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1 Manifolds

Definition 1.1 (Topological manifold). A topological manifold M is a Hausdorff space
that has a countable base and is locally homeomorphic to an open subset of Rn, i.e. for each
point in M there exists an open neighbourhood U , such that U is homeomorphic to an open
subset Ω ⊂ Rn.
The dimension of M is n.

Remark . The number n is well-defined:
Let U1, U2 ⊂M be open with U1∩U2 ̸= ∅ and h1 : U1 → Ω1, h2 : U2 → Ω2 be the correspond-
ing homeomorphisms, where Ω1 ⊂ Rn1 open, Ω2 ⊂ Rn2 open. We consider the restrictions
h1|U1∩U2 : U1 ∩ U2 → Ω′

1 and h2|U1∩U2 : U1 ∩ U2 → Ω′
2. We have Ω′

1 homeomorphic to Ω′
2,

Ω′
1 ⊂ Rn1 open and Ω′

2 ⊂ Rn2 open (since U1 ∩ U2 ⊂ M open). It follows from the theorem
of invariance of domain, that n1 = n2.

Definition 1.2 (Chart, coordinates and atlas). LetM be an n-dimensional topological
manifold.

1. A chart (U, h,Ω) consists of

• an open subset U ⊂M (chart domain),

• a homeomorphism h : U → Ω (chart map), and

• an open subset Ω ⊂ Rn (chart image).

2. Given a chart (U, h,Ω), the coordinates of x ∈ U with respect to h are h(x) =
(h1(x), . . . , hn(x)) ∈ Rn.

3. If {Ui | i ∈ I} covers M , then an atlas is a system A = {(Ui, hi,Ωi) | i ∈ I} of charts.

4. A chart transition is a map hji = hj ◦ h−1
i : hi(Ui ∩ Uj) → hj(Ui ∩ Uj) (see Figure 1).

An atlas is smooth, when all chart transitions are smooth (as maps between subsets of
Rn).

5. Two smooth atlases A1, A2 are smoothly equivalent, if A1 ∪ A2 is a smooth atlas. A
smooth structure on M is an equivalence class A of smooth atlases.
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Figure 1: Two charts (U, φ, ϕ(U)) and (V, ψ, ψ(V )) on M , and a chart transition ψ ◦
φ−1 : φ(U ∩ V ) → ψ(U ∩ V ).

6. A maximal atlas Amax is a representative of the equivalence class A, such that if a
smooth atlas A ∈ A, then A ⊂ Amax. In other words, the maximal atlas is the
maximal element with respect to ⊂.

Definition 1.3 (Smooth manifold). A smooth manifold is a pair (M,A), where M is a
topological manifold and A is a maximal atlas on M .
It suffices to give a representative of the smooth structure – the maximal atlas would be
then automatically defined.

Example 1.4. Every open subset U ⊂ Rn has a canonical structure of a smooth
n-dimensional manifold, which is given by the atlas with one chart – (U, id, U). Note that
the corresponding maximal atlas contains the restriction id|V on every open subset V ⊂ U ,
and also t ◦ id|V : V → Rn, where t : V → Rn represents a translation of V .

Example 1.5 (n-dim sphere Sn). Sn is an n-dimensional smooth manifold:
Let D̊n be the open ball of radius 1 in Rn centered at 0. We define the sets U+

i = {x ∈ Sn |
xi > 0}, U−

i = {x ∈ Sn | xi < 0} and the maps h±i : U
±
i → D̊n, x 7→ (x1, . . . , x̂i, . . . , xn+1),

where x̂i denotes the omitting of xi. We have
(h±i )

−1(u) = (u1, . . . , ui−1,±
√

1− ∥u∥2, ui, . . . , un), which means (U±
i , h

±
i , D̊

n) are charts

(see Figure 2). (Note that all charts have the same chart image D̊n.) The chart transitions
are smooth and thus define a smooth structure on Sn.

Example 1.6 (Projective space RPn). RPn is an n-dimensional smooth manifold:
Let π : Sn → RPn be the canonical projection. Using the notations in Example 1.5, π(U+

i ) =
π(U−

i ). We define Ui = π(U±
i ) ⊂ RPn and see that π : U+

i → Ui is a homeomorphism (see
Figure 3). The maps hi = h+i ◦ π−1 : Ui → D̊n form a smooth atlas on RPn.
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Figure 2: The charts (U±
i , h

±
i , D̊

n) on Sn in Example 1.5 with n = 1.
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Figure 3: Example 1.6 with n = 1. The chart domains Ui ⊂ RPn

are defined by the canonical projection π by grouping every pair of antipodal points in U+
i

and U−
i together into one element.
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Example 1.7 (2-dim sphere S2). Consider another atlas on S2:
Denote the north pole with N2 = (0, 0, 1) and the south pole with S2 = (0, 0,−1). The
”stereographic projection from a pole to a plane z = z0” maps a point on the sphere to the
z = z0 intersection of the line that passes through the pole and the point itself. Let ϕ2 : S2−
N2 → R2, (x, y, z) 7→ (2x/(1 − z), 2y/(1 − z)) be the composition of first stereographically
projecting from N2 to the plane z = −1, and then translating to the plane z = 0 (see Figure
4). Similarly, let ψ2 : S2 − S2 → R2, (x, y, z) 7→ (2x/(z + 1), 2y/(z + 1)) be the composition
of first stereographically projecting from S2 to the plane z = 1, and then translating to the
plane z = 0. It is clear that (S2 −N2, ϕ2,R2), (S2 − S2, ψ2,R2) are charts on S2. Moreover,
we have

ϕ−1
2 (u, v) = (

4u

u2 + v2 + 4
,

4v

u2 + v2 + 4
, 1− 8

u2 + v2 + 4
),

ψ−1
2 (u, v) = (

4u

u2 + v2 + 4
,

4v

u2 + v2 + 4
,

8

u2 + v2 + 4
− 1).

