Chapter 3

Dipol Functions

3l The potential function.

Sl The critical graph of the gradient flow.

3.3 The conjugate harmonic function and the mapping function.
34 The boundary of Fo

3.5 The combinatoric of the branching graph.

3.6 The branching complex.

In this chapter the function theoretic side of the Hilbert uniformization is
developed. Based on the main existence theorem fof dipol function, i.e. har-
monic functions with a dipol singularity Re(%) of prescribed strength and
direction we study the gradient flow and its critical graph t}co . The main
work consists of extending or covering :kg by a branching graph, i.e. to
add to ﬁX% "virtual integral curves" to obtain a generic graph. Together
with the dissected surface F0 =F - jCo this forms the branching complex
from which the original surface can be reobtained. The mapping function w
extends to the branching complex, and the image of its boundary will éonsti-

tute a parallel slit domain, the objects of the next chapter.
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3.1 The potential function.

Throughout this chapter let F be a fixed Riemann surface, compact, closed
and connected, of arbitrary genus g ; furthermore, a pcint P € F and a
direction x € T(F) at P is given. The local parameters are denoted by

z 2 —C, W =2z (Z) a region in ¢
a a “a

Let z = x+1iy be a local parameter in a neighbourhood :f the basepoint P

We call 2z directed if
(3.1.1) z(P) = 0 , Dz(x) = é% = dx

holds. By composing with a translation and a rotation anv parameter can be
directed; two directed parameters are scalar multiples of each other. We
need to consider projective classes of directed parameters near P : they are
represented by pairs (z,a) , where z' satisfies (3.1.1), and a is a posi-
tive real number; the equivalence is given by (z,a) ~ (cz,ca) for c > 0 ;
an equivalence class is denoted by o = (z:a) . There is a bijective corres-
pondence between projective parameter classes and éositive real numbers, but

there is no canonical identification.

The uniformization principle we will use has a strong heuristic background.
Imagine an electrical dipole placed at P , pointing in zhe direction 6f X
The result will be a vector field or flow with a‘single‘kdipole) singularity’
and several stagnation points (zeroes). The positions of these stagnation
points and the stream lines connecting them are completely determined by the
complex structure of F ; vice versa, the positions of the stagnation points
and the graph of the connecting stream lines - partly geometric and partly
combinatoric data - determines the complex structure. To make this precise

we study the potential function for such a flow. Let: q = (z:a) and b € R



be given. A real function

for @ and b if u
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F— R = R U @ is called a dipol function

satisfies the following conditions:

(3.1.2) (i) u is finite and harmonic on F-P ; i.e.
2 2
Au = 2 : = 3 = 0 .
ox” oy~
(i) u has (as a function of z) the form

ax
2,2
X +y

u(z) = Re(g) + o(z) = + ¢(z)

for some real, smcoth function ¢ defined in a neighbourhood

of P such that 5(0) =1b .

The existence of dipol functions is a classical result in function theory.
Earlier based only on heuristic arguments, the existence follows from Diri-
chlet's principle after Hilbert's re-establishing of the Dirichlet principle:
u minimizes the (modified) Dirichiet integral away from P among all conti-
F-P —> R with finite Dirichlet

nuous, piecewise differentiable functions h :

integral such that h-s is continuous near P , and continuously extendable

to P, where s(z) = 7x 2 + —%r is a specially adapted function. We refer
X +y (o

to [Hilbert 1909], (Courant 1950, F.51-55, 77], ([Weyl 1913, §§14,15], (Springer
1957, p.211], ([Siegel 1964, P.224-240] or (Farkas - Kra 1980, p.45-48] for a
proof of the following statement.

(3.1.3) PEF,and x =a

F be a Riemann surface,

Proposition. Let

direction at P

. Then for any a = (z:a) and

b € R there is a unique dipol function. L]
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3.2. The critical graph of the gradient flow.

