cohomology class is independent of the choice of metric on ξ and of the
metric connection. First note that connections can be glued together by a partition of unity:
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Lemma 2.3: Let (∇i)i∈I be a family of metric connections, and (ρi)i∈I be a smooth partition of
unity on M , then ∇ =

∑
ρi∇i defines a metric connection.

Proof. straightforward, if
d⟨s1, s2⟩ = ⟨∇is1, s2⟩+ ⟨s1,∇is2⟩

then

⟨∇s1, s2⟩+ ⟨s1,∇s2⟩ =
∑

⟨ρi∇is1, s2⟩+
∑

⟨s1, ρi∇is2⟩

=
∑

ρi(⟨∇is1, s2⟩+ ⟨s1,∇is2⟩)

=
∑

ρid⟨s1, s2⟩ = d⟨s1, s2⟩.

In the calculations above we have used only that∇i is metric on the suppM (ρi), and not necessarily
on all of M . This is crucial for us.

Corollary 2.4: For all real vector bundles (ξ, ⟨ , ⟩) over M there exists a compatible metric connec-
tion.

Proof. Pick an open covering {Ui}i∈I of M , such that ξ is trivial on each Ui. Define ∇i such that
over each Ui the connection matrix Ai is skew-symmetric, e.g. Ai = 0. The paracompactness of M
and previous lemma end the proof.

Consider the maps

M M × R M
i1

i0
π

with iα(x) = (x, α) and π(x, t) = x, and let ξ̃ = π∗(ξ) be induced vector bundle over M × R. Then

clear i∗α(ξ̃)
∼= ξ for α = 0, 1 and we have:

Lemma 2.5: For any choice of inner products and metric connections gα,∇α (α = 0,1) on the

smooth real vector bundle ξ over M , there is an inner product g̃ on ξ̃ and a metric connection ∇̃
compatible with g̃ such that i∗α(g̃) = gα and i∗α(∇̃) = ∇α.

Proof. We can pullback by π∗ the metric gα and the metric connections ∇α to ξ̃. Let {ρ0, ρ1} be
a partition of unity on M × R subordinate to the cover M × (−∞, 3/4) and M × (1/4,∞). Then

g̃ = ρ0π
∗(g0) + ρ1π

∗(g1) is a metric on ξ̃ which agrees with π∗(g0) over M × (−∞, 1/4) and with
π∗(g1) on M × (3/4,∞). In particular i∗α(g̃) = gα.

Let ∇̂ be any metric connection on ξ̃ compatible with g̃. We have connections π∗(∇0), ∇̂ and π∗(∇1)
compatible with g̃ over M × (−∞, 1/4), M × (1/8, 7/8) and M × (3/4,∞) respectively. We use a
partition of unity, subordinate to this cover, to glue together the three connections to construct a
connection ∇̃ over M × R. This is metric (π∗(∇0) and π∗(∇1) are metric with respect to induced
metric, for example because the induced connection matrix is also skew-symmetric) with respect to

g̃ by construction, and i∗α∇̃ = ∇α.

Corollary 2.6: The cohomology class
[
Pf(F∇)

]
∈ H2k(M) is independent of the metric and the

compatible metric connection.

Proof. Let (g0,∇0) and (g1,∇1) be two different choices and let (g̃, ∇̃) be the metric and connection

of the previous lemma. Then i∗α(F
∇̃) = F∇α , and hence i∗αPf(F

∇̃) = Pf(F∇α). The maps i0 and
i1 are homotopic, so i∗0 = i∗1 : H

n(M × R) → Hn(M). Thus the cohomology classes of Pf(F∇0) and
Pf(F∇1) agree: [

Pf(F∇0)
]
= i∗0

[
Pf(F ∇̃)

]
= i∗1

[
Pf(F ∇̃)

]
=

[
Pf(F∇1)

]
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Definition 2.7: Let ξ be a real oriented n-dimensional vector bundle. The cohomology class

e(ξ) =

[
Pf

(
−F∇

2π

)]
∈ Hn(M)

is called the Euler class.

