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1 Manifolds

Definition 1.1 (Topological manifold). A topological manifold M is a Hausdorff space
that has a countable base and is locally homeomorphic to an open subset of R”, i.e. for each
point in M there exists an open neighbourhood U, such that U is homeomorphic to an open
subset () C R™.

The dimension of M is n.

Remark . The number n is well-defined:

Let Uy, Uy C M be open with UyNUy # 0 and hy: Uy — Qy, hy: Uy — Q5 be the correspond-
ing homeomorphisms, where 2; C R" open, 25 C R™ open. We consider the restrictions
hlvynv, s Up N Uy — ) and he|yyne,: Ur NUs — Q5. We have ] homeomorphic to €25,
) C R™ open and Q) C R™ open (since U; N Uy C M open). It follows from the theorem
of invariance of domain, that n; = na.

Definition 1.2 (Chart, coordinates and atlas). Let M be an n-dimensional topological
manifold.

1. A chart (U, h,Q) consists of

e an open subset U C M (chart domain),
e a homeomorphism h: U — Q (chart map), and

e an open subset 2 C R™ (chart image).

2. Given a chart (U, h,Q), the coordinates of x € U with respect to h are h(x) =
(h'(z),...,h"(z)) € R".

3. If {U; | i € I} covers M, then an atlas is a system A = {(U;, h;, ;) | i € I} of charts.

4. A chart transition is a map hj; = h; o by ': hy(U; N U;) — hj(U; N U;) (see Figure 1).
An atlas is smooth, when all chart transitions are smooth (as maps between subsets of

R™).

5. Two smooth atlases A;, Ay are smoothly equivalent, if A; U Ay is a smooth atlas. A
smooth structure on M is an equivalence class A of smooth atlases.
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Figure 1: Two charts (U, ¢, ¢(U)) and (V,1,9(V)) on M, and a chart transition 1 o
eUNV) =pUNV).

6. A maximal atlas A,,., is a representative of the equivalence class A, such that if a
smooth atlas A € A, then A C A,,4.. In other words, the maximal atlas is the
maximal element with respect to C.

Definition 1.3 (Smooth manifold). A smooth manifold is a pair (M, .A), where M is a
topological manifold and A is a maximal atlas on M.

It suffices to give a representative of the smooth structure — the maximal atlas would be
then automatically defined.

Example 1.4. Every open subset U C R™ has a canonical structure of a smooth
n-dimensional manifold, which is given by the atlas with one chart — (U, id, U). Note that
the corresponding maximal atlas contains the restriction id|y on every open subset V C U,
and also toid|y: V — R™ where t: V' — R™ represents a translation of V.

Example 1.5 (n-dim sphere S"). S" is an n-dimensional smooth manifold:

Let D" be the open ball of radius 1 in R™ centered at 0. We define the sets U; F={res|
z; > 0},U7 = {z € S" | #; < 0} and the maps h': UF — D", z — (xl,...,:vi ey Tpg1),
where z; denotes the omitting of x;. We have

(hE) " (u) = (ug, ..., uiy, /1 — |[ul]?, us, ..., u,), which means (U, h¥, D?) are charts
(see Figure 2). (Note that all charts have the same chart image D".) The chart transitions
are smooth and thus define a smooth structure on S".

Example 1.6 (Projective space RP"). RP" is an n-dimensional smooth manifold:

Let m: S" — RP" be the canonical projection. Using the notations in Example 1.5, 7(U;") =
7(U7). We define U; = 7(UF) C RIP” and see that m: U; * — U, is a homeomorphism (see
Figure 3). The maps h; = hf on™t: U; — D form a smooth atlas on RP".
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Figure 2: The charts (U, h¥, D*) on S” in Example 1.5 with n = 1.
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Figure 3: Example 1.6 with n = 1. The chart domains U; C RP"
are defined by the canonical projection 7 by grouping every pair of antipodal points in U;"
and U, together into one element.



Example 1.7 (2-dim sphere S?). Consider another atlas on S*:

Denote the north pole with Ny = (0,0,1) and the south pole with Sy = (0,0,—1). The
"stereographic projection from a pole to a plane z = z;” maps a point on the sphere to the
2 = 7z intersection of the line that passes through the pole and the point itself. Let ¢o: S? —
Ny — R2 (x,y,2) — (22/(1 — 2),2y/(1 — 2)) be the composition of first stereographically
projecting from N, to the plane z = —1, and then translating to the plane z = 0 (see Figure
4). Similarly, let ¥y: S* — Sy — R? (z,y, 2) — (22/(z + 1),2y/(z + 1)) be the composition
of first stereographically projecting from S, to the plane z = 1, and then translating to the
plane z = 0. It is clear that (S* — Ny, ¢, R?), (S? — Sy, 19, R?) are charts on S?. Moreover,
we have

4u 4v 8
-1 = 1_
¢z (1,9) (u2+v2+4’u2+v2+4’ u2+v2+4>’
B 4u 4o 8
@DQl(U,’U):( _1)

W+ 2 +4 w02+ 47 w02+ 4
Hence the chart transition 15 0 ¢5': R? — {0} — R? — {0} is given by v +— 4v/||v||?, which
is smooth on R? — {0}. Therefore, this defines a smooth structure on S2.

