

Talk 12. Euler class

Daniil Zabilskyi

27 January, 2026

The goal of this talk is to define Euler class of a real vector bundle $\xi: E \rightarrow M$, and show some of its properties. For this we need two additional tools - Pfaffian polynomials and metric connections.

1 Pfaffian

Definition 1.1: Denote the set of skew-symmetric real $n \times n$ matrices by $\mathfrak{so}_n := \{A \in \text{Mat}_{n \times n}(\mathbb{R}) \mid A^t = -A\}$ and the set of skew-hermitian by $\mathfrak{su}_n := \{A \in \text{Mat}_{n \times n}(\mathbb{C}) \mid A^t = -A\}$. Clearly they are closed under scaling and become a group under addition. It is remarkable, that they are not closed under multiplication, but admit the structure of Lie-algebras under $[A, B] = AB - BA$.

Let $A = (A_{ij}) \in \mathfrak{so}_n$. Consider the determinant of A

- if n is odd, then $\det(A) = \det(A^t) = \det(-A) = -\det(A)$, and so $\det(A) = 0$.
- if n is even, say $n = 2k$, then we know from the linear algebra course, that A is similar to the diagonal block matrix

$$B = \text{diag} \left(\begin{pmatrix} 0 & b_1 \\ -b_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & b_k \\ -b_k & 0 \end{pmatrix} \right)$$

Moreover, we can choose B such that the similarity transformation matrix G is orthogonal. In particular, $\det(A) = \det(B) = b_1^2 b_2^2 \dots b_k^2 = (b_1 \dots b_k)^2$, i.e. the square of some polynomial of degree k in variables b_1, \dots, b_k . Dramatic is the fact that the determinant of A is always the square of a polynomial depending on the entries A_{ij} and not only in the special case! Let us construct such a polynomial formally:

For $A \in \mathfrak{so}_{2k+1}$ we set $\text{Pf} = 0$ and for $A \in \mathfrak{so}_{2k}$, we let

$$\omega(A) = \sum_{i,j} A_{ij} e_i \wedge e_j \in \Lambda^2(\mathbb{R}^{2k}),$$

and define $\text{Pf}(A)$ by the equation

$$\underbrace{\omega(A) \wedge \dots \wedge \omega(A)}_{k\text{-times}} = 2^k k! \text{Pf}(A) e_1 \wedge e_2 \wedge \dots \wedge e_{2k} \in \Lambda^{2k}(\mathbb{R}^{2k}) \cong \mathbb{R}.$$

For the block matrix

$$A = \text{diag} \left(\begin{pmatrix} 0 & a_1 \\ -a_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_2 \\ -a_2 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & a_k \\ -a_k & 0 \end{pmatrix} \right)$$

a simple calculation gives

$$\omega(A) = 2a_1 e_1 \wedge e_2 + 2a_2 e_3 \wedge e_4 + \dots + 2a_k e_{2k-1} e_{2k},$$

and one can see that

$$\omega(A) \wedge \dots \wedge \omega(A) = 2^k k! (a_1 a_2 \dots a_k) e_1 \wedge \dots \wedge e_{2k}$$

it follows that $\text{Pf}(A) = a_1 a_2 \dots a_k$ and $\text{Pf}(A)^2 = \det(A)$ in this case.

Theorem 1.2: If $A \in \mathfrak{so}_{2k}$ and B is an arbitrary matrix then

- (i) $\text{Pf}(A)^2 = \det(A)$
- (ii) $\text{Pf}(BAB^t) = \text{Pf}(A) \det(B)$

Proof. Because of the remarks above, (i) follows immediately from (ii), namely choose a similar diagonal block matrix with orthogonal transition matrix B , then $\text{Pf}(A)^2 = \text{Pf}(BAB^{-1})^2 = \det(BAB^{-1}) = \det(A)$. In order to prove (ii), we consider the elements $f_i = Be_i = \sum_\nu B_{\nu i} e_\nu \in \mathbb{R}^{2k}$, we have that

$$\tau = \sum A_{ij} f_i \wedge f_j = \sum B_{\nu i} A_{ij} B_{\mu j} e_\nu \wedge e_\mu = \sum (BAB^t)_{\nu \mu} e_\nu \wedge e_\mu$$

so that $\tau = \omega(BAB^t)$. Hence

$$2^k k! \text{Pf}(BAB^t) e_1 \wedge \cdots \wedge e_{2k} = \omega(BAB^t) \wedge \cdots \wedge \omega(BAB^t) = \tau \wedge \cdots \wedge \tau = 2^k k! \text{Pf}(A) f_1 \wedge \cdots \wedge f_{2k}.$$

and from the linear algebra it is known that $f_1 \wedge \cdots \wedge f_{2k} = \det(B) e_1 \wedge \cdots \wedge e_{2k}$ (just from the definition of the determinant), hence $\text{Pf}(BAB^t) = \text{Pf}(A) \det(B)$. \square

