Charakteristische Klassen
Seminar “deRham-Kohomologie”

Jussi Marttinen

M sei immer eine glatte, zusammenhéngende, kompakte Mannigfaltig-
keit. Sofern nicht angegeben sind alle Vektorbiindel komplex.

Wir betrachten die Komplezifizierung des de Rham-Komplexes Qi (M; C) :
Q!(M)®grC, werden sie einfach auch mit Q2*(M) bezeichnen. Die darausstam-
mende Kohomologietheorie bezeichnen wir mit H*(M;C); sie ist natiirlich
isomorph zu Hjp(M) ®r C.

Fiir ein komplexes Biindel & {iber M ist der Raum der Schnitte von &,
00(¢), auch ein komplexer Vektorraum und schlieflich ein Q := Q°(M; C)-
Modul. Wir schreiben Q%(¢) = QY (M) ®q Q°(M).

Wir erinnern uns an die Definition eines Zusammenhangs:

Definition 0.1. Ein (komplexer) Zusammenhang V auf & ist eine C-
lineare Abbildung
V06 — Q1(9),

der die Leibniz-Regel
V(fs)=df @ s+ fV(s)

fiir f €9, s € Q(¢) erfiillt.

Ein Zusammenhang V induziert eindeutige C-lineare Abbildungen
Q0(e) —= 1) < 029 1 -

sodass 4
dV(WAT) =dw AT+ (=1)wAd'r

fiir w € QY (M), T € Y (¢).



Dies ist im allgemein kein Kokettenkomplex! Die Komposition dY oV ist
aber Q-linear, und korrespondiert also zu einem Element FV € Q2(End(¢ ))
der Krimmungsform von V.

1 Invariante Polynome

Sei Pol(n) = C[(wj)1<i,j<n] der komplexe Polynomring in n? Variablen, und
sei Polg(n) C Pol(n) die Untergruppe der homogenen Polynome vom Grad
k. Wir schreiben P(A) fiir P((Asj)).

Definition 1.1. Ein Polynom P € Polg(n) heiit invariant, falls

P(TAT™') = P(A) fiir alle T € GL,(C).

Wir schreiben Invg(n) fiir die Untergruppe der invarianten Polynome in
Polx(n).

Bemerkung 1.2. Die Gruppe GL,(C) operiert auf Polg(n) durch
T-P(A) = P(TAT™!). Die invarianten Polynome sind genau die Fix-
punkte dieser Aktion, d.h. Invy(n) = Poly(n)5(©).

Sei A € Mat,,(C). Das charakteristische Polynom von —A ist

p_a(t) = det(tl + A) = i o (A,
k=0

Beispiel 1.3. Die Koeffizienten des charakteristischen Polynoms
0k (A) := o}/(A) sind invariante Polynome vom homogenen Grad k.

Beispiel 1.4. Das k-te Spurpolynom sp(A) = sP(A) = Tr(A*) ist ein
invariantes Polynom vom Grad k.

'Hier ist End(¢) das Endomorphismenbiindel iiber M mit Faser End(¢), := Endc(&,)



Beispiel 1.5. Sein =2, A = <a11 a12>. Dann gilt
a1  G22

t+
det ( Q;IH " iljm) = (t+an)(t + az2) — arza21
= t* + (a11 + ag)t + an1azs — azag = t* + Tr(A)t + det(A).
Also 09(A4) =1, 01(A) = Tr(A), o2(A) = det(A).
Es gilt
s0(A) = Tr(A%) = Tr(id) = 2.
s1(A) = Tr(A) = a1 + az.
Wir berechnen

2 2
<a11 a12) B < af; +azaz  (an +a22)a12>

9
as; a2 azi(arn +ag1)  asy + arpaz

Schliefllich
s9(A) = Tr(A?%) = a3y + a3y + 2a12a9;.

Bemerkung 1.6. Fiir allgemeine n > 1, A € Mat,,(C) gelten die For-
mel

o0(A) =1, s0(A) =n, 01(A) = 51(A), o,(A) = det(A),

und oy (A) = 0 fiir & > n.