Hence the chart transition ψ2 ◦ ϕ−1
2 : R2 − {0} → R2 − {0} is given by v 7→ 4v/∥v∥2, which

is smooth on R2 − {0}. Therefore, this defines a smooth structure on S2.

Figure 4: The stereographic projection of S2 from the north pole N2 to the plane z = −1.

Remark . The smooth structures constructed in Example 1.5 and 1.7 are the same:
Using the above notations, we have U+

1 ∩ (S2 − N2) = U+
1 . Consider the chart transition

ϕ2 ◦ (h+1 )−1 : D̊2 → {v ∈ R2 | v1 > 0}, (u1, u2) 7→ (2
√
1− ∥u∥2/(1− u2), 2u1/(1− u2)), which

is smooth. Analogously, all such chart transitions are smooth and thus the two atlases belong
to the same equivalence class.

Example 1.8 (Torus T ). T is a 2-dimensional smooth manifold:
The torus T is defined as the quotient space R2/Z2. Let π : R2 → T be the canonical
projection, 0 < ϵ < 1/4. Consider the open subsets Ω1 = (ϵ, 1 − ϵ) × (ϵ, 1 − ϵ),Ω2 =
(ϵ.1 − ϵ) × (−2ϵ, 2ϵ),Ω3 = (−2ϵ, 2ϵ) × (ϵ, 1 − ϵ) and Ω4 = (−2ϵ, 2ϵ) × (−2ϵ, 2ϵ) in R2. We
define Ui = π(Ωi) ⊂ T for i = 1, 2, 3, 4 and see that π : Ωi → Ui is a homeomorphism (see
Figure 5). The maps hi = π−1 : Ui → Ωi form a smooth atlas on T .
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Figure 5: The quotient space T = R2/Z2. The 4 chart domains Ui ⊂ T are shown in different
colours.

Remark . An atlas on a compact manifold has at least 2 charts:
Assume there is an atlas with just one chart (U, h,Ω), where Ω ⊂ Rn open. Then U has
to be the entire compact space. Since h is a homeomorphism, Ω = h(U) must be compact,
and using the theorem of Heine-Borel, Ω must be closed and bounded. Rn is connected,
so the only non-empty open and closed subset is Rn itself, which is unbounded. This is a
contradition to Ω being bounded.

Example 1.9. The restriction of a smooth manifold on an open subset is a smooth manifold:
Let (M,A) be a smooth manifold and V ⊂ M open. Then a smooth atlas on V is AV =
{(U ∩V, h|U∩V , h(U ∩V )) | (U, h,Ω) ∈ A}. (The smoothness of chart transitions is preserved
under the restriction.) The dimension remains unchanged.

Definition 1.10 (Smooth maps between smooth manifolds). Let M,M ′ be smooth
manifolds and f : M → M ′ be a continuous map. f is smooth at x ∈ M , if there exist
charts (U, h,Ω) on M and (U ′, h′,Ω′) on M ′ with x ∈ U , f(x) ∈ U ′ such that h′ ◦ f ◦
h−1 : h(f−1(U ′)) → Ω′ is smooth in a neighbourhood of h(x).
f is smooth, when f is smooth at all points of M .

Remark . The definition is independent of choice of charts, since chart transitions are
smooth for smooth manifolds. A composition of two smooth maps is smooth. Hence the
condition in the definition would be fulfilled for all charts (with suitable domains), given the
existence of h and h′.

Example 1.11. Let f : S1 → S2 be the map, which maps (x, y) ∈ S1 to the equator
(x, y, 0) ∈ S2. This is a smooth map:
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Similar to Example 1.7, we define a smooth atlas on S1 with the help of stereographic projec-
tion. Denote the north pole of S1 with N1 = (0, 1) and the south pole of S1 with S1 = (0,−1).
Let ϕ1 : S1 −N1 → R, (x, y) 7→ 2x/(1− y) be the composition of first stereographically pro-
jecting from N1 to the line y = −1, and then translating to the line y = 0. Similarly, let
ψ1 : S1−S1 → R, (x, y) 7→ 2x/(y+1) be the composition of first stereographically projecting
from S1 to the line y = 1, and then translating to the line y = 0. The inverses are given by

ϕ−1
1 (u) = (

4u2

u2 + 4
, 1− 8u

u2 + 4
), ψ−1

1 (u) = (
4u2

u2 + 4
,

8u

u2 + 4
− 1).

Hence (S1 −N1, ϕ1,R) and (S1 − S1, ψ1,R) form a smooth atlas on S1. The composition

ϕ2 ◦ f ◦ ϕ−1
1 : R → R2, u 7→ (

8u2

u2 + 4
, 2− 16u

u2 + 4
)

is smooth, which means f is smooth in S1 − N1. The same can be done for the north pole
N1, if we replace ϕ1 with ψ1.
Analogously, the map g : S1 → S2, which maps S1 to any great circle on S2, is also smooth:
We can write g = R ◦ f , where R : S2 → S2 is a proper rotation around an axis. Using the
corresponding matrix representation, one sees that R is a smooth map between manifolds,
and thus g is smooth. We look at the example g(x, y) = (0, x, y) (the great circle passes
through both poles). The rotation R in this case is a rotation of 90˚about the y -axis,
followed by a rotation of 90˚about the x-axis. It is given by the matrix

R =

1 0 0
0 0 −1
0 1 0

 0 0 1
0 1 0
−1 0 0

 =

0 0 1
1 0 0
0 1 0

 .

The composition

ϕ2 ◦R ◦ ϕ−1
2 : R2 − {(0, 2)} → R2, (u, v) 7→ (

2u2 + 2v2 − 8

u2 + v2 − 4v + 4
,

8u

u2 + v2 − 4v + 4
)

is a smooth map. Therefore, R is smooth.

