Hilbert uniformization of Riemann surfaces: I

SHORT VERSION

Carl-Friedrich Bödigheimer
Mathematisches Institut, Universität Bonn

Abstract

We report on a cell decompostion for the moduli space of Riemann surfaces of genus $g \geq 0$ with $n \geq 1$ boundary curves and $m \geq 0$ punctures.

1 Moduli spaces and mapping class groups

Let $\mathfrak{M}=\mathfrak{M}_{g, n}^{m}$ denote the moduli space of conformal equivalence classes of Riemann surfaces $F=F_{g, n}^{m}$ of genus $g \geq 0$ and with $n \geq 1$ boundary curves and $m \geq 0$ permutable punctures. Likewise, let $\Gamma=\Gamma_{g, n}^{m}$ be the corresponding mapping class group of isotopy classes of orientationpreserving diffeomormphisms fixing the boundary pointwise and permute the punctures.
Since $n \geq 1$, the automorphisms of F are trivial, and thus the action of Γ on the corresponding Teichmüller space is free. Therefore the moduli space \mathfrak{M} is a smooth, non-compact manifold, with the homotopy type of the classifying space $B \Gamma$. Its dimension is $d=6 g-6+3 n+2 m$. Because we allow punctures to be permuted, it is orientable only in the cases $m=0$ or $m=1$.

2 Results

There is a flat vector bundle $\mathfrak{D} \rightarrow \mathfrak{M}$ of dimension $\bar{d}=m+3 n$, the fibres of which are vector spaces of certain harmonic functions. Following an earlier version [Bödigheimer-90], we construct in [Bödigheimer-05] a finite cell complex $P=P(h, m, n)$ as a compactification of \mathfrak{D}; here $h=$ $2 g+m+2 n-2$ and $d+\bar{d}=3 h$. A point in P is a configuration of h pairs of horizontal, semi-infinite slits in n complex planes.

Theorem.

There is a subcomplex $P^{\prime} \subset P$ and a homeomorphism $\mathcal{H}: \mathfrak{D} \longrightarrow P-P^{\prime}$.
The inverse homeomorphism is defined and studied in detail [Bödigheimer-05]; the continuity of \mathcal{H} is discussed in [Ebert-05].

3 Cell structure

To describe the space P we concentrate on the case of a single boundary curve. Fix g and m, and put $n=1$; then $h=2 g+m$.
The space $P=P(h, m, n)$ is bi-simplicial complex $P_{p, q}$, where $0 \leq p \leq 2 h$ and $0 \leq q \leq h$. The cells in $P_{p, q}$ are products $\Delta^{q} \times \Delta^{p}$ of simplices, and hey are given by q-tuples $\Sigma=\left(\sigma_{q}, \ldots, \sigma_{0}\right)$ of permutations σ_{i} in the symmetric group \mathfrak{S}_{p+1}, acting on $0,1, \ldots, p$, satisfying the following conditions :

$$
\begin{align*}
& \operatorname{norm}(\sigma) \leq h \tag{3.1}\\
& \sigma_{q} \text { has at most } m+1 \text { cycles } \tag{3.2}
\end{align*}
$$

Here the $\operatorname{norm}(\Sigma)$ is the sum of the word lengths of all $\tau_{i}=\sigma_{i} \sigma_{i-1}^{-1}$ for $i=1, \ldots, q$, measured with respect to the generating set of all transpositions.
The face operators are given by

$$
\begin{equation*}
d_{i}^{\prime}(\Sigma)=\left(\sigma_{q}, \ldots, \widehat{\sigma_{i}}, \ldots, \sigma_{0}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{j}^{\prime \prime}(\Sigma)=\left(D_{j}\left(\sigma_{q}\right), \ldots, D_{j}\left(\sigma_{0}\right)\right) \tag{3.4}
\end{equation*}
$$

where $D_{j}: \mathfrak{S}_{p+1} \rightarrow \mathfrak{S}_{p}$ deletes the letter j from the cycle it occurs in and re-normalizes the indices.
The subcomplex P^{\prime} consists of all Σ with norm less than h or with a σ_{q} having less than $m+1$ cycles, or where any of the following conditions is violated:

$$
\begin{align*}
& \sigma_{i}(p)=0 \text { for } i=0, \ldots, q \tag{3.5}\\
& \sigma_{0} \text { is the rotation } 0 \mapsto 1 \mapsto 2 \mapsto \ldots \mapsto p \mapsto 0 \tag{3.6}\\
& \sigma_{i+1} \neq \sigma_{i} \text { for } i=0, \ldots q-1 \tag{3.7}\\
& \text { There is no } k \in\{0, \ldots, p-1\} \text { such that } \sigma_{i}(k)=k+1 \text { for all } i=0, \ldots q \tag{3.8}
\end{align*}
$$

Remarks.

The Hilbert unifomization method goes back to work of Hilbert and Courant. It can also be used to parametrize the moduli spaces of surfaces with incoming/outgoing boundary curves, see [Bödigheimer-03]; and it can be used for moduli spaces of conformal equivalence classes of nonorientable surfaces (Kleinian surfaces); see [Ebert-03], [Zaw-04].

References

[Bödigheimer-90] Bödigheimer, Carl-Friedrich: The topology of moduli spaces, part I : Hilbert uniformization. Math. Gott. (Preprints of the SFB 170, Göttingen) Nr. 9 (1990).
[Bödigheimer-03] Bödigheimer, Carl-Friedrich: The moduli space of Riemann surfaces with boundary. Preprint (2003).
[Bödigheimer-05] Bödigheimer, Carl-Friedrich: The Hilbert uniformization I. Preprint (2005).
[Ebert-03] Ebert, Johannes: Über den Modulraum mehrfach gerichteter und punktierter Kleinscher Flächen. Diplom Thesis, Bonn 2003.
[Ebert-05] Ebert, Johannes: The Hilbert uniformization II. Preprint (2005).
[Zaw-04] Zaw, Myint: The moduli space of non-classical directed Klein surfaces. (Ph.D. Thesis, Bonn 1998.) Math. Proc. Camb. Phil. Soc. 136 (2004), 599615.

