
Charakteristische Klassen

Seminar “deRham-Kohomologie”

Jussi Marttinen

M sei immer eine glatte, zusammenhängende, kompakte Mannigfaltig-
keit. Sofern nicht angegeben sind alle Vektorbündel komplex.

Wir betrachten dieKomplexifizierung des de Rham-Komplexes Ωi(M ;C) :=
Ωi(M)⊗RC, werden sie einfach auch mit Ωi(M) bezeichnen. Die darausstam-
mende Kohomologietheorie bezeichnen wir mit H∗(M ;C); sie ist natürlich
isomorph zu H∗

dR(M)⊗R C.
Für ein komplexes Bündel ξ über M ist der Raum der Schnitte von ξ,

Ω0(ξ), auch ein komplexer Vektorraum und schließlich ein Ω := Ω0(M ;C)-
Modul. Wir schreiben Ωi(ξ) = Ωi(M)⊗Ω Ω0(M).

Wir erinnern uns an die Definition eines Zusammenhangs:

Definition 0.1. Ein (komplexer) Zusammenhang ∇ auf ξ ist eine C-
lineare Abbildung

∇ : Ω0(ξ) −→ Ω1(ξ),

der die Leibniz-Regel

∇(fs) = df ⊗ s+ f∇(s)

für f ∈ Ω, s ∈ Ω0(ξ) erfüllt.

Ein Zusammenhang ∇ induziert eindeutige C-lineare Abbildungen

Ω0(ξ) Ω1(ξ) Ω2(ξ) · · ·∇ d∇ d∇

sodass
d∇(ω ∧ τ) = dω ∧ τ + (−1)iω ∧ d∇τ

für ω ∈ Ωi(M), τ ∈ Ωj(ξ).
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Dies ist im allgemein kein Kokettenkomplex! Die Komposition d∇ ◦∇ ist
aber Ω-linear, und korrespondiert also zu einem Element F∇ ∈ Ω2(End(ξ))1,
der Krümmungsform von ∇.

1 Invariante Polynome

Sei Pol(n) = C[(xij)1≤i,j≤n] der komplexe Polynomring in n2 Variablen, und
sei Polk(n) ⊆ Pol(n) die Untergruppe der homogenen Polynome vom Grad
k. Wir schreiben P (A) für P ((Aij)).

Definition 1.1. Ein Polynom P ∈ Polk(n) heißt invariant, falls

P (TAT−1) = P (A) für alle T ∈ GLn(C).

Wir schreiben Invk(n) für die Untergruppe der invarianten Polynome in
Polk(n).

Bemerkung 1.2. Die Gruppe GLn(C) operiert auf Polk(n) durch
T · P (A) = P (TAT−1). Die invarianten Polynome sind genau die Fix-
punkte dieser Aktion, d.h. Invk(n) = Polk(n)

GLn(C).

Sei A ∈ Matn(C). Das charakteristische Polynom von −A ist

p−A(t) = det(tI +A) =

n∑
k=0

σn
k (A)t

n−k.

Beispiel 1.3. Die Koeffizienten des charakteristischen Polynoms
σk(A) := σn

k (A) sind invariante Polynome vom homogenen Grad k.

Beispiel 1.4. Das k-te Spurpolynom sk(A) = snk(A) = Tr(Ak) ist ein
invariantes Polynom vom Grad k.

1Hier ist End(ξ) das Endomorphismenbündel über M mit Faser End(ξ)p := EndC(ξp)
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Beispiel 1.5. Sei n = 2, A =

(
a11 a12
a21 a22

)
. Dann gilt

det

(
t+ a11 a12
a21 t+ a22

)
= (t+ a11)(t+ a22)− a12a21

= t2 + (a11 + a22)t+ a11a22 − a12a21 = t2 +Tr(A)t+ det(A).

Also σ0(A) = 1, σ1(A) = Tr(A), σ2(A) = det(A).
Es gilt

s0(A) = Tr(A0) = Tr(id) = 2.

s1(A) = Tr(A) = a11 + a22.