Definition 1.12 (Diffeomorphism). A diffeomorphism is a smooth map f : M → M ′

between smooth manifolds that has a smooth inverse. M is then diffeomorphic to M ′.
A diffeomorphism is in particular a homeomorphism.

Example 1.13. The smooth map f : R → R, x 7→ x3 is a homeomorphism but not a
diffeomorphism, since the inverse is continuous but not smooth.

Lemma 1.14. Suppose we have chosen a smooth atlas A on a manifold M . The maximal
atlas Amax is equal to {(U, f,Ω) | U ⊂M open, Ω ⊂ Rn open, f : U → Ω diffeomorphism}.

Proof. ”⊂”: Let (U, h,Ω) ∈ Amax be a chart. We use the canonical smooth structure on
Ω ⊂ Rn given by the atlas {(Ω, id,Ω)}. Then h is a smooth map between smooth manifolds,
since id ◦ h ◦ h−1 = id : Ω → Ω is smooth. Its inverse h−1 : Ω → U is also smooth, shown by
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the smooth composition h ◦ h−1 ◦ id−1 = id : Ω → Ω. Thus h is a diffeomorphism.
”⊃”: Let f : U → Ω be a diffeomorphism, where U ⊂M open, Ω ⊂ Rn open. It is clear that
(U, f,Ω) is a chart. For all charts (U0, ho,Ω0) ∈ Amax, the compositions id ◦ f ◦ h−1

0 : h0(U ∩
U0) → f(U ∩ U0) and h0 ◦ f−1 ◦ id−1 : f(U ∩ U0) → h0(U ∩ U0) are smooth by definition.
This means all chart transitions related to f are smooth. Therefore, (U, f,Ω) is an element
of Amax.

Remark . The lemma shows that a smooth manifold is locally diffeomorphic to an open
subset of Rn. The inverse diffeomorphisms f−1 : Ω → U are called local parametrizations.

Definition 1.15 (Product structure). Let M and M ′ be smooth manifolds with maxi-
mal atlases AM and AM ′ . We define an atlas on M ×M ′:
AM×M ′ = {(U × U ′, h× h′,Ω× Ω′) | (U, h,Ω) ∈ AM , (U

′, h′,Ω′) ∈ AM ′}. AM×M ′ is smooth
and defines the so-called product structure on M ×M ′.
The projections M ×M ′ →M and M ×M ′ →M ′ are smooth.

2 Submanifolds and Embedding

Definition 2.1 (Topological submanifold). Let M be an n-dimensional topological
manifold.

1. A subspace N ⊂ M is a topological submanifold, if for every x ∈ N there exists a
chart (U, h,Ω) on M with x ∈ U , such that h(U ∩N) = Ω∩ (Rk ×{0}) (see Figure 6).
The dimension of N is k. The number n− k is called the codimension of N in M .

Figure 6: Let S ⊂ M be the submanifold. For p ∈ S, the chart (U, ϕ, V ) maps U ∩ S to
V ∩ (Rk × {0}), which is the flat red surface marked in the figure.

2. If (M,A) is a smooth manifold and every chart (U, h,Ω) used is contained in the
maximal atlas A, then N is a smooth submanifold of M .
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A smooth submanifold is in particular a smooth manifold, with a smooth atlas AN = {(U ∩
N, h|U∩N ,Ω ∩ (Rk × {0})) | (U, h,Ω) ∈ A, x ∈ U}.

Example 2.2 (n-dim sphere Sn). Sn is an n-dimensional smooth submanifold of Rn+1:
We define the sets V +

i = {x ∈ Rn+1 | xi > 0}, V −
i = {x ∈ Rn+1 | xi < 0} and the maps

h±i : V
±
i → h±i (V

±
i ) ⊂ Rn+1, x 7→ (x1, . . . , x̂i, . . . , xn+1, ∥x∥2 − 1), where x̂i denotes the

omitting of xi. Let Ω
±
i = h±i (V

±
i ). For u ∈ Ω±

i , we have (h
±
i )

−1(u) = (u1, . . . , ui−1,±(un+1+
1 −

∑n
j=1 u

2
j)

1/2, ui, . . . , un), which means (V ±
i , h

±
i ,Ω

±
i ) are charts on Rn+1. Consider the

atlas A = {(D̊n+1, id, D̊n+1), (V ±
i , h

±
i ,Ω

±
i ) | i = 1, 2, . . . , n + 1}. The chart transitions are

smooth and thus define a smooth structure on Rn+1.
Note that the charts (V ±

i , h
±
i ,Ω

±
i ) are essentially extensions of the charts (U±

i , h
±
i , D̊

n) onto
V ±
i (see Example 1.5). Since V ±

i ∩ Sn = U±
i , we have h

±
i (V

±
i ∩ Sn) = h±i (U

±
i ) = D̊n ×{0} =

Ω±
i ∩ (Rn × {0}). The sets V ±

i cover Sn.

Definition 2.3 (Embedding). An embedding is a smooth map f : N → M between
smooth manifolds, such that f(N) ⊂ M is a smooth submanifold and f : N → f(N) is
a diffeomorphism. f(N) is then an embedded submanifold of M .

Example 2.4 (Graph of function). Let U ⊂ Rm be an open subset and f : U → Rn be a
smooth map. Its graph Graph(f) = {(x, f(x)) | x ∈ U} is a smoothm-dimensional submani-
fold of the smooth (m+n)-dimensional manifold U×Rn. The desired chart as in Definition 2.1
is h : U ×Rn → U ×Rn ⊂ Rm+n, (x, y) 7→ (x, y− f(x)), satisfying h(Graph(f)) = (U ×{0}).
An embedding is the map i : U → U × Rn, x 7→ (x, f(x)).

