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This is the second article in a longer series, intended to investigate the
topology of the modulj Spaces of Riemann surfaces. Using the description of
the moduli space as a king of configuration Space we will develop operationsg

for the homology of these Spaces.

In Part I "Hilbert Uniformization” We studied the modulj Space ﬁi(g) of
directed Riemann surfaces, i.e. the SPace of conformal equivalence classes
(F,x] of closed Riemann surfaces F  of genus 8 and given direction X

at some point P € F , This Space has the homotoéy type of the classifying
space BF(g) of the corresponding mapping class group F(g) = HoDiff+(F.X) s
Diff+(F,x) is the group of orientation-preserving diffeomorphisms of F
which keep x fixed. F(g) is isomorphic to the mapping class group F(g,l)

of a genus g surface with one boundary component.

The main objective of Part I was 5 neﬁ description of ﬁﬁ(g) - based on old
ideas of geometric function theory; a3 homotopy equivalence between fﬁ(g)

and a space PSC(g) of so called parallel sijt domains was established. A
point in :PSQ(g)- is an equivalence class £ = (L] of a configuration L =
(Ll’""Lég;A) consisting of semi-infinite ho;izontal slits Li in €, paired
by an involution AE 2:48 . Such configurations are éubjéct to some regularity
conditions; and the equivalence relatiop allows certainvjumps of slits across
longer pairs. The group Sim(C) of dilatations ang translations of € acts
freely on PSC(g) . Ang the orbit space PSC(g)/Sim(C) was proved to be homeo-

morphic to ﬁi(g) .

. . ﬁ- 3
This parametrization of m(g) shows the distinctive characteristics of a

configuration SPace: a point £ comprises two kinds of finite data, geometric
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and combinatoric, namely the Position of the slits énd their ordering and

pairing. Frem the viewpoint of moduli: the conformal structure of (F.x] i
screened against the complex plane, ang the picture so obtained is containe
in an essentially finite Piece of the plane. Whenever such a situation occur.
one is tempted to patch several such Pictures together. This method has a I
history in homotopy theory under the name Dyer-Lashof operations, where it
used with great success to study iterated 1oop spaces, function spaces or

classifying spaces of certain 8roups. In this article we will introduce_such
patchings systematically for the moduli Spaces, taking the spaces Psc(g) a

substitutes.
The aim is to construct cperations

8 : i(n,go) x PSC(g)? ——s Psm(g°+ng)
2
n

for various spaces i(n,go) which depend on n 2 1 » B 20 and have a fre

§:n-action. These parameter spaces for the operations will be configuration
spaces of points, pairs of points, etc., in the plane, in a surface, or in

the universal surface bundle over the moduli space. A homology class -

a € Hq(i(n.go)/iln) induces a homology operation -

eu : H,Psc(g) f———? Hn*+ qPSC(g°+ng) .

?
.

We call g, the genus and q the degree of e . Homology,operétions should
a
be useful first to create new homology classes from old ones, and then also

to organize the homology of the moduli spaces.

These are several interesting subspaces of PSC(g) , some of which admit
operations of a more intricate nature then the Dyer-LaShof operations above.

In particular, we use the subspace PSC (g) of parallel slit domains which

|
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are decomposable into a part in the upper resp. lower half-plane. Such partitione
parallel slit domains allow the two Parts to be implanted into a vertical pair
of patches in € . The new configuration spaces are configuration spaces of

vertical pairs of points in the plane, in a surface, or in the universal surfac

bundle over the moduli space. We call these operations symplectic.

Plan of the chapters.

Part II consists of 8 chapters, which are Paired: one chapter develops the geo-
metric side of some kind of operations, the other the homological side. Chapter
is confined to the most basic of all operations, the sum operation, which implan
two parallel slit domains into ( » the first into the upper, the second into

the lower half-plane. This operation
u o PSC(gl) x PSm(gz) " PSG(g1+gz)
makes PSC = |IPSC(g) an H-space. A special case is the stabilization map

o : PSC(g) —» BSC(g+l) , o(L) = u(e, (1)) |

1:(1) a fixed surface of genus 1 . In chapter 2 the homology H*(PSG;A) s

for
A a commutative ring with unit, is considered as a ring, a so called Pontrjagin
ring, with multiplication induced by W . We mention Harer's stability theorem
for H,(PSC;Z) and the polynomial subalgebra in H,(PSC;Q) foﬁﬁd by Miller as
the best global results on this ring so far. In chapter 3 we see the first

proper results on this ring so far. In chapter 3 we see the first proper opera-

tions as Dyer-Lashof maps

c"(c) x pse(g)® — PSC(ng)
=

n
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where 6“(@5 1s the ordered configuration space of the plane € . The existenc
of such operations was noticed by several authors, in particular [Miller 19867,
(Cohen 1987], [Maginnis 1987], described rather on the group level than on the
level of moduli spaces. The definition of & requires some technical prepara-
tions; we give full details here to save work in similar situations to come.

Theorem (3.6.2) summarizes the main properties of these operations. In chaper

=7
we study the operations in mod-2 homology H*(Psm;zz) induced by 9 : C"(G)ES
2

PS(IZ(g)2 —> PSC(2g) . The generator in HO(CZ(G);ZZ) induces the squaring ope-
ration Q_ : HP(PSE(g);ZZ) — HZp(Psm(ZE);ZZ) , Qo(x) =xfx = xz ; the gene-
rator in Hl(Cz(m);Zz) induces a Dyer-Lashof operation Q : Hp(PSG(g);ZZ)
binary operations, the generator in Ho(Ez(m);zz) induces the ring multipli-
cation, and the generator in Hl(EZ(C);ZZ) induces a Browder operation Rl :
Hp(PSGJ(gl);ZZ) ® Hq(PSG:(gZ);ZZ) — Hp+q+l(PSG(g1+g2);Zz) . The theory of
such operations is well-developed. We give some formulas for Qo’ Q1 and R1
In chapter 5 and chapter 6 we introduce the symplectic operations. They are
defined for the subspace PSC (g) , but stably PSC (w) = PSC(=) . Since these
operations take the finer slit structure of a surface (and not only'the handle

structure) into account, we obtain two new operations Qi . Qf of degree 1 ..

In the final chapters 7 and 8 we briefly present two generalizations of the

operations introduced so far. First we replace the complex plane € by any
fixed, (punctured) parallel glit domain 4=° ; i.e. we use configurations of
points (resp. vertical pairs of points) in 1:0 to parametéize implantations
of other (partitioned) parallel slit domains. Since configuration spaces of
surfaces have homology classes in dimensions greater than one, we obtain ope-
rations of degree greater thén one, which are not products of degree one ope-
rations. Having gone so far, the next step of generalization consists of vary-
ing the parallel slit domain £° itself. The nevw. parameter spaces are fibre-

wise configuration spaces of the universal surface bundle over PSC(g). We

only give some examples.



References.

References to Part I are denoted by (I.x.y.z), and within Part I by (x.y.z).
All other literature is quoted as (name, year] and listed on the pages 84-85;

Part I appears as (Bodigheimer 1990].

Akc:lcrlcavv:Leacig;eznlear11:ss

Part of this work was done while I was Visiting the Mathemat1cal Sc1encés
Research Institute in Berkeley earlier this year, with support from the MSRI
and the Sonderforschungsbereich 170 "Geometrie und Analysis" in GSttingen. I
use this opportunity to thank F, Cohen and J. Milgram for many discussions
about configuration Spaces, mapping class groups and their homology over the
last years.

Thanks are due to Frau B. Reichelt for typing the manuscript and to my wife

for proofreading.

April 1990



Table of Contents

page
Chapter 1
Basic Operations 1
1.1 The sum operation. 2
1.2 The stabilization map. 7
1.3 Conjugation and Schottky double. : 9
Chapter 2
The Pontrjagin Ring H, (I1PscCg)) 10
=
2.1 PSC = I PSC as an H-space. 11
g20
2.2 The Pontrjagin product. 12
2.3 Homological stability. 13
Chapter 3
The Geometry of
Dyer-Lashof Operations
3.1 Normalization of parallel slit domains. . 15
3.2 Configuration spaces. - ) 16
3.3 Dyer-Lashof maps. . ) 18
3.4 Interval exchange transformations. 20
3.5 Dyer-Lashof maps (continued), 25
3.6 Main properties. 30

3.7 Comparison with operations on braid groups and symplectic groups. 35



Chapter 4

The Iic:nnc:Ichggjf oY

Dyer-Lashof Operations

4.1 The Dyer-Lashof opérations QO and Ql
4.2 The Browder operation R1
4.3 Formulas for Q0

4.4 Formulas for Q1 .

4.5 Formulas for Rl s

Chapter 5

The Geometry of

Symplectic Operations

5.1 Configuration spaces of vertical pairs.

5.2 The subspace of partitioned Parallel slit domains.
5.3 The operation maps.

5.4 Main properties.

5.5 Double braid groups.

Chapter 6

The Eic:rn&:il<35;37 of

Symplectic Operations

6.1 Definition of the symplectic operations Qi and Qf
6.2 The operations Ri and Rf .

6.3 Some formulas.

page

38

39

40

41

43

45

47

48
50
56
58

62

63

64
66

67



Chapter 7

The (3eac>rneat:1:37 o f

Higher Genus Operations

7.1 Operations frenm a single surface.
7.2 The universal surface bundle over PSt(g) .

7.3 Operations from families of surfaces.

Chapter 8

The I{<>rn<>ZLc>g;37 of

Higher Genus Operations

8.1 Some examples of higher operations.

References

page

69

70
72

75

78

79

84



Chapter 1

Basic ();)Eaxrzaizzicbriss\

1.1 The sum operation.
1.2 The stabilization map.

1.3 Conjugation and Schottky double.

Replacing the moduli space Mi(g) of conformal equivalence classes of directed
Riemann surfaces by the komotopy-equivalent space PSC(g) of parallel slit
domains immediately suggests to imitate certain constructions well-known in
the theory of loop spaces. The most basic is the sum operation which unites to
parallel slit domains to represent the connected sum of two Riemann surfaces.
As a speciai case we also have a stabilization procedure, adding a standard
elliptic curve. These operations will be persued and generalized in later chap-

ters.

There are many more such constructions, of which we mention only the conjugation

and the Schottky-doubling.



¥yl The sum operation.

Recall that a parallel slit domain £ = (L] = [L "’Lég;A] in PSC(g) is

Gy

an equivalence class of a non-degenerate configuration L = (Ll""’

L consists of slits L, S C and a pairing A € E:Ag , satisfying (I.4.1.2);

ng;k) -

the non-degeneracy condition is given in (I.4.2.4); and the equivalence class

£ = [L] is obtained by performing all possible crossings (I.4.3.2).

Let {:l and 1:2 be two parallel slit domains of genus g, and 8, » respec
ti&ely. Remembering that a conformal equivalence class in ﬁi(g) corresponds
to a similarity class of a parallel slit domain (see (I.5.5.1), there is an
obvious way to unite 1:1 and {:2 : one shifts 1:1 upwards till all its slit
lie in the upper half-plane I , and shifts £:2 down till all its slits lie ir
the lower h#lf-plane H , and then the union is a new parallel slit domain of

genus gr+g2 - To define this operation as a map

(1.1.1) i : PSfE(gl) x Psm(gz) — Pst(g,+g,)

=u
gl’gz

some technical preparations are necessary. Recall the functions a ,a_, b+ e

defined in (I.4.8). Note that a+({3) = a_(L£) is possible, but we always have

b.(L£) < b (£) ..

