Chapter 5

The Uniformization Map

5.1 The map $H: \tilde{M}(g) \rightarrow \text{PSC}(g)$.

5.2 The inverse map.

5.3 Equivariance.

5.4 The continuity of H and G.

5.5 The uniformization theorem.

In the last chapter we come to define the uniformization map: it associates to the conformal class of directed Riemann surface the similarity class of a parallel slit domain $\tau: \tilde{M}(g) \rightarrow \text{PSC}(g)$.

We start with the definition of a map H from an auxiliary moduli space to $\text{PSC}(g)$ and show that it and its inverse are bijective, equivariant and continuous. Then the main result follows: τ is a homeomorphism.
5.1 The map $\tilde{H} : \tilde{M}(g) \longrightarrow \tilde{PSL}(g)$.

In order to define the uniformization map $\pi : \tilde{M}(g) \longrightarrow \tilde{PSL}(g)$ we first introduce a new moduli space $\tilde{M}(g)$. The elements of $\tilde{M}(g)$ are equivalence classes of tuples $(F, x, a, b) : F$ is a Riemann surface of genus g as before; x is a direction at some point $P \in F$; $a = (z : a)$ is a projective class of a local parameter z and some real number $a > 0$, z is adopted to x (i.e. $z(P) = 0$, $\bar{b}z(x) = \overline{a(x)}$); $b = b_1 + ib_2$ is any complex number. Two such tuples are conformally equivalent if there is a conformal map $c : F \longrightarrow F'$ such that $c(P) = P'$, $\bar{b}c(x) = x'$ and $a'(z' \cdot c) = a' \cdot z$, and $b = b'$. There are two projections

\[(5.1.1) \quad \tilde{M}(g) \leftarrow \tilde{M}(g) \longrightarrow \mathbb{R}_+ \times \mathbb{C} \]

\[[F, x] \leftarrow [F, x, a, b] \longrightarrow \left(\frac{z_0}{z}, b \right) \]

On the left side $\frac{z_0}{z}$ means the proportionality of two directed local parameters near P, where z_0 is some fixed local parameter. The projection $\tilde{M}(g) \longrightarrow \mathbb{R}_+$ is thus well-defined, but depends on the choice of z_0. Both projections exhibit $\tilde{M}(g)$ as a product

\[(5.1.2) \quad \tilde{M}(g) \equiv \tilde{M}(g) \times \mathbb{R}_+ \times \mathbb{C} \]

$\tilde{M}(g)$ can be regarded as the moduli space of pairs $(F, (z:w))$, where $(z:w)$ is a projective class consisting of a directed local parameter and a holomorphic function w with a dipol of the form $w(z) = \frac{1}{z} + \text{regular terms as only singularity}$. This determines P. And x is the argument and a is the modulus of the residuum of w measured in a fixed directed parameter z_0.
The definition of the map

\[(5.1.3) \quad H : \tilde{\mathcal{M}}(g) \longrightarrow \text{PSC}(g)\]

needs some preparation. Let a conformal equivalence class \([F,x]\), a projective parameter \(a = (z:a)\) and a complex number \(b = b_1 + i b_2\) kept fixed till \((5.1.25)\).

By Proposition \((3.1.3)\) there is a unique harmonic function \(u\) on \(\mathbb{Z}\) with a dipol singularity at \(P\) for \(a\) and \(b_1\).

Let \(\phi = \text{grad}_u\) be the gradient flow of \(u\), and \(K_0\) be the critical graph of \(\phi\). Let \(v\) denote the harmonic conjugate of \(u\), defined on \(F - K_0 = F_0\) and normalized by \(b_2\). So far everything was uniquely determined by \([F,x,a,b]\) \(\in \tilde{\mathcal{M}}(g)\).

Now we choose a branching graph \(\mathcal{C}\) over the critical graph \(K_0\); this amounts, by the algorithm \((3.5.12)\) to choosing

\[(5.1.4) \quad (1) \quad \text{a degeneracy function}\]

\[\epsilon_S : \tilde{\mathcal{C}}(S) \longrightarrow \overline{K}(S), \quad \delta_S : \tilde{\mathcal{C}}(S) \longrightarrow \overline{K}(S)\]

for each vertex \(S\) in \(K_0\), \(S \neq P\), and

\[(2) \quad \text{a shuffle function}\]

\[\sigma_k : \sigma_k : \tilde{\mathcal{C}}(S) \supseteq \delta_S^{-1}(K) \longrightarrow \epsilon_S^{-1}(K) \subseteq \tilde{\mathcal{C}}(S)\]

for each edge \(K = (S,S')\) from \(S\) to \(S'\) in \(K_o\), \(S' \neq P\).

The algorithm Proposition \((3.5.12)\) completes the data by producing
(3) the degeneracy functions
\[\delta_S : \mathcal{C}(S) \to \bar{K}(S) \]
for each vertex \(S \) in \(K_o, S \neq P \), and

(4) the branching functions
\[\beta_S^+, \beta_S^- : \mathcal{C}(S) \to \mathcal{C}(S) \]
for each vertex \(S \) in \(K_o, S \neq P \). The properties (3.5.10) (3.5.10) now hold.

These choices determine the branching complex \(\bar{F} \cup B = \bar{F} \). The extension of the mapping function \(w = u + iv \) from \(F_o \) to \(\bar{F} \) is uniquely possible, given \(\bar{F} \) and \(u, v \) on \(F_o \). Recall that the 4g edges of \(\bar{F} \) come with an ordinary

(5) \(B_1, B_2, \ldots, B_{4g} \)

and with a pairing function of their indices

(6) \(\lambda : \{1,2,\ldots,4g\} \to \{1,2,\ldots,4g\} \)

satisfying (3.6.13).

\(\lambda \) is determined by the \(\beta_S^+ \) and \(\beta_S^- \), and the ordering in part also by \(v \).

The images \(L_i = \omega(B_i) \) of these edges under the (extended) mapping function \(w \) are semi-infinite slits in the complex plane \(\mathcal{C} \), their endpoints are denoted by \(S_i \). \(\lambda \) is considered as a pairing function of the indices of the \(L_i \). The ordering of the \(B_i \) was arranged, so that
(7) \(v(B_i) \geq v(B_{i+1}) \), \(i = 1, \ldots, 4g-1 \).

(N.B. \(v \) is constant on each \(B_i \)); thus

(8) \(\text{Im}(S_i) \geq \text{Im}(S_{i+1}) \).