Corollary 1.3: For any $A, B \in \mathfrak{so}_k$, we have $\text{Pf}(A \oplus B) = \text{Pf}(A) \oplus \text{Pf}(B)$

Remark: One can show, that for $A \in \mathfrak{so}_{2k}$ the Pfaffian has explicit form

$$\text{Pf}(A) = \frac{1}{2^k k!} \sum_{\sigma \in S_{2k}} \text{sgn}(\sigma) \prod_{i=1}^k a_{\sigma(2i-1), \sigma(2i)}$$

Consider now the subset of skew-hermitian matrices $\mathfrak{su}_n \subseteq M_n(\mathbb{C})$ (i.e. $\overline{A^t} = -A$). The realification map $M_n(\mathbb{C}) \rightarrow M_{2n}(\mathbb{R})$ induces a map $\mathfrak{su}_n \rightarrow \mathfrak{so}_{2n}$, denoted by $A \mapsto A_{\mathbb{R}}$, and we have

Theorem 1.4: For $A \in \mathfrak{su}_n$, $\text{Pf}(A_{\mathbb{R}}) = (-i)^n \det_{\mathbb{C}}(A)$.

Proof. It is well known that a skew-hermitian matrix has an orthonormal basis of eigenvectors, so we may assume that A is diagonal, namely $A = \text{diag}(ia_1, \dots, ia_n)$ with $a_i \in \mathbb{R}$. Now direct computation yields $\text{Pf}(A_{\mathbb{R}}) = (-1)^n a_1 \dots a_n$, and $\det_{\mathbb{C}}(A) = i^n a_1 \dots a_n$, thus $\text{Pf}(A_{\mathbb{R}}) = (-i)^n \det_{\mathbb{C}}(A)$. \square

2 Metric connection and the Euler class

Let ξ be a smooth $2n$ real vector bundle over M with inner product $\langle \cdot, \cdot \rangle$. The inner product induces a pairing

$$\begin{aligned} \langle \cdot, \cdot \rangle: \Omega^i(\xi) \otimes \Omega^j(\xi) &\rightarrow \Omega^{i+j}(M); \\ \langle \omega_1 \otimes s_1, \omega_2 \otimes s_2 \rangle &= \langle s_1, s_2 \rangle \omega_1 \wedge \omega_2 \end{aligned}$$

where $\langle s_1, s_2 \rangle \in \Omega^0(M)$ defined by $p \mapsto \langle s_1(p), s_2(p) \rangle$, and $\omega_1 \in \Omega^i(M), \omega_2 \in \Omega^j(M)$.

Definition 2.1: A connection ∇ on $(\xi, \langle \cdot, \cdot \rangle)$ is said to be **metric** or **orthogonal** if

$$d\langle s_1, s_2 \rangle = \langle \nabla s_1, s_2 \rangle + \langle s_1, \nabla s_2 \rangle.$$

We express this condition locally in terms of the connection form A associated to an orthonormal frame. Let $e_1, \dots, e_{2n} \in \Omega^0(\xi)$ be sections over U , so that $e_1(p), \dots, e_{2n}(p)$ forms an orthonormal basis of ξ for $p \in U$. Let A be the associated connection form,

$$\nabla(e_i) = \sum_j A_{ij} \otimes e_j.$$

For every pair (i, k) we have $\langle e_i, e_k \rangle = \delta_{ik}$ (on U), so $d\langle e_i, e_k \rangle = 0$. If ∇ is metric connection one gets

$$\begin{aligned} 0 = d\langle e_i, e_k \rangle &= \langle \sum_j A_{ij} \otimes e_j, e_k \rangle + \langle e_i, \sum_j A_{kj} \otimes e_j \rangle \\ &= \sum_j A_{ij} \langle e_j, e_k \rangle + \sum_j A_{kj} \langle e_i, e_j \rangle = A_{ik} + A_{ki}. \end{aligned}$$