Theorem 2.5 (Smooth partition of unity). Let U ⊂ Rn be open and V = (Vi)i∈I a
cover of U by open sets Vi. Then there exist smooth functions ϕi : U → [0, 1], satisfying

1. supp(ϕi) ⊂ Vi for all i ∈ I

2. Every point in U has a neighbourhood on which only finitely many ϕi do not vanish.

3. For every x ∈ U :
∑

i∈I ϕi(x) = 1

Proof. Proved in Analysis 3.

Lemma 2.6. Let A ⊂ Rn be closed and U ⊂ Rn open with A ⊂ U . Then there exists a
smooth function ψ : Rn → [0, 1] with supp(ψ) ⊂ U and ψ(x) = 1 for all x ∈ A.

Proof. Apply Theorem 2.5 to the cover of Rn consisting of the open sets V1 = U, V2 = Rn−A.
Then ψ = ϕ1 has the desired properties.

Lemma 2.7. Let M be an n-dimensional smooth manifold. For x ∈M there exist smooth
maps ϕx : M → R and fx : M → Rn, such that ϕx(x) > 0 and fx maps the open set
M − ϕ−1

x (0) diffeomorphically onto an open subset of Rn.
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Proof. Choose a chart (V, h,Ω) with x ∈ V . Using Lemma 2.6, we have a function ψ ∈
C∞(Rn,R) with supp(ψ) ⊂ Ω, such that ψ is equal to 1 on a neighbourhood Ω0 ⊂ Ω of h(x).
We define

fx(y) =

{
ψ(h(y))h(y) if y ∈ V ,

0 otherwise.

Set V0 = h−1(Ω0). Since fx|V0 = h|V0 , fx maps V0 diffeomorphically onto Ω0. We choose
ψ0 ∈ C∞(Rn,R) with supp(ψ0) ⊂ Ω0 and ψ0(h(x)) > 0, and define

ϕx(y) =

{
ψ0(h(y)) if y ∈ V ,

0 otherwise.

It is clear that ϕx(x) > 0. Since M − ϕ−1
x (0) ⊂ V0, fx also fulfils the last requirement.

Theorem 2.8 (Whitney Embedding Theorem). Let M be a smooth n-dimensional
manifold. Then there exists an embedding of M into Rn+k. In other words, every smooth
manifold is diffeomorphic to an embedded manifold.

Proof. (for M compact.)
For every x ∈ M we have ϕx and fx as in Lemma 2.7. By compactness M can be covered
by a finite number of the sets M − ϕ−1

x (0). After a change of notation, we receive smooth
functions ϕi : M → R, fi : M → Rn (i = 1, 2, . . . , d) which fulfil

i. The open sets Ui =M − ϕ−1
i (0) cover M .

ii. fi|Ui
maps Ui diffeomorphically onto an open set Ωi ⊂ Rn.

We define a smooth map f : M → Rnd+d, f(y) = (f1(y), . . . , fd(y), ϕ1(y), . . . , ϕd(y)). We
check that f is injective and since M is compact, f is a homeomorphism from M to f(M).
We prove that f is the desired embedding:

1. Prove that for every x ∈ f(M) there exists a chart (V, h,Π) on Rnd+d with x ∈ V , such
that h(V ∩ f(M)) = Π ∩ (Rk × {0}).
Denote with π1 : Rnd+d → Rn, π2 : Rnd+d → Rn(d−1)+d the projections on the first
n coordinates and the last n(d − 1) + d coordinates respectively. By (ii), π1 ◦ f =
f1 is a diffeomorphism from U1 to Ω1, which means π1 maps f(U1) bijectively onto
Ω1. Consider now the smooth map g1 = π2 ◦ f ◦ f1|−1

U1
: Ω1 → Rn(d−1)+d. We have

Graph(g1) = f(U1). Similar to Example 2.4, we define a diffeomorphism h1 : Ω1 ×
Rn(d−1)+d → Ω1 × Rn(d−1)+d, (u, v) 7→ (u, v − g1(u)). We see that h1 maps f(U1)
bijectively onto Ω1 × {0}. Let V1 ⊂ Ω1 ×Rn(d−1)+d be the open set in Rnd+d satisfying
f(U1) = f(M) ∩ V1. The restriction h1|V1 is a diffeomorphism from V1 onto an open
set Π1 ⊂ Ω1 ×Rn(d−1)+d, and maps f(M)∩ V1 bijectively onto Π1 ∩ (Rn ×{0}). Hence
(V1, h1|V1 ,Π1) is the desired chart on Rnd+d.
The remaining f(Ui) are treated analogously. Note that (f(Ui))1≤i≤d is a cover of f(M)
by open sets, since f : M → f(M) is a homeomorphism.
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2. Prove that f : M → f(M) is a diffeomorphism.
We know that f |U1 = π1|−1

f(U1)
◦ f1|U1 : U1 → f(U1) is a diffeomorphism. The same

statement is also true for the other Ui. Therefore, f is a diffeomorphism.

Theorem 2.9. Every compact topological n-dimensional manifold is homeomorphic to a
topological submanifold of Rn+k.

Proof. Use the above proof, replacing ”smooth manifold” with ”topological manifold”,
”smooth map” with ”continuous map” and ”diffeomorphism” with ”homeomorphism”.

3 Tangent Space

Definition 3.1 (Tangent space). Let (M,A) be an n-dimensional smooth manifold and
x ∈M .

1. Let I1, I2 be two open intervals around 0 and γ1 : I1 →M,γ2 : I2 →M be two smooth
paths with γ1(0) = γ2(0) = x. Let (U, h,Ω) ∈ A be a chart with x ∈ U . Then γ1 and
γ2 are equivalent, if (h ◦ γ1)′(0) = (h ◦ γ2)′(0).