(1.1.2)
Ll &
— =" e

:/ /; '.‘/ 1 )
] . ./( 7 !
' 7 . ‘//, // 4 // |
:// -~ 7 - -~ <
— e e b )

L s s _ __ _ _Z_ _s_ -]

Ag a-(j:) a+(£)

The translation of £ by any complex number ¢ is denoted bv £ +c =

[Li+e,e sl +es Al , see (1.4.9). j



1 1 1 1 2 2.2

e = = . 1 2 - 2 :
Assume 4=° = [L7] [Ll""’Légl"\ ] and L£° = [L°] = [Ll""’Lagz'k 3.
1 : i
and we set b = b(£L°) and b’ = b+(£2) . Then all slits of Cl-ibl+%
are contained in H , and all slits of f.z- ibz--;- are contained in Hl-
Their ordering by imaginary parts is
1 .ol 1 1 .ol 1 2 2.1 2 1
|13 L; - i(b"~-%),...,L, - == - i(ho+ L -3 L
( ) ;-1 2) 8, i(b 2) » L - i(b +2),...,L487 i(b +2) "
\\V_,\_/ N~ o 2
\( »
1 .,.11 1
S™-i(b 'E) ’ zen i(b2+-2-

where we donote the sequences of slits by' Sl and 52 , respectively. We

denote the juxtaposition of the two sequences in (1.1.4) by Sle S2 . Likewise

- ; 1 2 '
is the (Whitney) A @ A sum of the two permutations the image under the

inclusion X x —_— =
Agl Zogz 4(g1+g2)

All in one formula gives

(st , 57522 = FePnler?] -

with §° =st-i0_(£h -1, 52242 i, (2 +h

. . 1 2
It is obvious that L£"® £° is a non-degenerate equivalence class; this
follows directly from the definition (I.4.2); compare also (1.1.5) below.

1 28
Furthermore L e L is a well-defined equivalence class, for any crossing

1

. - 2. .
possible in L£° or L is still possible in ;C',le £2 . And because b+ .

b_  are continuous functions, it follows that u  is continuous.
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. 1 2 "
Geometrically, L e L is the connected sum of the two Riemann surfaces

;
F, = F(i:l) and F, = F(£7) along the boundary of two discs. On F, o, we
cut out the disc Dl given by vy L

given by v, > b+({:2) 2y % » where v, =y is the harmonic conjugate of the

< b-(ill) - , and on Fz the disc D2

Ny}

dipole functions u. . Both are indeed discs, because they contain no stagnation
points. The curves v, = b_(i:l) - % and v, = b+(1:2) + % are real-analytic
curves through the dipoles P1 and P2 , and tangent to the directions X,

and x2 , respectively. If Fl-Dl and FZ—D2 are glued along these curves
by identifying points with the same u-value, the result is a closed surace F
of genus gr+g2 . F has anobvious complex structufe; Pl and P2 are iden-
tified to become the new dipole P ; and similarly the two directions xl > xz
become the same in F . The two harmonic functions u, and u, agree by con-
struction on the new curve anl = BDZ , and thus determine a dipole function
for F . Only the harmonic conjugates vV, have to be renormalized by
adding the imaginary integration constants -i(b_(i:l) - %) and 'i(b+(i:2)'+%)
respectively; now they are both zero on 3D, = 3D2 , and A is positive on

1

Fl—Dl c F, and v, 1is negative on FZ-D cF.

2

(1.1.5) .' T

: : Fl
e

_ Ly 1 )
GRETrEAL PP T e Py iy T b_(£ )‘E X —F
T £

-
/////‘/////,/.//‘/// A (( ))a’v’

Xz < (“JN
= « vy=bT(£hd)+d i
,4;x\\k

2
1=



For g = 0 the auxiliary functions a_ , b+ are not defined; the formula

(1.1.4) makes nevertheless sense if 1:1 or i:z are the only element [(§]

in PSC(0) . Recall that we defined basepoints 1:(g) € PSC(g) in (I.4.5.21).

(1.1.6) Proposition.

(i) CoWl=L-ib(e)-h

(i) (Pl e L - i(b (£) + %) , for anv 1 € PSC(g) ,

(g.) . (g,) (g,+g,)
AL 1782

(i) = L + 4 igl ; .

The proof is obvious. The statements (i) and (ii) say that (@] is a homotopy-

neutral element for the sum operation. There is an associativity law.

(1.1.7) Propositition. For anv 81>85,8q 2 0 the diagram

PSC(g)) x PSC(g,) x PSC(g,) —dxXu PSC(g,) x PSC(g,+g,)
, l
uxid H

v

is homotopy-commutative.

Proof. The required homotopy u e (idxp) = p o (uxid) amounts to a homotog

of translations. For t € [0,1] we define
m, '(£1.£2,£3) e (£le£2) = ©ith

with h = b+(i:2) - b_(ilz) + 1 . Clearly, m = p(pxid) , and m = u(id = u) .



A ‘much more subtle property of . is the commutativity. Its proof is postpone
till we have developed the general framework. In its formulation below <

denotes the twist map interchanging the two factors.

(1.1.8) Proposition. For anv 8,8, 2 0 the diagram

PSC(g,) x PSC(g.)

Psm(gl+g2)
v

\\\\\\\\\,
P

PSG(gZ) x Psm(gl‘)

is homotopy-commutative.




1.2 The stabilization map.

(1)

Let L be the basepoint in PSC(1) » Biven by the slit end points s, =ik

k
for k = 1,..,4 and the pairing A = (13) (24)

(1.2.1)

The stabilization is defined by adding this fixed surface of genus 1 ,

(1.2.2) o : PSC(g) ———> PSC(g+l)

a(L£) = L£ e 1:(1) .

Geometrically, ¢ inserts a new handle in the surface F(L£) , in a small disc

near the dipole.

The stabilization map allows to define an infinite object, the space of infinite

parallel slit domains

(1.2.3) Ps€(») = 1lim PSc(g) .
2

From (I.2.4.29, 1.3.7) we conclude, that PSC(») is the classifying space for
the infinite (sometimes called stable) mapping class group [(«,1) = lim I(g,1)
->

The inclusions T[(g,1) < (g+l,1) are defined as follows. If F , isa
; g

1



surface of genus g with one boundary component, it is contained in Fg+l L=
’

Fg 1 U T with T = Fl 5 torus with two boundary components.

\OO.@@(%@

N~
=~
~—

(1.

Fg,l

Extending a diffeomorphism of Fg 1 (which is the identity on aFg l) by the

identity on T , defines a homomorphism Diff'(F 1) — Diff (F

g, 1" g g+tl, 1’

o 1 1) inducing T(g,1) — TI(g+l,1) . In other words, let F_ be a connecte

oriented, smooth, non-compact surface of infinite genus and without boundary;
+

and let Diffcpt(Fw) be the group of orientation preserving diffeomorphisms

which are the identity outside a compact set; then [(=,1) = ﬂoDiff:p (F)

t

The stabilization is compatible with the sum operation.

(1.2.5) : Proposition. (1) uo (g x id) = g o TN
(i) poe (id x q) = g oy .,

(iii) uu(oxg) = g o\ , ]

Again the proof is postponed, since it is a special case of general associa-

tivity laws.



1.3 Conjugation and Schottkv-double.

Given a parallel slit domain L = [Llpu,Lag;A] we define its conjugate 4=

to be the image under the conjugation z = x + iy /> zZ = x - iy of the comple:

plane. Thus L = [thp",fl;f] with A(k) = 4g+1 -A(4g+1-k) . The new sur-

face F(L£) 1is just F(L£) with the conjugate complex structure.

7]

D(L£) = £ £ is a parallel slit domain of genus 2g , representing the

Schottky-double of F(L£) .

The conjugation £ — £ is an involution on PSC(g) and only one of several

interesting self-maps of PSC(g) which we will investigate elsewhere.
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Chapter 2
The Pontrjagin Ring H (I Psc(g)))
R =
2.1 PSC = || PSC(g) as an H-space.

gz20
2.2 The Pontrjagin product.

2.3 Homological stability,

The disjoint union PSC of all PSC(g) has a multiplication induced by the
sum operation. It induces a product on the graded homology module H*(PSG)
This chapter contains only some elementary definitions; and we quote a theorem

of E. Miller about a polynomical subalgebra, and J. Harer's stability theorem.
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2.1 PSC = ||PSC(g) as an H-space.

The disjoint union of all spaces PSC(g) , g 2 0 , is denoted by PSC . The sum

operation p , defined by (1.1.4) on each>compongnt of the product PSC x PSC ,

is a map
(2151 u : PSC x PSC ——» PS¢ .
The following is a rewording of Propositions (1.1.6 - 8).

(2.1.2) Proposition. PS€@ is a h-associative, h-commutative H-space with two-

sided h-neutral element [0] . : =

We repeat that the commutativity of p up to homotopy is still to be proved.
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2.2 The Pontriagin product.

Let A be a commutative ring with unit. The graded homology module Hﬁ(PSC;A)

has a multiplication induced by the map u ; it is defined as the composition

o
w

(2.2.1) H (PSC;A) o H (PSC;4) —— H_(PSC x PSC;A) » H (PSC;A)-

where x denotes the exterior homology product. This product is called
Pontrjagin product and denoted by a # b = u*(ax b) . It is graded in the sense
that a # b € Hp+q(PSC;A) if a € HP(PSC;A) , b€ Hq(PSﬁ;A) . The associat;vity
(a%b)#c=a#%(b#%c) follows from (2.1.2), together with the commutativity
a#b= (-l)'a”blb # a , where || denotes the dimension of a homology class.
Regarded as a homology class, [@#] € Ho(Psa‘.(o);A) = A is a two-sided unit.

Of course # is A-linear in both variables. Thus H (PSC;A) is an algebra

over A .

The most important result so far on this algebra is the following.

(2.2.2) Theorem. [Miller 1986] There are classes « 5 € Hzn(PS¢;Q) s n 21 ,

2

which generate a polynomial subalgebra.

~

A conjecture by Mennford says that these classes generate the entire rational

homology of PSC .
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23 Homological stabilitv.

The following two results by J. Harer on the stabilization map o : PSC(g) —»

PSC(g+l) are important, [Harer 1985].

(2.3:1) Theorem. [Harer] The stabilization induces isomorphisms

9y ¢ H (PSC(g);Z) —» H,(PSC(g+1);Z)

Note that the stable range is about l/18 of the dimension of PSC(g) . But by
another result in [Harer 1986] the virtual cohomological dimension of PSC(g)
is 4g-2 it g 2 1 . We remark that Ivanov has improvedlthe result above
by enlarging the stable range to gz S g%l , see [Ivanov'1987].

Also in [Harer 1985] we find the following result about the forgetful maps

BI'(g) = Br(g,1) —» Br(g)

(2.3.2) Theorem. [Harer] The epimorphisms r(g,1) — r(g) induce isomor-

phisms
H,(T(g,1);Z) — H,(r(g);Z)

fo_r*ég;—L,gz3 -
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Chapter 3

The Geocometry of

\

Dyer-Lashof Operations

3.1 Normalization of parallel slit domains.
3.2 Configuration spaces.

3.3 Dyer-Lashof maps.

3.4 Interval exchange transformations.

3.5 Dyer-Lashof maps (continued).

3.6 Main properties.

3.7 Comparison with operations on braid groups and symplectic groups.

The sum operation implants one parallel slit domain into the upper half-plane,
and a second one into the lower half-plane. The idea of Dyer-Lashof operations
- coming from the theory of loop spaces - is to implant several parallel slit

domains into small disjoint rectangles moving independently in the plane.