Thus the connection matrix with respect to an orthonormal frame is skew-symmetric. If conversely A is skew-symmetric with respect to an orthonormal frame, then ∇ is metric

$$\begin{aligned}
\langle \nabla s_1, s_2 \rangle + \langle s_1, \nabla s_2 \rangle &= \left\langle \nabla \left(\sum a_i e_i \right), \sum b_i e_i \right\rangle + \left\langle \sum a_i e_i, \nabla \left(\sum b_j e_j \right) \right\rangle \\
&= \left\langle \sum da_i e_i + \sum a_i \nabla e_i, \sum b_i e_i \right\rangle + \left\langle \sum a_i e_i, \sum db_j e_j + \sum b_j \nabla e_j \right\rangle \\
&= \sum_i (b_i da_i + a_i db_i) + \sum_{i,j} a_i b_j (\langle \nabla e_i, e_j \rangle + \langle e_i, \nabla e_j \rangle) \\
&= \sum_i d(a_i b_i) = d\langle s_1, s_2 \rangle
\end{aligned}$$

where $\langle \nabla e_i, e_j \rangle + \langle e_i, \nabla e_j \rangle = 0$ because A is skew-symmetric.

Let $F^\nabla \in \Omega^2(\text{HOM}(\xi, \xi))$ be the curvature form associated to a metric connection. After choice of an orthonormal frame e for ξ_U ,

$$\Omega^2(\text{HOM}(\xi, \xi)|_U) \cong M_{2n}(\Omega^2(U)).$$

In the Talk 10 we have seen that the corresponding matrix of 2-forms $F^\nabla(e)$ was calculated to be

$$F^\nabla(e) = dA - A \wedge A$$

where A is the connection form associated to e . In particular, $F^\nabla(e)$ is skew-symmetric, and we can apply the Pfaffian polynomial to $F^\nabla(e)$ to get

$$\text{Pf}(F^\nabla(e)) \in \Omega^{2n}(U).$$

In another orthonormal frame e' over U , we have

$$F^\nabla(e')_p = B_p F^\nabla(e) B_p^{-1}$$

where B_p is the orthogonal transition matrix between $e(p)$ and $e'(p)$, in particular $B_p^{-1} = B_p^t$.

From now on, we suppose additionally that the vector bundle ξ is oriented, and that e and e' are in the orientation class, that is $B_p \in \text{SO}_{2n}$, and by Theorem 1.2

$$\text{Pf}(F^\nabla(e)) = \text{Pf}(F^\nabla(e')).$$

It follows that $\text{Pf}(F^\nabla)$ becomes a well-defined global $2n$ -form on M .

Proposition 2.2: For the Pfaffian polynomial, and any metric connection ∇ , $\text{Pf}(F^\nabla) \in \Omega^{2n}(M)$ is a closed form.

Proof. We follow the same proof as for invariant polynomials in [MT97]. Choose a frame for ξ over U , and let ∇ have the connection matrix $A = (A_{ij})$, so that $F^\nabla = dA - A \wedge A = (F_{ij}^\nabla)$. Define a matrix

$$\text{Pf}'(A) = \left(\frac{\partial \text{Pf}}{\partial A_{ij}}(A) \right)^t,$$

then one can show the commutativity $\text{Pf}'(B)B = B\text{Pf}'(B)$ for all skew-symmetric matrices B . Together with Bianchi's identity $dF^\nabla = A \wedge F^\nabla - F^\nabla \wedge A$ we get

$$\begin{aligned}
d\text{Pf}(F^\nabla) &= \sum \frac{\partial \text{Pf}}{\partial A_{ij}}(F^\nabla) \wedge dF_{ij}^\nabla = \text{Tr}(\text{Pf}'(F^\nabla) \wedge dF^\nabla) \\
&= \text{Tr}(\text{Pf}'(F^\nabla) \wedge A \wedge F^\nabla - \text{Pf}'(F^\nabla) \wedge F^\nabla \wedge A) \\
&= \text{Tr}(\text{Pf}'(F^\nabla) \wedge A \wedge F^\nabla - F^\nabla \wedge \text{Pf}'(F^\nabla) \wedge A) = 0
\end{aligned}$$

□

We must verify that its cohomology class is independent of the choice of metric on ξ and of the metric connection. First note that connections can be glued together by a partition of unity:

Lemma 2.3: Let $(\nabla_i)_{i \in I}$ be a family of metric connections, and $(\rho_i)_{i \in I}$ be a smooth partition of unity on M , then $\nabla = \sum \rho_i \nabla_i$ defines a metric connection.