Die invarianten Polynome s; und oy sind eng verwandt, durch der New-
ton’schen Identitdt:

Lemma 1.7. Fir alle m > 1 gilt

m

Y (1" si(A)om—i(A) = (1) 'mon(A4). (1)

=1

Die Idee des Beweises, ist, die Identitét zuerst fiir Diagonalmatrizen zu zei-
gen (durch algebraische Umformungen). Beiden Seiten der Gleichung sind
invariant, und somit gilt die Identitéit fiir alle diagonalisierbaren Matrizen.



Die Menge der diagonalisierbaren Matrizen ist dicht in Mat,,(C), und somit
gilt die Identitét fiir alle A € Mat,(C). O
Fiir m = 2 erhalten wir durch Umformen

SQ(A)

SQ(A)O’Q(A) = 81(14)0’1(14) — 20’2(14) = O'1(A)2 — 20’2(14).
oder dquivalent

ra(A) = 01(A)?  s2(A) _ s1(4)*  sa(A)
T 2 2 2

Allgemeiner erhalten wir das folgende

Korollar  1.8. FEs existieren Polynome P, € Zlx1,..., Ty,
Qm € Qly1, - .., ym] sodass

Sm(A) = Pp(01(A),...,0m(A)) und 0y, (A) = Qum(s1(A4),. .., sm(4)).

FEine Verallgemeinerung des Fundamentalsatzes der symmetrischen Po-
lynome [Bos23, Kap. 4.3, Satz 5] sagt:

Satz 1.9. Flir jedes invariante Polynom P € Invy(n) existiert ein Po-
lynom q € Clzy,...,xx] sodass

P(A) = q(o1(A),. .., ou(A)). 2)

Die Polynome (o) (oder dquivalent (s;)), generieren also Inv(n) = P~ Invg(n)
als C-Algebra.

2 Charakteristische Klassen von komplexen Biindeln

Sei £ ein komplexes Vektorbiindel mit Rang n iiber M, und P € Invg(n).
Wir wollen eine Abbildung

Q*(End(€)) — Q°F(M;C), ¢ P(¢)

definieren.



Konstruktion: Wir wahlen U C M und einen lokalen Rahmen
e=(e1,...,en) CNEJy) von &|y. Auf U ist End(€) trivialisierbar:

End(¢)|y — U x Mat,(C)
(pa Fp : gp - gp) — (p7 Fpel(p)a sty Fpen(p))

So erhalten wir ein Isomorphismus
Q*(End(&)|y) = Q*(U x Mat,(C)) = Mat,,(Q*(U; C)).

Die Komposition schickt ein Element w ® F € Q*(End(€)|y) auf (Fjjw)i; €
Mat,, (2?(U; C)), wobei Fe; = Y Fije; fiir glatte Funktionen Fj; € Q(U).

Eine 2-Form R = w ® F von End({)|y ist also nichts anderes als eine
n x n-Matrix von 2-Formen R(e) = (Fjjw);;. Das duBere Produkt von Dif-
ferentialformen ist kommutativ in geraden Dimensionen, d.h. wir kénnen
P(R(e)) = P(F;w) € Q2%(U;C) formen.

Um eine globale Konstruktion zu erhalten, miissen wir zeigen, dass dies
unabhiingig von der Wahl des Rahmens ist. Sei also €/ = (€], ..., €}) ein an-
derer Rahmen von £|7. Dann existiert eine invertierbare Matrix von glatten
Funktionen A = (A;;) € Mat,(Q°(U)), sodass ¢’ = Ae.

Sfiji F € Q*(End(¢)|r). Wir schreiben Fe; = Y Fije; und Fej = Y Fzel.
Es gilt

2

und also

D F A =) AjrFy.
k k

Aquivalent, F(e) = ATF(e/)(AT)~!. Aus der Invarianz von P folgt nun
P(F(e)) = P(F(€)), wie gewiinscht.