Wir berechnen(
a11 a12
a21 a22

)2

=

(
a211 + a12a21 (a11 + a22)a12
a21(a11 + a21) a222 + a12a21

)
.

Schließlich
s2(A) = Tr(A2) = a211 + a222 + 2a12a21.

Bemerkung 1.6. Für allgemeine n ≥ 1, A ∈ Matn(C) gelten die For-
mel

σ0(A) = 1, s0(A) = n, σ1(A) = s1(A), σn(A) = det(A),

und σk(A) = 0 für k > n.

Die invarianten Polynome sk und σk sind eng verwandt, durch der New-
ton’schen Identität :

Lemma 1.7. Für alle m ≥ 1 gilt

m∑
i=1

(−1)m−isi(A)σm−i(A) = (−1)m−1mσm(A). (1)

Die Idee des Beweises, ist, die Identität zuerst für Diagonalmatrizen zu zei-
gen (durch algebraische Umformungen). Beiden Seiten der Gleichung 1 sind
invariant, und somit gilt die Identität für alle diagonalisierbaren Matrizen.
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Die Menge der diagonalisierbaren Matrizen ist dicht in Matn(C), und somit
gilt die Identität für alle A ∈ Matn(C). □

Für m = 2 erhalten wir durch Umformen

s2(A) = s2(A)σ0(A) = s1(A)σ1(A)− 2σ2(A) = σ1(A)
2 − 2σ2(A).

oder äquivalent

σ2(A) =
σ1(A)

2

2
− s2(A)

2
=

s1(A)
2

2
− s2(A)

2
.

Allgemeiner erhalten wir das folgende

Korollar 1.8. Es existieren Polynome Pm ∈ Z[x1, . . . , xm],
Qm ∈ Q[y1, . . . , ym] sodass

sm(A) = Pm(σ1(A), . . . , σm(A)) und σm(A) = Qm(s1(A), . . . , sm(A)).

Eine Verallgemeinerung des Fundamentalsatzes der symmetrischen Po-
lynome [Bos23, Kap. 4.3, Satz 5] sagt:

Satz 1.9. Für jedes invariante Polynom P ∈ Invk(n) existiert ein Po-
lynom q ∈ C[x1, . . . , xk] sodass

P (A) = q(σ1(A), . . . , σk(A)). (2)

Die Polynome (σi) (oder äquivalent (si)), generieren also Inv(n) =
⊕

k≥0 Invk(n)
als C-Algebra.

2 Charakteristische Klassen von komplexen Bündeln

Sei ξ ein komplexes Vektorbündel mit Rang n über M , und P ∈ Invk(n).
Wir wollen eine Abbildung

Ω2(End(ξ)) −→ Ω2k(M ;C), ϕ 7→ P (ϕ)

definieren.
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Konstruktion: Wir wählen U ⊆ M und einen lokalen Rahmen
e = (e1, . . . , en) ⊆ Ω0(ξ|U ) von ξ|U . Auf U ist End(ξ) trivialisierbar:

End(ξ)|U
∼=−→ U ×Matn(C)

(p, Fp : ξp → ξp) 7−→ (p, Fpe1(p), . . . , Fpen(p)).

So erhalten wir ein Isomorphismus

Ω2(End(ξ)|U ) ∼= Ω2(U ×Matn(C)) ∼= Matn(Ω
2(U ;C)).

Die Komposition schickt ein Element ω ⊗ F ∈ Ω2(End(ξ)|U ) auf (Fijω)ij ∈
Matn(Ω

2(U ;C)), wobei Fei =
∑

Fijej für glatte Funktionen Fij ∈ Ω0(U).
Eine 2-Form R = ω ⊗ F von End(ξ)|U ist also nichts anderes als eine

n × n-Matrix von 2-Formen R(e) = (Fijω)ij . Das äußere Produkt von Dif-
ferentialformen ist kommutativ in geraden Dimensionen, d.h. wir können
P (R(e)) = P (Fijω) ∈ Ω2k(U ;C) formen.