Since only edges over the same vertex \(S \) in \(\mathcal{K}_o \) are paired by \(\lambda \), see (3.6.12), we have

(9) \(\text{Re}(S_i) = \text{Re}(S_{\lambda(i)}) \), \(i = 1, \ldots, 4g \).

Therefore \(L = (L_1, \ldots, L_{4g}; \lambda) \) is a configuration of slit pairs. We set

(5.1.5) \(H([F, \alpha], \alpha, b) := [L_1, \ldots, L_{4g}; \lambda] \).

and need the following two lemmata to justify our definition.

(5.1.5) **Lemma.** The equivalence class \(\mathcal{L} = [L] = [L_1, \ldots, L_{4g}; \lambda] \) is well-defined.

Proof: We begin with two considerations. First, let over the vertex \(S \) of \(\mathcal{K}_o \) the degeneracy function

(5.1.7) \(\varepsilon = \varepsilon_S : \mathcal{C} = \mathcal{C}(S) \rightarrow \mathcal{R} = \mathcal{R}(S) \).

be given. The sets \(\mathcal{C} \) and \(\mathcal{R} \) are cyclic, and we name their elements

(5.1.8) \(C_1 < C_2 < \ldots < C_{2m} < C_1 \)

\(K_1 < K_2 < \ldots < K_{m+1} < K_1 \)

where \(m = m(S) \) is the Morse index of \(S \). Without loss of generality assume
\[\varepsilon^{-1}(K_1) = \{ C_1, \ldots, C_r \}, \text{ and } \varepsilon^{-1}(K_2) = \{ C_{r+1}, \ldots, C_s \}, \quad 1 \leq r < s \leq 2m. \]
Suppose also \(s \geq r+2 \) (which need not be true). Consider the following change: redefine \(\varepsilon \) by setting

\[\varepsilon'(C_i) = \varepsilon(C_i) = K_1 \quad i = 1, \ldots, r \]

\[\varepsilon'(C_{r+1}) = K_1 \]

\[\varepsilon'(C_i) = \varepsilon(C_i) = K_2 \quad i = r+2, \ldots, s \]

\[\varepsilon'(C_i) = \varepsilon(C_i) \quad i = s+1, \ldots, 2m \]

The only difference is that \(C_{r+1} \) now lies over \(K_1 \), where formerly it lay over \(K_2 \). For obvious reasons we call this move crossing \(C_{r+1} \) over from \(\varepsilon^{-1}(K_2) \) to \(\varepsilon^{-1}(K_1) \). One can perform such a crossing-over whenever \(\varepsilon^{-1}(K_2) \) has at least two elements (otherwise we would violate (3.5.10) (i) with the new \(\varepsilon' \)).

We analyse the effect on the algorithm (3.5.12).

\[\varepsilon^{-1}(K_1) \]

\[\varepsilon^{-1}(K_2) \]
Applying the algorithm to ε gives

(5.1.12)

and $C_r^+ = \beta^+(C_r)$, $C_{r+1}^- = \beta^-(r+1)$ over the same edge K' leaving S in K_o.
Applying the algorithm to \(\varepsilon' \) instead gives

\[(5.1.13)\]

In the branching graphs and complexes for \(\varepsilon \) resp. \(\varepsilon' \) the pairing of the double edges \(B' = \{ C_r^+, C_{r+2}^- \} \) and the corresponding values \(v', v'', v''' \) of \(v \) would be as follows:

\[(5.1.14)\]

for \(\varepsilon \):

\[B' \text{ paired to } B'' \]
\[v'' = v''' \]

for \(\varepsilon' \):

\[B'' \text{ paired to } B''' \]
\[v' = v'' \]

(To be correct: the values of \(v \) on the double edges depend also on the shuffle functions of all edges higher than \(S \) in \(K_o \); for our "local" consideration we should assume that \(S \) is a highest vertex in \(K_o \).)

For the slits in the complex plane this means nothing but a crossing
(5.1.15) for ε:

\[
\begin{array}{c}
\lambda' \quad \text{for } \varepsilon': \quad \lambda''
\end{array}
\]

The figure shows the case $\nu' < \nu'''$ and therefore a crossing-under of the slit B''; for $\nu' > \nu'''$ it would be a crossing-over. Note how the pairing function changes.

(5.1.16)

\[
\begin{array}{c}
C_{r+2}^- & C_{r+2}^+ \\
C_{r+1}^+ & C_{r+1}^-
\end{array}
\]

The last figure is an "enlargement" of (5.1.15).
This shows: crossing some $\mathcal{C} \in \mathcal{T}$, which is minimal (resp. maximal) in some $\varepsilon^{-1}(K)$, over to the cyclicly preceding (resp. succeeding) $\varepsilon^{-1}(K')$ (i.e. $K' \prec K$ resp. $K < K'$ in \mathcal{K}) leads to equivalent configurations. Furthermore, any two given degeneracy functions ε and ε' can be transformed into each other by a sequence of such crossings.

Now secondly, let over the edge $K = (S, S')$ in \mathcal{K}_o with $S' \neq P$, a shuffle function

\begin{equation}
\sigma = \sigma_K : \delta_{S}^{-1}(K) \longrightarrow \varepsilon_{S'}^{-1}(K) \tag{5.1.17}
\end{equation}

\begin{bmatrix}
\mathcal{T}(S) \\
\mathcal{T}(S')
\end{bmatrix}

be given. If the linear sets $\delta_{S}^{-1}(K)$ and $\varepsilon_{S'}^{-1}(K)$ have r resp. s elements, then choosing such a σ amounts to partitioning either $\delta_{S}^{-1}(K)$ into s successive intervals or dually $\varepsilon_{S'}^{-1}(K)$ into r. Clearly, any two partitions can be transformed into each other by a sequence of moves: crossing a minimal (resp. maximal) element of one part to the preceding (resp. succeeding) part. And by the same considerations as above for two different ε, ε', one sees that changing a shuffle function for the branching complex results in a crossing of slits in the associated configuration.
The combination of the two considerations, by downward induction in K_o, starting with highest vertices, proves the lemma. •
(5.1.20) **Lemma.** \(L = (L_1, \ldots, L_g; \lambda) \) is non-degenerate.

Proof: Recall from (4.2) the construction of the surface \(F(L) \) associated with \(L \) as a quotient of \(F' = \bigoplus_{k=0}^{4g} F^k \). We alter this construction slightly. For each slit \(L_k \), we take two copies \(L_k^+ \), \(L_k^- \) of the extended slit (from \(S_k \) to including), regarded as right (upper) and left (lower) branch of \(L_k \); points on these copies we denoted by \((z,k,t) \) if \(z \in L_k \).