Before we can define these maps we need to recall some technical notions, then
introduce configuration spaces; furthermore, we need the concept of interval
.

exchange transformations.
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3.1 Normalization of parallel slit domains.

For a parallel s}it domain 1:'= [Ll""’LAg;A] in PSC(g) we defined inj(I.a.
the sﬁpport as the smallest closed rectangle with sides parallei to the x,y-ax
containing the endpdints Si of all slits Li . Its corners are at(£3)+-ibi(:
see 1.1.2 . The rectangle can become a vertical interval, but never a point. §

denote by

a, (L) -a (L) 2 0 ,

(3.1.1) a(L£)

b(£) = b(£) - b_(£) > 0

the length resp. height of 4 . The center of £ is the center of mass of

supp(L) ,
(3:1.2)  e(£) = 3@ (£) - a(£)) + kv (£) + b(£)) .

The normalization N(L£) of L translates this center to the origin of the

plane, and then stretches or shrinks the configuration such that the support

fits into the unit square,

_ 1
(3.1.3) N(E) = max{a(i:),b(i:)} (c = C(i:))
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3.2 Configuration spaces.

Several kinds of configuration spaces will serve as parameter spaces of opera-
tions. The simplest kind are the configuration spaces of points in the plane.

The space

(3.2.1) c%Na) = {(e) e ) € ¢ | e; fe, for i#j)

is called the n-th ordered configuration space of € . The symmetric group E:n

acts freely on 6“(@) and the quotient

N~

(3.2.2) ch)=&®/zn

is called the n-th (unordered) configuration space of € . Its fundamental group

is the classical braid group Br(n) on n strands, see [Artin 1925], [Birman

19747.

We regard C™(C) as configuration spaces of rectangles rather than of points.

To do this we need a distance function

(3.2.3) € Cn(h) — 10,

e({elﬂ",en}) = min{uei-ejﬂ [ 1si#3sn}

where | | is the maximal coordinate norm in € . The rectangles will be square

around e € C , with sides parallel to the X,y-axes and side length € > 0 , i.e
(3.2.4) B.(e) = {z€C | le-zi < %}

We also need the following extension of B (e) ,
€



IN

{(3:2.5) B_(e) = {z €C | Re(z) £ Re(e) + % )

In(e) - = < Im(z) < In(e) + 5}



) [ e

3.3 Dver-Lashof maps.

Our aim is to define maps

(3.3.1) 9 = ‘3; : (@) x PsC(g)® —, PSC(ng) ,
7

n

as a family of n-ary multiplications, parametrized by configurations. Naively

we would like to set

8(lepsme ) x (£l emy o 0 L,
L Z

n

with € = E({el”"’en}); here U is the simple union of parallel slit domains.
It would implant o into a square of length € centered at e . If the con-
figuration {elpu,en} is such that the extended squares ﬁs(ek) are pairwise
disjoint, then this formula is indeed correct. But if for example Im(ei) =
Im(ej) and Re(ei) < Re(ej) , then the slits of {:i and i:j interfere with
each other. Thus the implantation needs Some extra consideration, which we

explain in the following example.

Assume €1»®, are positioned as in the next figure.

-

When implanted into Bs(el) the slits of {:l are contained in the shaded

region Bs(el) - Implanting o into Be(el) might result in a configuration

i
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which is not regular, or might mean that. this process is not continuous. The
correct way to do the implantation of Cz is as follows. Recall that the
left vertical boundary of Bs(el) is cut into intervals by the slits of i:l;
and if reglued according to (I.4.2.3), we obtain again a connected interval;
this is guaranteed by the regularity, see (I.4.4) . In other words, the left
side of Be(el) is reparametrized by the gluing induced by £ The implan-
Fation of 132 must therefore be done with respect to this reparametrization
of the y-coordinate. The following figure shows the image of the square Br(el)
gnder this coordinate change, for various values of Im(ez) . In this way '
squares further to the left must be woven through the slits of parallel slit

domains already implanted ‘in squares further to the right.

(3.3.3)
e e,(0)
S
[}
1 |
ez(t) | :ez(tf
'”ez(l)
el(t) is a constant curve, the curve ez(t) is shown.
B, (e,(t))

(3.3.4)

NN
A\

AN
R\
1

'

|

)

— .1 B Tt — g A -
I : - — L
e = E= Ezﬁﬁa Ei;Z;] EZZZH = ' //
] e EA - B
e —— N

1_‘,1 is of genus 1 , £2 is not shown.

The reparametrizations will be introduced in the next section.
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3.4 Interval exchange transformations.

In our context an interval exchange transformation is a non-continuous, piece-

wise affine, orientation preserving self-map of R . It is described by a

symbol v = (Vl'"”vn;ﬂ) , where vi are real numbers such that vi 2 vi+l 5
and m € Ezn—l is any permutation. The points v, cut R into n+l inter-
= 1 = ] = = j-o

vals IO ]+‘~"°,V1J ’ Il [Vzrvl.:--"ln_l [Vn,Vn_L] and In ] ,Vn]
Since Vikr T 'k is not excluded, some intervals may be only points.
permutes the finite intervals Il’""In-l ” and.the new sequence is Io’In(l)’
Iw(Z)""’In(n—l)’In )
(3.4.1)
In In—l IA 13 I2 I1 I0
— " N
I ; I frme o 0 s o s 4 @ 4 4 +
n m(n-1) I11(2) I'n'(l) Io
The associated function T, + R — R is defined as follows. Denote by
k
IT | = lvg - v | the length of I, and set h = z L;“(k)l (k = 1,...,n-1) ,
i=1
and ho =0 . Let Jo’Jl”"’Jn be the intervals.
(3-4.2) J, = [vl,m[ =
Te ™ e vy USSRl i)
o = 1= Vol = o
Then le‘ = ‘I“(k)| » and T, 1is to map the interior of Jk isometrically

and monotonically onto the interior of I
s

(k) ° |



S

(3.4.3) y for V<Y,
TV(Y) = ﬂ Vv_l(k)‘i‘(vl- hk-l‘ y) for Vl— hk( y < vl- hk‘l ,.
] (k=1,...,n-1)
k y for y < Vl-hn-l'

To have Tv defined everywhere we extend this definition such that Tv is

continuous from the right.

(3.4.4)
o J =1
o o

m(k) I3 o

2z
: = l_/'l:
Tt s e e e N e . _ _ 2 Yo, Y
IZ Il I

m(3)=3 m(3)=1

Different interval exchange transformations v and v' may give the same
reparametrizations Tv = Tv' - This happens if and only if some intervals are

points, i.e. Vg = Vg-1 for some k . We therefore introduce an equivalence

relation; it is generated by the following crossing:

(3.4.5) If V-1 = Ve » set m= n-l(k-l) and ¢ = w(m+l) , and assume

k < £ ; then we declare v = y' = (vi”",v';w') if
n

v = v, for i = 1seees k=1

<
n
h
o}
a]
=
|

= Kkyeeyk-1
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=71 o (mm+l)

=
[l

(3.4.6)
IV v!
|
1 171
! -
Vk-1 Yk-1 T k-1
. 1 =
kTN o — Y+l
v = :
k+1 . .
; « IR
: _—'——’_’—”___;;__—,,,_-—— Ye-1 T Ve :]
! =
Ve vy Ve
] —
! Vel T Va4l
v \.7' =v
n n n

We denote an equivalence class by 1 = [v] = [vl,.",vn;w] o

-

(3.4.7) Lemma. If v = v' , then Tv(y) = Tv'(y) for all y in the

interior of the intervals Jk .

Proof: First note that the intervals Ii’ Ii and Jj’ J3 produced by

v, v' coincide up to a renumbering. If y runs from +< to -« , then

Tv(y) and TV,(y) runs through these I-intervals in the order Io'In(l)’"”

Iﬂ(n‘l),ln For a crossing (3.4.5) the difference is

Io’Iv(l)”"’Iv(n-l)’In .

a transposition of two neighbouring intervals Iﬂ(m) and In(m+l) 5 Since



e 2

I1r(m) n Ik-l = [vk._l,vk] is a point, this gives the same function T_ =T

except at the bounceries of the J-intervals.

| E }
(3.4.8) "1 v
| | |
Ve-2 t : | k-2
T T Tataen) L1 T%-1
Le(m) P ’ i
v, Lr(mt1) Lot(m)
1 %In'(mﬂ.)
Tl g Lrt(me2) Yi+l

crmmsmemia.
e e

As already pointed out in (I.p.VI) a parallel slit domain £ = [Ll’""Lag;A]

gives rise to an interval exchange transformation. The cut points v, are
i

givensEy Vi T im(S.l) » 1 = l,...,4g . To determine the permutation of the

intervals Ik recall the sequence of numbers

(3.4.8) ¢ =0 |,
o

LTl if k is even ,

ACe,) if k is odd

which is defined up to a length of 8g , since 4 is regular (I.4.4.6).



In addition we have 11 =1 and 18 = 4g for any A . We extract the even]
8

indexed numbers and delete the first and last one,

(3.4.9)

And the remaining sequence of 4g-1 numbers is the permutation w = (22 16."
T = (22 L, . 183_2) in cycle notation. The interval exchange transformatior
b (Im(sl)”"’Im(SAg);(ZZ'"ZBg'Z)) depends on the representing configurati

L , but we have

(3.4.10) Lemma. If L

P

n
c
(ad

]ar
)
<

n
<

Proof: A crossing of a slit Lk-l < Lk over the pair Lk’LA(k) corresponds

to a crossing of vk-l = Im(sk_l) ove? the "pair" vk’vl » Where the ind;ces

are coupled by & = w(r '(k-1) + 1) . Compare (3.4.6) to (I.4.3.2). .

The assignment £ —> taiz is a surjective map from the space of parallel
slit domains onto a space of interval exchange transformations. We will

investigate this map elsewhere in more detail.

~
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3.5 Dyer-Lashof maps ‘(continued).

We are now prepared to define the Dyer-Lashof maps

-~ _ . ~n
(3.5.1) 9 = sgl,___,g : C(E) x PSQI(gl) R Psa:(gn) — PSdl(g1+ ...+gn)

for all 8y 20 ,n21 . Let (elpu,en) € E“(c) be an ordered configuration,
and let 1:1,".,£:n be n parallel slit domains of genus g,,...,8 , resp. .
On the configuration we consider the following relation: ey < ej if

Bs/z(ei) n BE/Z(ej) # 0 , where ¢ = s({el,.“,en}) is the distance function.

The following statements hold.

(3.5.2)
(1) e + e,
(2) either e, < e. or e, < e, or none
i j j i
(3) if e, < ej and ej < e > then e, < e
(4) if e re; < e  » then either e, < ey or ey < ey (i # j)
(5) if e < ei,ej , then either e, <e,  or ej < ey (i # j)

The last two properties imply that the entire configuration decomposes into
maximal chains ej < ei ) < < i, (which may contain only oge member).
The extended squares of any two ei,ej in distinct maximal chains have empty
intersection. The definition can therefore be reduced to two cases: (a) the
configuration consists of only one chain, and (b) the configuration consists

of chains with only one member. We begin with the second and easier case (b) .