Proof. straightforward, if

$$d\langle s_1, s_2 \rangle = \langle \nabla_i s_1, s_2 \rangle + \langle s_1, \nabla_i s_2 \rangle$$

then

$$\begin{aligned} \langle \nabla s_1, s_2 \rangle + \langle s_1, \nabla s_2 \rangle &= \sum \langle \rho_i \nabla_i s_1, s_2 \rangle + \sum \langle s_1, \rho_i \nabla_i s_2 \rangle \\ &= \sum \rho_i (\langle \nabla_i s_1, s_2 \rangle + \langle s_1, \nabla_i s_2 \rangle) \\ &= \sum \rho_i d\langle s_1, s_2 \rangle = d\langle s_1, s_2 \rangle. \end{aligned}$$

□

In the calculations above we have used only that ∇_i is metric on the $\text{supp}_M(\rho_i)$, and not necessarily on all of M . This is crucial for us.

Corollary 2.4: For all real vector bundles $(\xi, \langle \cdot, \cdot \rangle)$ over M there exists a compatible metric connection.

Proof. Pick an open covering $\{U_i\}_{i \in I}$ of M , such that ξ is trivial on each U_i . Define ∇_i such that over each U_i the connection matrix A_i is skew-symmetric, e.g. $A_i = 0$. The paracompactness of M and previous lemma end the proof. □

Consider the maps

$$M \xrightarrow[i_0]{\quad} M \times \mathbb{R} \xrightarrow{\pi} M$$

with $i_\alpha(x) = (x, \alpha)$ and $\pi(x, t) = x$, and let $\tilde{\xi} = \pi^*(\xi)$ be induced vector bundle over $M \times \mathbb{R}$. Then clear $i_\alpha^*(\tilde{\xi}) \cong \xi$ for $\alpha = 0, 1$ and we have:

Lemma 2.5: For any choice of inner products and metric connections g_α, ∇_α ($\alpha = 0, 1$) on the smooth real vector bundle ξ over M , there is an inner product \tilde{g} on $\tilde{\xi}$ and a metric connection $\tilde{\nabla}$ compatible with \tilde{g} such that $i_\alpha^*(\tilde{g}) = g_\alpha$ and $i_\alpha^*(\tilde{\nabla}) = \nabla_\alpha$.

Proof. We can pullback by π^* the metric g_α and the metric connections ∇_α to $\tilde{\xi}$. Let $\{\rho_0, \rho_1\}$ be a partition of unity on $M \times \mathbb{R}$ subordinate to the cover $M \times (-\infty, 3/4)$ and $M \times (1/4, \infty)$. Then $\tilde{g} = \rho_0 \pi^*(g_0) + \rho_1 \pi^*(g_1)$ is a metric on $\tilde{\xi}$ which agrees with $\pi^*(g_0)$ over $M \times (-\infty, 1/4)$ and with $\pi^*(g_1)$ on $M \times (3/4, \infty)$. In particular $i_\alpha^*(\tilde{g}) = g_\alpha$.

Let $\hat{\nabla}$ be any metric connection on $\tilde{\xi}$ compatible with \tilde{g} . We have connections $\pi^*(\nabla_0)$, $\hat{\nabla}$ and $\pi^*(\nabla_1)$ compatible with \tilde{g} over $M \times (-\infty, 1/4)$, $M \times (1/8, 7/8)$ and $M \times (3/4, \infty)$ respectively. We use a partition of unity, subordinate to this cover, to glue together the three connections to construct a connection $\tilde{\nabla}$ over $M \times \mathbb{R}$. This is metric ($\pi^*(\nabla_0)$ and $\pi^*(\nabla_1)$ are metric with respect to induced metric, for example because the induced connection matrix is also skew-symmetric) with respect to \tilde{g} by construction, and $i_\alpha^* \tilde{\nabla} = \nabla_\alpha$. □

Corollary 2.6: The cohomology class $[\text{Pf}(F^\nabla)] \in H^{2k}(M)$ is independent of the metric and the compatible metric connection.