Wir fixieren einen Zusammenhang V auf £. Nun kénnen wir unsere Kon-
struktion auf die Kriimmungsform FV ausiiben, und wir erhalten ein 2k-
Form P(FV). Eine natiirliche Frage ist, wann diese geschlossen ist. Die er-
staunliche Antwort ist: immer!

Lemma 2.1. Fiir jedes P € Invy(n) ist P(FV) eine geschlossene Form.




Beweis. Sei zuerst P = si. Es gilt:
dsi(A) = dTr(A/\k) — Tr(dv(A/\k)) — Ty (Z :I:dv(A) A A/\(k—l)) _

Aber fiir A = FV verschwindet die rechte Seite, da dY FY = 0.
Wenn P € Invi(n) beliebig ist, so existiert nach Satz und Korollar
ein Polynom ¢ € Clzy,..., x| sodass

P(FY) = q(s1(F), .., su(FY)).

Die rechte Seite der Gleichung ist ein Polynom in geschlossenen Formen und
damit geschlossen. O

Noch iiberraschender ist, dass die Kohomologieklasse gar nicht von der
Wahl vom Zusammenhang abhéngt.

Lemma 2.2. Fir zwei Zusammenhdinge Vo, V1 auf & gilt [P(FV°)] =
[P(FVY)] in H**(M;C).

Beweis. Der Beweis ist eine Art ”Homotopieargument”. Die Projektion 7 :
M x R — M induziert ein Vektorbiindel 7*¢ iiber M x R. Die Zusam-
menhiinge V; induzieren Zusammenhinge V; = 7*V; von m*¢.

Wir definieren einen neuen Zusammenhang V auf 7*¢ durch

V(s)(p,t) = (1= )Vo(s)(p.t) + tV1(s) (p, t ]
fiir s € QO(7*¢).
Seien ¢4 : M — M x R die Inklusion p — (p,t). Fiir jeden Schnitt
s € QO(r*¢) gilt
15(Vs)(p) = V(s)(p,0) = Vo(s)(p) = Vo(155) (),

d.h., das folgende Diagramm kommutiert:

QO(r*€) —— ! (r°¢)

)

() — Q1)

“Der Raum von Zusammenhiinge ist konvex, d.h. 3" a;V; mit a; € Q ist ein Zusam-
menhang (genau dann) wenn > a; =1 gilt.



Diese Eigenschaft charakterisiert eindeutig LE‘)@ (IMT97, Lemma 17.10]),
und schliefllich (jV = V(. Mit einem &hnlichen Argument erhalten wir
L[’§d6 = dV°, und somit erfiillen die Kriimmungsforme FV0 = LSF@. Schlief3-
lich P(FV0) = i P(FV).

Komplett analog erhalten wir auch P(FVt) = /i P(F @).

Aber die Abbildungen ¢, ¢1 sind homotop und erzeugen deshalb dieselbe
Abbildung auf Kohomologie. Schliefilich

[P(EYO)] = §[P(FY)] = G[P(FV)] = [P(FY1)].

Definition 2.3. Die Abbildung
Invy(n) — H*(M;C), P+ [P(FY)]

wird der Chern- Weil-Homomorphismus genannt. Wir schreiben P(§) :=
[P(FV)], da dies unabhingig von der Wahl des Zusammenhangs ist.

Der Chern-Weil-Homomorphismus ist vertriglich mit Pullbacks:

Proposition 2.4. Sei f: N — M glatt und P € Invg(n). Dann gilt

fTP(E) = P(f7¢).

Beweis. Wir wihlen den induzierten Zusammenhang f*V auf f*£. Dann ist
FI'V = f*FV und schlieBlich

P(FIY) = P(f*FY) = f*P(FY),
da Pullbacks mit dem #ufleren Produkt vertréglich sind. O

Jetzt konnen wir die Chernklassen und Cherncharakterklassen definieren:



Definition 2.5. Die k-te Chernklasse von & ist

(€)= [ak (_1FV>] € H2*(M;C).

27

Die k-te Cherncharakterklasse von & ist

chy(€) = % [sk (;ZFVH € H?(M:C).