Let (elpu,en) be an ordered configuratoin such that e; $ ej for any two
I
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members. Thus not only are the numbers Im(ei) distinct, their mutual

distances are at least € > 0 . Let i:l,",{:n be represented by configu-

rations Ll,"an , with Lk = (Lk,...,Lk ;A,) . Their transplants
1 4g, 'k
(3.5.3) N =e +EN(cH)
k i
are represented by configurations N, = e, + =N(L ) = (Nk...NZ ;A,) . The
. ; k= k2 k 1’778k Tk
configurations are contained in n disjoint strips K, = Rx [b_(Nk),b+(Nk)].

Le; Kk € E:n the permutation such that the sequence KK(I)’KK(Z)”'”KK(n) is
ordered by imaginary parts, i.e. B+(NK(1)) > b_(NK(l)) > b+(NK(2)) > b_(NK(Z)

> e > b+(NK(n)) > b (™) . Then

k(1) NK(l) < (2) NK(Z)

(1) (2) k(n)
yveey ’ yecey 9 NK(n) > /\K 2 \K e..-eX )
. AgK(l) L AgK(Z)

A8 (n)

is a configuration, and obviously regular. Its equivalence class N = [N]

k

depends only on the equivalence classes N = = [Nk} since all crossings in

some 'qu are still possible in IN . We denote this class by

n ‘\

(3.5.5) N =[N =N unN%U..UN

and define

n

(3.5.6) 5((el,...,en),(£1,...,£“)) =atunZu o uN

If By = - =8, then § is Eln-invariant.



(3.5.7) . ;
||

In the first and more subtle case (a) let (elpu,en) be an ordered configurat

consisting of one chain, and assume e < g LS -
n n-

rename the members eK(n) SIS < ex(l) for some « € §:n . Let I:lpu,iln be

. < e, < e otherwise we

the sequence of parallel slit domains, represented by Llnn,Ln » respectively,

We start by implanting i:l into the right-most square, the %—square around
e > and set

1 _ € Iy _ .1 1 1
(3-5-8) N el + 2N(£ ) = [Nl’.-.,NAgl’)\ ]

Let 13 = [vl,...,v4g ;wl] be the interval exchange transformation induced by
. k
N . The associated reparametrization TIJ *R— R yieldsamap T: RxR

— R x R, T(x,y) = (X’Txa (y) . This non-continuous self-map of the plane wil

be used to reparametrize the transplant

2 2 2
l’--.,NAg )'\ ]

2 £ 2
(3.5.9) N = e) + ibl(i: ) = [N
2

The intervals Jl'( = [vl-hk, vl-hk-l[ for k = l,eeeybg-1 , and Jé = [Vl,+°°[ ’

Jig = ]—w,vaglf are the maximal connected subsets of R oh which Tl? is
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continuous.

The strips R x Jﬂ € C partition the slits of I{Z by partitioning the index

set {l,u.,dgz} into linearly ordered sets
= [ - 2
(3.5.10) A ={i[1lsis 4gys Ny € R =« 3}, (k = 0.1,...4g)) .
. - : : 2
If J, is a point, then J& and A, are empty. Reparametrizing N~ by T

means (for the indices) shuffling the indices {L,..4g,} into {l,....g;} :

their new order is

() s b3l A1, 12y Tele -
(3.5.11) A LA (17,240 5)s 00508, trhatag 1) BrReg

: 2 -
The new slits are T(Ni) y 1= 1pn.4g2 ; and if re-ordered according to their

imaginary parts, their old indices occur in the order of (3.5.11) . We denote

K | k 1 E

F1 555 509D

2 2 2
by T(NA ) the sequence (T(Na ),T(Nak+-),.u,T(N2b )) if A, is the sequence

A k

The shuffling (3.5.11) determines also a new pairing function el € =
; B 4g, +ag,
in an obvious way.

.

‘ . A 7 . :
We now define the implantation of £° into a square around e, relative to

i , | P
£~ implanted into a square around e, to be the equivalence class
(35,12
2]l 2 j
[es £7INCT o= (T(NS )N, TN N, 12 N T )2l
o LA 2 A Nag. tV A, 7B
n(1l) n(4g1-1) 1 bgy

(Here € depends actually on the entire configuration {el,.",e } and not
n

only on e, .)
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(3.5.13) | ,
A A J I
.72 9 X '
T(N; ) - N; 1 0L | (o] (o]
0 ; _
o] ; Nl v : _— _ Vl
T(NT ) : I
An(l) Nl Al( ;Jl . :
2 f\ o 2
N, ) = t2
m(2)
I3
: !
1 .
N v
| 4gq 4g
A J 11
TV, ) - N "glt 4g) “e
431 Agl

To see that this relative implantation is continuous, it is enough to show that
it is well-defined. Assume in IQI a slit crosses a pair of slits; by Lemma
(3.4.7) this does not change T . The effect on the intervals Ik’ Jk’ Jé and
the indices partition Ak is only a renumbering by a partial cyclic permutation
This comes to a crossing in N . Assume in 512 a slit crosses a pair. If all
the three slits involved are not contained in any slit of N’ » this crossing
is also possible in N . If one (and hence two) are contained in some slit of
rql » the corresponding index switches from Ak to Ak+1 or Ak-l (being the
last in Ak and becoming the first in Ak+l » or being the first in Ak and

becoming the last in Ak-l)' Again, this amounts to a crossing in N .

It is now obvious how to proceed inductively along the chain en<...<e3<e2<e1
In the next step we regard [ez,el;i:z,ijl] as an entity and implant 133 into
a square around eq relative to [ez;ilzlbll] . And so on. This gives induc-

tively
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(3.5.14) [el;ﬂl] = e +Ench = nb
21 2 1
(ejre L7, L] = [esL |[el;£ T
k _k-1 1 k k-1 1
[ekek-l’""el;{: LT wensds ] = [ek;1: I[ek_lu",el;i: e

Having settled the second case (b) (when the configurétion consists of only one
chain) we can finally give the definition of the Dyer-Lashof maps, first in non

-equivariant form,

3.5.1 § = 39 : ¢°
( 5) 8t C'(c) x PSC(g)) x ... x psc(g ) — PSC(g,+ ... +8 )

The formula reads as

i i
&((el,...,en),(f.l,...,f_'.n)) = L1 [e; e sE TamL
e, <.ws<e, r 1

i i
T 1

1

where the union runs over all maximal chains in (el,"”en} . The union is in

the sense of (3.5.5) ; note that || is strictly associative, and commutative.

15 2 B, = - = B in (3.5.15) 58 . is E:n-invariant, and we obtain

e;‘ : ¢%(e) x Ppsc(g)" — PSC(ng) .

=
n

3.6 Main properties.

The Dyer-Lashof maps satisfy an associativity law. It will imply the commuta-
tivity of the sum operation u up to homotopy, and its compatability with the
stabilization o wup to homotopy. To formulate it we first need an operation

on the configuration spaces alone.
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T
Let T 2 1 and nl,...,nr 2 1 be given, and set n = = ni. There is a map
i:

1
£ =t"
nl:- 1nr
L S =M e n
(3.6.1) £ : C(C) x C "(C) x ... x C () » ¢"(¢) ,
- 1 -1 ~ " ~
t((el'""er)’(el""’en ),...,(el,...,t:.-n ) =
1 r
€ 1 1 € 2 2 € r E
((el + 2 N(ely---uenl)yez + ] N(el,...,en7),...,er aF 2 N(ely---aenr))

where € = s({el,....er}) , and N(zl,...,zm) is the normalized sequence (zi,...,z[;1
with zi defined as follows. If ¢ = c(zl,...,zm} = é sz is the center of
maps, and d = diam(hl""’zm) the diameter (in the maximal-coordinate norm) of
1 = L - Er 1 : . :
the set {.zl,...,zm} » then 2z} cl(zi c) . And e+2(z1‘,...,zm) is an abbreviation
€

for the sequence (e+-;: 2]t z') . Geometrically speaking, t implants the

; k . .
configurations , (elf,---,en ) into -;—-squares around the points e, -
'k

Note that, if n = .. =10, then t is Zr~invariant.

We define inclusions ﬁ; B Dé : PSc(g) —» El(m) x PSC(g) by Dé(i:) = (0,L)
-~ ~ - 1

and D; : PSC(g) — CZ(G) x PS(I(g)2 s Dé(f,) = ((+i,-i),£,L£) , and Dé is

D; composed with the projection to Ez(q;) x Psm(g)z .
=
2

Now we can formulate the main result of this chapter.

(3.6.2) Theorem. There are operations

e; . CME) PSC(g)” —» PSC(ng)

=
n

with the following properties.
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(i) (associativitvy)

v

for ¢

l,n21 and g 20 the diagram

id x (8M)F
= g
ct(c) = (C"(c) x pse(g)™* = » CT(¢) x PSC(ng)®
F > >
r n r
Tk (1d™F . 5T
n : ng
) &
: +
¢*(c) x psc(g)™ » PSC(rng)
= §tn
r : g
is commutative.
(ii) (unit) for all g 2 0 the composition is
Dl 81
psc(g) —2— Gl(c) x pse(g) —EBE— PSC(g)
= !
1
homotopic to the identity.
(4d) (squaring) for all g2 0 the composition is
p® | ' 32
PSC(g) —E—» &(c) « Psc(g)? —BE—» PSC(2g)
DI
2
homotopic to Hg,gc diag .
Proof: To prove (i), we need to know that diagrams of the following kind are

commutative, n = Zni .

i
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~r = n, n n_
(3.6.3) c(c) x (C () «x PSC(g;) *) x..x (C “(€) x PsC(g ) °)
= =
n n
i r
n n
fd %8 Lmyex t
g1 gr
~n i n]_ ‘ nr . ~
C(C) x (PS(T.(gl) x...xPSC(g_ ) ") €T (¢€) x (PSC(n g,) x...x PSC(n_g ))
T 1#1 ror
sgl,.“,gl, Snlgl,...,nrgr

Psm(nlg1 *eetng)

The proof is straightforward, but tedious. The assertion (ii) is clear, since
3;"Dé is the normalization map £ —=N(L) . And for (iii), we use the homotopy
from £ =+ £ o £ to £ — 9:(02(1:)) which normalizes the two copies of

L seperately in the upper resp. lower half-plane around +i resp. -i. =

Form [Boardman-Vogt 1968] and [May 1972] we have a well-developed theory of
"little n-cube operads", central to understand n-fold loop spaces. The configu-
ration spaces are such an operad for n=2, see (May 1972, pp.1,30]. This
operad, made to act on double loop spaces q2x » acts by Theorem (3.6.2) on the

space PSC = || PSC(g) in the sense of (May 1972; pp.4,40]. This will be used
gz20 , ‘

in the next chapter.

(3.6.4) Proof of (1.1.8 ): The homotopy M = puet comes from a curve in

EZ(G) which exchanges the two points +i ang -i



e

(3.6.5) ° i

~

Consider the homotopy f (1=',£2) = s2((ie™*,-1e™t), (£l £2) , 05 ¢ g 1
= g

We have fO =l b_V (3.6.2 (m)). And fl = HoT . ]

(3.6.6) Proof of (1.2.5): Consider for po(oxid) = gepu the curve

t — e(t) in 63((1'.) given by the figure.

(3.6.7) e . El
e, . 3‘._.‘(1)
ez - CZ

satisfies fo = po(axid) , and f1 = goy . Similar curves can be found to
make homotopies peo(idxg) = copy and po(oxg) = gegoy . .
We remark that the operations 8‘; do not generally commute with the stabili-

zation, i.e. the diagrams
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(3.6.8) -

' 9
¢"(c) x psc(g)” —=-B——» psC(ng)

2
n

id x (O)n "
Z:n

C'(e¢) x PSC(g+l)" ————— PSC(ng+n)

=
n

do not always commute up to homotopy.