Proof. Let (g_0, ∇_0) and (g_1, ∇_1) be two different choices and let $(\tilde{g}, \tilde{\nabla})$ be the metric and connection of the previous lemma. Then $i_\alpha^*(F^{\tilde{\nabla}}) = F^{\nabla_\alpha}$, and hence $i_\alpha^* \text{Pf}(F^{\tilde{\nabla}}) = \text{Pf}(F^{\nabla_\alpha})$. The maps i_0 and i_1 are homotopic, so $i_0^* = i_1^*: H^n(M \times \mathbb{R}) \rightarrow H^n(M)$. Thus the cohomology classes of $\text{Pf}(F^{\nabla_0})$ and $\text{Pf}(F^{\nabla_1})$ agree:

$$[\text{Pf}(F^{\nabla_0})] = i_0^* [\text{Pf}(F^{\tilde{\nabla}})] = i_1^* [\text{Pf}(F^{\tilde{\nabla}})] = [\text{Pf}(F^{\nabla_1})]$$

□

Definition 2.7: Let ξ be a real oriented n -dimensional vector bundle. The cohomology class

$$e(\xi) = \left[\text{Pf} \left(\frac{-F^\nabla}{2\pi} \right) \right] \in H^n(M)$$

is called the **Euler class**.

Example 2.8: Suppose M is an oriented surface with Riemannian metric and that $\xi = \tau^* \cong \tau_M$ is the cotangent bundle. Let e_1, e_2 be an oriented orthonormal frame for $\Omega^0(\tau_U^*) = \Omega^1(U)$, such that $e_1 \wedge e_2 = \text{vol}$ on U . Let a_1, a_2 be the smooth functions on U determined by

$$de_1 = a_1(e_1 \wedge e_2), de_2 = a_2(e_1 \wedge e_2)$$

and let $A_{12} = a_1 e_1 + a_2 e_2$. We give τ_U^* the connection form

$$A = \begin{pmatrix} 0 & A_{12} \\ -A_{12} & 0 \end{pmatrix}$$

so that $\nabla(e_1) = A_{12} \otimes e_2$ and $\nabla(e_2) = -A_{12} \otimes e_1$. This is so-called Levi-Civita connection. The associated curvature form is

$$F^\nabla = dA - A \wedge A = \begin{pmatrix} 0 & dA_{12} \\ -dA_{12} & 0 \end{pmatrix}$$

since $A \wedge A = (a_1 e_1 + a_2 e_2) \wedge (a_1 e_1 + a_2 e_2) = 0$. In this case $\text{Pf}(F^\nabla) = dA_{12}$ is called the Gauss-Bonnet form, and the Gaussian curvature $\kappa \in \Omega^0(M)$ is defined by the formula

$$-\kappa e_1 \wedge e_2 = \text{Pf}(F^\nabla).$$

Definition 2.9: Let ξ be a complex vector bundle over M equipped with a hermitian metric $\langle \cdot, \cdot \rangle_{\mathbb{C}}$. A connection on $(\xi, \langle \cdot, \cdot \rangle_{\mathbb{C}})$ is called **metric** or **hermitian**, if

$$d\langle s_1, s_2 \rangle_{\mathbb{C}} = \langle \nabla s_1, s_2 \rangle_{\mathbb{C}} + \langle s_1, \nabla s_2 \rangle_{\mathbb{C}}.$$

Analogously as for the inner product, the connection ∇ is hermitian with respect to $(\xi, \langle \cdot, \cdot \rangle_{\mathbb{C}})$ if and only if the connection form A is skew-hermitian, i.e., $A_{ij} + \overline{A_{ji}} = 0$ or in matrix terms $A^* + A = 0$.

Given a hermitian smooth vector bundle $(\xi, \langle \cdot, \cdot \rangle_{\mathbb{C}})$ of complex dimension n with a hermitian connection $\nabla_{\mathbb{C}}$, the underlying real vector bundle $\xi_{\mathbb{R}}$ is $2n$ naturally oriented real vector bundle, and inherits an inner product $\langle \cdot, \cdot \rangle_{\mathbb{R}} = \text{Re}(\langle \cdot, \cdot \rangle_{\mathbb{C}})$ and an orthogonal connection $\nabla_{\mathbb{R}} = \text{Re}(\nabla_{\mathbb{C}})$.