Example 2.8: Suppose M is an oriented surface with Riemannian metric and that ξ = τ∗ ∼= τM is
the cotangent bundle. Let e1, e2 be an oriented orthonormal frame for Ω0(τ∗|U ) = Ω1(U), such that
e1 ∧ e2 = vol on U . Let a1, a2 be the smooth functions on U determined by

de1 = a1(e1 ∧ e2),de2 = a2(e1 ∧ e2)

and let A12 = a1e1 + a2e2. We give τ∗|U the connection form

A =

(
0 A12

−A12 0

)
so that ∇(e1) = A12 ⊗ e2 and ∇(e2) = −A12 ⊗ e1. This is so-called Levi-Civita connection. The
associated curvature form is

F∇ = dA−A ∧A =

(
0 dA12

−dA12 0

)
since A∧A = (a1e1+a2e2)∧(a1e1+a2e2) = 0. In this case Pf(F∇) = dA12 is called the Gauss-Bonnet
form, and the Gaussian curvature κ ∈ Ω0(M) is defined by the formula

−κ e1 ∧ e2 = Pf(F∇).

Definition 2.9: Let ξ be a complex vector bundle over M equipped with a hermitian metric ⟨ , ⟩C .
A connection on (ξ, ⟨ , ⟩C) is called metric or hermitian, if

d⟨s1, s2⟩C = ⟨∇s1, s2⟩C + ⟨s1,∇s2⟩C.

Analogously as for the inner product, the connection ∇ is hermitian with respect to (ξ, ⟨ , ⟩C) if and
only if the connection form A is skew-hermitian, i.e., Aij +Aji = 0 or in matrix terms A∗ +A = 0.

Given a hermitian smooth vector bundle (ξ, ⟨ , ⟩C) of complex dimension n with a hermitian con-
nection ∇C, the underlying real vector bundle ξR is 2n naturally oriented real vector bundle, and
inherits an inner product ⟨ , ⟩R = Re(⟨ , ⟩C) and an orthogonal connection ∇R = Re(∇C).
If AC is the hermitian connection form of (ξ, ⟨ , ⟩C) with respect to an orthonormal frame e, then
the connection form associated with the underlying real situation is AR, the matrix of 1-forms given
by the usual embedding of Mn(C) ↪→ M2n(R). This embedding sends skew-hermitian matrices into
skew-symmetric matrices, and

Pf(F∇(e)R) = (−i)n det(F∇(e)) (1)

by Theorem 1.4. For a complex vector bundle we write e(ξ) instead of e(ξR) for the Euler class.
Then we have

Theorem 2.10: (i) For a complex n-dimensional vector bundle ζ, e(ζ) = cn(ζ).

(ii) For oriented real vector bundles ξ1 and ξ2, e(ξ1 ⊕ ξ2) = e(ξ1)e(ξ2).

(iii) For oriented real vector bundle ξ, e(f∗(ξ)) = f∗e(ξ).

Proof. For the first assertion, recall that

ck(ζ) =

[
σk

(
−1

2πi
F∇

)]
∈ H2k(M ;C)
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and for k = n, we have σn(F
∇) = det(F∇) so by (1)

Pf(−F∇
R /2π) = (−1)n/(2π)nPf(F∇

R )

= in/(2π)n det(F∇)

= in/(2π)nσn(F
∇)

when F∇ is the curvature of a hermitian connection on (ζ, ⟨ , ⟩C). Thus

Pf(−F∇
R /2π) = σk(iF

∇/2π).

This proves (i).
The second assertion is similar to the case of the Chern class. Let ∇1,∇2 be metric connections

for ξ1 and ξ2. Then ∇1 ⊕∇2 is a metric connection for ξ1 ⊕ ξ2, and the same for the curvature

F∇ = F∇1 ⊕ F∇2 .

We end the proof by noting Pf(F∇1F∇2) = Pf(F∇1)Pf(F∇2)
Finally assertion (iii) follows from the 10-th Talk, namely from the fact that f∗(F∇) = F f∗(∇),

so

e(f∗(ξ)) =

[
Pf

(
−F f∗∇

2π

)]
=

[
Pf

(
−f∗F∇

2π

)]
= f∗

[
Pf

(
−F∇

2π

)]
= f∗e(ξ).