Um eine globale Konstruktion zu erhalten, müssen wir zeigen, dass dies
unabhängig von der Wahl des Rahmens ist. Sei also e′ = (e′1, . . . , e

′
n) ein an-

derer Rahmen von ξ|U . Dann existiert eine invertierbare Matrix von glatten
Funktionen A = (Aij) ∈ Matn(Ω

0(U)), sodass e′ = Ae.
Sei F ∈ Ω2(End(ξ)|U ). Wir schreiben Fei =

∑
Fijej und Fe′i =

∑
F ′
ije

′
j .

Es gilt∑
i,k

F ′
ijAikek =

∑
i

F ′
ije

′
i = F (e′j) =

∑
k

AjkF (ek) =
∑
i,k

AjkFi,kei,

und also ∑
k

F ′
kjAki =

∑
k

AjkFik.

Äquivalent, F (e) = ATF (e′)(AT )−1. Aus der Invarianz von P folgt nun
P (F (e)) = P (F (e′)), wie gewünscht.

Wir fixieren einen Zusammenhang ∇ auf ξ. Nun können wir unsere Kon-
struktion auf die Krümmungsform F∇ ausüben, und wir erhalten ein 2k-
Form P (F∇). Eine natürliche Frage ist, wann diese geschlossen ist. Die er-
staunliche Antwort ist: immer!

Lemma 2.1. Für jedes P ∈ Invk(n) ist P (F∇) eine geschlossene Form.
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Beweis. Sei zuerst P = sk. Es gilt:

dsk(A) = dTr(A∧k) = Tr(d∇(A∧k)) = Tr
(∑

±d∇(A) ∧A∧(k−1)
)
.

Aber für A = F∇ verschwindet die rechte Seite, da d∇F∇ = 0.
Wenn P ∈ Invk(n) beliebig ist, so existiert nach Satz 1.9 und Korollar

1.8 ein Polynom q ∈ C[x1, . . . , xk] sodass

P (F∇) = q(s1(F
∇), . . . , sk(F

∇)).

Die rechte Seite der Gleichung ist ein Polynom in geschlossenen Formen und
damit geschlossen.

Noch überraschender ist, dass die Kohomologieklasse gar nicht von der
Wahl vom Zusammenhang abhängt.

Lemma 2.2. Für zwei Zusammenhänge ∇0,∇1 auf ξ gilt [P (F∇0)] =
[P (F∇1)] in H2k(M ;C).

Beweis. Der Beweis ist eine Art ”Homotopieargument”. Die Projektion π :
M × R → M induziert ein Vektorbündel π∗ξ über M × R. Die Zusam-
menhänge ∇i induzieren Zusammenhänge ∇̃i = π∗∇i von π∗ξ.

Wir definieren einen neuen Zusammenhang ∇̃ auf π∗ξ durch

∇̃(s)(p, t) = (1− t)∇̃0(s)(p, t) + t∇̃1(s)(p, t)
2

für s ∈ Ω0(π∗ξ).
Seien ιt : M → M × R die Inklusion p 7→ (p, t). Für jeden Schnitt

s ∈ Ω0(π∗ξ) gilt

ι∗0(∇̃s)(p) = ∇̃(s)(p, 0) = ∇̃0(s)(p) = ∇0(ι
∗
0s)(p),

d.h., das folgende Diagramm kommutiert:

Ω0(π∗ξ) Ω1(π∗ξ)

Ω0(ξ) Ω1(ξ)

∇̃
ι∗0 ι∗0

∇0

2Der Raum von Zusammenhänge ist konvex, d.h.
∑

aj∇j mit aj ∈ Ω ist ein Zusam-
menhang (genau dann) wenn

∑
aj ≡ 1 gilt.
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Diese Eigenschaft charakterisiert eindeutig ι∗0∇̃ ([MT97, Lemma 17.10]),
und schließlich ι∗0∇̃ = ∇0. Mit einem ähnlichen Argument erhalten wir

ι∗0d
∇̃ = d∇0 , und somit erfüllen die Krümmungsforme F∇0 = ι∗0F

∇̃. Schließ-

lich P (F∇0) = ι∗0P (F ∇̃).