Bemerkung 2.6. Bemerkung ergibt

co(§) =1, cho(§) =n, c1(§) =chi(§), und cx(§) =0

fir £ > n = rk(§).

Fiir triviale Biindel lassen sich die Chernklassen leicht ausrechnen:

Beispiel 2.7. Sei £ = ¢, das triviale Biindel iiber M. Dann ist
Ve, = Qen), (s1,...,80) — (dsy,...,dsy)

ein Zusammenhang auf &,,. Mit der Identifikation Q¢ (e,,) D, (QH(M))
ist V genau der Operator

édo : é} QM) — éﬁl(M),
j=1 j=1 j=1

und also d¥ = D, d" und FV = @?:l(dl o d") = 0. SchlieBlich

ck(en) =0 und chg(ey,) =0 fir alle k&> 0.

Hat ein Vektorbiindel also nicht-triviale Chernklassen, so ist es kein triviales
Biindel!
Sei ¢ = n; das kanonische Linienbiindel iiber CP!, und sei

I:H*(CP,C) —C, [w]r— w
cp!

der Integrationshomomorphismus.



Satz 2.8. FEs gilt

I(ci(m)) = —1.
Beweis. Wir betrachten die Karte
wo : U i= {[20, 21] € CP' | 29 # 0} — C=R?, [20,21] = 21/20

auf CP*.
Wie in [MT97, Beispiel 17.9] ldsst ein Zusammenhang V auf 7; definieren
sodass fiir g = (1)~} gilt:

%
(1+ 22 +y?)?

Wir betrachten die Koordinaten (r,6) auf C* mit (z,y) = (rcos#,rsinf).
Dann gilt

dx = d(rcos ) = rd(cos @) + cos O dr = cos 0 dr — rsin 0 df

g (FV) = dx N dy.

und dy = sin 0 dr + r cos 0 df. Insgesamt erhalten wir
de Ndy = —rsinf -sin@df A dr + rcos@ - cos@dr Adf = rdr Ndb.
SchlieBlich

/ “(FY) = //2”2zrdr/\d9:4m,/°° rdr
R2 1+ 1r2)2 o (1+41r2)2

= — 27m/0 o <1 +r2) dr = —2mi (1 +r2)_1]80 = 2.

Nach Definition des Integrals gilt

L 7= [0 ar) + [ o0 oF") ®

fiir eine Zerlegung der Eins pg, p1 mit Trager auf Uy, U;.
Far ¢ > 0 wihlen wir pf, sodass supp p§ C ¢o(B(t,0)). Im Limes ¢t — 0
geht dann

/(%YV%FW—%O
RQ

L0 =mr¥) — [ g (%) =2mi

RQ
und schliefilich )
Ienm) =5y [ F7 =1
cp!

21



Bemerkung 2.9. Nach Korollar existieren Polynome pm,Qm €
Q[z1, ..., xm] sodass

chy(§) = Pe(ca(8), - - er(§))

und
cr(€) = Qr(chi(€), ..., chy(€)).

Die Chernklassen und die Cherncharakterklassen enthalten also genau

_ a®?® _

die gleiche Information iiber ein Vektorbiindel. z.B. cha () 5

c2(§).

Bemerkung 2.10. Das Endomorphismenbiindel End(¢) hat einen ka-
nonischen Schnitt

id: M — End(¢), id(p) = ide, € End(€),

der nirgendwo verschwindet. Wenn £ = L ein Linienbiindel ist, so hat
End(L) Rang 1 und ist damit isomorph zum trivialen Biindel ;. Also
ist FV € Q?(End(L)) = Q?(M) eine 2-Form auf M, und

se(FY) = (FY)",
Nun erhalten wir die Identitét

1 c1(L)k

chg(L) = chy (L)* = o
Der Cherncharakter ch(§) := 3 ;<o chp(§) € H*(M;C) erfiillt also die
formale Identitét -

c k
(L) = explen(£)) = 3 L (1)

k>0

Die Chernklassen und Cherncharakterklassen erfiillen eine Vielzahl von Iden-
titaten:

10



Proposition 2.11. Die folgenden Identititen gelten:
(i) en(€ @ m) = g cil€)er—i(n)
(i4) chg(§©n) = chi(§) ® chy(n)

(iii) chy(€ @ n) = i chi(€) chy—i(n).