Figure 1.3
Figure 4: The stereographic projection of S? from the north pole N, to the plane z = —1.

Remark . The smooth structures constructed in Example 1.5 and 1.7 are the same:
Using the above notations, we have U;" N (82 N,) = Ujt. Consider the chart transition
doo (hi)™1: D2 = {v € R2 | vy > 0}, (ug, us) — (2¢/1 — Jull2/(1 — uz), 2uy /(1 — uy)), which
is smooth. Analogously, all such chart transitions are smooth and thus the two atlases belong
to the same equivalence class.

Example 1.8 (Torus 7). T is a 2-dimensional smooth manifold:
The torus T is defined as the quotient space R?*/Z2. Let 7m: R* — T be the canonical
projection, 0 < e¢ < 1/4. Consider the open subsets ;3 = (¢,1 —¢€) X (,1 — €),Qy =
(.1 —€) x (—2¢,2¢),Q3 = (—2¢,2¢) x (6,1 —¢) and Q4 = (—2¢,2¢) x (—2¢,2¢) in RZ. We
define U; = w(€);) C T for i = 1,2,3,4 and see that w: Q; — U; is a homeomorphism (see
Figure 5). The maps h; = 7 !: U; — €; form a smooth atlas on T.



Figure 5: The quotient space T'= R?/Z?. The 4 chart domains U; C T are shown in different
colours.

Remark . An atlas on a compact manifold has at least 2 charts:

Assume there is an atlas with just one chart (U, h,Q), where Q@ C R"™ open. Then U has
to be the entire compact space. Since h is a homeomorphism, = h(U) must be compact,
and using the theorem of Heine-Borel, 2 must be closed and bounded. R™ is connected,
so the only non-empty open and closed subset is R™ itself, which is unbounded. This is a
contradition to 2 being bounded.

Example 1.9. The restriction of a smooth manifold on an open subset is a smooth manifold:
Let (M, A) be a smooth manifold and V' C M open. Then a smooth atlas on V' is Ay =
{(UNV, hluay, H(UNV)) | (U, h,Q) € A}. (The smoothness of chart transitions is preserved

under the restriction.) The dimension remains unchanged.

Definition 1.10 (Smooth maps between smooth manifolds). Let M, M’ be smooth
manifolds and f: M — M’ be a continuous map. f is smooth at x € M, if there exist
charts (U, h,2) on M and (U',1/,Q¥) on M’ with x € U, f(z) € U’ such that b’ o f o
Rt h(f~1(U")) — € is smooth in a neighbourhood of h(z).

f is smooth, when f is smooth at all points of M.

Remark . The definition is independent of choice of charts, since chart transitions are
smooth for smooth manifolds. A composition of two smooth maps is smooth. Hence the
condition in the definition would be fulfilled for all charts (with suitable domains), given the
existence of h and h'.

Example 1.11. Let f: S' — S? be the map, which maps (z,y) € S' to the equator
(x,9,0) € S%. This is a smooth map:



Similar to Example 1.7, we define a smooth atlas on S' with the help of stereographic projec-
tion. Denote the north pole of S* with Ny = (0, 1) and the south pole of St with S; = (0, —1).
Let ¢1: S' — Ny — R, (z,y) — 22/(1 — y) be the composition of first stereographically pro-
jecting from Nj to the line y = —1, and then translating to the line y = 0. Similarly, let
P1: S8 — R, (z,y) — 2z2/(y+ 1) be the composition of first stereographically projecting
from S; to the line y = 1, and then translating to the line y = 0. The inverses are given by

4u? 8u 4u? 8u
1-— —1 = (—, — —1).

Hence (S' — Ny, ¢1,R) and (S' — S},91, R) form a smooth atlas on S'. The composition

1 (u) = (

Su? 16w

-1, 2
¢20f0¢1 R—}R,Uﬂ—)(m, —u2+4

)

is smooth, which means f is smooth in S* — N;. The same can be done for the north pole
Ny, if we replace ¢; with ;.

Analogously, the map ¢g: S' — S?, which maps S! to any great circle on S?, is also smooth:
We can write ¢ = Ro f, where R: S? — S? is a proper rotation around an axis. Using the
corresponding matrix representation, one sees that R is a smooth map between manifolds,
and thus ¢ is smooth. We look at the example g(z,y) = (0,z,y) (the great circle passes
through both poles). The rotation R in this case is a rotation of 90 ° about the y -axis,
followed by a rotation of 90 ° about the z-axis. It is given by the matrix

0 0
-1 0

1
R=10
0 0 —1

_ o O
o = O

1
0] =
0

o = O
—_ o O

1
0
0
The composition

2u? + 202 — 8 Su

Rogy': R* —{(0,2)} — R? >
P20 Fo g, {(0.2)} () (u2+v2—4v+47u2+02—4v+4

)

is a smooth map. Therefore, R is smooth.