Komplett analog erhalten wir auch P (F∇1) = ι∗1P (F ∇̃).
Aber die Abbildungen ι0, ι1 sind homotop und erzeugen deshalb dieselbe

Abbildung auf Kohomologie. Schließlich

[P (F∇0)] = ι∗0[P (F ∇̃)] = ι∗1[P (F ∇̃)] = [P (F∇1)].

Definition 2.3. Die Abbildung

Invk(n) −→ H2k(M ;C), P 7→
[
P (F∇)

]
wird der Chern-Weil-Homomorphismus genannt. Wir schreiben P (ξ) :=
[P (F∇)], da dies unabhängig von der Wahl des Zusammenhangs ist.

Der Chern-Weil-Homomorphismus ist verträglich mit Pullbacks:

Proposition 2.4. Sei f : N → M glatt und P ∈ Invk(n). Dann gilt

f∗P (ξ) = P (f∗ξ).

Beweis. Wir wählen den induzierten Zusammenhang f∗∇ auf f∗ξ. Dann ist
F f∗∇ = f∗F∇ und schließlich

P (F f∗∇) = P (f∗F∇) = f∗P (F∇),

da Pullbacks mit dem äußeren Produkt verträglich sind.

Jetzt können wir die Chernklassen und Cherncharakterklassen definieren:
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Definition 2.5. Die k-te Chernklasse von ξ ist

ck(ξ) :=

[
σk

(
−1

2πi
F∇
)]

∈ H2k(M ;C).

Die k-te Cherncharakterklasse von ξ ist

chk(ξ) :=
1

k!

[
sk

(
−1

2πi
F∇
)]

∈ H2k(M ;C).

Bemerkung 2.6. Bemerkung 1.6 ergibt

c0(ξ) = 1, ch0(ξ) = n, c1(ξ) = ch1(ξ), und ck(ξ) = 0

für k > n = rk(ξ).

Für triviale Bündel lassen sich die Chernklassen leicht ausrechnen:

Beispiel 2.7. Sei ξ = εn das triviale Bündel über M . Dann ist

∇ : Ω0(εn) → Ω1(εn), (s1, . . . , sn) 7−→ (ds1, . . . , dsn)

ein Zusammenhang auf εn. Mit der Identifikation Ωi(εn) ∼=
⊕n

j=1(Ω
i(M))

ist ∇ genau der Operator

n⊕
j=1

d0 :
n⊕

j=1

Ω0(M) −→
n⊕

j=1

Ω1(M),

und also d∇ =
⊕n

j=1 d
i und F∇ =

⊕n
j=1(d

1 ◦ d0) = 0. Schließlich

ck(εn) = 0 und chk(εn) = 0 für alle k > 0.

Hat ein Vektorbündel also nicht-triviale Chernklassen, so ist es kein triviales
Bündel!

Sei ξ = η1 das kanonische Linienbündel über CP1, und sei

I : H2(CP1;C) −→ C, [ω] 7−→
∫
CP1

ω

der Integrationshomomorphismus.
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Satz 2.8. Es gilt
I(c1(η1)) = −1.

Beweis. Wir betrachten die Karte

φ0 : U0 := {[z0, z1] ∈ CP1 | z0 ̸= 0} −→ C ∼= R2, [z0, z1] 7→ z1/z0

auf CP1.
Wie in [MT97, Beispiel 17.9] lässt ein Zusammenhang∇ auf η1 definieren

sodass für g = (φ1)
−1 gilt:

g∗(F∇) =
2i

(1 + x2 + y2)2
dx ∧ dy.

Wir betrachten die Koordinaten (r, θ) auf C× mit (x, y) = (r cos θ, r sin θ).
Dann gilt

dx = d(r cos θ) = r d(cos θ) + cos θ dr = cos θ dr − r sin θ dθ

und dy = sin θ dr + r cos θ dθ. Insgesamt erhalten wir

dx ∧ dy = −r sin θ · sin θ dθ ∧ dr + r cos θ · cos θ dr ∧ dθ = r dr ∧ dθ.