2. A tangent vector of M at x is an equivalence class [γ]x. The tangent space of M at x
is the set TxM = {[γ]x | γ : I →M smooth, γ(0) = x}.

Remark . The definition is independent of choice of charts:
Let (U1, h1,Ω1), (U2, h2,Ω2) ∈ A be two charts with x ∈ U1 ∩ U2. Suppose (h1 ◦ γ1)′(0) =
(h1 ◦ γ2)′(0). The chart transition h2 ◦ h−1

1 : h1(U1 ∩ U2) → h2(U1 ∩ U2) is a smooth map
between open subsets of Rn. Denote with Jh1(x)(h2 ◦ h−1

1 ) its Jacobian matrix evaluated at
h1(x). Using the chain rule, we have (h2 ◦h−1

1 ◦h1 ◦ γ1)′(0) = Jh1(x)(h2 ◦h−1
1 ) · (h1 ◦ γ1)′(0) =

Jh1(x)(h2 ◦ h−1
1 ) · (h1 ◦ γ2)′(0) = (h2 ◦ h−1

1 ◦ h1 ◦ γ2)′(0), and thus (h2 ◦ γ1)′(0) = (h2 ◦ γ2)′(0).
The other direction follows similarly with the chart transition h1 ◦ h−1

2 .

Example 3.2 (U ⊂ Rn open). One identifies TxU with Rn:
We use the canonical structure on U given by the chart (U, id, U). The equivalence relation
is then γ1 ∼ γ2 ⇔ γ′1(0) = γ′2(0). The map TxU → Rn, [γ]x 7→ γ′(0) is defined to be injective.
It is also surjective, since for v ∈ Rn we can define the smooth path γ(t) = x+ tv. Hence it
is a bijection between TxU and Rn. By abuse of notation, we often regard TxU = Rn.

Definition 3.3 (Addition and scalar multiplication). Let TxM be the tangent space
of (M,A) at x. Let (U, h,Ω) ∈ A be a chart with x ∈ U .

1. We define the addition +: TxM×TxM → TxM as [γ1]x+[γ2]x = [h−1◦ 1
2
(h◦α1+h◦α2)]x,

where α1(t) = γ1(2t), α2(t) = γ2(2t).

2. We define the scalar multiplication · : R × TxM → TxM as λ · [γ]x = [γλ]x, where
γλ(t) = γ(λt).

10



The two operations are well-defined and define a real vector space structure on TxM .

Lemma 3.4. Using the same chart as in Definition 3.3, the map Φh : TxM → Rn, [γ]x 7→
(h ◦ γ)′(0) is a linear isomorphism.

Proof. Bijectivity: Φh is injective by the definition of the equivalence relation. For sur-
jectivity, let v ∈ Rn. We define the smooth path γ(t) = h−1(h(x) + tv). Then we have
Φh([γ]x) = v.
Linearity: For addition, we have Φh([γ1]x + [γ2]x) = Φh([h

−1 ◦ 1
2
(h ◦ α1 + h ◦ α2)]x) =

1
2
(h◦α1)

′(0)+ 1
2
(h◦α2)

′(0) = (h◦γ1)′(0)+(h◦γ2)′(0) = Φh([γ1]x)+Φh([γ2]x). For scalar mul-
tiplication, we use the chain rule to get Φh(λ · [γ]x) = Φh([γλ]x) = (h◦γλ)′(0) = λ(h◦γ)′(0) =
λΦh([γ]x).

Remark . From Lemma 3.4, we see that the linear structure defined on TxM does not
depend on choice of charts:
Let (U1, h1,Ω1), (U2, h2,Ω2) be two suitable charts. Consider the following commutative
diagram

TxM Rn

Rn

Φh1

Φh2

F

where F is the isomorphism defined by the Jacobian matrix Jh1(x)(h2 ◦ h−1
1 ). Let Vx,Wx ∈

TxM be two tangent vectors of M at x. Using Definition 3.3 with the chart map h1, we have
Vx +Wx = Φ−1

h1
(v1 + w1) for some v1, w1 ∈ Rn. For v2 = F (v1), w2 = F (w1) we then have

Vx +Wx = Φ−1
h2
(v2 + w2), which is independent from the chart map h1. Thus the addition

on TxM is well-defined.

Corollary 3.5. Given a chart (U, h,Ω) in the maximal atlas with x ∈ U , we write
( ∂
∂yi

)(x,h) = Φ−1
h (ei), where ei = (0, . . . , 1, . . . , 0) ∈ Rn is the i-th standard basis vector. The

system ( ∂
∂y1

)(x,h), . . . , (
∂

∂yn
)(x,h) forms a basis for TxM .

Proof. This follows directly from Lemma 3.4.

Example 3.6. Let [γ]x ∈ TxM be the tangent vector given by the smooth path γ : I → U
with γ(0) = x. Let (a1, . . . , an) = (h◦γ)′(0) ∈ Rn. Since Φh([γ]x) = (h◦γ)′(0) =

∑n
i=1 ai ·ei,

we can apply the linear map Φ−1
h on both sides and receive [γ]x =

∑n
i=1 ai(

∂
∂yi

)(x,h).

Definition 3.7 (Differential of smooth map at a point). Let f : M →M ′ be a
smooth map between smooth manifolds and x ∈ M . The differential of f at x is the map
Dxf : TxM → Tf(x)M

′, [γ]x 7→ [f ◦ γ]f(x).

Lemma 3.8. Let f : M → M ′, g : M ′ → M ′′ be smooth maps between smooth manifolds
and x ∈M .

1. The differential Dxf of f at x is well-defined and linear.
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2. For the composition g ◦ f the chain rule is fulfilled, i.e. Dx(g ◦ f) = Df(x)g ◦Dxf .

3. We have DxidM = idTxM .

4. For a constant map const : M → M ′, we have Dxconst([γ]x) = [0]const(x), where
[0]const(x) denotes the neutral element of Tconst(x)M

′ with respect to addition.