Definition 1.12 (Diffeomorphism). A diffeomorphism is a smooth map f: M — M’
between smooth manifolds that has a smooth inverse. M is then diffeomorphic to M’.
A diffeomorphism is in particular a homeomorphism.

Example 1.13. The smooth map f: R — R, x ~ 2% is a homeomorphism but not a
diffeomorphism, since the inverse is continuous but not smooth.

Lemma 1.14. Suppose we have chosen a smooth atlas A on a manifold M. The maximal
atlas A, 1s equal to {(U, f,Q) | U C M open, Q C R" open, f: U — Q diffecomorphism}.

Proof. 7C”: Let (U, h,Q) € Ayu: be a chart. We use the canonical smooth structure on
2 C R™ given by the atlas {(2,id,Q)}. Then h is a smooth map between smooth manifolds,
since ido ho h™! = id: Q0 —  is smooth. Its inverse h=1:  — U is also smooth, shown by
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the smooth composition ho h™! oid™! = id: Q0 — Q. Thus h is a diffeomorphism.

"D Let f: U — Q be a diffeomorphism, where U C M open, 2 C R™ open. It is clear that
(U, f,Q) is a chart. For all charts (U, ho, ) € Amae, the compositions ido fohy': ho(U N
Us) = f(UNUp) and hgo f~roid™: f(UNUy) — ho(U NUp) are smooth by definition.
This means all chart transitions related to f are smooth. Therefore, (U, f,€2) is an element
of A az- O

Remark . The lemma shows that a smooth manifold is locally diffeomorphic to an open
subset of R™. The inverse diffecomorphisms f~!: Q — U are called local parametrizations.

Definition 1.15 (Product structure). Let M and M’ be smooth manifolds with maxi-
mal atlases A,; and A;;. We define an atlas on M x M’:

Arrsnr = {(U x U' h xh, Q x Q/) | (U, h, Q) € Ay, (U/,h/,QI) S .AM/}. A is smooth
and defines the so-called product structure on M x M'.

The projections M x M" — M and M x M’ — M’ are smooth.

2 Submanifolds and Embedding

Definition 2.1 (Topological submanifold). Let M be an n-dimensional topological
manifold.

1. A subspace N C M is a topological submanifold, if for every x € N there exists a
chart (U, h,Q) on M with z € U, such that h(UNN) = QN (R x {0}) (see Figure 6).
The dimension of N is k. The number n — k is called the codimension of N in M.

e

Figure 6: Let S C M be the submanifold. For p € S, the chart (U, ¢, V) maps U N S to
V N (R¥ x {0}), which is the flat red surface marked in the figure.

2. If (M, A) is a smooth manifold and every chart (U, h,€2) used is contained in the
maximal atlas A, then N is a smooth submanifold of M.
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A smooth submanifold is in particular a smooth manifold, with a smooth atlas Ay = {(U N

N, hluon, QN (RF x {0})) | (U, h,Q) € A,z € U}.

Example 2.2 (n-dim sphere S"). S" is an n-dimensional smooth submanifold of R"*!:
We define the sets V" = {z € R"™ | z; > 0},V,” = {z € R"™ | 2; < 0} and the maps

hE: VE = hE(VE) € R o (21,...,%4,..., 00y, ||2]|? — 1), where #; denotes the
omitting of x;. Let QF = h¥(V/F). For u € QF, we have (h) ™' (u) = (uy, ..., ui1, £(Upy1 +
1— Z?Zl u§)1/2,ui, ..., uy), which means (V;*, ¥ QF) are charts on R™*'. Consider the

atlas A = {(D™*1 id, D"V, (V= b, QF) | i = 1,2,...,n+ 1}. The chart transitions are
smooth and thus define a smooth structure on R™*1. )
Note that the charts (V;*, hi, Q) are essentially extensions of the charts (U, ¥, D") onto

7 'Y 7 2%

V7* (see Example 1.5). Since V*NS™ = U, we have hF (VENS?) = hF(UF) = D x {0} =

(2

QF N (R™ x {0}). The sets V;* cover S".

Definition 2.3 (Embedding). An embedding is a smooth map f: N — M between
smooth manifolds, such that f(N) C M is a smooth submanifold and f: N — f(N) is
a diffeomorphism. f(N) is then an embedded submanifold of M.

Example 2.4 (Graph of function). Let U C R™ be an open subset and f: U — R" be a
smooth map. Its graph Graph(f) = {(z, f(x)) | x € U} is a smooth m-dimensional submani-
fold of the smooth (m+n)-dimensional manifold U xR™. The desired chart as in Definition 2.1
ish: UxR" = UxR" C R™™" (z,y) — (x,y — f(x)), satisfying h(Graph(f)) = (U x {0}).
An embedding is the map i: U — U x R", z — (z, f(2)).