3.7 Comparison with operations on braid groups and svmplectic groups.

On the group level the operations

(3.7.1) 8 : C'(€) x psa(g)™

=
n

» PSC(ng)

become homomorphisms from wreath products
(3.7.2)  Be() [f@) —— Fong)

(Here the notation QI.H = H]_G means: G S EZn is the quotient group, acting

as a permutation group on the normal subgroup " .). By the E:r-invariance of

t in case of n =..= n_ =g in (3.6.1) we obtain maps t; : CT(¢) x cB(q)
>
r

— Crg(m), see [May 1972;p.130]. For the groups, these are homomorphisms.

(3.7.3) Br(r) f Br(g) — Br(rg)



_36-

To connect the two, let <t : pt. —» PSC(1) the inclusion of the basepoint

{:(1) . Then the composition

(37.4)

~ i x"rg ~
B cB(e) = 8(e) x (pt.)® 44 T, B¢y « psg(1)8 — PSC(g)

= >
¢ g

establishes a homomorphism Br(g) —» F(g) . It is the easiest of several such
homomorphisms; it associates to a braid the mapping class turning handles around

each other according to this braid.

(3.7.5)  Proposition. The maps B commute with the operations t‘g’ and s;.
Proof: The diagram

C(c) x cB(g)t —t& | cT8(c)

>

r
id x (g )
= B fre
t
~r r
¢ (¢) x pse(g)’ —m8 —, PSC(rg) .
r N
= 9
- , g
is a special case of the diagram (3.6.3): set Ny See=n, =g, and 815 e =
g = 0 , and use that the diagram is then also E:r-equivariant. »

In the other direction, mapping out of PSC(g) , we have the monodromy homo-

morphism

(3.7.6) M : PSC(g) = BT(g) —» Br(g) —» BSp,,(Z)
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where the last map associates (on the group level) to a mapping class [y]
the homomorphism vy, : Hl(Fg;Z) iy Hl(Fg;Z) induced on the first cohomology
group of our reference surface Fg - Since the cup-product, being a symplectic
form on Hl(Fg;Z) == ng » is preserved, Y, can be regarded as a 2gx2g

symplectic matrix over Z . Without using geometry there are operations

(
(3.7.8) = ) szg(z) > szng(Z)
defined by letting the normal subgroup sng(z)“ act on (Zzg)n by direct sum
matrices, and letting the quotient group Zn act by permuting the summands.

Using the facts En(Rm) = Ezn and Cn(Rw) = BZn , we have maps

3.7.9)  s": ER") x BSp, (Z) —> BS z
( . 2 ng( ) pan( )
n
(3.7.10) Proposition. The monodromy maps Mm commute with the operations
8r and Sn .
B —/ 8

Proof: The assertion is thetommutativity of the diagrams

r
)
¢'(c) x psc(g)” B » PSC(rg)
=
L
Ux (M)T M
s B rg
T
S .
—_—
C (R )zx Bszg(Z) o BSPng(Z)
x g

Their commutativity follows from the fact that any implantation is gecmetri-

cally a connected sum; hence the first cohomology group splits (as a symplectic.

module) into a direct sum. .
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Chapter 4
The Homology of

Dyer-Lashof Operations

4.% The Dyer-Lashof operations Q0 and Ql .
4.2 The Browder operation Rl
4.3 Formulas for Q

4.4 Formulas for Ql .

4.5 Formulas for R1 .
The Dyer-Lashof homology operations will be derived from the Dyer-Lashof maps.

The Browder operation will measure the non-linearity of Q1 . For the definition

and the first properties we specialize to coefficients A = Fz .

It will become apparent that we can profit from the classical theory of homology
operations for loop spaces, as developed in [Araki-Kudo 1956], [Dyer-Lashof
1962], [Browder 19607, (Milgram 19661, [May 1972], [Cohen 1976] and others.
Especially [Cohen 1976] contains the whole apparatus for "little n-cube opera-

tions".
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4.1 The Dver-Lashof operations Qo and Ql'

The operations 32 =9 : C™(c) » PSC(g)™ —> PSC(ng) can be used to define
o
n

homology operations. We restrict our attention to homology with coefficients

in the field TF., of two elements and write H,( ) = H*(' ;F,) . Let n=2,

2

) ~2 ; ~2
and g 2 0 arbitrary. There are two coverings C (C) — CZ(C) and C°(C) x

. 2 ~ N

PS(II(g)2 —> CZ((B) x PSC(g)” . If w 1is a (singular) chain in C7(C) which
§:2 .

projects to a cycle w in CZ(C) , then, for any cycle x in PSC(g) ,

wezxex is a cyle in EZ(GI) x PS(I:(g)2 . Note that EZ(C) and CZ(C) both
2%
2

are homotopy-equivalent to a circle; indeed the covering Ez(ﬂ‘.) == CZ(“:) is

homotopy-equivalent to Sl — Rpl

. We denote by GQ and ;1 a 0-chain resp.
l-chain which project to the non-zero elements in HOCZ(G) and HICZ(C) 5 £ ]
denotes homology classes, and 9§, is the induced map in homology. The definitior

is

(4.1.1) Q, = Hqum(g) B quPSG(Zg)

Q (x) := 82,.,[; ®x ® x]

o g% o 2
(4.1.2) qQ : HqPSﬂ:(g) ———» H2q+1PSﬂ§(2g)v

Q,(x) := 3:},:[&1 ® X ® x]

Qo(x) and Ql(x) are well-defined homology classes.

The chains vy and w, are shown in a figure. v, is, of course, just a point

and wl is a curve.
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(4.1.3) vy Wy
e ® P
1 7 \
ez(t)f \
/ e,(t)
e, o e

The next figure shows schematically the homology classes Qi(x) , where the

homology class x is depicted only symbolically.

(4.1.4) Qo(x) Ql(x)
X X
t t
X X

The operation Qo is 1like a simple multiplication, and Ql is a closed curve
of such multiplications. They are the operations denoted by Q? » resp. Qq+l

- ) . +
for |x| = q in ~[May 1970; 2.2] or [Cohen 1976; p.213,248]; Q¥ is the

"top operation', since we use the two-dimensional theory, or double loop spaces.

4.2 The Browder operation.

If v is a cycle in Ez(m) , then v ® x ©® y is a cycle in Ez(m) x PSC(gl) x
PSE(gZ) for any two cycles x, y in PSC(gl) resp. PSG(gZ) . Since EZ(¢):=

S1 , there is essentially one such cycle v , which projects to twice Wy o The
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definition is

(4.2.1) R, : HpPsm(gl)«s Hqum(gz) R — Hp+q+lPS¢(gl+g2) '
Rl(x,y) = Sgl’gzz'e(v ®x® y)

The cycle v and Rl(x,y) are shown in the next figure

(4.2.2) v R, (x,y)
X
el(t)
t
. y
=

The operation R1 is the Browder operation in [Cohen 1976; pp.245,248].

4.3 Formulas for Q

The operation Q : Hqum(g) =i HZqPSE(Zg) is nothing but the squaring in

the Pontrjagin ring;

(4.3.1) (squaring) Qo(x) = x"=x i x
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for all x € H,PSC . This is immediate from the definition (4.1.1) and (3.6.2)(iii).

Since we work in mod-2 homology this implies

(4.3.2) (linearitv) Q (xty) = Q (x) + Qo(y) and
(4.3.3) (multiplicativity) Qo(xy) = Qo(x) Qo(y)

for any x,y € H,PSC . Recall the stabilization g, HqPS¢(g) —> HqPS¢(g+1)

The formula
(4.3.4)  (stability) Qu (9, (x) = a5(Q_(x))

follows from (1.2.5), proved in (3.6.6). If 1g € HOPSG(g) denotes the gene-

rator, then we have by (1.1.6(iii))

(4.3.5) (units) Qo(lg) = 12g
Let Sq_ : Hq( )=— Hq-r( ) be the dual Steenrod squares. In particular,
Sql = B , the Bockstein (boundary) homomorphism induced by the exact sequence

0 — Z2 - Z4 =» Z2 -+ 0 .

From (Cohen 1976; p.214] we have

(4.3.6) (Nishida relations) qurQo(X) QOSqr(x) s

59X = 0 .
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4.4 Formulas for Q1 .

Apart from the basic squaring operation QO we have only one other Dyer-Lashof
operation Q1 » which is the exceptional "top operation” in [Cohen 1976; p- 2177
We first note that Q1 is only a function, and perhaps not a homomophism; the

Browder operation R1 enters most formulas as an error term. But, of course,

Q,(0) =0 .
(4.4.1)  (linearity) Q (xty) = (x) +R (x,y) + Q(y) ,
(4.4.2) (Cartan formula) Ql(xy) = xZQl(y) + le(x,y)y + Ql(x)yz ’

for any x,y € H,PSC . The formulas follow from [Cohen 1976; Theorem 1:3°(5), (2)7.
But since Ql is only of degree one, we can argue geometrically, using for

(4.4.1) the following figure:

(4.4.3)
Q, (x+y) Q, (x)
X X X X
//J y R | y : * : *
Ql(y)
X X Yy
y y y

Rl(x,y)
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Here the "variables" x, y are not independent, but "alternative", since we
consider the sum x+y . The right figure shows three terms: they result from

writing the chain ;l(t) as a sum of four terms (after a homotopy) where t

is called tr tys tys t, on the intervals [0,1/4], (Y4, 71, (12,3/4] resp.
[3/4,1] - The two middle terms amount to Ql(x) and Ql(y) » whereas the sum

of the two outer terms is Rl(x,y) .

If, in the same figure, x and y are regarded as independent, it provides a

proof of (4.4.2).

For the basepoint class 1o =1€ HOPSG(O) we have obviously

(4.4.4) Ql(lo) =90

Since o,(x) = x "1, » we have Q, (o, (x)) = oi(Ql(x)) + c*(le(x,ll)) i xZQl(ll)
for the behaviour with respect to stability. For the Steenrod squares we find

from [Cohen 1976; p.217,(3)]

(4.4.5) (Nishida relations)

; SquQl(x) = leqr(X) + }E Rl(sqi(x)’shj(x)) ,
i+j=2r
i<j .
S1001 0 () = Q89 G0+ N R (Sq,(x),5a, ()
i+j = 2r+1

fi<y
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4.5 Formulas for Rl .

Psm(gl+g2)

The binary operation Rl: HpPsm(gl)'s HqPS@(gz) — H

ptq+l

occurs as an error term in other formulas. But in the same sense as Q; is the

degree 1 analog of the squaring operation Qo » R is the analog of the sum

operation u . Here are some of the formulas. 1
(4.5.1) (commutativity) Rl(x,y) = Rl(y,x)
(4.5.2) | Rl(x,x) = (

(4.5.3) (unit) R, (1,x) =0 = R, (x,1)

for the unit 1 = lo € HOPSG(O)

(4.5.4) (Cartan-formula)

Rl(xy,y'y') = le(y,x')y’ - Rl(x,x')YY' + x'le(y,y') + x'Rl(x.y')y .

