Seminar S4D2 Summer Term 2018

Steenrod Operations

Tuesdays, 10:15 — 12:00, room MZ N 0.008 Note the two additional sessions on

Monday 09. July 2018 from 16:15 - 18:00 in room N 0.007 and Monday 16. July 2018 from 16:15 - 18:00 in room N 0.008.

Prof. Dr. C.-F. Bödigheimer

A natural transformation of cohomology groups

$$\theta \colon h^*(X) \to h^{*+i}(X)$$

is called a cohomology operation of degree i. They are, in addition to a multiplicative structure, an important tool to show the non-existence of maps: If an abstract isomorphism $\psi \colon H^*(X; \mathbb{F}_2) \to H^*(Y; \mathbb{F}_2)$ is induced by a continuous map $f \colon Y \to X$, then $\psi = f^*$ must commute with any cohomology operation, i.e., $\psi \circ \theta = \theta \circ \psi$.

For the singular cohomology theory $h^* = H^*(\underline{}; \mathbb{F}_2)$ with coefficients mod 2 there are the famous Steenrod operations

$$\operatorname{Sq}^{i} \colon H^{n}(X; \mathbb{F}_{2}) \longrightarrow H^{n+i}(X; \mathbb{F}_{2}), \quad a \mapsto \operatorname{Sq}^{i}(a)$$

with the properties

(1)
$$\operatorname{Sq}^{0}(a) = a$$
, (2) $\operatorname{Sq}^{i}(a) = a^{2}$ if $i = n$, and (3) $\operatorname{Sq}(a) = 0$ if $i > n$.

They generate an algebra \mathfrak{A}_2 , the Steenrod algebra, acting on the mod 2 cohomology of any space. There is actually for any prime p such an algebra \mathfrak{A}_p of operations on $H^*(X; \mathbb{F}_p)$.

There are astonishing applications. For example: (A) the non-existence of maps $f: \mathbb{S}^{2n-1} \to \mathbb{S}^n$ of Hopf invariant one, if n is not a power of 2; and (B) the non-existence of 2^m linearly independent vector fields on \mathbb{S}^{n-1} , if $n = 2^m(2s+1)$.

In this seminar, we will construct the Steenrod algebra for p = 2, verify its properties, and study some interesting applications.

Prerequisites for the seminar are the courses Topologie I & II and Algebraic Topology I.

The talks are supposed to be 90 minutes. That means, you should prepare a talk of approx. 70 minutes and be ready for questions. You should consult with me two weeks before the date of the talk.

1

Talks

(1)	The cup product via diagonal approximation Freya Bretz, $10.4.2018$ Eilenberg-Zilber map and Alexander-Whitney map, Eilenberg-Zilber Theorem, cup product, diagonal approximation. [MacL, chap. VIII, §§7-9], [Br, chap. VI, §4].
(2)	Construction of the cup_i -products
(3)	Construction of the Steenrod squares Sq^i Suleyman Karaca, 24.4.2018 Definition of Sq^i as squaring of cup_i -product. [Mo-Ta, chap. 2, pp. 16-21], [Br, chap. VI, §16].
(4)	The quadratic construction
(5)	Properties of the Steenrod squares
(6)	The Bockstein operator
(7)	The Adem relations
(8)	Axiomatic description of Steenrod operations Thyton Church 12.6 2018
	TIKHON GRITSKEVITCH, 12.6.2018 The axioms determine the operations. [St-Ep, chap. I].
(9)	The Hopf invariant
(10)	Vector fields on spheres

(11)	The Steenrod algebra
	Steenrod algebra, decomposable elements, Hopf algebras. [Mo-Ta, chap. 5, pp. 45-50].
(12)	The dual of the Steenrod algebraJoao Rocha, Mo 9.7.2018 (!)
	The dual algebra, Milnor basis, theorem of Milnor-Moore. [Mo-Ta, chap. 5, pp. 50-57], [Mi].
	Computation of the cohomology ring $H^*(K(\mathbb{Z}/2,2);\mathbb{F}_2)$
	Fibrations of Eilenberg-MacLane spaces, spectral sequences, differentials. [Mo-Ta, chap. 9, pp. 83-88].
(14)	Computation of the cohomology ring $H^*(K(\mathbb{Z}/2,q);\mathbb{F}_2)$
	Borel's Theorem. Bastiaan Cnossen, Mo 16.7.2018 (!)
	[Mo-Ta, chap. 9, pp. 88-92].
` '	The Adams spectral sequence
	D
[D M I	REFERENCES
-	D] S.R. Bullet, I.G. Macdonald: On the Adem relations. Topology 21 (1982), 329-332.
[Br]	G.E. Bredon: Topology and Geometry. Graduate Texts in Mathematics, vol. 139, Springer-Verlag (1993, correted 3rd print 1997).
[Fo-Fu]	A. Fomenko, D. Fuchs : <i>Homotopical Topology</i> . Graduate Texts in Mathematics, vo. 273, Springer-Verlag (2016, second edition).
[Gr]	B. Gray : Homotopy Theory. Academic Press (1975).
[Ha]	A. Hatcher: Algebraic Topology. Cambridge University Press (2002).
[Mi]	J. Milnor : The Steenrod algebra and its dual. Ann. Math. (2) 67 (1958), 150-171.
[MacL]	S. MacLane: Homology. Classics in Mathematics (1995), urspr. Grundlehren Bd. 114, Springer-Verlag.
[Mo-Ta]	R.E. Mosher, M.C. Tangora: Cohomology Operations and Applications in Homotopy Theory. Harper & Row Publishers (1968).
[St-Ep]	N.E. Steenrod. D.B.A. Epstein: Cohomology Operations. Princeton University Press (1962).