Alle drei lassen sich von den folgenden Identitéten fiir s und o herleiten:

Lemma 2.12. Sei A € Mat,,(C) und B € Mat,,,(C). Die Blocksumme
A @ B € Maty, 11, (C) ist gegeben durch

A 0
wope (20)

das Kronecker-Produkt A @ B € Mat,,..,,(C) ist gegeben durch

anB - a1B
A® B := : . :
amB -+ apnB
Es gelten die folgenden Identitdten:

(i) op(A® B) =% 0i(A)oy_i(B)
(it) sk(A® B) = sip(A) + sk(B)

(i1i) sk(A® B) = si(A)sk(B)

Beweis von Proposition [2.11]. Teile (i) und (ii) folgen leicht aus Lemma
nach der Wahl von dem natiirlichen Zusammenhang V, ® V,, auf £ © 7.
Fiir (iii) betrachten wir den induzierten Zusammenhang

Ve(s®@t) =Ve(s) ANt +sAV,(t)

auf £ ® n. Es gilt
FVe = FVe Nid,) +ide ARV,

wobei id,, € Q?(End(n)) auf jede Faser die Identitétsabbildung ist.

11



Wir nehmen das k-fache duflere Produkt und erhalten

k
(FVeyM =37 (’“) (FVe) p (F¥n)N=),

i=0
Das ergibt
k
k
sp(FVe) = Z <i>si(FV5) A sp_i(FV7).
=0
und daraus folgt die Identitét schon. O

Wir bezeichnen mit 7, das kanonische Linienbiindel {iber CP".
Nun sind wir in der Lage, eine axiomatische Charakterisierung fiir die
Chernklassen zu beweisen:

Satz 2.13. Die Chernklassen c(€) € H*(M;C) sind eindeutig defi-
niert durch die folgenden Figenschaften:

(i) cx(€) hingt nur von der Isomorphicklasse von & ab.
(ii) I(ci(m)) = —1, cx(nn) =0 fir k > 1, co(ny) = 1.
(iii) f*cx(€) = cn(f*€) fiir jede glatte f: N — M
(iv) cr(€@€) = g cil)eri(€)

Beweis. Eindeutigkeit:

Fall 1: M =CP", & =n,.
Die Inklusion j : CP! — CP" induziert einen Isomorphismus

j* : H*(CP™;C) — H*(CP;C).
Aulerdem j*(n,) = m1, und aus (iii) folgt

c1(mm) = (%) ter(m).

und die rechte Seite ist eindeutig bestimmt nach (ii).

12



Fall 2: M beliebig, ¢ = L : E — M ein Linienbiindel.
Sei Lt ein Komplement zu L, sodass L ® L+ = ,,1. Fiir p € M ist L,
eine Gerade in C"*!, d.h. ein Element von CP". Die Abbildung

g: M — CP", g(p)=1L,
ist glatt. Wir definieren
G:E— S xuC, glpov)= (Lp,v),

sodass das folgende Diagramm kommutiert:

E i> 52n+1 X g1 C

LJ |m (5)

MTCP”

Also ist (g,g) ein Homomorphismus von Vektorbiindeln. ist sogar ein
Pullbackdiagramm, d.h. L = g*n,,. Nach (iii) und Fall 1 ist cx(L) = g*cx(nn)
eindeutig bestimmt.

Fall 3: ¢=@! | L;, mit L; Linienbiindel.
Mit Induktion tiber n und (iv) ist ¢x(§) eindeutig von ¢;(L;) bestimmt,
und wir sind im Fall 2.