(4.5.5) (Jacobi identity)

Rl(x’Rl(y’Z)) + Rl(Y,Rl(z,x)) + Rl(z,Rl(x,y)) =0

(4.5.6) (Nishida relations) Squl(x,y = j{ Rl(Sqi(x).qu(y))

it+j=r

(4.5.7) (Bockstein relation) BRl(x,y) = Rl(Bx,y) + Rl(x,By)

(4.5.8) (Adem relations) Rl(x,Qo(y))

I
(=}
I

Rl(Qo(x).y)

o
|

R (x,Q,(y) =0 = R, (R, (x,y),¥)
|
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The formulas (4.5.1) and (4.5.2) are only true since we work modulo 2, see
(Cohen 19763 p.215,(3)]. In the same reference we find (4.5.3) as (4), (4.5.4)
as (5), (4.5.5 ) as (6), and (4.5.6), (4.5.7) as (7), (8) on p.216, and (4.5.8)

as (4) on p.218.
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Chapter 5
The Geometry of

Symplectic Operations

Stel! .Configuration spaces of vertical pairs.

5.2 The subspace of partitioned parallel slit domains.
5.3 1The operation.

5.4 Main properties.

5.5 Double braid groups.

Since the Dyer-Lashof operations implant entire parallel sleit domains into
patches moving in the plane, they make very little use of the more intricate
structure given by the slits. The smallest units they operate with are handles.
The new sort of operations take several parallel slit domains apart into an
upper and lower half and implant the halves into vertical pairs of rectangles
moving independently in the plane. The disadvantage is that these operations
are only defined on a subspace of PSC(g) ; but the stabilization of these

subspaces is homotopy-equivalent to PSC(w)
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5.1 Configuration spaces of vertical pairs.

= = s o
Let E™(C) be the ordered configuration space of n-tuples ((el'el)""’(en’en»

of vertical pairs in € , i.e.

(5.1.1) (1) eJ.l’ - e;,le for all i,j with i = j ,
(2)  Re(e}) = Re(e]) for all i,
+ -
(3) Im(ei) > Im(ei) for all i .

E™(C) is a 3n-dimensional manifold with a free Zn-action; we write En(C) =

=n
E (‘II)/ZZn .

We obtain subspaces ﬁ?(ﬂ:) = E™(C) and EI}(G!) = ﬁ‘_‘(a:)/zn c En(E) by replacing

(3) above by
+ -
(3 Im(e;) >0 > Im(ei) for all i .
These configuration spaces are related to the old ones by inclusions

(5.1.2) @) 2> Be) < F%¢) ¢ E2%c)

o |

(@) — EN0) ¢ E%®) ¢ (o)

In’

In
In

where :(zl""’zn) = ((el,gl),...,.(en,;n)) where e, = 2z, = id with

d = min {Im(e.)} + 1 .
j J

~

To study the spaces C one uses the fibrations ‘



(5.1.3) @) +— " He-1) — ™ 2¢-1,2) — ... — &

| l

C C-1 C-1,2 oerns

(see [Fadell-Neuwirth 19621, [Birmann 1974]. The restrictions to E”(m) (and

E?(GD give fibrations

(5.1.4) Ee) — B NC-21) o ER2(C -44,180) &— ... — EHC-i,...)

I |

o) El(C- 1) Bl(c-+i,158) ...,
1 , .
(5.1.5) Lemma. E"(C- #i,..,(k-1)+i) reso. E}(G -ti,..,(k-1)ti) 4is homo-

toov-equivalent to a bouauet of 5k resp. 3k circles. a

{5.1:6) Proposition. i“(m), E?(m),E“(c) and E _(C) are Eilenberg-MacLane

spaces K(G,1) .

Proof: :By the lemma, the higher homotopy groups Ty » * 2 2, of all base
spaces and the last fibre in (5.1.4) vanish. It follows by induction on n
that the higher homotopy groups of E™(C) vanish. The same follows for the

quotients E(Q) . ' .

Proof of Lemma (5.1.5): First consider ﬁl(m-ti) . The map (e+,e-) —
-+ 4y - .
(e ,e'-e’) 1is a homeomorphism onto a subset of (C- {%i}) x R, , which is the

complement of four lines, two of which intersect.
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This complement is retractable onto a 6-fold punctured sphere. A Mayer-Vietoris

argument completes the proof for k > | . For E% ‘the proof is now similar. =

5.2 'The subspace of partioned parallel slit domains.

For a parallel slit domain L = [Ll,uq 45 5A] consider the condition

(5.2.1) Li ¢ R for all i l,ybg .

N

Note that it is satisfied elther by all or none _of the representlng configu-

ration. Assume the index set decomposes into two subsets ({l,...,4m} and

{4m+1,...,4g} which are invariant under ) . Then the first 4m slits and the

last 4(g-m) slits form a parallel slit domain all by themselves, one in I

and the other in W . (5.2. 1) and the invariance of the two parts under A

prevents moving a slit from H to H , or vice versa. Thus we have g+l

components homeomorphic to PSC(m) x PSC(g-m) , m = 0,1,...,g . But there is one

more component: define PSC (g) to be the subspace of all £ € PSC(g) satis-

fying (5.2.1) and in addition:
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(5.2.2) there is an index k such that k < A(k) ,

L < H and LA(k) c H

(5.2.3) Proposition. PSC (g) is a connected, open submanifold of PSC(g)

Proof: We only have to show the connectivity. Pick 4 € PSC (g) and let. k
be a bridging index as in (5.2.2). We will construct a path in PSC (g) from
£ to L' giQen by Si = (0,1) , Si = (,-2) (2 = 2,...,4g) and A' = (1 3)

(2 4) ... (4g-3 4g-1) (4g-2 4g) .

In a first move we make 4 generic, i.e. all slits disjoint. Then we bring
all slit endpoints to the imaginary axis. There are two groups of slits Qe have
to move to the lower half-plane: the sequence A with indices 1,...,k-1 , and
the sequence B with indices k+l,..,m , where m 1is the largest index such

that L < H .
_

(5:2.4)
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We cross the sequence A downwards over the pair L, , LA(k) , starting with

1
Lk-l , to become a sequence A' between LA(k) and LA(k)+l . Then we cross

the sequence B wupwards under the pair Lk 5 Lx(k) , starting with Lk+1 » to

. The remaining way to L'

become a sequence B' between L and L

A(k)-1 (k)

is the same as in the proof of Proposition (I.4.5.6), where the connectivity

of PSC(g) itself was proved. =

If £ €PsC (g) and L = (Ll""’L ) is a representing configuration,vthen

Ag;A

we write L = (Ll”'"L Lm+l""’L4g;A) to indicate that Ll""’Lm < H aﬁd

ol

Hn+l""’L4g c H . The index m depends on the representative. We denote the

upper and lower half of £ by {:+ resp. L0
A partioned parallel slit domain can be taken apart: the map (Llp",Lmle+l,nq

Lag;l) —> [Ll+a’"“Lm+ale+l+b’"”L +b;A] is continuous as long as Re(a) =

4g
Re(b) .

The difference between PSC (g) and PSC(g) vanishes under stabilization. But
first note that PSE.(g) is not invariant under stabilization, in fact, PSC.(g:
is mapped by o .to the complement of PSC (g+l) . This is overcome by another

stabilization map.
(5.2.5) s : PSC(g) —> PSC(g+l) , s(L£) =a(L£) + _52_ 2

Since s(£) € PSC (g+l) , s factors as joS =s , where j 1is the inclusion

PSC_(g) —» PSC(g) .

(5.2.6) s, : Psc (g) » PSC (g+1) by

s (£) =s ((L,,L_[L



With S1

2 -
inserting the pairs (I..1 L3») (1" La) ‘between L and L
, m m

[+ 2i',...,Lm+ 2i,L

2 3

s =i, 8" =
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1 .2

» L |L3 4

sk ’Lm+l

37ty

,L

(5.2.7) i
™
. ret
i ’
LZ
__________ N
L3
e -
e 7 / ,// // 7 /
e 3 o . . i
/ ’/ ’/ 7 / o // -
- - y v . / // 7 //
s ‘/ﬁ // /// // 7
(5.2.8) Lemma. In the diagram
PSc(g) ——5 > Pst(g+l)
PSC (g) ————> PSC (g+l)
(1) 0 = s =joS and
(ii) S, = Soj
Proof: (i) is obvious from the definiton (5.2.5). A homotopy from s,
So j consists of several moves. First the two slits

!

4

. 4
-i, S =-2i , and A'

-2izA!
g ]

1

L and L

is obtained from

in

A

to

s (L)

by
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are moved horizontally further left than all slits Li of £

(5.2.9)

4 : .
Then 4= _ is moved upwards over the pair LZ,L (starting with Lm+l"'"L4 )

2
thereby rescaling £  to fit between I..l and L° .

(5.2.10) :
e VA V-
AR A s, S
1 :
7 !
& // 4 : 4 4 ’ / -~ /
‘ 7 A c’
‘ e /
4 : 7 , / - 7
i H ‘
___________________________________ R
73
LA

Next note that 4= - or better say the slits Llﬂu,Lm,L

configuration; therefore the vertical through S; is connected after regluing

m+1""’L4g form a sub-

according to the interval exchange transformation induced by 4 . The path

1
from Sl to the point marked x in (5.2.10) is connected, and we move L~ or



Siggi

1

S downwards along this path; during this process Ll will necessarily go

through parts of £ and {:+ , because R 1is by (5.2.2) not a separating

curve.

(5.2.11) {:+
!
rE.
)

Ll —_— L2

Up to rescaling, this final position is s(L£) .

We use s, to stabilize PSC _(g) to an infinite PSC_ (=)

consequence of the lemma we note

(5.2.12) Proposition. PSC_(«) » PSC(w)

is a homotopy-equivalence.

= 1lim PSC_(g) . As a
S,

As with the stabilization we use a different sum operation for the spaces

PSC_(g) -

(5.2.13) u =y : PSC(g;) x PSC (g,) —> PSC (g +g,) -

8,78,

The easiest way to give the definition of u'(1:1,1:2,)‘ is by the following

figure



S

NN 2
\\\ £
\ R R +
s e e e e - - L - . - - - - - - - - R
NN DY \\\l’:z

(5.2.15) Proposition. The diagram

PSC(g,) x PSC(g,) — PSC(g,+g,)

S N

PSC,(g,) x ST (g,) —+— psc (g, +8,)

is homotopy-commutative.

Proof: The homotopy moves i:i . 1:1 far to the left, and then weaves

upwards through I:% and i:i

5.3 The operation maps.

We can now define the new operations

(5.3.1)  9: E“(a:)_g PSC_(g)" » PSC(ng)

n
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This time we will not give formulas, since they would be similar to those in
chapter 3.

- + -
Let ((e;,el),".,(en,en)) be a configuration of pairs, and let i:l,".,Lln be n

partitioned parallel slit domains of genus By o8y - The supports of I:k
are divided by R in;o an upper and lower part, of different size in general.
. k : 1 k k k . .
Let c (£7) denote the point z(a+(i: )-a (£7)) on R ; £ is normalized
so -that C‘(I:k) becomes the origin, and that the support is contained in the

. +
unit square around the origin. Around the points e; we attach upper or lower

k
halves of squares, small enough to be disjoint. Then one starts to implant upper
and lower halves 1:5 of i:k into these half-squares: again one must start

with the utmost right vertical pair(s), and later implantation must be done

relative to the reparametrized y-axis.

(5.3.2)

2 (2]

This gives first maps

(5.2.3) 8 : EN(C) x PSC (g)) x...x PSC (g ) —> PSC(g,+ ... +g,)

with g, = .. =g =g and using the T -invariance we get (5.3.1). If we

restrict 8 or 9 to E.(G) , we obtain maps
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(5.3.4)  §" : E%c) « BSC.(g)) x..x PSC (g ) —s PSC (g +... +g_) ,
and

(5.3.5) 8 E:{‘(m)zx PSC_ ()" — PSC_(ng) .

n

5.4 Main properties.

Recall the inclusions ﬁ?(a) < E“(m) - E“(c) . If we restrict the. configu-
rations in (5.2.3) tg the subspace f:’_l(n‘,) » then the image of § jis containe

in PSC (€) . The operations are compatible.