(5.1.21) \[F'' = \bigoplus_{k=0}^{4g} \bigoplus_{t=1}^{4g} (L_k^- \bigoplus L_k^+) \]

we perform the gluing (4.2.3) only to the extend of (4.2.3) (1), and two other gluing-rules:

(5.1.22) (1) \((z,k) \sim (z,k+1) \)

if \(\text{Im}(z) = \text{Im}(S_k) \) and \(\text{Re}(z) \geq \text{Re}(S_k) \),

and (2) \((z,k^+) \sim (z,k,-) \sim (z,k) \sim (z,k+1) \)

if \(z = S_k \),

and (3) \((-\infty,0,t) \sim (\infty,1,t) \sim \cdots \sim (\infty,k,t) \).

The quotient \(\overline{F}(L) = F'' / (1) \ldots (3) \) is homeomorphic to the branching complex \(\overline{F} \) of the surface \(F \) (associated with the same branching graph which gave rise to the configuration \(L = (L_1, \ldots, L_g; \lambda) \)). The homeomorphism is induced by the extended mapping function \(\omega = u + iv : \overline{F} \to \overline{C} \) as follows. A point \(z \in \overline{F} \) is mapped to \((\omega(z), k) \in \overline{F}(L) \) if \(\text{Im}(S_k) \geq v(z) \geq \text{Im}(S_{k+1}) \), \(k = 0, \ldots, 4g \). A point \(t \) on a double edge \(B_C = B^+(C) \cup B^-(C) \) is mapped to \((t + iv(B_C), k) \) where \(t \) is the parameter of the point in \(B_C \equiv [-\infty, u(S)] \), \(C \in \mathcal{E}(S) \), \(v(B_C) \) is the constant value of the extended \(v \) on the double edge \(B_C \) from (3.6.5),
5.2 The inverse map.

To prove that \(H \) is bijective we will construct an inverse

\[
(5.2.1) \quad G : \text{PSO}(g) \longrightarrow \tilde{\mathcal{M}}(g) .
\]

Let \(\mathcal{L} = [L_1, \ldots, L_{4g} ; \lambda] \) be a non-degenerate configuration class. We set \(G(\mathcal{L}) = [F, x, a, b] \) with the following ingredients. \(F \) is the surface \(F(\mathcal{L}) \) associated to \(\mathcal{L} \) in 4.2, with the conformal structure of 4.6. The basepoint is \(P = \infty \), and \(z = \frac{1}{\zeta} \) is a local parameter for, defined for \(\zeta \notin \text{supp}(\mathcal{L}) \), with \(z(P) = 0 \). The direction \(x \) corresponds to \(-\partial \mathcal{x} \) under \(\zeta \). For \(a \) we take \(a = (z:1) \). And for \(b = b_1 + ib_2 \) we choose the upper right corner of \(\text{supp}(\mathcal{L}) \), \(b_1 = a^+(\mathcal{L}) \), \(b_2 = b^+(\mathcal{L}) \).

\[
(5.2.2) \quad \text{Proposition.} \quad H \text{ and } G \text{ are inverse to each other.}
\]

Proof: To see that \(H \circ G = \text{id} \), recall the harmonic function \(h_\mathcal{L}(z) = \text{Re}(z) : F = F(\mathcal{L}) \longrightarrow \mathbb{R} \) from 4.7. Then \(u_\mathcal{L} = h_\mathcal{L} + b_1 \) is the unique dipol function for \(a \) and \(b_1 \). Now we use the particular representative \(L = (L_1, \ldots, L_{4g} ; \lambda) \) of \(\mathcal{L} \) in the following diagram.

\[
(5.2.3) \quad L_k \subseteq F^{k-1}, F_k \subseteq F' \quad \Downarrow \quad \Downarrow \\
F' \supseteq L_k^+, L_k^- \quad F \\
\leftarrow \rightleftharpoons \quad F
\]

Here \(F' \) is \(\mathcal{F}^k \) from 4.2; \(F'' \) is from (5.1.21) and the projections are the various portions of the gluing rules (4.2.3) and (5.1.22). The images of the slits \(L_k \) in \(F \) are the critical (piecewise) integral curves for the gradient flow of \(u \). Thus
and k is the future number of B_c from (3.6.11).

There are obvious further identifications on F^* which correspond to (4.2.3) (2) and (3),

(4) \[(z,k-1) \sim (z',\lambda(k)) \]

if $z \in L_k$, $z' \in L_{\lambda(k)}$ and $\text{Re}(z) = \text{Re}(z')$,

(5) \[(z,k) \sim (z',\lambda(k)-1) \]

if $z \in L_k$, $z' \in L_{\lambda(k)}$ and $\text{Re}(z) = \text{Re}(z')$,

(6) \[(z,k-1) \sim (z,k,+\rangle \]

if $z \in L_k$,

(7) \[(z,k) \sim (z,k,-\rangle \]

if $z \in L_k$.

Clearly $F^*/\langle 5.1.22 \rangle \cong F'/\langle 4.2.3 \rangle$. But on the left hand side, the
rules (4),..., (7) correspond via $F^*/\langle 1 \rangle,...,(3) \cong \overline{F}(L)$ to identifying in the
branching complex two points whenever they lie over the same point in F.

Since this results in F, we see that $F(L) = F'/\langle 4.2.3 \rangle$ is a surface of
genus g; thus L is a non-degenerate configuration. \[\star \]

Thus we have a well-defined function

(5.1.23) \[H : \hat{M}(g) \longrightarrow \text{PS}\xi(g) \]

by (5.1.5). This function is called (Hilbert) uniformization map.
(5.2.4) \[H L_k^+ / (5.1.22) \]

is a possible choice for a branching graph \(\mathcal{C} \) over the critical graph \(\mathcal{K}_0 \subseteq F \), where the precise details follow.

Over a stagnation point \(S \) in \(F \), \(S \neq \emptyset \), use all endpoints \(S_{k_1}, \ldots, S_{k_r} \) which are glued together to become \(S \) symbolically as entering edges \(\mathcal{E}(S) \).