Fall 4: £ beliebig.
Dies folgt aus Fall 3 und dem Spaltungsprinzip:

Satz 2.14 (Spaltungsprinzip). Sei & ein komplexes Vektorbindel auf M
mit n = rk&. Dann existiert eine Mannigfaltigkeit T = Sp(§) und eine
eigentliche, glatte Abbildung f : T — M, sodass:

(i) f*: H¥(M) — H¥(T) ist injektiv fiir jede k > 0

(ii) f*¢ = ;| Li, wobei L; Linienbiindel auf T sind.

13



Bemerkung 2.15. Wir sehen auch, dass die Chernklassen und Chern-
charakterklassen tatséchlich reelle Kohomologieklassen sind: Fiir Lini-
enbiindel folgt dies aus dem Beweis von Fall 2 und fiir allgemeine Vek-
torbiindel gilt dies wegen Eigenschaft (iv) und dem Spaltungsprinzip.

Definition 2.16. Die totale Chernklasse ist

c(€) =Y e(§) € H*(M;C).

k>0

Aus Proposition [2.11] erhalten wir die Identitét

c(€®n) = c(§)en) (6)

Fiir eine Summe von Linienbiindeln £ = ;" , L; gilt also

n

() = [T etz) =[] +ealLa)).

i=1 i=1

Mit Satz konnen wir weitere algebraische Identitéten {iberpriifen:

Proposition 2.17. Die folgenden Eigenschaften gelten
(i) cr(§*) = (=1)*ex(€)
(i?) chi(€") = (—1)* chy(¢)
(ii) Fir reelle Vektorbiindel n und alle k > 0 gilt

car+1(nc) = 0 = chagq1(nc).

Beweis. Nach Satz reicht es die Identitéiten fiir Summen von Lini-
enbiindeln zu {iberpriifen.

(i) Wenn ¢ = L ein Linienbiindel ist, so ist L* ® L = Hom(L, L) das
triviale Biindel. Mit Proposition [2.11] (iii) und Beispiel erhalten wir

0= Cl(L* & L) = Chl(L* & L)
= Ch1 (L*) Ch()(L) + ChQ(L*) Ch1 (L) =C1 (L*) + (L)

14



Wenn £ eine Summe von Linienbiindeln L; ist, so gilt

c(€¥) = ¢ (@ Li‘) =[Ia+a@) =10 -a@)

% %

in H*(M;C). Mit Vergleichen des H?*(M;C)-Teils erhalten wir c(£*) =

(—1)*er(€).
(i’) Fr Linienbiindel L gilt

*\k o kc
chy(L*) = Cl(]f! L 1)k!1(L) — (—1)F chy(L).

Fiir eine Summe von Linienbiindeln kénnen wir Proposition m (ii) ver-
wenden.
Sei (—, —) eine Metrik auf n. Dann ist

feon—n", w (u,-)

ein Isomorphismus und induziert also einen Isomorphismus
feime — (0)c = (ne)™

Mit (i) erhalten wir nun

cak+1(nc) = cap1((nc)*) = —car+1(nc),

und analog fiir chy(nc). O

Korollar 2.18. n, ist nicht isomorph zu seinem Dual.

Beweis. Nach Proposition gilt

c1(nn) = —ci(ny,)-

Es reicht also zu zeigen, dass dieses Element nicht null ist. Fiir n = 1 gilt
I(ci(m)) = —1, und fir n > 1 gilt

g e1(nn) = c1(§* ) = c1(m) # 0,

also ist ¢1(n,) # 0. O

15



3 Anwendungen

3.1 TCP"™

Sei M = CP". Wir sind nun in der Lage, die Chernklassen des Tangen-
tialbiindels rcp» zu berechnen. Dafiir betrachten wir das kanonische Lini-
enbiindel 7 iiber CP™, und das orthogonale Biindel n' mit Totalraum

E = {(L,u) € CP" x C"*! |y € L1}.

Lemma 3.1.
Hom(n, n") = r¢pr.