If $A_{\mathbb{C}}$ is the hermitian connection form of $(\xi, \langle \cdot, \cdot \rangle_{\mathbb{C}})$ with respect to an orthonormal frame e , then the connection form associated with the underlying real situation is $A_{\mathbb{R}}$, the matrix of 1-forms given by the usual embedding of $M_n(\mathbb{C}) \hookrightarrow M_{2n}(\mathbb{R})$. This embedding sends skew-hermitian matrices into skew-symmetric matrices, and

$$\text{Pf}(F^\nabla(e)_{\mathbb{R}}) = (-i)^n \det(F^\nabla(e)) \tag{1}$$

by Theorem 1.4. For a complex vector bundle we write $e(\xi)$ instead of $e(\xi_{\mathbb{R}})$ for the Euler class. Then we have

Theorem 2.10: (i) For a complex n -dimensional vector bundle ζ , $e(\zeta) = c_n(\zeta)$.

(ii) For oriented real vector bundles ξ_1 and ξ_2 , $e(\xi_1 \oplus \xi_2) = e(\xi_1)e(\xi_2)$.

(iii) For oriented real vector bundle ξ , $e(f^*(\xi)) = f^*e(\xi)$.

Proof. For the first assertion, recall that

$$c_k(\zeta) = \left[\sigma_k \left(\frac{-1}{2\pi i} F^\nabla \right) \right] \in H^{2k}(M; \mathbb{C})$$

and for $k = n$, we have $\sigma_n(F^\nabla) = \det(F^\nabla)$ so by (1)

$$\begin{aligned}\text{Pf}(-F_{\mathbb{R}}^\nabla/2\pi) &= (-1)^n/(2\pi)^n \text{Pf}(F_{\mathbb{R}}^\nabla) \\ &= i^n/(2\pi)^n \det(F^\nabla) \\ &= i^n/(2\pi)^n \sigma_n(F^\nabla)\end{aligned}$$

when F^∇ is the curvature of a hermitian connection on $(\zeta, \langle \cdot, \cdot \rangle_{\mathbb{C}})$. Thus

$$\text{Pf}(-F_{\mathbb{R}}^\nabla/2\pi) = \sigma_k(iF^\nabla/2\pi).$$

This proves (i).

The second assertion is similar to the case of the Chern class. Let ∇_1, ∇_2 be metric connections for ξ_1 and ξ_2 . Then $\nabla_1 \oplus \nabla_2$ is a metric connection for $\xi_1 \oplus \xi_2$, and the same for the curvature

$$F^\nabla = F^{\nabla_1} \oplus F^{\nabla_2}.$$

We end the proof by noting $\text{Pf}(F^{\nabla_1} F^{\nabla_2}) = \text{Pf}(F^{\nabla_1}) \text{Pf}(F^{\nabla_2})$

Finally assertion (iii) follows from the 10-th Talk, namely from the fact that $f^*(F^\nabla) = F^{f^*(\nabla)}$, so

$$e(f^*(\xi)) = \left[\text{Pf} \left(\frac{-F^{f^*\nabla}}{2\pi} \right) \right] = \left[\text{Pf} \left(\frac{-f^*F^\nabla}{2\pi} \right) \right] = f^* \left[\text{Pf} \left(\frac{-F^\nabla}{2\pi} \right) \right] = f^*e(\xi).$$

□

Proposition 2.11: Let ξ be an oriented $2n$ -dimensional vector bundle over M . And let $\tilde{\xi}$ be the same vector bundle, with the opposite orientation. Then $e(\tilde{\xi}) = -e(\xi) \in H^{2n}(M)$

Proof. Immediately from the fact that $\text{Pf}(F^\nabla(e')) = \text{Pf}(F^\nabla(e)) \det(B) = -\text{Pf}(F^\nabla(e))$, where B is the orthogonal transition matrix between e and e' . □

Proposition 2.12: Let ξ be an oriented vector bundle over M that possesses a nowhere zero section $s: M \rightarrow E$, then the Euler class $e(\xi)$ must be zero.