5. Let (U, h,Ω) be a chart around x in M . Then Dxh : TxU → Th(x)Ω is an isomorphism
and its inverse is given by (Dxh)

−1 = Dh(x)h
−1.

Proof. (1): Let (U, h,Ω) be a chart around x in M and (U ′, h′,Ω′) be a chart around f(x)
in M ′. Consider the following commutative diagram

TxM Tf(x)M
′

Rm Rn

Dxf

Φh Φh′

F

where F is the linear map defined by the Jacobian matrix Jh(x)(h
′ ◦ f ◦ h−1). Since Φh and

Φh′ are linear isomorphisms, there exists a linear map TxM → Tf(x)M
′ so that the diagram

is commutative. The exact formula in Definition 3.7 is given by the composition Φ−1
h′ ◦F ◦Φh.

(2), (3): Follows directly from Definition 3.7.
(4): The equivalence class [const ◦ γ]const(x) is represented by the smooth path α : I → M ′,
t 7→ const(x). Using the linear map Φ−1

h′ for a suitable chart (U ′, h′,Ω′), we have [α]const(x) =
Φ−1

h′ ((h′ ◦ α)′(0)) = Φ−1
h′ (0).

(5): Let the dimension ofM be n. By Example 1.9, U and Ω are both n-dimensional smooth
manifolds and thus TxU and Th(x)Ω have the same dimension as vector spaces. We show
that Dxh is injective through the following commutative diagram:

TxU Th(x)Ω

Rn

Dxh

Φh
d

Φh is bijective by Lemma 3.4 and d is the bijection given in Example 3.2. Thus Dxh must
be injective, and hence bijective. The formula for the inverse can be deduced using (2) and
(3) with f = h, g = h−1.

Example 3.9. Let N ⊂ Rn be a smooth k-dimensional submanifold and (U, h,Ω) be a
chart in Rn as in Definition 2.1. Then (U ′, h′,Ω′) := (U ∩ N, h|U∩N ,Ω ∩ (Rk × {0})) is a
chart in N . Let i : N → Rn be the inclusion map and x ∈ U ′. Since i = h−1 ◦ j ◦ h′, where
j : Rk → Rn, (v1, . . . , vk) 7→ (v1, . . . , vk, 0, . . . , 0), the rank of Dxi is determined by the rank
of Jh′(x)j, which is k. Hence Dxi : TxN → TxRn ∼= Rn is injective.
One usually identifies TxN with Dxi(TxN) ⊂ Rn, which is the set of vectors {γ′(0) | γ : I →
N ∈ Rn smooth, γ(0) = x} (see Example 3.2).
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Lemma 3.10. Let f : M → M ′ be a smooth map between smooth manifolds and x ∈ M .
Let (U, h,Ω) ∈ AM be a chart with x ∈ U and (U ′, h′,Ω′) ∈ AM ′ be a chart with f(x) ∈ U ′.
Let {( ∂

∂yi
)(x,h) | i = 1, 2, . . . , n} be a basis of TxM and {( ∂

∂zi
)(f(x),h′) | i = 1, 2, . . . , n′} be a

basis of Tx′M ′. The matrix representation of the differential Dxf of f at x is the Jacobian
matrix Jh(x)(h

′ ◦ f ◦ h−1).

Proof. This follows directly from the first commutative diagram in Lemma 3.8 and the
definition of the bases.

Remark . In particular, if M = M ′ and f = idM , we have the matrix Jh(x)(h
′ ◦ h−1),

i.e. ( ∂
∂yi

)(x,h) =
∑n

j=1 ∂jϕi(h(x)) · ( ∂
∂zj

)(x,h′), where ϕ = h′ ◦ h−1 denotes the smooth chart

transition which expresses zj-coordinates in terms of yi-coordinates.

Lemma 3.11. There is a natural isomorphism T(x0,x′
0)
(M ×M ′) ∼= Tx0M × Tx′

0
M ′.

Proof. Denote the projections with π : M × M ′ → M and π′ : M × M ′ → M ′, and let
i : M →M×M ′, x 7→ (x, x′0) and i

′ : M ′ →M×M ′, x′ 7→ (x0, x
′) be the inclusions. Consider

the map f = D(x0,x′
0)
π×D(x0,x′

0)
π′ : T(x0,x′

0)
(M ×M ′) → Tx0M × Tx′

0
M ′, which is linear since

D(x0,x′
0)
π and D(x0,x′

0)
π′ are linear. Further we consider g : Tx0M×Tx′

0
M ′ → T(x0,x′

0)
(M×M ′),

(Vx0 , Vx′
0
) 7→ Dx0i(Vx0) +Dx′

0
i′(Vx′

0
). Then by Lemma 3.8, we have

(f ◦ g)(Vx0 , Vx′
0
) = f(Dx0i(Vx0) +Dx′

0
i′(Vx′

0
))

= (D(x0,x′
0)
π(Dx0i(Vx0) +Dx′

0
i′(Vx′

0
)), D(x0,x′

0)
π′(Dx0i(Vx0) +Dx′

0
i′(Vx′

0
)))

= (Dx0(π ◦ i)(Vx0) +Dx′
0
(π ◦ i′)(Vx′

0
), Dx0(π

′ ◦ i)(Vx0) +Dx′
0
(π′ ◦ i′)(Vx′

0
))

= (Dx0idM(Vx0) +Dx′
0
const(Vx′

0
), Dx0const(Vx0) +Dx′

0
idM ′(Vx′

0
)) = (Vx0 , Vx′

0
).

Since f has a right inverse, f is surjective. Thus f is a linear isomorphism, since the
dimensions of both vector spaces are equal.