Beweis. [!| Sei L € C™*! eine Gerade durch 0. Die Projektion p : §2* —
CP" induziert Identifikationen

Taop(Az, o) = Top(z, )

fiir jedes A € S und (z,v) € T, 5?" C C"*1 x C"*!. Also kénnen wir T, CP"
auf eine natiirliche Weise mit

AL) ={[z,v] |z-z=1,2-v=0} C (C" x C""1)/S8t = C"H x g CH

identifizieren.

Aber ein [z,v] € A(L) korrespondiert zu einer linearen Abbildung ¢ €
Hom(L, L*), die durch o() = v gegeben ist. Diese Identifikationen 77 CP™ 22
Hom(7,n") sind natiirlich und insgesamt erhalten wir einen Isomorphismus

mepr 2 Hom(n, n™b).

Hieraus folgt leicht:

Satz 3.2. Die totale Chernklasse von topr ist gegeben durch

c(repn) = (1= ex(m)" . (7)

3 Angepasst aus [MS74, Lemma 4.4]
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Beweis. Nach dem obigen Lemma gilt

n+1
Tcpr @ e(lc = 71cpr @ Hom(n, n) = Hom(n, nt® 1) = Hom(n, 5%“) ~ EB n*.
i=1

Die totale Chernklasse ist exponentiell, und so

n+1
c(rcpn) = c(tepn)e(eg) = c(tepn B eg) = ¢ (EB ’7*>

=1
=c(n)" = (1)t

3.2 Das Kobordismusproblemﬂ

Sei M eine kompakte, orientierte Mannigfaltigkeit der Dimension m.

Eine natiirliche Frage ist, ob M ein Rand ist, d.h. ob es eine orientierte
(m + 1)-Mannigfaltigkeit mit Rand N existiert, sodass M = ON.

Fiir m = 4k gibt die 2kte Chernklasse gibt ein notwendiges Kriterium:

Satz 3.3. Sei M eine kompakte, orientierte 4k-Mannigfaltigkeit. Wenn
M ein Rand ist, dann gilt cop(ar @ C) = 0.

Beweis. Sei v : M = ON — N die Inklusion. Dann ist 7y @ e} = t*(7n).
Durch Komplexifizieren erhalten wir

(Tm ® C) ® eg =2 " (v ® C),
und schliellich gilt fiir die Chernklassen
cok(Tm @ C) = egp (v ® C).

cor (T ® C) wird von 4k = dim M-Formen représentiert, also konnen wir
sie iiber M integrieren.
Mit dem Satz von Stokes erhalten wir

/M cor(Tiy ® C) = /M Veap(Th @ C) = /N d(cor(Tnh ® C)) = 0,

da die Chernklasse eine Kohomologieklasse ist. Nach Poincaré-Dualitét ist
I=[,,: H"(M;C) — C ein Isomorphismus, und schlieBlich ¢y, (73 @ C) =
0. O

4 Angepasst aus [Tul7, §26.3]
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Bemerkung 3.4. Allgemeiner kénnten wir statt [, cor(7) die soge-
nannten Pontrjaginzahlen der Form

/ co(Tar @ C)LA -+ A cgp(miy @ C)* € C
M

untersuchen, wobei i1, ..., i, natiirliche Zahlen mit i1 +2io+- - -+ ki, = k
sind (sodass der Integrand tatséchlich eine 4k-Form ist). Eine direk-
te Verallgemeinerung vom Satz sagt, dass fiir einen Rand M mit
dim M = 4k alle Pontrjaginzahlen verschwinden miissen.

Beispiel 3.5. CP?" ist kein Rand.

Beweis. Das Tangentialbiindel 7 = 7¢p2,, ist ein komplexes Vektorbiindel.
SchlieBlich gilt
TRC EXTH T

Nach Satz [3.2] gilt

(1 @ C) = e()elr) = (1= e1 (1) (1+ 1 (1)
= (1—a ()

Mit dem binomischen Lehrsatz erhalten wir
2n +1
exn(re 90 = (-1 (" st

n
Das Element = = ¢1(7) ist ein Generator des Polynomalgebras H*(CP?",C) =
Clx]/(z**1) und schlieBlich ist c2, (TR ® C) # 0. O
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