Proof. Let $\langle \cdot, \cdot \rangle$ be an inner product on ξ . Denote by ε the line bundle spanned by the nowhere vanishing section s of ξ . Then $\xi = \varepsilon \oplus \varepsilon^\perp$, where ε^\perp is orthogonal vector bundle to ε in $(\xi, \langle \cdot, \cdot \rangle)$. Hence by Theorem 2.10

$$e(\xi) = e(\varepsilon \oplus \varepsilon^\perp) = e(\varepsilon)e(\varepsilon^\perp) = 0.$$

□

Theorem 2.13 (Chern–Gauss–Bonnet theorem): Let M be a connected orientable compact smooth manifold, and TM its tangent bundle. Then

$$D(e(TM)) = \int_M \text{Pf} \left(\frac{-F^\nabla}{2\pi} \right) = \chi(M)$$

where $\chi(M)$ is the Euler characteristic of M , and $D: H^n(M) \rightarrow H^0(M)^* \cong \mathbb{R}$ is the isomorphism from the Poincaré-duality. For the oriented surface from Example 2.8 and its Gaussian curvature we have

$$\int_M \kappa e_1 \wedge e_2 = 2\pi\chi(M)$$

Proof. Omitted. See for example [Mor01]. □

Corollary 2.14: Let M be a connected orientable compact manifold of dimension n , and TM its tangent bundle. Denote by $[\omega_M] \in H^n(M)$ the volume form, then

$$e(TM) = \chi(M)[\omega_M].$$

Corollary 2.15: The tangent bundles of manifolds with $\chi(M) \neq 0$ do not admit a nowhere zero section.

2.1 Uniqueness of Euler classes To prove the uniqueness of Euler classes we need a version of the splitting principle for real oriented vector bundles, namely

Theorem 2.16 (Real splitting principle): For any oriented real vector bundle ζ over M there exists a manifold $T(\zeta)$ and a smooth proper map $f: T(\zeta) \rightarrow M$ such that

- (i) $f^*: H^*(M) \rightarrow H^*(T)$ is injective.
- (ii) $f^*(\zeta) = \gamma_1 \oplus \cdots \oplus \gamma_n$ when $\dim(\zeta) = 2n$, and $f^*(\zeta) = \gamma_1 \oplus \cdots \oplus \gamma_n \oplus \varepsilon^1$ when $\dim(\zeta) = 2n+1$, where $\gamma_1, \dots, \gamma_n$ are oriented 2-plane bundles, and ε^1 is the trivial line bundle.

Theorem 2.17 (Uniqueness of Euler classes): Suppose that to each oriented isomorphism class of $2n$ -dimensional oriented real vector bundle ζ we have associated a class $\hat{e}(\zeta) \in H^{2n}(M)$ that satisfies

- (i) $f^*(\hat{e}(\zeta)) = \hat{e}(f^*(\zeta))$ for a smooth map $f: N \rightarrow M$
- (ii) $\hat{e}(\zeta_1 \oplus \zeta_2) = \hat{e}(\zeta_1)\hat{e}(\zeta_2)$ for oriented even-dimensional vector bundles ζ_1, ζ_2 over the same base space.

Then there exists a real constant $a \in \mathbb{R}$ such that $\hat{e}(\zeta) = a^n e(\zeta)$.

Proof. Given a complex line bundle L over M , we can define $c(L) = \hat{e}(L_{\mathbb{R}})$. Then $f^*c(L) = c(f^*L)$, and the argument for uniqueness of Chern classes shows that $c(L) = ac_1(L)$. Thus $\hat{e}(\gamma) = ae(\gamma)$ for each oriented 2-plane bundle γ . Indeed, an oriented 2-plane bundle is of the form $L_{\mathbb{R}}$ for a complex line bundle which is uniquely determined up to isomorphism. One simply defines multiplication by i to be a positive rotation by $\pi/2$.

If $\zeta = \gamma_1 \oplus \cdots \oplus \gamma_n$ is a sum of oriented 2-plane bundles then we can use (ii) and Theorem 2.10 to see that $\hat{e}(\zeta) = a^n e(\zeta)$. Finally Theorem 2.16 implies the result in general. \square

References

- [Mor01] S. Morita, *Geometry of differential forms*, Iwanami series in modern mathematics, American Mathematical Society, 2001.
- [MT97] I.H. Madsen and J. Tornehave, *From calculus to cohomology: De Rham cohomology and characteristic classes*, Cambridge University Press, 1997.