Theorem 2.5 (Smooth partition of unity). Let U C R" be open and V = (V});cs a
cover of U by open sets V;. Then there exist smooth functions ¢;: U — [0, 1], satisfying

1. supp(¢;) C V; forall i € I
2. Every point in U has a neighbourhood on which only finitely many ¢; do not vanish.
3. Forevery x € U: Y., ¢i(x) =1

Proof. Proved in Analysis 3. O

Lemma 2.6. Let A C R” be closed and U C R" open with A C U. Then there exists a
smooth function ¢: R™ — [0, 1] with supp(¢) C U and ¢(x) = 1 for all x € A.

Proof. Apply Theorem 2.5 to the cover of R" consisting of the open sets V; = U, Vo, = R"— A.
Then ¢ = ¢ has the desired properties. O]

Lemma 2.7. Let M be an n-dimensional smooth manifold. For z € M there exist smooth
maps ¢,: M — R and f,: M — R" such that ¢,(x) > 0 and f, maps the open set
M — ¢;1(0) diffeomorphically onto an open subset of R".



Proof. Choose a chart (V,h,Q) with x € V. Using Lemma 2.6, we have a function ¢ €
C*(R™ R) with supp(y) C Q, such that 1 is equal to 1 on a neighbourhood 4 C Q of h(z).

We define
_ Ju(h(y)hly) ityeV,
faly) = {O otherwise.

Set Vo = h™1(Qq). Since f.|lv, = hlw, f. maps V diffeomorphically onto €y. We choose
o € C*(R™, R) with supp(vg) C Qo and 1hg(h(z)) > 0, and define

5(4) {%(h@)) ifyeV,

0 otherwise.
It is clear that ¢,(z) > 0. Since M — ¢, '(0) C Vj, [, also fulfils the last requirement.  [J

Theorem 2.8 (Whitney Embedding Theorem). Let M be a smooth n-dimensional
manifold. Then there exists an embedding of M into R™**. In other words, every smooth
manifold is diffeomorphic to an embedded manifold.

Proof. (for M compact.)
For every x € M we have ¢, and f, as in Lemma 2.7. By compactness M can be covered
by a finite number of the sets M — ¢, '(0). After a change of notation, we receive smooth

functions ¢;: M — R, fi: M — R" (i = 1,2,...,d) which fulfil
i. The open sets U; = M — ¢; *(0) cover M.
ii. f;lu, maps U; diffeomorphically onto an open set §); C R".

We define a smooth map f: M — R*™* f(y) = (fi(y),.... fa(y), $1(y), ..., Pa(y)). We
check that f is injective and since M is compact, f is a homeomorphism from M to f(M).
We prove that f is the desired embedding;:

1. Prove that for every & € f(M) there exists a chart (V, h, IT) on R"*? with o € V, such
that h(V N f(M)) =TI N (R* x {0}).
Denote with mp: R4 — R 7y: R4 — RM4-D+d the projections on the first
n coordinates and the last n(d — 1) + d coordinates respectively. By (ii), m o f =
fi1 is a diffeomorphism from U; to €, which means m maps f(U;) bijectively onto
;. Consider now the smooth map g = m o f o fﬂ&f: 0, — RMd-D+d We have
Graph(g;) = f(Uy). Similar to Example 2.4, we define a diffeomorphism hy: € x
RA=D+d 5 Q) x RME=D+ (4 0) — (u,v — g1(u)). We see that h; maps f(U;)
bijectively onto €, x {0}. Let Vi C ©; x RM4=D+d he the open set in R"+ satisfying
f(Uy) = f(M)NVy. The restriction hy|y, is a diffeomorphism from V; onto an open
set IT; € Q) x R™M4=D+4 and maps f(M) NV, bijectively onto IT; N (R x {0}). Hence
(V1, hilv;, I11) is the desired chart on R+,
The remaining f(U;) are treated analogously. Note that (f(U;))1<i<q is a cover of f(M)
by open sets, since f: M — f(M) is a homeomorphism.



2. Prove that f: M — f(M) is a diffeomorphism.
We know that f|y, = 7r1|]?(1Ul) o fil,: Uy — f(Uy) is a diffeomorphism. The same
statement is also true for the other U;. Therefore, f is a diffeomorphism.

O

Theorem 2.9. Every compact topological n-dimensional manifold is homeomorphic to a
topological submanifold of R

Proof. Use the above proof, replacing ”smooth manifold” with ”topological manifold”,
”smooth map” with ”continuous map” and ”diffeomorphism” with "homeomorphism”. [

3 Tangent Space

Definition 3.1 (Tangent space). Let (M, .A) be an n-dimensional smooth manifold and
x € M.

1. Let Iy, I; be two open intervals around 0 and v,: Iy — M, ~: Iy — M be two smooth
paths with 71 (0) = 72(0) = x. Let (U, h,Q2) € A be a chart with z € U. Then v, and
72 are equivalent, if (ho~;)'(0) = (h o) (0).