Schließlich ∫
R2

g∗(F∇) =

∫ ∞

0

∫ 2π

0

2ir dr ∧ dθ

(1 + r2)2
= 4πi

∫ ∞

0

r dr

(1 + r2)2

= − 2πi

∫ ∞

0

d

dr

(
1

1 + r2

)
dr = −2πi

[
(1 + r2)−1

]∞
0

= 2πi.

Nach Definition des Integrals gilt∫
CP1

F∇ =

∫
R2

(φ0)
−1(ρ0F

∇) +

∫
R2

(φ1)
−1(ρ1F

∇) (3)

für eine Zerlegung der Eins ρ0, ρ1 mit Träger auf U0, U1.
Fûr t > 0 wählen wir ρt0 sodass supp ρt0 ⊆ φ0(B(t, 0)). Im Limes t → 0

geht dann ∫
R2

(φ0)
−1(ρt0F

∇) −→ 0∫
R2

(φ1)
−1((1− ρt0)F

∇) −→
∫
R2

g∗(F∇) = 2πi,

und schließlich

I(c1(η1)) =
−1

2πi

∫
CP1

F∇ = −1.
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Bemerkung 2.9. Nach Korollar 1.8 existieren Polynome P̃m, Q̃m ∈
Q[x1, . . . , xm] sodass

chk(ξ) = P̃k(c1(ξ), . . . , ck(ξ))

und
ck(ξ) = Q̃k(ch1(ξ), . . . , chk(ξ)).

Die Chernklassen und die Cherncharakterklassen enthalten also genau

die gleiche Information über ein Vektorbündel. z.B. ch2(ξ) = c1(ξ)2

2 −
c2(ξ).

Bemerkung 2.10. Das Endomorphismenbündel End(ξ) hat einen ka-
nonischen Schnitt

id : M → End(ξ), id(p) = idξp ∈ End(ξ),

der nirgendwo verschwindet. Wenn ξ = L ein Linienbündel ist, so hat
End(L) Rang 1 und ist damit isomorph zum trivialen Bündel ε1. Also
ist F∇ ∈ Ω2(End(L)) ∼= Ω2(M) eine 2-Form auf M , und

sk(F
∇) = (F∇)∧k.

Nun erhalten wir die Identität

chk(L) =
1

k!
ch1(L)

k =
c1(L)

k

k!
.

Der Cherncharakter ch(ξ) :=
∑

k≥0 chk(ξ) ∈ H∗(M ;C) erfüllt also die
formale Identität

ch(L) = exp(c1(L)) =:
∑
k≥0

c1(L)
k

k!
. (4)

Die Chernklassen und Cherncharakterklassen erfüllen eine Vielzahl von Iden-
titäten:
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Proposition 2.11. Die folgenden Identitäten gelten:

(i) ck(ξ ⊕ η) =
∑k

i=0 ci(ξ)ck−i(η)

(ii) chk(ξ ⊕ η) = chk(ξ)⊕ chk(η)

(iii) chk(ξ ⊗ η) =
∑k

i=0 chi(ξ) chk−i(η).

Alle drei lassen sich von den folgenden Identitäten für sk und σk herleiten:

Lemma 2.12. Sei A ∈ Matn(C) und B ∈ Matm(C). Die Blocksumme
A⊕B ∈ Matn+m(C) ist gegeben durch

A⊕B :=

(
A 0
0 B

)
,

das Kronecker-Produkt A⊗B ∈ Matn·m(C) ist gegeben durch

A⊗B :=

a11B · · · a1nB
...

. . .
...

an1B · · · annB

 .

Es gelten die folgenden Identitäten:

(i) σk(A⊕B) =
∑k

i=0 σi(A)σk−i(B)

(ii) sk(A⊕B) = sk(A) + sk(B)

(iii) sk(A⊗B) = sk(A)sk(B)

Beweis von Proposition 2.11. Teile (i) und (ii) folgen leicht aus Lemma 2.12
nach der Wahl von dem natürlichen Zusammenhang ∇ξ ⊕∇η auf ξ ⊕ η.