Proposition 2.11: Let ξ be an oriented 2n-dimensional vector bundle over M . And let ξ̃ be the
same vector bundle, with the opposite orientation. Then e(ξ̃) = −e(ξ) ∈ H2n(M)

Proof. Immediately from the fact that Pf(F∇(e′)) = Pf(F∇(e)) det(B) = −Pf(F∇(e)), where B is
the orthogonal transition matrix between e and e′.

Proposition 2.12: Let ξ be an oriented vector bundle over M that possesses a nowhere zero section
s : M → E, then the Euler class e(ξ) must be zero.

Proof. Let ⟨ , ⟩ be an inner product on ξ. Denote by ε the line bundle spanned by the nowhere
vanishing section s of ξ. Then ξ = ε ⊕ ε⊥, where ε⊥ is orthogonal vector bundle to ε in (ξ, ⟨ , ⟩).
Hence by Theorem 2.10

e(ξ) = e(ε⊕ ε⊥) = e(ε)e(ε⊥) = 0.

Theorem 2.13 (Chern–Gauss–Bonnet theorem): Let M be a connected orientable compact smooth
manifold, and TM its tangent bundle. Then

D(e(TM)) =

∫
M

Pf

(
−F∇

2π

)
= χ(M)

where χ(M) is the Euler characteristic of M , and D : Hn(M) → H0(M)∗ ∼= R is the isomorphism
from the Poincaré-duality. For the oriented surface from Example 2.8 and its Gaussian curvature we
have ∫

M

κ e1 ∧ e2 = 2πχ(M)

Proof. Omitted. See for example [Mor01].

Corollary 2.14: Let M be a connected orientable compact smooth manifold of dimension n, and
TM its tangent bundle. Denote by [ωM ] ∈ Hn(M) the volume form, then

e(TM) = χ(M)[ωM ].

Corollary 2.15: The tangent bundles of manifolds with χ(M) ̸= 0 do not admit a nowhere zero
section.
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2.1 Uniqueness of Euler classes To prove the uniqueness of Euler classes we need a

version of the splitting principle for real oriented vector bundles, namely

Theorem 2.16 (Real splitting principle): For any oriented real vector bundle ζ over M there exists
a manifold T (ζ) and a smooth proper map f : T (ζ) → M such that

(i) f∗ : H∗(M) → H∗(T ) is injective.

(ii) f∗(ζ) = γ1 ⊕ · · · ⊕ γn when dim(ζ) = 2n, and f∗(ζ) = γ1 ⊕ · · · ⊕ γn ⊕ ε1 when dim(ζ) = 2n+1,
where γ1, . . . , γn are oriented 2-plane bundles, and ε1 is the trivial line bundle.

Theorem 2.17 (Uniqueness of Euler classes): Suppose that to each oriented isomorphism class of
2n-dimensional oriented real vector bundle ζ we have associated a class ê(ζ) ∈ H2n(M) that satisfies

(i) f∗(ê(ζ)) = ê(f∗(ζ)) for a smooth map f : N → M

(ii) ê(ζ1 ⊕ ζ2) = ê(ζ1)ê(ζ2) for oriented even-dimensional vector bundles ζ1, ζ2 over the same base
space.

Then there exists a real constant a ∈ R such that ê(ζ) = ane(ζ).

Proof. Given a complex line bundle L over M , we can define c(L) = ê(LR). Then f∗c(L) = c(f∗L),
and the argument for uniqueness of Chern classes shows that c(L) = ac1(L). Thus ê(γ) = ae(γ) for
each oriented 2-plane bundle γ. Indeed, an oriented 2-plane bundle is of the form LR for a complex
line bundle which is uniquely determined up to isomorphism. One simply defines multiplication by i
to be a positive rotation by π/2.

If ζ = γ1 ⊕ · · · ⊕ γn is a sum of oriented 2-plane bundles then we can use (ii) and Theorem2.10 to
see that ê(ζ) = ane(ζ). Finally Theorem 2.16 implies the result in general.
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