2. A tangent vector of M at x is an equivalence class [y],. The tangent space of M at x
is the set T,M = {[7]. | v: I — M smooth, v(0) = x}.

Remark . The definition is independent of choice of charts:

Let (Ui, hy,), (Us, he,25) € A be two charts with = € Uy N Us. Suppose (hy 0 71)(0) =
(h1 0 %)(0). The chart transition hy o hy': hy(Uy N Usy) — ho(Uy NUy) is a smooth map
between open subsets of R™. Denote with Jj, () (he o hy') its Jacobian matrix evaluated at
hi(z). Using the chain rule, we have (hgohy' o hy0v1) (0) = Ju () (ha o hi') - (hyo71) (0) =
Jhy(z)(ho 0 hit) - (h10742)"(0) = (hg o hy' o hy 075)'(0), and thus (hy 0 71)"(0) = (hg 0 72)'(0).
The other direction follows similarly with the chart transition hy o h; "

Example 3.2 (U C R" open). One identifies T,,U with R™:

We use the canonical structure on U given by the chart (U, id, U). The equivalence relation
is then 7 ~ 72 < 71(0) = 74(0). The map T, U — R", [vy]. — 7/(0) is defined to be injective.
It is also surjective, since for v € R™ we can define the smooth path ~(t) = x + tv. Hence it
is a bijection between T,U and R"™. By abuse of notation, we often regard T, U = R".

Definition 3.3 (Addition and scalar multiplication). Let T, M be the tangent space
of (M, A) at x. Let (U, h,2) € A be a chart with z € U.

1. We define the addition +: T, M xT, M — T, M as [y1].+[V2]. = [hflo%(hoa1+hoa2)]x,
where oy (t) = 71(2t), aa(t) = 12(2t).

2. We define the scalar multiplication -: R x T,M — T,M as X - [y]. = [y\]s, where
() = v(AL).
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The two operations are well-defined and define a real vector space structure on T, M.

Lemma 3.4. Using the same chart as in Definition 3.3, the map ®;: T,M — R", [y], —
(ho~)'(0) is a linear isomorphism.

Proof. Bijectivity: @, is injective by the definition of the equivalence relation. For sur-
jectivity, let v € R". We define the smooth path ~(t) = h='(h(z) + tv). Then we have
Ou([7]e) = v-

Linearity: For addition, we have ®([v1]. + [72] p([h1 %
5(hoar)(0)+3(hoas)(0) = (hom)'(0) +(ho72)'(0) = Cr([11]e) + Pn([r2]s). For scalar mul-
tiplication, we use the chain rule to get ®,(A-[7]:) = Pr([va]z) = (ho72)'(0) = A(hoy)'(0) =
APy ([7]a)- O

= Ou([h (hoay + hoa)l,) =

8
\_/v
KA

Remark . From Lemma 3.4, we see that the linear structure defined on T,M does not
depend on choice of charts:

Let (Ui, hy,), (Us, he,€25) be two suitable charts. Consider the following commutative
diagram

Ppy

T.M ——

o

where F' is the isomorphism defined by the Jacobian matrix Jj, (z)(he o hit). Let V,,W, €
T, M be two tangent vectors of M at x. Using Definition 3.3 with the chart map h;, we have
V., + W, = q);ll(vl + wy) for some vy, w; € R". For vy = F(v1),wy = F(w;) we then have
V,+W, = @;21 (vy + wy), which is independent from the chart map h;. Thus the addition
on T, M is well-defined.

Corollary 3.5. Given a chart (U, h,(2) in the maximal atlas with x € U, we write
(a%-)(%h) = &, !(e;), where ¢; = (0,...,1,...,0) € R" is the i-th standard basis vector. The

system (%)(m,h), ce (%)(m,h) forms a basis for T,,M.
Proof. This follows directly from Lemma 3.4. O

Example 3.6. Let [y], € T, M be the tangent vector given by the smooth path v: I — U
with v(0) = z. Let (a1,...,a,) = (hov)'(0) € R™. Since ®([7].) = (hov)' (0) =>"1, a;-e;,
we can apply the linear map ®;' on both sides and receive [y], = >, ai(a%i)(w,h)'

Definition 3.7 (Differential of smooth map at a point). Let f: M — M’ be a
smooth map between smooth manifolds and z € M. The differential of f at x is the map
D,f: T.M — Tf(x)Mla [7]w = [f O’Y]f(ﬂ'

Lemma 3.8. Let f: M — M’ ,g: M’ — M" be smooth maps between smooth manifolds
and x € M.

1. The differential D, f of f at x is well-defined and linear.
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2. For the composition g o f the chain rule is fulfilled, i.e. D,(go f) = Dy)go Do f.
3. We have DmldM = ZdeM

4. For a constant map const: M — M', we have D,const([y]z) = [0]const(z), Where
[0]const(z) denotes the neutral element of Teonst(z)M' with respect to addition.