Für (iii) betrachten wir den induzierten Zusammenhang

∇⊗(s⊗ t) = ∇ξ(s) ∧ t+ s ∧∇η(t)

auf ξ ⊗ η. Es gilt
F∇⊗ = F∇ξ ∧ idη + idξ ∧F∇η ,

wobei idη ∈ Ω2(End(η)) auf jede Faser die Identitätsabbildung ist.
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Wir nehmen das k-fache äußere Produkt und erhalten

(F∇⊗)∧k =

k∑
i=0

(
k

i

)
(F∇ξ)∧i ∧ (F∇η)∧(k−i).

Das ergibt

sk(F
∇⊗) =

k∑
i=0

(
k

i

)
si(F

∇ξ) ∧ sk−i(F
∇η).

und daraus folgt die Identität schon.

Wir bezeichnen mit ηn das kanonische Linienbündel über CPn.
Nun sind wir in der Lage, eine axiomatische Charakterisierung für die

Chernklassen zu beweisen:

Satz 2.13. Die Chernklassen ck(ξ) ∈ H2k(M ;C) sind eindeutig defi-
niert durch die folgenden Eigenschaften:

(i) ck(ξ) hängt nur von der Isomorphieklasse von ξ ab.

(ii) I(c1(η1)) = −1, ck(ηn) = 0 für k > 1, c0(ηn) = 1.

(iii) f∗ck(ξ) = ck(f
∗ξ) für jede glatte f : N → M

(iv) ck(ξ ⊕ ξ′) =
∑k

i=0 ci(ξ)ck−i(ξ
′)

Beweis. Eindeutigkeit:

Fall 1: M = CPn, ξ = ηn.
Die Inklusion j : CP1 −→ CPn induziert einen Isomorphismus

j∗ : H2(CPn;C) −→ H2(CP1;C).

Außerdem j∗(ηn) = η1, und aus (iii) folgt

c1(ηn) = (j∗)−1c1(η1).

und die rechte Seite ist eindeutig bestimmt nach (ii).
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Fall 2: M beliebig, ξ = L : E → M ein Linienbündel.
Sei L⊥ ein Komplement zu L, sodass L⊕ L⊥ = εn+1. Für p ∈ M ist Lp

eine Gerade in Cn+1, d.h. ein Element von CPn. Die Abbildung

g : M −→ CPn, g(p) = Lp

ist glatt. Wir definieren

g̃ : E −→ S2n+1 ×S1 C, g̃(p, v) = (Lp, v),

sodass das folgende Diagramm kommutiert:

E S2n+1 ×S1 C

M CPn

g̃

L ηn

g

(5)

Also ist (g̃, g) ein Homomorphismus von Vektorbündeln. (5) ist sogar ein
Pullbackdiagramm, d.h. L = g∗ηn. Nach (iii) und Fall 1 ist ck(L) = g∗ck(ηn)
eindeutig bestimmt.

Fall 3: ξ =
⊕n

i=1 Li, mit Li Linienbündel.
Mit Induktion über n und (iv) ist ck(ξ) eindeutig von ci(Lj) bestimmt,

und wir sind im Fall 2.

Fall 4: ξ beliebig.
Dies folgt aus Fall 3 und dem Spaltungsprinzip:

Satz 2.14 (Spaltungsprinzip). Sei ξ ein komplexes Vektorbündel auf M
mit n = rk ξ. Dann existiert eine Mannigfaltigkeit T = Sp(ξ) und eine
eigentliche, glatte Abbildung f : T → M , sodass:

(i) f∗ : Hk(M) → Hk(T ) ist injektiv für jede k ≥ 0

(ii) f∗ξ ∼=
⊕n

i=1 Li, wobei Li Linienbündel auf T sind.
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Bemerkung 2.15. Wir sehen auch, dass die Chernklassen und Chern-
charakterklassen tatsächlich reelle Kohomologieklassen sind: Für Lini-
enbündel folgt dies aus dem Beweis von Fall 2 und für allgemeine Vek-
torbündel gilt dies wegen Eigenschaft (iv) und dem Spaltungsprinzip.

Definition 2.16. Die totale Chernklasse ist

c(ξ) =
∑
k≥0

ck(ξ) ∈ H∗(M ;C).