(5.4.1) Proposition. For all o 21,820 the diagram

En(c)zg PSc(g)" —3_, PSC(ng)
n

[

E“(m)}; PSC, (g)" —— PSC(ng)
n

ﬁn(C)§§ PSC_(g") ——— PSC(ng)
n : [

E?(m)zg PSC (g) ——— PSC_(ng)
.

is commutative. : o
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For the associativity we need the following structure maps, which amount to

operations themselves,

n n
(5.4.2) € : ET(E) x E,'(€) x.ox E,T(C) —» ENC)

n = )ZZni . The figure below is a better explanation than a formula.

(5.4.3)
le
.“l I,. .\ .\
[ : w2 fi e . ..
S AR S BN S o B O B B SR
-.; “‘ : 'S \: ’ \\:
S -" n= 2 n,= 2 n,= 4
r=3
/i
-,v_\_
R - — - - - —_\ - -4
!
]

n
Define inclusions D% : PSC (g) — E 1((]:) x PSC_(g) , D].‘(j_',) = ((+i,-1),L£) ,
2 2 N
and D7 : PSC_(g) — E (m)i PSG‘._(g)Z , D?(f. ) = (((+21,-21),(+i,~1)),L,L£) .
2
After these preparations we can formulate the main result.
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(5.4.4) Theorem. There are operations
a; : E™(¢) ;; Psm_(g)“ — PSC_(ng)
n

with the following properties.

(i)  (associativitv) For all r 21, n 21 » 8 2 0 the diagrams
id x (eMF
~r =n n\r _ : ~r T
E.(G)Eé (E,(€¢) x Psc_(g)") > E.(E)z; PSC_(ng)
r r .

t x (id)T 9t
> ng

PSC_(rng)

v

E;"(C) _x psc_ (g)™
Zm

(i)  (unit) The composition

1 1
D 3
PSC (g) ———» El(¢)§§ PSc_(g) —E—» Psc (g)
1

is homotopic to the identity.

(iii) (squaring) The composition .

2
2 9
D
PSC_(g) ——» i:%)g PSC_ (g) —E— PSC_(2g)
2

is homotopic to o diag . .
B»8

As with the Dyer-Lashof operations we appeal to the figure (5.4.3) for a proof
of (i). The other two assertions are clear.
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(5.4:5) Proposition. The diagram

Psm_(gl) x PSG.(gZ)

u
gl’gz

T ////////T/, Psm'(g1+g2)
u
8,8

Pse (g,) x PSC (g,)

is homotopy-commutative, where 1(131,1:2) = (i:z,i:l) .

Proof: The figure

(5.4.6)
shows a homotopy from 82 to 52 ot . And p. is homotopic- to
1782 8,8 818,
2 . . T
(£,,£,)) — Sgl’gz((+21. 2i),(+i,-1),£,,L£,) . | .
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5.5 Double braid groups.

Recall that E(C) and E?(m) are Eilenberg-MacLane spaces K(w,1) ; we may
call their fundamental groups double braid groups. By (5.4.2) they come
equipped with operations, and - as in (3.7.4) - with homomorphigms WIE?(C)
—> 7 PSC_(g) , making the operations compatible. But we have not investigated

1

the groups involved.



=63 =

Chapter 6

The Homology of

Symplectic Operations

6.1 Definition of the symplectic operations Qi and QY .
6.2 The operations Ri and Rf .

6.3 Some formulas.

The symplectic operation maps will allow to define two more homology operations
Qi . Q} of degree 1 . There are two binary homology operations R; , R;
measuring the deviation from linearity. There are similar formulas as for the

Dyer-Lashof operations.
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6.1 Definition of the svmplectic operations Qi and Qf :

For the symplectic operations we restrict ourselves to mod-2 homology H.( ) =

) = ~
H*( ;IFZ) . To define them we need 1l-chains v, in E(C) which are already

=9 -2
in E7(C) cycles, or which are cycles w, when projected to E2(¢)= E (G)/E:z.

%
=0
From Lemma (5.1.5) and (5.1.7) we see that E-(C) is a bouquet of 5 circles.

The best way to see them is as the union of 6 intervals, corresponding to the

~0
following 6 paths in E~(C)

(6.1.1)

"'2; ! . - _1
The E:Z-action o E7(C) 1is then the antipodal map, mapping L) to (wz—l)

(as an element of the fundamental gruppoid) are inverse to each other. Thus the

chains W, and 55 y Tesp. w. and ;& , resp. w, and ;3 project to the

1
- ~2
same cycle W] » Tesp. W, , resp. wy in Ez(m) . W, comes from C7(C) >
EZ(G) » L.e. 1*(61) = ;l (see (4.1), (3. . )). And ;2 and ;3 are in



S

i?(a) . Therefore we only define with ;2 and v:v3 two new operations of degree

one:

. 1 "o, —_— 2
(6.1.3) YA - qusm(g) > H2q+1PSE(_g) ,

Q{(X) = 32* [GZOXOX] and

Q)(x)

Sé [;3 ®ex®x]

>

The schematic picture is as follows.

(6.1.4)
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6.2 The operations Ri and R!" .
5 8

~ . e =9
The chains wij = wi+w.'1 are cycles in E“(C) ; their homology classes are

subject to relations [wii] =0, [wij] = [wjij s [wij] + [wjk] = [wik] . As

a basis one can choose ;12 for & = 2,...,6 . The class ;16 comes from

) =2 ; -
c(a) ' » E-(C) , and was denoted by v in 4.2 . We define binary operations

(6.2.1) Ry prsa:.(gl) ® HqPSG-(gz) — PSC (g,+8,) »

Hp+q+1
Rij(x’y) =3 LW, . exey] (1 £i,j <6).

818y 1]

There are relations

o R.. .. = 2
(6.2.2) ii le i ij & Rjk Rik

]
o
[
=]
=

We need especially R! :=R and Rf_:= R they will play the role of

1 25

symplectic Browder operations.

34

(6.2.3)
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6.3 Some formulas.

The operations Qi , Qf are merely functions on homology classes in H,PSC .

The formulas

|
o

(6.3.1) (zero) Qi(O) = Qf(O) =

(6.3.2)  (unit) Qi(” Qi'(l) 0o , IGHOPSGI(O).

follow directly from the definitions. For

(6.3.3) (linearity) Qi(x+y) Qi(x) + Ri(x,y) + Qi(y)

[]

Qi‘(x+y) Qi’(x) + Ri’(x,y) + Qi‘(y)

(6.3.4) (Cartan formula) Qi(xy) = xZQi(y) + xRi(x,y)y + Qi(x)yz

Qi'(xy) = xZQI(y) + xRi'(x.y)y + Qi'(x))'2

one considers thé following figure, analogous to (4.4.3).
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(6.3.5)

There are many more formulas of this kind, involving one or several of the

operations i s Qf v Ri and Rf . To connect them to the operation Q1 , we

mention

(6.3.6) Ql(x)

Qi(x),+ Rlz(x,x)

Q(x) + R 4(x,x) in H,PSC(g) ,

'
'

which are derived from [wI] = [wz] + [;12] = [§3] + [;13] 5
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Chapter 7
The Geometry of

Higher Genus Operations

7.1 Operations from a single surface.
7.2 The universal surface bundle over PSC(g) .

7.3 Operations from families of surfaces.

The operations considered so far had as parameter spaces certain configuration
spaces of the complex plane. We will now describe some operations parametrized
by configuration spaces of surfaces. This enables us to use the homology of

these spaces to induce homology operations; e.g. operations of degree 2.

In a second step we generalize this and the conformal class of the surface.
Then the parameter space for operations is a fibrewise configuration space of

the universal surface bundle over the moduli space itself.
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7.1 Dyer-Lashof operations from a single surface.

Let £°=[L°] = [L?""’ng ;2°] be a fixed parallel slit domain of genus
o
g, - Away from the dipole P = » and the stagnation points s?."“szg the
0

. o q
associated surface F(L~) has canonical x,y-coordinate charts. The deleted
surface
o =0

S, 1

-~ oy _ oy _ w &
(7.1.1) F (L) =F(LY) - { 1S seens g,

where §i denotes the image of Sz in F(L£), has m = m(L£®) punctures;

m can vary from 2 to 2g°+1 . The configuration spaces

(7.1.2) cNL®) = SNFET(LO)
c(c? - ELN /=

depend on g, and m . They are Eilenberg-MacLane-spaces by [Fadell-Neuwirth
1962; p.113], since the underlying surface is never closed. Their fundamental
groups are sometimes called braid groups of the underlying manifold; presen-

tations are given in [Scott 1970].
There is a new distance function e : C"(£°) —» ]10,2[ induced by the maxi-
mal-coordinate norm where this time we take the punctures into account,

) = E _ =0 a0 '
(7.1.3) E({elpu,en}) min {llz-z2'lz,z' € {eln",en,Slp.qsag}. zzz'} |

It is now clear what an e-square Ba(ei) around e, means. Also the notion
of an extended e-square ﬁe(ei) and the order relation < of (3.5.2)

extends to the new situation. _ f
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To define the Dyer-Lashof maps in this situation

[}
(<=}

o (L) « Psc(g)"”
e z

(7.1.4) 9 > Pso:(go+ng)

we proceed exactly as 1in (3.3): only we assume that £° has been implanted
already (in its original position and size) as a first implantation. This

defines maps

’ = . 2R, 0
(7.1.5) 8 = 851""’311 e C (L) % PSG(gl) X \eu X PS¢(gn) — PSC(go+g1+ g

which give by §:n-invariance (7.1.4) when By = B, T8 -

(7.1.6)

£ 8o T 0 and therefore £° = [#] , then F ([P]) = C , and we are in the

old situation.