5. Let (U, h,Q) be a chart around x in M. Then Dgyh: T,U — Tj€2 is an isomorphism
and its inverse is given by (Dyh)™' = Dyh™t.

Proof. (1): Let (U, h,Q) be a chart around = in M and (U’,h',Q) be a chart around f(x)
in M’. Consider the following commutative diagram

T,M 2L Ty M

ol Jo

R™ — L R

where [ is the linear map defined by the Jacobian matrix Ju) (k' o f o h™'). Since ¢, and
®j,s are linear isomorphisms, there exists a linear map 7, M — T,y M’ so that the diagram
is commutative. The exact formula in Definition 3.7 is given by the composition ®,,' o F o ®y,.
(2), (3): Follows directly from Definition 3.7.

(4): The equivalence class [const © ¥]const(z) is represented by the smooth path a: I — M,
t +— const(z). Using the linear map ®;,' for a suitable chart (U’, 1, '), we have [o/]consi(x) =
@, (1 0 ) (0) = B;,1(0).

(5): Let the dimension of M be n. By Example 1.9, U and €2 are both n-dimensional smooth
manifolds and thus T,U and Tj(,)$2 have the same dimension as vector spaces. We show
that D, h is injective through the followmg commutative diagram:

TU—)T}L

\l

®y, is bijective by Lemma 3.4 and d is the bijection given in Example 3.2. Thus D,h must
be injective, and hence bijective. The formula for the inverse can be deduced using (2) and
(3) with f =h,g=h"". m

Example 3.9. Let N C R" be a smooth k-dimensional submanifold and (U, h,2) be a
chart in R™ as in Definition 2.1. Then (U',}/,Q)) = (U N N, hlyan, 2 N (R* x {0})) is a
chart in N. Let i: N — R" be the inclusion map and z € U’. Since i = h™! o0 j o I/, where
j:RY = R™ (vy,...,05) = (v1,...,0,0,...,0), the rank of D,i is determined by the rank
of Ju(z)J, which is k. Hence D,i: T, N — T,R™ = R" is injective.

One usually identifies T, N with D,i(T,N) C R™, which is the set of vectors {7/(0) | v: I —
N € R" smooth, v(0) = x} (see Example 3.2).
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Lemma 3.10. Let f: M — M’ be a smooth map between smooth manifolds and = € M.
Let (U, h,Q) € Ay be a chart with z € U and (U’, 1/, Q) € Ay be a chart with f(z) € U’.
Let {(%)(Lh) | i =1,2,...,n} be a basis of T, M and {(%)(f(m),h/) |i=1,2,...,n'} be a
basis of T,y M'. The matrix representation of the differential D, f of f at x is the Jacobian
matrix Jy) (W o foh™h).

Proof. This follows directly from the first commutative diagram in Lemma 3.8 and the
definition of the bases. O

Remark . In particular, if M = M’ and f = idy;, we have the matrix Jy(z)(h' o h™1),

ie. (8%_)(%;1) =71 0;0i(h(z)) - (32)(z,n), where ¢ = I’ o h™! denotes the smooth chart
i J

transition which expresses z;-coordinates in terms of y;-coordinates.

Lemma 3.11. There is a natural isomorphism T(xo%)(M x M) =T, M x Tx()M’.

Proof. Denote the projections with 7: M x M’ — M and 7': M x M' — M’, and let

i M — MxM' xw— (x,z)) andi': M" — M xM', 2’ — (x¢,2’) be the inclusions. Consider

the map f = D(zy o) X D(zyayT: Tiwg.ery(M X M"Y — T, M x T,y M, which is linear since
(070) (0’0) (0’0) 0 0

D(4g,25)™ and Dy or)7" are linear. Further we consider g: Ty, M X Ty M' — T(yg 1) (M x M),

(Vaos Var) = Dayi(Viy) + Dy i’ (V). Then by Lemma 3.8, we have

(f ©9)(Vao, Vi) = f (Dagi(Vig) + Dy i’ (Vi)

= (Dwo.ap) T(Dagi(Vay) + Dayi'(Vay))s Deaoat) ™ (D i(Vay) + Dy i’ (Vi )))
= (Day(m08)(Vay) + Day ( 08') (Vi ), Day (7 08) (Vi) + Dy (' 08')(Viy))
= (Dayidns (Vi) + Dy const(Vyy ), Dagconst(Va,) + Dy idar (Vi) = (Vigs Vay)-
Since f has a right inverse, f is surjective. Thus f is a linear isomorphism, since the
dimensions of both vector spaces are equal. O

Definition 3.12 (Directional derivative). Let f € C°°(M,R) be a smooth function and
D,f: T,M — TR = R be the differential of f at x € M. For a tangent vector V, =[], €
T, M, the directional derivative is V,.(f) = D, f(V,) € R. In other words, V,(f) = (fo~)(0).