Definition 3.12 (Directional derivative). Let f ∈ C∞(M,R) be a smooth function and
Dxf : TxM → Tf(x)R ∼= R be the differential of f at x ∈M . For a tangent vector Vx = [γ]x ∈
TxM , the directional derivative is Vx(f) = Dxf(Vx) ∈ R. In other words, Vx(f) = (f ◦γ)′(0).

4 Vector Bundles

Definition 4.1 (Vector bundle). An n-dimensional vector bundle ξ over a topological
space B (base space) consists of:

1. a topological space E (total space)

2. a continuous map p : E → B (projection, the preimage Fb = p−1(b) is called fiber of
b ∈ B)
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3. For every point b ∈ B there exist a neighbourhood U of b and a homeomorphism
H : p−1(U) → U ×Rn (bundle chart map), such that the following diagram is commu-
tative

p−1(U) U × Rn

U

H

p
prU

and the following condition is fulfilled:
Let U1, U2 be two neighbourhoods with U1 ∩ U2 ̸= ∅ and H1 : p

−1(U1) → U1 ×
Rn, H2 : p

−1(U2) → U2 × Rn be the corresponding homeomorphisms. We consider
the restrictions H1|p−1(U1∩U2), H2|p−1(U1∩U2) : p

−1(U1 ∩ U2) → (U1 ∩ U2) × Rn. Let
H21 = H2 ◦ H−1

1 : (U1 ∩ U2) × Rn → (U1 ∩ U2) × Rn be the ”bundle chart transi-
tion”. Since the diagram above is commutative, we have H21(x, v) = (x, H̃21(x, v)) for
some map H̃21(x, ) : Rn → Rn.
For every x ∈ U1 ∩ U2, we require H̃21(x, ) to be linear, i.e. H̃21(x, ) ∈ GLn(R).

A bundle chart is a pair (U,H), where U ⊂ B and the homeomorphism H : p−1(U) → U×Rn

are defined as above. If B =
⋃

i∈I Ui, then a bundle atlas is a set A = {(Ui, Hi) | i ∈ I}
of bundle charts. For two charts (U1, H1) and (U2, H2) with U1 ∩ U2 ̸= ∅, we define the
so-called transition function u21 : U1 ∩ U2 → GLn(R), x 7→ H̃21(x, ), which is automatically
continuous.

Remark . Since the diagram above is commutative, the fiber Fb is automatically homeo-
morphic to {b} × Rn through the homeomorphism H|Fb

.

Example 4.2 (Trivial vector bundle). The trivial vector bundle over a topological space
B is given by the projection p : B × Rn → B. A bundle atlas is then A = {(U, id) | U ⊂ B
open}.

Example 4.3. The restriction of a vector bundle is a vector bundle:
Let ξ be the vector bundle given by p : E → B and A ⊂ B be a subspace. Then the restriction
ξA of ξ on A is the vector bundle given by p|p−1(A) : p

−1(A) → A. If A = {(Ui, Hi) | i ∈ I} is a
bundle atlas for B, then a bundle atlas for A is AA = {(Ui ∩A,Hi|p−1(Ui∩A)) | (Ui, Hi) ∈ A}.
(The linearity of the homeomorphisms H̃21 is preserved under the restriction.)

Definition 4.4 (Smooth vector bundle). Let ξ be a vector bundle over a smooth man-
ifold M given by p : E →M .

1. A bundle atlasA is smooth, if all the transition functions uji are smooth maps (between
smooth manifolds).

2. We define the term ”maximal bundle atlas” similarly as in Definition 1.2. A smooth
vector bundle is then a pair (ξ,A), where A is a maximal bundle atlas.

Example 4.5 (Möbius bundle). The Möbius bundle is an example of a non-trivial vector
bundle:
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Consider the projective space RP1 as the set of 1-dimensional subspaces L ⊂ R2. Define
the total space E = {(L, v) | L ∈ RP1, v ∈ L} ⊂ RP1 × R2 with the subspace topology.
Let p : E → RP1, (L, v) 7→ L be the projection. This defines a 1-dimensional smooth vector
bundle τ1 on RP1. (A smooth bundle atlas is A = {(U, id) | U ⊂ RP1 open}.)
Non-trivial: We define the zero-section of a vector bundle as the map ζ : B → E, b 7→ (b, 0).
For the trivial vector bundle given by pr : RP1 × R → RP1, we have (RP1 × R)− ζ(RP1) =
RP1 × (R − 0), which is not connected. On the other hand for p : E → RP1 defined above,
let (L1, v1), (L2, v2) ∈ E − ζ(RP1), i.e. v1 ̸= 0 ̸= v2. Denote with π : S1 → RP1 the canonical
projection. Without restriction of generality, let ∥v1∥ = ∥v2∥ = 1. Then there is a path
w : [0, 1] → π(S1) × S1 from (L1, v1) to (L2, v2), which means E − ζ(RP1) is connected (see
Figure 7).

Figure 7: On the left is the trivial vector bundle, and on the right the Möbius bundle. The
images of the zero-section Im(ζ) are marked with blue. We can see that for the trivial
vector bundle, the complement of Im(ζ) is not connected. On the contrary, the complement
of Im(ζ) is connected for the Möbius bundle.

Definition 4.6 (Map between vector bundles). Let ξ, ξ′ be two vector bundles given
by p : E → B and p′ : E ′ → B′ respectively.

1. A map between vector bundles (θ, β) : ξ → ξ′ is a pair of maps θ : E → E ′ and
β : B → B′, such that p′ ◦θ = β ◦p and for every b ∈ B the induced map θb : Fb → F ′

β(b)

is linear.