Note that \(\{k_1, \ldots, k_r\} \) must be invariant under \(\lambda \). As leaving edges \(\mathcal{E}(S) \) over \(S \) use symbolically the pairs \((L_{k_1}^+, L_{k_1}^-) \). The degeneracy functions \(\varepsilon_S : \mathcal{E}(S) \to \mathcal{K}(S) \) and \(\delta_S : \mathcal{E}(S) \to \mathcal{K}(S) \) are induced by the projections in (5.2.3). The cyclic ordering of these sets is induced from the orientation of the local parameters in 4.6. The branching functions \(\beta^+_S, \beta^-_S \) are \(\beta^+_S(S_{k_1}) = (L_{k_1}^+, L_{\lambda(k_1)}^-) \) and \(\beta^-_S(S_{k_1}) = (L_{\lambda(k_1)}^+, L_{k_1}^-) \). Let \(K = (S, S') \) be an edge in \(\mathcal{K}_0 \) from \(S \) to \(S' \neq \emptyset \). That means the endpoints \(S_{k_1}, \ldots, S_{k_r} \) over \(S \) and \(S'_{k_1}, \ldots, S'_{k_r} \) lie on different verticals \(x = x_o, x = x'_o \) in \(\mathcal{C} \) with \(x_o < x'_o \). Since the sets of indices \(\{k_1, \ldots, k_r\} \) and \(\{k'_1, \ldots, k'_r\} \) are disjoint, but subsets of the ordered set \(\{1, 2, \ldots, 4g\} \), one determines a partition of the other. This is the shuffle function \(\sigma_k \).

If we descend from \(F'' \) to \(\overline{F} \) in (5.2.3) we obtain the branching complex \(\overline{F} \cup B \) for this choice of branching data. The assertion follows now from the definition of \(H \).

Vice versa, to see \(G \circ H = \text{id} \), is a repetition of the proof of Lemma 5.1, remembering that the mapping function is not merely a homeomorphism, but a holomorphic map. \(\blacksquare \)
5.3 **Equivariance.**

Consider the projection \(\tilde{\mathfrak{M}}(g) \rightarrow \mathfrak{M}(g) \) of (5.1.1) given by forgetting the projective parameter class and the integration constants. On the other side, take the orbit projection \(\text{PSO}(g) \rightarrow \mathcal{F} \mathcal{S}(g) \) induced by the action of \(\text{Sim}(\mathcal{C}) \) on \(\text{PSO}(g) \).

(5.3.1) **Lemma.** \(H \) and \(G \) are equivariant.

Proof: Assume \(H([F', x'], a', b']) =: \mathcal{L}' \) and \(H([F'', x''], a'', b'']) =: \mathcal{L}'' \) are in the same \(\text{Sim}(\mathcal{C}) \)-orbit. The element \(M = \begin{pmatrix} s & t \\ 0 & 1 \end{pmatrix} \in \text{Sim}(\mathcal{C}) \) with \(M \cdot \mathcal{L}' = \mathcal{L}'' \) induces by (4.9.6) a conformal map \(M : F(\mathcal{L}') \rightarrow F(\mathcal{L}'') \). This map takes \(\omega \in F(\mathcal{L}') \) to \(\omega \in F(\mathcal{L}'') \), and the direction \(dx' \) on \(F(\mathcal{L}') \) to \(dx'' \) on \(F(\mathcal{L}'') \). Thus \((F(\mathcal{L}'), dx') \) and \((F(\mathcal{L}''), dx'') \) are conformally equivalent, i.e. \([F(\mathcal{L}'), dx'] = [F(\mathcal{L}''), dx''] \) in the moduli space \(\tilde{\mathfrak{M}}(g) \).

Let \(F' \cup \mathcal{B}' \) resp. \(F'' \cup \mathcal{B}'' \) denote the branching complexes of \(F' \) resp. \(F'' \). The conformal maps \(w' : F' \cup \mathcal{B}' \rightarrow \overline{\mathcal{C}} \), \(w'' : F'' \cup \mathcal{B}'' \rightarrow \overline{\mathcal{C}} \) lift to \(F'(\mathcal{L}') \) resp. \(F'(\mathcal{L}'') \); and then they induce conformal maps \(w' : F' \rightarrow F(\mathcal{L}') \) and \(w'' : F'' \rightarrow F(\mathcal{L}'') \). Both preserve the directions \(x' \), \(x'' \). From the diagram

\[
\begin{array}{ccc}
F' & \xrightarrow{w'} & F(\mathcal{L}') \\
\downarrow & & \downarrow \\
F'' & \xrightarrow{w''} & F(\mathcal{L}'')
\end{array}
\]

we conclude that \((F', x') \) and \((F'', x'') \) are conformally equivalent.

Vice versa, assume \(G(\mathcal{L}') \) and \(G(\mathcal{L}'') \) are equivalent when projected down \(\tilde{\mathfrak{M}}(g) \rightarrow \mathfrak{M}(g) \); that means \((F(\mathcal{L}'), dx') \) and \((F(\mathcal{L}''), dx'') \) are conformally equivalent.

equivalent. Let \(c : F(\mathcal{L}') \to F(\mathcal{L}'') \) be a conformal map, preserving \(\omega \) and \(dx = dx' = dx'' \). Outside of the supports \(\frac{1}{z} = \zeta \) is a parameter for both \(F(\mathcal{L}') \) and \(F(\mathcal{L}'') \); so \(c \) must be induced by a similarity \(M_c = \begin{pmatrix} s & t \\ 0 & 1 \end{pmatrix} \) in a neighbourhood of \(\omega \), and hence everywhere. Thus \(\mathcal{L}' \) and \(\mathcal{L}'' \) are in the same \(\text{Sim}(\mathcal{L}) \)-orbit.

It follows, that \(H \) induces a bijection

\[
(5.3.3) \quad \Pi : \mathcal{M}(g) \longrightarrow \mathcal{PSL}(g)
\]

and \(G \) induces an inverse

\[
G : \mathcal{PSL}(g) \longrightarrow \mathcal{M}(g)
\]

In the commutative diagram

\[
(5.3.4) \quad \begin{array}{ccc}
\mathcal{M}(g) & \xrightarrow{H} & \mathcal{PSL}(g) \\
\downarrow & & \downarrow \\
\mathcal{M}(g) & \leftarrow \Pi \xrightarrow{G} & \mathcal{PSL}(g)
\end{array}
\]

the two projections are homotopy equivalences.
5.4 The continuity of H and G.