4 Vector Bundles

Definition 4.1 (Vector bundle). An n-dimensional vector bundle £ over a topological
space B (base space) consists of:

1. a topological space E (total space)

2. a continuous map p: E — B (projection, the preimage F, = p~1(b) is called fiber of
be B)
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3. For every point b € B there exist a neighbourhood U of b and a homeomorphism
H:p~'(U) — U x R™ (bundle chart map), such that the following diagram is commu-
tative

pt U xR

Sk
and the following condition is fulfilled:

Let Uy,U, be two neighbourhoods with Uy N Us # @ and Hy: p~ Y (U;) — Up X
R", Hy: p~'(Uy) — Uy x R™ be the Corresponding homeomorphisms. We consider
the restrictions Hllp_l wrnts)s Holp—1nnvy): pH U1 N UL) — (Uy N Uz) x R™. Let
Hy = Hyo H': (UyNUy) x R* — (Up N UQ) x R™ be the "bundle chart transi-
tion”. Since the diagram above is commutative, we have Hyy(x,v) = (2, Hyi (x,v)) for
some map Hy (z,): R" — R,

For every x € Uy N U,, we require lflgl(x, _) to be linear, i.e. Hyy (1, ) € GL,(R).

A bundle chart is a pair (U, H), where U C B and the homeomorphism H: p~'(U) — U x R"
are defined as above. If B = (J,.; U;, then a bundle atlas is a set A = {(U;, H;) | i € I}
of bundle charts. For two charts (U, Hy) and (Us, Hy) with Uy N Uy # (), we define the
so-called transition function ug;: Uy NUy — GL,(R), x +— ﬁgl(x, _), which is automatically
continuous.

Remark . Since the diagram above is commutative, the fiber Fj is automatically homeo-
morphic to {b} x R™ through the homeomorphism H|g,.

Example 4.2 (Trivial vector bundle). The trivial vector bundle over a topological space
B is given by the projection p: B x R" — B. A bundle atlas is then A = {(U,id) | U C B

open}.

Example 4.3. The restriction of a vector bundle is a vector bundle:

Let & be the vector bundle given by p: E — B and A C B be a subspace. Then the restriction
€ of € on A is the vector bundle given by pl,-1ay: p7'(A) = A. f A= {(U;,H;) | i€ I}isa
bundle atlas for B, then a bundle atlas for A is Ay = {(U; N A, H;|,-1w,na)) | (Us, H;) € A}
(The linearity of the homeomorphisms Ha,; is preserved under the restriction.)

Definition 4.4 (Smooth vector bundle). Let £ be a vector bundle over a smooth man-
ifold M given by p: £ — M.

1. A bundle atlas A is smooth, if all the transition functions u;; are smooth maps (between
smooth manifolds).

2. We define the term ”maximal bundle atlas” similarly as in Definition 1.2. A smooth
vector bundle is then a pair (£,.4), where A is a maximal bundle atlas.

Example 4.5 (Mobius bundle). The Mdbius bundle is an example of a non-trivial vector
bundle:

14



Consider the projective space RP' as the set of 1-dimensional subspaces L C R2. Define
the total space £ = {(L,v) | L € RP',v € L} Cc RP' x R? with the subspace topology.
Let p: £ — RP!, (L,v) ~ L be the projection. This defines a 1-dimensional smooth vector
bundle 7; on RP'. (A smooth bundle atlas is A = {(U,id) | U C RP' open}.)

Non-trivial: We define the zero-section of a vector bundle as the map (: B — E, b+ (b,0).
For the trivial vector bundle given by pr: RP' x R — RP!, we have (RP! x R) — ((RP') =
RP' x (R — 0), which is not connected. On the other hand for p: E — RP' defined above,
let (Ly,v1), (La,vg) € E — ((RPY), i.e. v; # 0 # vy. Denote with 7: S' — RP* the canonical
projection. Without restriction of generality, let ||v1]| = ||lve]| = 1. Then there is a path
w: [0,1] = 7(S") x S from (Ly,v1) to (Lg,vy), which means E — ¢(RP') is connected (see
Figure 7).

Figure 7: On the left is the trivial vector bundle, and on the right the Mobius bundle. The
images of the zero-section I'm(() are marked with blue. We can see that for the trivial
vector bundle, the complement of Im(¢) is not connected. On the contrary, the complement
of Im(() is connected for the M&bius bundle.

Definition 4.6 (Map between vector bundles). Let &, be two vector bundles given
by p: E— B and p': E' — B’ respectively.

1. A map between vector bundles (0,5): £ — & is a pair of maps §: E — E’ and
B: B — B’, such that p'of = Sop and for every b € B the induced map 6,: F, — F/;(b)
is linear.

2. If additionally B = B’ and (8 = idg, then 6 is called a bundle map over B.

Lemma 4.7. Given a set E, a topological space B, a surjective map p: £ — B and a set
A={H;:p '(U;) = U; xR" | U; C B open, B = ,.;Ui,plp-1wy) = pru, o H;} of maps,
such that the transition functions wuj are continuous.