2. If additionally B = B′ and β = idB, then θ is called a bundle map over B.

Lemma 4.7. Given a set E, a topological space B, a surjective map p : E → B and a set
A = {Hi : p

−1(Ui) → Ui × Rn | Ui ⊂ B open, B =
⋃

i∈I Ui, p|p−1(Ui) = prUi
◦ Hi} of maps,

such that the transition functions uji are continuous.
Then there exists exactly one topology on E such that p : E → B defines an n-dimensional
vector bundle, where A is a bundle atlas.

Proof. For a given map H : p−1(U) → U×Rn, let e ∈ p−1(U). Since B is a topological space,
the topology on U × Rn is defined. For the point H(e) ∈ U × Rn, we find a neighbourhood
base {Vj} at H(e). To make H a homeomorphism, the preimages {H−1(Vj)} must form a
neighbourhood base of e in p−1(U). We define a ”neighbourhood” of e as a superset of an
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element in {H−1(Vj)}. Note that this definition is independent of choice of H, since the
”bundle chart transitions” Hji = Hj ◦ H−1

i need to be homeomorphisms. We do the same
for all e ∈ p−1(U) and then for all H ∈ A. Since a subset is open if and only if it is a
neighbourhood of every element in itself, this defines (the only possible) topology on E.

Remark . A subbasis of the topology on E is given by S = {H−1
i (Vi) | i ∈ I,Hi ∈ A, Vi ⊂

Ui × Rn open}.

Corollary 4.8. We use the assumptions in Lemma 4.7 with the exceptions, that B = M
is a smooth manifold and the transition functions uji are smooth. Then there exists exactly
one topology on E such that p : E →M defines a smooth vector bundle, where A is a smooth
bundle atlas.

Proof. Use the same proof as above.

Definition 4.9 (Tangent bundle). Let M be a smooth manifold. We define the set
TM =

⊔
x∈M TxM and the surjective map p : TM →M , (x, Vx) 7→ x.

Let Amax = {(Ui, hi,Ωi) | i ∈ I} be the maximal atlas on M . For i ∈ I, we have
p−1(Ui) = {(x, Vx) | x ∈ Ui, Vx ∈ TxUi} = TUi and Ωi×Rn = {(hi(x), Vhi(x)) | x ∈ Ui, Vhi(x) ∈
Thi(x)Ωi} = TΩi because of Example 3.2. Consider the maps Hi : p

−1(Ui) → Ωi × Rn,
(x, Vx) 7→ (hi(x), Dxhi(Vx)). We define Hi = (h−1

i × id) ◦ Hi, which means Hi : p
−1(Ui) →

Ui × Rn, (x, Vx) 7→ (x,Dxhi(Vx)).
We check that for i ∈ I, we have p(x, Vx) = x = prUi

(x,Dxhi(Vx)) = prUi
(Hi(x, Vx)) for

(x, Vx) ∈ p−1(Ui), which means the diagram below is commutative.

p−1(Ui) Ui × Rn

Ui

Hi

p|p−1(Ui)

prUi

Now let (U1, h1,Ω1), (U2, h2,Ω2) ∈ Amax be two charts on M with U1 ∩ U2 ̸= ∅. By
Lemma 3.8(5), the inverse map H−1

1 : U1 × Rn → p−1(U1) maps (x, v) 7→ (x,Dh1(x)h
−1
1 (v)).

Thus H21 = H2 ◦ H−1
1 is defined as H21(x, v) = (x,Dxh2(Dh1(x)h

−1
1 (v))), i.e. H̃21(x, v) =

Dxh2(Dh1(x)h
−1
1 (v)) = Dh1(x)(h2 ◦ h−1

1 )(v) with Lemma 3.8(2). We can then use the matrix

representation in Lemma 3.10 on H̃21(x, ) and receive H̃21(x, ) = Jh1(x)(h2◦h−1
1 ) ∈ GLn(R).

The transition function u21(x) = Jh1(x)(h2 ◦ h−1
1 ) is a smooth map.

We use the topology on TM given in Corollary 4.8. Then p : TM → M defines a smooth
vector bundle. We name it the tangent bundle of M .

Remark . In the above definition, a smooth bundle atlas is given by A = {(Ui, Hi) |
(Ui, hi,Ωi) ∈ Amax}. We see that TM gets a smooth structure from the smooth structure of
M .

Example 4.10 (TS1 is trivial). We show that TS1 is diffeomorphic to S1 × R:
For a point x ∈ S1, we write v(x) = (−x2, x1) ∈ TxS1 for the tangent vector of S1 at x.
Note that TxS1 ∼= R, since TxS1 is a 1-dimensional real vector space. Consider the map
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f : TS1 → S1 × R, (x, Vx) 7→ (x, v(x) · Vx). It is smooth and bijective. The inverse is given
by f−1 : S1 × R → TS1, (x, λ) 7→ (x, λv(x)), which is also smooth.
For better visualization, consider the smooth vector field F : R2 → R2, (v1, v2) 7→ (−v2, v1).
For a point x ∈ S1, F rotates the tangent space TxS1 by 90˚in the anticlockwise direction,
giving us x ∈ F (TxS1). The tangent spaces form the curved surface of the (infinitely long)
cylinder around S1 (see Figure 8). Thus, we have TS1 ∼= S1 × R.

Figure 8: The blue line on the right represents the tangent space TgS1 of S1 at the point g.
Using the vector field F in the Example, TgS1 will be rotated around g until it covers the
origin (0, 0). We can then use the interpretation on the left to understand the blue line as
part of the cylindrical structure around S1. Doing this for every g ∈ S1 gives us the result
TS1 ∼= S1 × R.

Example 4.11 (TS2 is non-trivial). This is a result of the hairy ball theorem / hedgehog
theorem.

Definition 4.12 (Differential of smooth map). Let f : M → M ′ be a smooth map be-
tween smooth manifolds. The differential of f is the smooth map between vector bundles
Df : TM → TM ′ over f , which is defined by the different differentials Dxf : TxM → Tf(x)M

′

at the points x ∈M .
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