We start with the continuity of $H : \tilde{M}(g) \to \text{PSL}(g)$. Varying the components a and b of a point $[F, x, \alpha, \beta]$ in $\tilde{M}(g) = \tilde{M}(g) \times \mathbb{R} \times \mathcal{C}$ has the effect of a dilatation and translation of the corresponding configuration $H[F, x, \alpha, \beta] = L = [L_1, \ldots, L_4; \lambda]$. Therefore we concentrate on the component $[F, x]$ in $\tilde{M}(g)$. We need small neighbourhoods in $\tilde{M}(g)$. Because of the covering (2.4.28)

\[(5.4.1) \quad \tilde{r}(g) \to \tilde{T}(g) \to \tilde{M}(g)\]

it suffices to do this in $\tilde{T}(g)$. These neighbourhoods are obtained by interior Schiffer variation on a fixed Riemann surface F; we proceed to describe this as in [Schiffer-Spencer 1954].

Let $Q \in F$ be an arbitrary point, and $z : Z \to \mathbb{C}$ a local parameter, $z(Q) = 0$, where $W = z(Z) \subset \mathbb{C}$ is assumed to contain a neighbourhood of the close disc $D \subset \mathbb{C}$. Set $D = z^{-1}(D)$, and consider the boundary curve c of D, parametrized by $z(\zeta) \in S^1 \subset \partial D$ for $\zeta \in S^1 \approx \partial D$. For $\epsilon \in \mathbb{C}$ consider the function τ with the presentation

\[(5.4.2) \quad \tau(z) = z + \frac{\epsilon}{z}\]

in terms of the local parameter z; it is defined and holomorphic in an annular neighbourhood of c. The image of c under τ is the ellipse $t + \epsilon \bar{t}$ for $t = z(\zeta)$, $\zeta \in \partial D$.
If ε is small enough, $W = \text{im } z$ contains the image of $\tau(D) = D^*$; set $D^* = z^{-1}(D^*)$. We consider now the new surface F^ε obtained by cutting on L the disc D, and gluing in the ellipse D^*,

\[(5.4.4) \quad F^\varepsilon = \left((F - \text{int}(D)) \sqcup D^* \right) / \sim \]

where the boundary identification is given by $\zeta \sim \zeta^*$ if $z(\zeta) + \frac{\varepsilon}{z(\zeta)} = z(\zeta^*)$, for $\zeta \in \partial D$, $\zeta^* \in \partial D^*$. The new conformal structure is given by taking the old local parameters on $F - \text{int} D$, and τ on D^*. Clearly, F and F^ε are homeomorphic, and F^ε is also conformally equivalent to F; but for $\varepsilon \neq 0$ the conformal type changes in general. Note that the construction depends on the parameter z.

Let Q_1, \ldots, Q_n be different points on F, lying in disjoint charts Z_1, \ldots, Z_n of local parameters z_1, \ldots, z_n. With n complex numbers $\varepsilon_1, \ldots, \varepsilon_n$ one can perform independently Schiffer variations in Z_1, \ldots, Z_n. Call the resulting new Riemann surface F^ε, $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \mathbb{C}^n$. If one performs the variation at enough points Q_i, and if the Q_i avoid certain Weierstrass points of
higher type, then the ϵ_i actually provide coordinates for a neighbourhood of $\langle F \rangle$ in the Teichmüller space $\Upsilon(g)$.

(5.4.5) **Proposition.** Let F be any closed Riemann surface of genus g. Then there are points $Q_1', ..., Q_{3g-3}'$ (arbitrarily close to any given $Q_1, ..., Q_{3g-3}$) on F, such that the function $\epsilon \mapsto \langle \epsilon \xi \rangle$ maps some neighbourhood of 0 in C^{3g-3} homeomorphically onto a neighbourhood on $\langle F \rangle$ in $\Upsilon(g)$.

For a proof we refer to [Gardiner 1975; 1977], [Nag 1985; 1988, p.276-278, 310]. It is immediate, that a corresponding statement also holds for pointed and directed Teichmüller spaces; one places one additional point Q_0 near our basepoint P to displace P, and one further variation is centered at P itself with a parameter $\epsilon' \in S^1$ to rotate the direction X.

Next we will use that the effect of a Schiffer variation on the Green's or Neumann function – and therefore on the dipol function is controllable. With the notation of [Schiffer-Spencer 1954] let Ω_{AB} be the integral of the third kind with simple poles of residues $+1, -1$ at the points $A, B \in F$, resp., normalized by the condition that all periods are purely imaginary. For the closed surface F, one defines the Neumann function [idid., p.99] by

\[(5.4.6) \quad N(\zeta, q, q_0) = V(\zeta, q, q_0) = V(\zeta, p_0; q, q_0) = \Re(\Omega_{qq_0}(\zeta) - \Omega_{qq_0}(p_0))\]

where $p_0, q = q_0$ are fixed points on F. A dipol function at q is given by
\[(5.4.7) \quad u(\zeta) = \frac{\partial N(\zeta, q, q_0)}{\partial x} \]

for the local parameter \(z = x + iy \) at \(q \).

We perform a single Schiffer variation at a point \(Q \) (away from the poles \(p_0, q = q_0 \)) with cut circle \(c \) and parameter \(\epsilon \in \mathbb{C} \). Let \(\Omega^E_{AB}, v^E, N^E \) denote the corresponding functions on \(F^E \). Then, by [ibid., p.311, 312]

\[(5.4.8) \quad V^E(\zeta, p_0; q, q_0) = \frac{1}{2\pi i} \int_C \Omega_{q_0}(t) d\Omega^E_{p_0}(t) \]

\[= \frac{2\epsilon}{\pi i} \int \frac{1}{t} \frac{\partial}{\partial t} V(t, t_o; \zeta, p_0) \frac{\partial}{\partial t} V(t, t_o; q, q_0) dt + O(\epsilon^2) \]

where \(t_o \) serves a normalization purpose. It follows from (5.4.7), that the dipol function \(u^E \) and its harmonic conjugate \(v^E \) also varies continuously with the parameter \(\epsilon \); since \(u^E \) is harmonic, the same is true for the gradient flow \(\phi^E \) under a Schiffer variation. If the conformal structure is varied simultaneously at several points \(Q_i \) with variational parameters \(\epsilon_i \) as in (5.4.5), the effects add up for \(u^E, \epsilon = (\epsilon_1, ..., \epsilon_{6g-3}) \).

\[(5.4.9) \quad u^E - u = \frac{2}{\pi i} \epsilon \zeta_i C_i(\zeta) + O(\epsilon^2) \]

where \(C_i(\zeta) \) stands for \(\frac{\partial}{\partial x} \) of the integrand in (5.4.8) and \(\bar{\epsilon} = \epsilon_\zeta_i \).

Similarly for the gradient flow \(\phi^E \), and the harmonic conjugate \(v^E \).

After these preparations we can now prove the continuity of \(H \).
(5.4.10) **Lemma.** H is continuous.