Then there exists exactly one topology on E such that p: E — B defines an n-dimensional
vector bundle, where A is a bundle atlas.

Proof. For a given map H: p~}(U) — U xR", let e € p~}(U). Since B is a topological space,
the topology on U x R" is defined. For the point H(e) € U x R", we find a neighbourhood
base {V;} at H(e). To make H a homeomorphism, the preimages {H '(V;)} must form a
neighbourhood base of e in p~!(U). We define a "neighbourhood” of e as a superset of an
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element in {H'(V;)}. Note that this definition is independent of choice of H, since the
"bundle chart transitions” Hj; = H; o H; ' need to be homeomorphisms. We do the same
for all ¢ € p~!}(U) and then for all H € A. Since a subset is open if and only if it is a
neighbourhood of every element in itself, this defines (the only possible) topology on E. [

Remark . A subbasis of the topology on E is given by S = {H; '(V;) |i € I, H; € A,V; C
U; x R™ open}.

Corollary 4.8. We use the assumptions in Lemma 4.7 with the exceptions, that B = M
is a smooth manifold and the transition functions uj are smooth. Then there exists exactly
one topology on E such that p: F — M defines a smooth vector bundle, where A is a smooth
bundle atlas.

Proof. Use the same proof as above. O]

Definition 4.9 (Tangent bundle). Let M be a smooth manifold. We define the set
TM = ||,cp ToM and the surjective map p: TM — M, (z,V,) — .

Let Apae = {(Ui, hi, %) | @ € I} be the maximal atlas on M. For ¢ € I, we have
p N U) = {(x,Vy) | 2 € U, V, € T,U;} = TU; and Q; xR™ = {(hi(2), Vi) | © € Ui, Viya) €
Thi@)hi} = TQ; because of Example 3.2. Consider the maps H;: p~'(U;) — Q; x R,
(z, V) + (hi(z), Dyhi(Vy)). We define H; = (h;' x id) o H;, which means H;: p~!(U;) —
Ui x R™, (2, V) = (x, Dyhi(Vy)).

We check that for i € I, we have p(x,V,) = = = pry,(z, D,hy(Vy)) = pry,(Hi(z,V,)) for

(z,V,) € p~'(U;), which means the diagram below is commutative.

U;) LN U, x R"
lprU
Plo=1wy)

Now let (Uy, hy,Q1), (Us, ha, Q2) € Apax be two charts on M with Uy NU, # 0. By
Lemma 3.8(5), the inverse map H; ": Uy x R® — p~'(U;) maps (z,v) — (, Dp,hi*(v)).
Thus Hy = H2 o Hi! is defined as Hgl(ac,v) = (2, Dyha(Dpyyhi ' (v))), ie. Ho(z,v) =
D,ho(Dpy@yhit (v)) = Diy(wy(he o hy)(v) with Lemma 3.8(2). We can then use the matrix
representation in Lemma 3.10 on Hgl( 1) and receive Hy () = Jy, () (haohy") € GL,(R).
The transition function ug () = Jhl(x)(hg ohil)is a smooth map.

We use the topology on T'M given in Corollary 4.8. Then p: TM — M defines a smooth
vector bundle. We name it the tangent bundle of M.

Remark . In the above definition, a smooth bundle atlas is given by A = {(U;, H;) |
(Ui, hi, ) € Appaz - We see that TM gets a smooth structure from the smooth structure of
M.

Example 4.10 (TS' is trivial). We show that T'S! is diffeomorphic to S' x R:
For a point z € S, we write v(x) = (—z9,71) € T,S' for the tangent vector of S! at =.
Note that T,S' = R, since T,S' is a 1-dimensional real vector space. Consider the map
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f:TS' - S' xR, (2,V,) — (z,v(x) - V,). Tt is smooth and bijective. The inverse is given
by f71: S! xR — TS, (z,\) — (z, \(z)), which is also smooth.

For better visualization, consider the smooth vector field F': R? — R? (vy,v3) + (—vg, v1).
For a point x € S!, F rotates the tangent space T, S! by 90 " in the anticlockwise direction,
giving us z € F(T,S'). The tangent spaces form the curved surface of the (infinitely long)
cylinder around S' (see Figure 8). Thus, we have TS! 2 S x R.

Figure 8: The blue line on the right represents the tangent space T,S* of S' at the point g.
Using the vector field F in the Example, T,S' will be rotated around g until it covers the
origin (0,0). We can then use the interpretation on the left to understand the blue line as
part of the cylindrical structure around S*. Doing this for every g € S' gives us the result
TSt~ S! x R.

Example 4.11 (TS? is non-trivial). This is a result of the hairy ball theorem / hedgehog
theorem.

Definition 4.12 (Differential of smooth map). Let f: M — M’ be a smooth map be-
tween smooth manifolds. The differential of f is the smooth map between vector bundles
Df:TM — TM over f, which is defined by the different differentials D, f: T, M — T M’
at the points x € M.
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