Aus Proposition 2.11 erhalten wir die Identität

c(ξ ⊕ η) = c(ξ)c(η) (6)

Für eine Summe von Linienbündeln ξ =
⊕n

i=1 Li gilt also

c(ξ) =

n∏
i=1

c(Li) =

n∏
i=1

(1 + c1(Li)).

Mit Satz 2.14 können wir weitere algebraische Identitäten überprüfen:

Proposition 2.17. Die folgenden Eigenschaften gelten

(i) ck(ξ
∗) = (−1)kck(ξ)

(i’) chk(ξ
∗) = (−1)k chk(ξ)

(ii) Für reelle Vektorbündel η und alle k ≥ 0 gilt

c2k+1(ηC) = 0 = ch2k+1(ηC).

Beweis. Nach Satz 2.14 reicht es die Identitäten für Summen von Lini-
enbündeln zu überprüfen.

(i) Wenn ξ = L ein Linienbündel ist, so ist L∗ ⊗ L = Hom(L,L) das
triviale Bündel. Mit Proposition 2.11 (iii) und Beispiel 2.6 erhalten wir

0 = c1(L
∗ ⊗ L) = ch1(L

∗ ⊗ L)

= ch1(L
∗) ch0(L) + ch0(L

∗) ch1(L) = c1(L
∗) + c1(L).
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Wenn ξ eine Summe von Linienbündeln Li ist, so gilt

c(ξ∗) = c

(⊕
i

L∗
i

)
=
∏
i

(1 + c1(L
∗
i )) =

∏
i

(1− c1(Li))

in H∗(M ;C). Mit Vergleichen des H2k(M ;C)-Teils erhalten wir ck(ξ
∗) =

(−1)kck(ξ).
(i’) Für Linienbündel L gilt

chk(L
∗) =

c1(L
∗)k

k!
=

(−1)kc1(L)

k!
= (−1)k chk(L).

Für eine Summe von Linienbündeln können wir Proposition 2.11 (ii) ver-
wenden.

Sei ⟨−,−⟩ eine Metrik auf η. Dann ist

f : η −→ η∗, u 7→ ⟨u,−⟩

ein Isomorphismus und induziert also einen Isomorphismus

f∗ : ηC −→ (η∗)C ∼= (ηC)
∗.

Mit (i) erhalten wir nun

c2k+1(ηC) = c2k+1((ηC)
∗) = −c2k+1(ηC),

und analog für chk(ηC).

Korollar 2.18. ηn ist nicht isomorph zu seinem Dual.

Beweis. Nach Proposition 2.17 gilt

c1(ηn) = −c1(η
∗
n).

Es reicht also zu zeigen, dass dieses Element nicht null ist. Für n = 1 gilt
I(c1(η1)) = −1, und für n > 1 gilt

j∗c1(ηn) = c1(j
∗ηn) = c1(η1) ̸= 0,

also ist c1(ηn) ̸= 0.
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3 Anwendungen

3.1 τCPn

Sei M = CPn. Wir sind nun in der Lage, die Chernklassen des Tangen-
tialbündels τCPn zu berechnen. Dafür betrachten wir das kanonische Lini-
enbündel η über CPn, und das orthogonale Bündel η⊥ mit Totalraum

E = {(L, u) ∈ CPn × Cn+1 | u ∈ L⊥}.

Lemma 3.1.
Hom(η, η⊥) ∼= τCPn .

Beweis. 3 Sei L ⊆ Cn+1 eine Gerade durch 0. Die Projektion p : S2n −→
CPn induziert Identifikationen

Tλxp(λx, λv) = Txp(x, v)

für jedes λ ∈ S1 und (x, v) ∈ TxS
2n ⊆ Cn+1×Cn+1. Also können wir TLCPn

auf eine natürliche Weise mit

A(L) = {[x, v] | x · x = 1, x · v = 0} ⊆ (Cn+1 × Cn+1)/S1 = Cn+1 ×S1 Cn+1

identifizieren.
Aber ein [x, v] ∈ A(L) korrespondiert zu einer linearen Abbildung φ ∈

Hom(L,L⊥), die durch φ(x) = v gegeben ist. Diese Identifikationen TLCPn ∼=
Hom(η, η⊥)L sind natürlich und insgesamt erhalten wir einen Isomorphismus

τCPn ∼= Hom(η, η⊥).