Proof: Fix a point $<F,X>$ in $\mathcal{U}(g)$, and consider a (multiple) Schiffer variation $\varepsilon \mapsto <F^\varepsilon, X^\varepsilon>$ such that $\varepsilon = (\varepsilon_1', \ldots, \varepsilon_{3g-3}', \varepsilon_0', \varepsilon_0')$ are coordinates for a neighbourhood of $<F,X>$. Denote $H[F,X] = [L] = [L_1, \ldots, L_{4g}; \lambda]$. Let $t \mapsto \varepsilon(t)$ ($0 \leq t$) be any curve of variational parameters with $\varepsilon(0) = 0$, and denote $F^{\varepsilon(t)}$ by F^t, and $H[F^t, X^t]$ by $[L^t]$. It is enough to see that $[L^t]$ converges to $[L] = [L^0]$ for $t \to 0$.

While K^t_0 varies with $t \to 0$, the following changes can occur with the critical graph.

(I) Two stagnation points S_1 and S_2 approach each other along a critical integral curve $K = (S_1, S_2)$.

(5.4.11)
(The dotted lines indicate more integral curves entering or leaving S_1, S_2). The edge K disappears, S_1 and S_2 become S_{12}.

(II) A stagnation point S_3 approaches a critical integral curve K between to other stagnation points S_1 and S_2.

Here K is split into two integral curves. (The figure shows S_3 approaching K from the right.)
(III) Two stagnation points \(S_1 \) and \(S_2 \) approach each other, but not along an integral curve.

\[
\begin{align*}
M_1 & \to S_1 \to N_1 \\
M_2 & \to S_2 \to N_2 \\
\downarrow & \\
M & \to S_{12} \to N
\end{align*}
\]

The total picture is a superposition of these elementary changes: simultaneously, at several stagnation points and streamlines. It is enough to consider only small values of \(t_0 \geq t \geq 0 \), such that the following is guaranteed:

(5.4.13) (1) each stagnation point either stays separate from all others for all \(t \geq 0 \), or stays separate for all \(t > 0 \) and meets one (or several) other(s) for \(t = 0 \) (Case I, III);
(2) each critical stream line \(K \) either stays separate from all others for all \(t \geq 0 \), or disappears only for \(t = 0 \) (case I), or is met by a stagnation point for \(t = 0 \) and breaks into two critical lines (case II), or meets another critical line only for \(t = 0 \) (case III).

We have to show that for each stagnation point \(S^t \) there is a choice of \(\varepsilon_{S^t} : \mathcal{C}(S^t) \to \mathcal{K}(S^t) \) and for each edge \(\mathcal{K}^t \) in \(\mathcal{K}_0^t \) there is a choice of a shuffling \(\sigma_{\mathcal{K}^t} \) which converge for \(t \to 0 \). Secondly, it must be monotone with respect to the value distribution of \(v^t \). Thirdly, the choices must commute with each other in order to allow the superposition. Because of (5.4.15) we need only to define the limit choice for \(t = 0 \). For (I) we set

\[
\sigma_K = [\delta^{-1}_1(K), \varepsilon^{-1}_2(K)] \quad (t>0)
\]

(as a linear ordering of \(\delta^{-1}_1(K) \parallel \varepsilon^{-1}_2(K) \)), and

\[
\varepsilon^{-1}_{12}(A_1) = \varepsilon^{-1}_1(A_1), \quad \varepsilon^{-1}_{12}(B_1) = [\varepsilon^{-1}_1(B_1), \varepsilon^{-1}_2(K)], \quad (t=0),
\]

\[
\delta^{-1}_{12}(A_2) = [\delta^{-1}_1(K), \delta^{-1}_2(A_2), \delta^{-1}_{12}(B_2) = \delta_2(B_2), \quad (t=0).
\]

Here we write \(\varepsilon_1 \) for \(\varepsilon_{S_1} \), and mention only what is necessary.

(5.4.15)
In case (II) we set for \(t = 0 \)

\[
(5.4.16) \quad \varepsilon^{-1}_{12}(K_1) = [\delta^{-1}_1(k), \varepsilon^{-1}_3(A)] , \\
\delta^{-1}_{12}(K_2) = [\varepsilon^{-1}_2(k), \varepsilon^{-1}_3(B)] , \\
\sigma_{K_1} = [\sigma_K, \sigma_A] , \quad \text{and} \\
\sigma_{K_2} = [K_K, \sigma_B] .
\]

And in case (III) we set for \(t = 0 \)

\[
(5.4.17) \quad \varepsilon^{-1}_{12}(M) = [\varepsilon^{-1}_1(M_1), \varepsilon^{-1}_2(M_2)] , \\
\delta^{-1}_{12}(N) = [\delta^{-1}_1(N_1), \delta^{-1}_2(N_2)] , \\
\sigma_M = [\sigma_{M_1}, \sigma_{M_2}] , \quad \text{and} \\
\sigma_N = [\sigma_{N_1}, \sigma_{N_2}]
\]
From the resulting branching graphs that the branching complexes converge. Since the monotonicity (right and left sides of stream lines) are preserved, the extension of the harmonic conjugate and thus the mapping function w^t converges. It follows that $[L^t]$ converges to $[L^0]$ for $t \to 0$.

The continuity of $G : PS\xi(g) \to \hat{M}(g)$ is easier.

(5.4.18) Lemma. G is continuous.

Proof: Let \mathcal{E} be an equivalence class in $PS\xi(g)$, represented by the configuration $L = (L_1, \ldots, L_{4g}; \lambda)$. Assume, some real number $\delta > 0$ is given. We may also assume that $2\delta < \mu = \min \{ ||S_i - S_j|| | i \neq j, S_i \neq S_j \}$; here $|| \cdot ||$ stands for the maximal-coordinate-norm in ξ. Because the sets $\{ \text{Re}(S_i) | i = 1, \ldots, 4g \}$ and $\{ \text{Im}(S_i) | i = 1, \ldots, 4g \}$ are the same for any representative of \mathcal{E}, μ depends only on \mathcal{E}. But it does not vary continuously with \mathcal{E}; nevertheless, it suffices to concentrate on a δ-neighbourhood of \mathcal{E} for $\delta < \frac{\mu}{2}$.