The associativity relations require to let the conformal structure of °
vary as an additional parameter. Before doing so we briefly treat the

symplectic operations. For the symplectic operations we used the notion of
a vertical pair. This is still possible on any surface F“(i:o) by using

the harmonic function h (which is just the x-coordinate). Thus we can

L
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define E"(L£°) for £° € PSC_(g) . The condition (5.1.2) (3'), defining
the subspace E?(i:o) » is now to be interpreted that no point ei lies on
R ; that does not exclude a point moving from one half-plane to the other
by crossing a bridging pair of slits. The distance function and the notion
of an (extended) square also carries over. Proceeding as usual we find .

operation maps

(7.1.7) 9 L8 EN(L) x psc (g)" —> PSC, (g_+ng) -

£ g Eln

7.2 The universal surface bundie over PSC(g) .

The space PSC(g) supports - as the moduli space of directed Riemann

surfaces - a universal surface bundle FSC(gO) . The easiest definition is

EDiff+(Fg,x) x F — BDiff+(Fg,x) = Br(g) = PSC(g) , which is not
Diff+(Fg,x)

useful for our purposes. As a set,

(7.2.1) Fst(g) = i F(L)
£ €PSc(g)

m&g be 4g+l disjoint copies of € =C U =

a point in &m will be denoted by (z,m) . Recall the space RegConf(g) from

To give the topology, let &o,"q

(I.4.5.1) the gluing rules (I.4.2.3) and the crossings (I.4.3.2) . 1In

RegConf(g) x (éo U..UC, ) we consider the subspace given by all (L;z,m) =

4g

(L, ,...,L, 3;A3;z,m) such that
1

Ag;

(7.2.‘2) Im(Sm) a‘Im(z) 2 Im(Sm_H)
J
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In terms of the gluing process for F(L) , z lies in the m-th strip F" of
L ; see (I.4.2.1). For m = 0 resp. 4g the left resp. right condition is
to be disregarded. On this space we consider the equivalence relation = .gene-

rated simultaneously by crossings and gluings:

(7.2.3)
(1) if (z,m) ~ (z',m') in L, then (L;z,m) = (L;z',m') ;
(2) assume L ~ L' by a crossing of Lk-l over the pair Lk’L/\(k)
with k < A(k) ; set h = iIm(S)\(kl).-‘Sk) 3
s . ',
(2a) if z ¢ Lj-l’ Lk’ L}\(k) , then (L;z,m) = (L ,z,p(m)) where o
is the partial cyclic permutation p = (A(k)...k k-1) ;
(2b) if z€L _; Sl and m=k-2, then (L;z,k-2) ® (L';z,k-2) =
(L';z+hk;A(k)-l) R
(2c) if z€L _, Sl and m=k-1, then (L;z,k-1) = (L';52+h, ) ,A(k))
(24) if z€1L,y and m=A(k) , then (L;z,A(k) = (L';z,A(k))
(7.2.4) L i . L'
L, } L!
k-1 o Jk " . A‘k-l
§ Ll
Slk)-1
X — —— —Y
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The.mép m : FSC(g) — PSC(g) , w(L;z,m] = [L] is well-defined (and therefore

continuous), because the crossings influence the gluings, but not vice versa.

(7.2.6) Proposition. T is a locally trivial fibre bundle with fibres

homeomorphic to a surface of genus g .

Proof:  We use the components of RegConf(g) (or rather their image in PSC(g))
as parts over which m certainly is a product. Each such component is deter-

mined by a pairing function A € = which is connected in the sense of

4g

(I:4.4.6). Note that these components R, are not open (in PSC(g)), the

A
boundary consists of such configurations L = (Ll”"’LAg;A) with Lk—l c Lk ,
or Lk+1 €L, for some k . In RA choose as a basepoint the configuration
L' with Si = -ki . We contract RA to L' by the following homotopy: a
configuration L is translated downwards below the horizontal Im(h) = -(4g+1) ;
then the slit endpoints Sx are moved along a straight line to Si = -ki ,

one after the other, starting with S, . Note that L stays in the component

1

RA all the time, and that L stays regular (since no forbidden subconfigura-
tions are created). Let F' = F(L') be the fibre over L' . The contraction
just constructed lifts to a (tautological) deformation of w-l(RA) : a point
(L;z,m) over L first follows the translation downwards, then remains
constant while the first m slits move to their final position, and finally
moves upwards with Lm+1 » then remains constant again. From fibre to fibre,
these are piecewise affine homeomorphisms. If we make the provision that =z

remains for all time a point on Lm+ if it was so at the beginning, then

i}

these homotopics extend over a neighbourhood of the boundary of Ry . =
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7.3 Operations from families of surfaces.

In each fibre F(L£) c FSC(g) the set SB(L) of all stagnation points is
the image of the set of slit endpoints Si (i=1,...,4g) under the gluing
identifications. If counted with multiplicities, S8(L£) has 2g elements.
Furthermore, (L) varies continuously with 4 , i.e. there is a section
% : PSt(g) — SPZg(TT) into the 2g-fold fibrewise symmetric product of
FSC(g) . M isely, define S$P. (m) W yeeoWs ) € FSC(g) 2B | n(W, )

0 5 (o] (] . = A O =

g re precisely, define 2" {( 1 28 g m(W,

= Tr(wzg)} , and set SPZg(v.r) = é‘i=(1r)/zzg . The cardinality of S(L£)

varies between 1 and 2g ; thus the image of $ - taken as a union of the

sets SB(L£) - is a finite, branched covering over PS@(g) .

Similarly, let SB(L£) = S(L£) U = define an element in SP2g+l

(m) . We are interested in the complement F (£) - S(L£) . Denote by

(F(L))
s}?Zg+l

(7.3.1) FSC(g) = FSC(g) - USB(L) = UF(L)
£ - £

the complement of all stagnation points , and the restriction of T to

FSC (g) . is denoted by =~ . Although it is not a fibration, we can form the

~

fibrewise configuration space

~

(7.3.2) c"(g) = LW ) € Fsm'(g)“lwiij for i=j ,

w“(wi) =l = u'(wn)}

The W' = [Ll,zl,ml] in such a configuration must have the same [Li] = (L] ;

SO we can write [L;(zl,ml),...,(zn,mn)] . We set

(7.3.3) <@ = )/ x_
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Both spaces are spaces over PSC(g) ,

(7.3.4) c"(g)

b

c"(g)

PSC(g)

N

PSC(g)

with configuration spaces En(F“(i:)) of deleted surfaces as fibres. For each

n there are sections

n

(7.3.5) ¢ : Pst(g) — C(g),

with 2° = (a,([L]) + 1(b ([L]+1) .
The distance function € :C"(g) —» ]0,»[ 1is determined by the distance

functions in the fibres C™(F7 (L)) .

Our aim are maps

~ ~n
(7.3.6) $:Cg) x Psm(gl) X e X Ps¢(gn) —r PS¢(g°+gl+..p+gn) ;

and 9 : E“(go) x PSC(g)" — PSC(g +ng) ,

=
n

for any n 21 and 8;>8 2 0 . Again we will not give all details. The left
sides are spaces over PSG(go) ; the fibre over £° is C™(L£°) xPSC(gn) .
On this space the map § was given in (7.1.4). So § 1is defined on the

entire space. The continuity follows if 8 is well-defined with respect to
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: o : :
the equivalence classes 4 ; we omit this here.

To formulate the associativity let

(7.3.7) €:C(h) x E l(hl) « v x € T(h) — &)

with n = nl + ... + nr and h = h0 + hl R hr , implant r configurations
of respective lengths n, lying in some paraliel slit domains £ of

genus hi » into squares around r points, lying in a parallel slit domain

of genus ho .

(7-3.8) (associativity) For r,n21 , h, g,» 8 20 the following

diagram is commutative.

id x (8)F
~T =n n.\r zr b o
C'(h)) x (C(g ) x PSC(g)")" ——F——— C"(h ) x PSC(g_+ng)
E = =
) 5 n )
t x (id)" 9
< .
r
-~ ) ° rn R ‘\
C(ho+rgo) zx PSC(g) = > PS(]:(ho+rgo+ mg) »

m

~

All Dyer-Lashof operations constructed are special cases of these last ones.

For the symplectic operations we proceed similarly. One defines the parameter
spaces E?(g) as subspaces of azn(g) R E?(g) = LJE?(i:) , £ € PSC (g) .

then there are operations

(7.3.9) E“_‘(g‘o) x PSC (g)") —s PSE,(gOMg)

=
n
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Chapter 8
The Homology of

Higher Genus Operations

8.1 Some examples of higher operations.

The parameter spaces Cn(g) for the higher operations have a rich homological
structure. For example, it allows to define operations of degree 2 and higher.
We confine ourselves to some examples, since we have so far no systematic

treatment for these homology operationms.
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8.1 Some examples of higher operations.

About the homology of the higher genus operations we do have very little

systematic knowledge so far. But we can give some justification and examples.

- We remark first that the homology H*c"(1:°) of configuration spaces of
(deleted) surfaces F(£°) is known by [Bédigheimer-Cohen-Taylor 1989],
(Bédigheimer-Cohen 1988] and (Bodigheimer-Cohen-Milgram 1989]. The coefficients
are in a finite field or in @ .'For operations in mod-2 homology one uses
Cz(i:o) as a parameter space. If the genus g, of £°% is positive, then
there are several two-dimehsionai classes, in contrast to C>(C) and E?(G)

In fact the rank of HZCZ(iZO) grows quadratically in g, - These classes

induce operations of degree two.

Note furthermore, that the parameter spaces Cz(go) have non-trivial homology;
since there are sections to the map Cz(go) — PSC(go) , the homology of

Psm(go) is a direct summand of the homology of Cz(go) .

We finish with some examples.

. 1 .
(1) Let L € Psm(go) be fixed and consider the curve w in C(L£) given
in figure (8.1.1). If 8 1is the operation clic) « pSt(g) —» Pst(g +g) ,

the induced homology operation 0, : HqPSG(g) —> Hq+1PS¢(go+g) ’ QI(X) =

1
9,[w® x] , is depicted in the same figure. We clearly have 6,(x) = Rl(lg »X)
o
for 1 € HPSC(g) .
o
e
| N
+ L + Eo
L )
W Gl(x)
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(2) For the same £ , take w' to be the curve in Ez(i:) shown in (8.1.2),.

i) . ;
(8.1.2). Then 98 : C°(L£) x PSc(g) —» PS(lI(gox 2g) ‘induces 01 : HqPSC(g)
2 .

2
— H2q+lPS¢(go+g) “ Gz(x) =9, [w' ® x ® x] . This time we find Gz(x) =
Ql(x) + Rl(lg SX)
(o]
{(8.1.2) e,
X
] ] l
! ]
: - : 8o
X
€2
w! ‘ QZ(X)

(3) Assume u € HPPSG(go) is some homology class. (8.1.3) gives a (p+l)-

dimensional class u' in Cl(go) . The operation 93(x) = 9,[u'®x] induced
. .

by 9 :C (go) x PS(I(gO) — PS(II(g°+g') has degree p+l , 93(x) €

Hq+p+lPS¢(go+g) for x € Hq(PSd:(g) - 05 is not new, since 93(x) = Rl(u,x) .

(8.1.3)

u' 63(x)
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(4)  The next figure then shows an operation OA(X) = X03(X) + UQI(X)

(8.1.4)
€1
X
L T
l u | u
\ v
] X
2

GA(X)

(5) Let L£ € PSE(go) be fixed, and let v be a closed, non-trivial curve

in F(L£) , as e.g. in (8.1.5). The induced operation ©_ : HqPSC(g) —

5
Hq+lPsm(gd+g) is the first new one.

(8.1.5)

e
A / / X
.
——— )
I — \) —————
v

Ss(x)
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(6) With everything as above, we can also have a 66 3 HqPS@(g) =T

H2q+1PS¢(2g) .

(8.1.6)
e e6(X)
x//”—} -
— \\\\\*Aﬁ_' —_— \\\\* -
ez =

(7)  An operation of degree 2 can be constructed as follows. Let a be the
curve in PSC(1) given in (8.1.7). Tt represents a homology class [a] €
HlPSC(l) - Together with the points €,»e, moving in the varying parallel

slit domain, we have a torus embedded in Cz(l) . The operation §: 52(1) x
=
2

PSG(g)2 — PSC(2g+l) induces 67(x) =9,(a'® x ®x] , 0, : Hq(PSC(g) —

H2q+2PS¢(2g+1) » where a' is the chain in 62(1) given geometrically by
(alt),(e (t"),e,(t")) .

(8.1.7)

e (£ o)

a(t) a

R \\\\\\* o \\\\* - e(t")

ez(ﬂ)
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(8) The last figure shows a degree 3 operation 98 s HqPSG(g) —
H2q+3PSG(2g+2) , parametrized by an embedded 3-manifold in CZ(Z) , which

projects to a Klein-bottle embedded in PSC(2) .

(8.1.8)
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