Hieraus folgt leicht:

Satz 3.2. Die totale Chernklasse von τCPn ist gegeben durch

c(τCPn) = (1− c1(η))
n+1. (7)

3Angepasst aus [MS74, Lemma 4.4]

16



Beweis. Nach dem obigen Lemma gilt

τCPn ⊕ ε1C = τCPn ⊕Hom(η, η) ∼= Hom(η, η⊥ ⊕ η) ∼= Hom(η, εn+1
C ) ∼=

n+1⊕
i=1

η∗.

Die totale Chernklasse ist exponentiell, und so

c(τCPn) = c(τCPn)c(ε1C) = c(τCPn ⊕ ε1C) = c

(
n+1⊕
i=1

η∗

)
= c(η∗)n+1 = (1− c1(η))

n+1.

3.2 Das Kobordismusproblem4

Sei M eine kompakte, orientierte Mannigfaltigkeit der Dimension m.
Eine natürliche Frage ist, ob M ein Rand ist, d.h. ob es eine orientierte

(m+ 1)-Mannigfaltigkeit mit Rand N existiert, sodass M = ∂N .
Für m = 4k gibt die 2kte Chernklasse gibt ein notwendiges Kriterium:

Satz 3.3. Sei M eine kompakte, orientierte 4k-Mannigfaltigkeit. Wenn
M ein Rand ist, dann gilt c2k(τM ⊗ C) = 0.

Beweis. Sei ι : M = ∂N → N die Inklusion. Dann ist τM ⊕ ε1R = ι∗(τN ).
Durch Komplexifizieren erhalten wir

(τM ⊗ C)⊕ ε1C
∼= ι∗(τN ⊗ C),

und schließlich gilt für die Chernklassen

c2k(τM ⊗ C) = ι∗c2k(τN ⊗ C).

c2k(τM ⊗ C) wird von 4k = dimM -Formen repräsentiert, also können wir
sie über M integrieren.

Mit dem Satz von Stokes erhalten wir∫
M

c2k(τM ⊗ C) =
∫
M

ι∗c2k(τN ⊗ C) =
∫
N
d(c2k(τN ⊗ C)) = 0,

da die Chernklasse eine Kohomologieklasse ist. Nach Poincaré-Dualität ist
I =

∫
M : Hm(M ;C) → C ein Isomorphismus, und schließlich c2k(τM ⊗C) =

0.

4Angepasst aus [Tu17, §26.3]
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Bemerkung 3.4. Allgemeiner könnten wir statt
∫
M c2k(τ) die soge-

nannten Pontrjaginzahlen der Form∫
M

c2(τM ⊗ C)i1 ∧ · · · ∧ c2k(τM ⊗ C)ik ∈ C

untersuchen, wobei i1, . . . , ik natürliche Zahlen mit i1+2i2+· · ·+kik = k
sind (sodass der Integrand tatsächlich eine 4k-Form ist). Eine direk-
te Verallgemeinerung vom Satz 3.3 sagt, dass für einen Rand M mit
dimM = 4k alle Pontrjaginzahlen verschwinden müssen.

Beispiel 3.5. CP2n ist kein Rand.

Beweis. Das Tangentialbündel τ = τCP2n ist ein komplexes Vektorbündel.
Schließlich gilt

τRC ∼= τ ⊕ τ∗.

Nach Satz 3.2 gilt

c(τR ⊗ C) = c(τ)c(τ∗) = (1− c1(η))
2n+1(1 + c1(η))

2n+1

= (1− c1(η)
2)2n+1

Mit dem binomischen Lehrsatz erhalten wir

c2n(τR ⊗ C) = (−1)n
(
2n+ 1

n

)
c1(η)

2n.

Das Element x = c1(η) ist ein Generator des PolynomalgebrasH∗(CP2n,C) =
C[x]/(x2n+1) und schließlich ist c2n(τR ⊗ C) ̸= 0.
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