Recall the standard rectangulation R_{ij} ($0 \leq i \leq 4g$, $0 \leq j \leq 2g$) of 4.12. We consider a class $\mathcal{E}' = [L']$ with $d(\mathcal{E}, \mathcal{E}') < \delta$ and compare its rectangulation R_{ij}' with R_{ij}. By the choice of δ each slit L_k' of L' differs from L_k at most by a sequence of crossings and a displacement of $S_k \to S_k'$ of a distance smaller than δ. Assume for simplicity first, only on S_k moves.

(5.4.19)
We define a quasiconformal map \(q : F(L) \rightarrow F(L') \) as follows. All rectangles \(R_{ij} \) in \(F(L) \) which do not intersect the horizontal \(H_k \) correspond to rectangles \(R'_{jk} \) of equal sides; they are mapped identically. All rectangles \(R_{ij} \) which intersect \(H_k \) and do not contain \(\infty \) correspond to rectangles of different sides; they are mapped by an appropriate stretching map of the collection (2.3.13) - (2.3.15). To map the remaining biangles and triangles, which contain \(\infty \) and intersect \(H_k \), one uses maps as (2.3.15) near their finite corner or side and extends to the rest identically. This ensures that \(q \) is the identity near \(\infty \).

Clearly, any \(L' \) not further away from \(L \) than \(\delta \), can be reached by a finite sequence of such simple moves. There are at most \(4g \) such simple moves necessary. The composition of the corresponding maps gives a quasiconformal map \(q : F(L) \rightarrow F(L') \), conformal near \(\infty \) and preserving the direction.

It remains to estimate the maximal dilatation. From (2.3.13) - (2.3.15) it follows that \(K[q] \) on each rectangle is bounded above by some constant times \(\delta \), the constant depending on the type of map. Since there are at most \((2g+1)(4g+1) \) rectangles to be mapped non-conformally in a simple move, and since at most \(4g \) simple moves are composed, \(K[q] \) is of the order of \(\delta \). Thus the Teichmüller distance of \([F(L),x]\) and \([F(L'),x]\) is bounded by a constant times \(d(L,L') \). This proves \(G \) to be continuous.
5.5 The uniformization theorem

We come to the main result.

(5.5.1) Theorem. The Hilbert uniformization function

\[\mathfrak{h} : \tilde{M}(g) \longrightarrow \mathcal{PS}(g) \]

is a homeomorphism.

Proof: The function \(H \) is bijective by Proposition 5.2, continuous by Proposition 5.4, and has the continuous inverse \(H^{-1} = G \) by Proposition 5.4.

From the commutativity of the diagram (5.3.4)

\[
\begin{array}{ccc}
\tilde{M}(g) & \xrightarrow{H} & \mathcal{PS}(g) \\
\downarrow & & \downarrow \\
\tilde{M}(g) & \xrightarrow{\mathfrak{h}} & \mathcal{PS}(g)
\end{array}
\]

it follows that \(\mathfrak{h} \) is bijective and continuous, with continuous inverse \(\mathfrak{h}^{-1} = \mathfrak{g} \).

(5.5.3) Theorem. There is a homotopy equivalence

\[\tilde{M}(g) \longrightarrow \mathcal{PS}(g) \]

Proof: An equivalence is given by composing \(\mathfrak{h} \) with the normalization section \(N : \mathcal{PS}(g) \longrightarrow \mathcal{PS}(g) \), \(\text{Sim}(\mathcal{L}) \mathcal{L} \longrightarrow m(\mathcal{L}) \cdot \mathcal{L} \), where \(m \) is the function \(\mathcal{PS}(g) \longrightarrow \text{Sim}(\mathcal{L}) \) defined in the proof of Proposition 4.9.3.
(5.5.4) **Theorem.** There is a homotopy equivalence

\[\text{PSC}(g) \simeq \text{Br}^2(g) . \]

Proof: The assertion combines (5.5.3) and (2.4.29).

So \(\text{PSC}(g) \) is a convenient model for the moduli space \(\overline{\text{M}}(g) \) of directed Riemann surfaces, and for the classifying space of the directed mapping class group, which is isomorphic to the relative mapping class group for surfaces with a single boundary curve.
References

W. Abikoff [1976]
The Real Analytic Theory of Teichmüller Space.
(Springer Verlag, Lecture Notes in Math., vol.820, 1976)

W. Abikoff [1977]
Degenerating families of Riemann surfaces.

L.V. Ahlfors [1953]
On quasiconformal mappings.
J. Analyse Math. 3 (1953/54), 1-58.

L.V. Ahlfors [1953b]
Complex Analysis.
(McGraw Hill Comp., 1953)

L.V. Ahlfors [1966]
Lectures on Quasiconformal Mappings.
(Van Norstrand Comp., 1966)

E. Arbarello, C. DeConcini, V.G. Kac, C. Procesi [1988]
Moduli spaces of curves and representation theory.

L. Bers [1957]
Riemann Surfaces.
(Lecture notes, Courant Institute, New York University, 1957/58)

L. Bers [1960]
Spaces of Riemann surfaces as bounded domains.

L. Bers [1961]
Correction to 'Spaces of Riemann surfaces as bounded domains'.

L. Bers [1970]
Fiber spaces over Teichmüller spaces.
Acta math. 130 (1973), 89-126.

L. Bers [1974]
On spaces of Riemann surfaces with nodes.

L. Bers [1975]
Deformations and moduli of Riemann surfaces with nodes and signatures.
Math. Scand. 36 (1975), 12-16.

J.S. Birman [1974]
Braids, Links, and Mapping Class Groups.
H. Cohn
Conformal Mapping on Riemann Surfaces.
(McGraw-Hill Book Comp., 1967)

R. Courant
Über die Anwendung des Dirichletschen Prinzipes auf die
Probleme der konformen Abbildung.

R. Courant
Über die Methode des Dirichletschen Prinzipes.

R. Courant
Über konforme Abbildungen von Bereichen, welche nicht durch alle
Rückkehrpunkte zerstüktelt werden, auf schlichte Normalbereiche.

R. Courant
The existence of minimal surfaces of given topological structure
under prescribed boundary conditions.
Acta math. 72 (1940), 51-98.

R. Courant
The conformal mapping of Riemann surfaces not of genus zero.

R. Courant
Dirichlets Principle.
(Wiley Interscience Publ., 1950; Reprint: Springer 1977)

M. Dehn
Die Gruppe der Abbildungsklassen.

M. Douady, C.J. Earle
Conformally natural extensions of homeomorphisms of the circle.

C.J. Earle, J. Eells
A fibre bundle description of Teichmüller theory.

C.J. Earle, C. McMullen
Quasiconformal isotopies.
(Springer Verlag, MSRI Publ., vol. 10, 1988)

C.J. Earle, A. Schatz
Teichmüller theory for surfaces with boundary.

