Hilbert uniformization of Riemann surfaces : I

SHORT VERSION

Carl-Friedrich Bördigheimer
Mathematisches Institut, Universität Bonn

Abstract
We report on a cell decompostion for the moduli space of Riemann surfaces of genus \(g \geq 0 \) with \(n \geq 1 \) boundary curves and \(m \geq 0 \) punctures.

1 Moduli spaces and mapping class groups

Let \(\mathcal{M} = \mathcal{M}_{g,n}^m \) denote the moduli space of conformal equivalence classes of Riemann surfaces \(F = F_{g,h}^m \) of genus \(g \geq 0 \) and with \(n \geq 1 \) boundary curves and \(m \geq 0 \) permutable punctures. Likewise, let \(\Gamma = \Gamma_{g,n}^m \) be the corresponding mapping class group of isotopy classes of orientation-preserving diffeomorphisms fixing the boundary pointwise and permute the punctures.

Since \(n \geq 1 \), the automorphisms of \(F \) are trivial, and thus the action of \(\Gamma \) on the corresponding Teichmüller space is free. Therefore the moduli space \(\mathcal{M} \) is a smooth, non-compact manifold, with the homotopy type of the classifying space \(B\Gamma \). Its dimension is \(d = 6g - 6 + 3n + 2m \). Because we allow punctures to be permuted, it is orientable only in the cases \(m = 0 \) or \(m = 1 \).

2 Results

There is a flat vector bundle \(\mathfrak{D} \to \mathcal{M} \) of dimension \(\bar{d} = m + 3n \), the fibres of which are vector spaces of certain harmonic functions. Following an earlier version [Bödigheimer-90], we construct in [Bödigheimer-05] a finite cell complex \(\mathcal{P} = \mathcal{P}(h,m,n) \) as a compactification of \(\mathfrak{D} \); here \(h = 2g + m + 2n - 2 \) and \(d + \bar{d} = 3h \). A point in \(\mathcal{P} \) is a configuration of \(h \) pairs of horizontal, semi-infinite slits in \(n \) complex planes.

Theorem.

There is a subcomplex \(\mathcal{P}' \subset \mathcal{P} \) and a homeomorphism \(\mathcal{H} : \mathfrak{D} \to \mathcal{P} - \mathcal{P}' \).

The inverse homeomorphism is defined and studied in detail [Bödigheimer-05]; the continuity of \(\mathcal{H} \) is discussed in [Ebert-05].

3 Cell structure

To describe the space \(\mathcal{P} \) we concentrate on the case of a single boundary curve. Fix \(g \) and \(m \), and put \(n = 1 \); then \(h = 2g + m \).

The space \(\mathcal{P} = \mathcal{P}(h,m,n) \) is bi-simplicial complex \(\mathcal{P}_{p,q} \), where \(0 \leq p \leq 2h \) and \(0 \leq q \leq h \). The cells in \(\mathcal{P}_{p,q} \) are products \(\Delta^q \times \Delta^p \) of simplices, and they are given by \(q \)-tuples \(\Sigma = (\sigma_q, \ldots, \sigma_0) \) of permutations \(\sigma_i \) in the symmetric group \(\mathfrak{S}_{p+1} \), acting on \(0, 1, \ldots, p \), satisfying the following conditions:
\[\text{norm}(\sigma) \leq h \]
\[\sigma_q \text{ has at most } m + 1 \text{ cycles} \]
\[(3.1) \]
\[(3.2) \]

Here the \(\text{norm}(\Sigma) \) is the sum of the word lengths of all \(\tau_i = \sigma_i \sigma_{i-1}^{-1} \) for \(i = 1, \ldots, q \), measured with respect to the generating set of all transpositions.

The face operators are given by

\[d_i'(\Sigma) = (\sigma_q, \ldots, \sigma_i, \ldots, \sigma_0) \]
\[(3.3) \]

and

\[d_j''(\Sigma) = (D_j(\sigma_q), \ldots, D_j(\sigma_0)) \]
\[(3.4) \]

where \(D_j : \mathfrak{S}_{p+1} \to \mathfrak{S}_p \) deletes the letter \(j \) from the cycle it occurs in and re-normalizes the indices.

The subcomplex \(P' \) consists of all \(\Sigma \) with norm less than \(h \) or with a \(\sigma_q \) having less than \(m + 1 \) cycles, or where any of the following conditions is violated:

\[\sigma_i(p) = 0 \text{ for } i = 0, \ldots, q \]
\[(3.5) \]

\[\sigma_0 \text{ is the rotation } 0 \mapsto 1 \mapsto 2 \mapsto \ldots \mapsto p \mapsto 0 \]
\[(3.6) \]

\[\sigma_{i+1} \neq \sigma_i \text{ for } i = 0, \ldots, q - 1 \]
\[(3.7) \]

There is no \(k \in \{0, \ldots, p - 1\} \) such that \(\sigma_i(k) = k + 1 \) for all \(i = 0, \ldots q \)
\[(3.8) \]

Remarks.

The Hilbert uniformization method goes back to work of Hilbert and Courant. It can also be used to parametrize the moduli spaces of surfaces with incoming/outgoing boundary curves, see [Bödigheimer-03]; and it can be used for moduli spaces of conformal equivalence classes of non-orientable surfaces (Kleinian surfaces); see [Ebert-03], [Zaw-04].

References