H. Farkas, I. Kra
Riemann Surfaces.
(Springer Verlag, Graduate Texts in Math., vol. 71, 1980)
A.E. Fischer, A.J. Tromba [1984a]
On a purely "Riemannian" proof of the structure and dimension of the unramified moduli space of a compact Riemann surface.

A.E. Fischer, A.J. Tromba [1984b]
Almost complex principal fibre bundles and the complex structure on Teichmüller space.

A.E. Fischer, A.J. Tromba [1984c]
On the Weil-Petersson metric on Teichmüller space.

A.E. Fischer, A.J. Tromba [1987]
A new proof that Teichmüller space is a cell.

F.P. Gardiner [1975]
Schiffer's interior variation and quasiconformal mapping.

F.P. Gardiner [1977]
The existence of Jenkins-Strebel differentials from Teichmüller theory.

F.P. Gardiner [1987]
Teichmüller Theory and Quadratic Differentials.
(Wiley-Interscience Publ., 1987)

S.B. Giddings, E. Martinec, E. Witten [1986]
Modular invariance in string field theory.

S.B. Giddings, S. Wolpert [1987]
A triangulation of moduli space from light-cone string theory.

M. Gromov [1969]
Stable mappings of foliations into manifolds.

M. Gromov [1986]
Partial Differential Relations.
(Springer Verlag, Erg. Math. 3. Folge, vol.9, 1986)

A. Haefliger [1969]
Lectures on the theorem of Gromov.
(Springer Verlag, Lecture Notes in Math., vol.209, 1969)

J. Harer [1983]
The second homology group of the mapping class group of an orientable surface.
Invent. math. 72 (1983), 221-239.
J. Harer [1985]
Stability of the homology of the mapping class groups of orientable surfaces.

J. Harer [1986]
The virtual cohomological dimension of the mapping class group of an orientable surface.
Invent. math. 84 (1986), 157-176.

A. Hatcher, W. Thurston [1980]
A presentation of the mapping class group of a closed orientable surface.

D. Hilbert [1904]
Über das Dirichlet'sche Prinzip.

D. Hilbert [1909]
Zur Theorie der konformen Abbildung.

D. Hilbert [1909b]
Ausgewählte Kapitel der Funktionentheorie (Konforme Abbildungen).
Vorlesungssausarbeitung von R. Courant (1909).

M. Hirsch [1976]
Differential Topology.
(Springer Verlag, Graduate Texts, vol.33, 1976)

A. Hurwitz, R. Courant [1929]
Funktionentheorie.
(Springer Verlag, Grundlehre Math. Wiss. Bd.3, 1929)

N.V. Ivanov [1987]
Complexes of curves and the Teichmüller modular group.

J.A. Jenkins [1957]
Some new canonical mappings for multiply-connected domains.

J. Jost [1984]
Harmonic Maps between Surfaces.
(Springer Verlag, Lecture Notes in Math., vol.1062, 1984)

J. Jost [1985]
Conformal mappings and the Plateau-Douglas problem in Riemannian manifolds.

M. Keane [1975]
Interval exchange transformations
F. Klein
Über Riemanns Theorie der algebraischen Funktionen und
der ihrer Integrale.
(Teubner Verlag, 1882)

P. Koebe
Über die Uniformisierung beliebiger analytischer Kurven.
(Vierte Mitteilung).
324-361 .

P. Koebe
Über die Hilbertsche Uniformisierungsmethode.
Göttinger Nachrichten (1910), 59-74 .

P. Koebe
Über die Strömungspotentiale und die zugehörigen konformen
Abbildungen Riemann'scher Flächen.
1-46 .

J. Kra
On the Nielsen-Thurston-Bers type of some self-maps of
Riemann surfaces.

O. Lehto
Univalent Functions and Teichmüller Spaces.
(Springer Verlag, Graduate Texts Math., vol.109, 1988)

O. Lehto, K.I. Virtanen
Quasikonforme Abbildungen.
(Springer Verlag, Grundlehren math. Wissen., Bd.126, 1965)

W.B.R. Lickorish
A finite set of generators for the homeotopy group of a
2-manifold.

S. Luckhaus
The Douglas-problem for surfaces of prescribed mean curvature.
Diplomarbeit, Preprint-Reihe SFB 72 (Bonn) No.234 (1978)

W. Magnus, A. Karrass, D. Solitar
Combinatorial Group Theory.
(Wiley & Sons, 1966)

W. Mangler
Die Klassen von topologischen Abbildungen einer geschlossenen
Fläche auf sich.

H. Mazur
Interval exchange transformations and measured foliations.
E. Miller
The homology of the mapping class group.

S. Nag
Schiffer variation of complex structure and coordinates
of Teichmüller spaces.

S. Nag
The Complex Analytic Theory of Teichmüller Spaces.

Z. Nehari
Conformal Mapping.
(McGraw-Hill Comp., 1952)

J. Nielsen
Untersuchungen zur Topologie der geschlossenen zweifachen
Flächen, I .
Acta Math. 50 (1927), 189-358 .

H. Omori
On the group of diffeomorphisms on a compact manifold.

V. Poenaru
Homotopy theory and differentiable singularities.
(Springer Verlag, Lecture Notes in Math., vol.197)

G. Rauzy
Échanges d'intervalles et transformations induites.

H. Royden
Automorphisms and isometries in Teichmüller space.
Proc. Stony Brook, 1969, eds. L. Ahlfors et al.,

K. Saito
Moduli space for Fuchsian groups.
preprint RIMS Kyoto (1987)

M. Schiffer, D.C. Spencer
Functionals of Finite Riemann Surfaces.

M. Shiffman
The Plateau problem for minimal surfaces of arbitrary
topological structure.

C.L. Siegel
Vorlesungen über ausgewählte Kapitel der Funktionentheorie.
(Lecture notes, Göttingen 1964)
G. Springer
Introduction to Riemann Surfaces.
(Chelsea Publ. Comp., 1957)

K. Strebel
Quadratic Differentials.

O. Teichmüller
Extremale quasikonforme Abbildungen und quadratische Differentiale.

O. Teichmüller
Ein Verschiebungssatz der quasikonformen Abbildung.
Deutsche Math. 7 (1944), 336-343.

W.A. Veech
Interval exchange transformations.

W.A. Veech
Gauss measures for transformations on the space of interval exchange maps.

H. Weyl
Die Idee der Riemannschen Fläche.
(Teubner Verlag, 1913)