Viewed as a potential u induces a flow

_ Jdug
(3:2.1) ¢ = grad = 3y dx * 3y dy

in a local parameter z = x + iy . Near the dipol P the vector field @

has stream lines as shown. The index at P is 2

(3.2.2)

index = 42

A critical point S of u is a zero of ¢ ,

du
9x

(3.2.3) gradu(s) 0, (0) = %5(0) =0

X + iy with 2z(S) =0, S 4is called a stagnation

for a local parameter z
point. Since u is harmonic, it is in some neighbourhood of S the real
part of a holomorphic function f with %g(zo) = 0 ,' hence

f(z) = al(z - zo)m+1 + az(z - zo)m+2 £ for some local parameter =z ,
z = z(S) valid in this neighbourhood; the number m = m(S) 2 1 is the

multiplicity of S . The following figures show the stream lines near zeroes.
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(3.2.4)

=k §\3 BN
> 74 ) C/
\)//.*\‘: :’\7/;7 M-S

]
w

m=1 m= 2 m

index = -1 index = -2 index = -3

The indices of all critical points must add up to the Euler characteristic
x(F) = 2 - 2g of F ; since there is precisely one pole P of index -2 ,
there are 2g zeroes if counted with their multiplicities. We denote the

set of stagnation points by J.

To describe the combinatorial structure of the vector field ¢ we use the

graph of critical stream lines. Let So 5 be two distinct points in

l ’
fu {P } , and take £, = u(So) ; t1 = u(Sl) as points in R ; assume
to < t1 . A curve K : [to’tl] —» F is called an integral curve from S0

to S1 , if it has the following properties:

(3.2.5) (i) K(to) =S K(tl) =

(ii) u(K(t)) =
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(iii) K is continuous on [to.tl] and smooth on ]to.tl[ , and

&K, L
do(t) = gradu(k(t)) 70 fiir t € ]to,tl[

Such a K 1is called an integral curve leaving So » or entering S1

The graph :K has the points of :f and P as vertices; a vertex S + P .
i.e. a stagnation point, is called a finite vertex. There is exactly one
edge K from SO to Sl , denoted by K = (So,Sl) if and only if there is

an integral curve K from SO to S, . We denote the set of all edges entering

1
> «
S by 3<(S) » and the set of all edges leaving S by K(S) . We have

(3.2.6)  #%(S) = #R(S) = m(S) + 1

We call an edge critical if it leaves a finite vertex. All vertices together

with the critical edges form a subgraph, called the critical graph 5{0 .

X is a directed graph, imbedded into the surface F ; indeed, this fact

will become particularity important.

being a directed graph makes J U {P } a partially ordered set. If
° g P
K : So — Sl , we call S0 higher than S1 . There are, in general, several

highest vertices in fko 5P is the unique lowest vertex P

We say :Zo decomposes if there are connected, full subgraphs having all P
and only P  1is common. Of particular interest is the case of a generic :ko H
we call tko generic, if m(S) =1 for all S € :f . Then there are 2g
vertices, all are highest vertices, and :110 decomposes into 2g subgraphs

as shown in the next figure.

(3.2.7) o

v @



= A7 o

(3.2.8) Example. The four possible critical graphs
(1) (3)

N (
D

(2) (4)



- 48 -

3.3 The conjugate harmonic function and the mapping function.

As a harmonic function wu is, locally, the real part of a holomorphic function

f . The conjugate harmonic function v = Im(f) is locally (up to an additive

)
)

2 ’ : v Ju \
constant) determined by the Cauchy-Riemann equations 3x - T3v ' av
(<D, v N

12

oY)
Qs

X

Before we can integrate these differential forms we must disect F along the

critical curves of the flow ¢ = gradu . This vields an open sub-surface
(3.3.1) F = F-X
o o

Using the flow ¢ one can construct a contraction of FO 3 in particular, F
o

is simply-connected. Choose an arbitrary point P' € Fo and define

g
(3.3.2) v(g) = j [%%dy - —dx]
P

for C € Fo ; the integration is along any path in F0 from P' to (

v is a harmonic function Fo —» R . We set
(313230 w=u+ iv s w:F —»¢(

w is a holomorphic function, called the complex potential, or mapping function

associated with u

If we choose a different point P' € FO in (3.3.2) to define another harmonic

conjugate v , then they differ only by the constant

'[Sn
: v -3 = [(3u, _3u
(3.3.4) bv =v - v J [axdy aydx]
P'

Thus w can be characterized as follows.
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(3.3.5) Proposition. Let a direction x at P € F be given. For any

projective parameter class a = (z:a) and anv com-

plex number b = bu+ibv there is a unique harmonic

function u and a unique holomorphic function w

such that

(i) u is defined outside P ,

(ii) w is defined outside the critical graph of grad u ,

(i{i) u = Re(w)

(iv) w(z) = % + g(z) for some g defined in a neighbourhood of

P, with g(0) = b . .

w has the name mapping function because it is a uniformizer or (local) para-

meter for the dissected surface Fo with maximal image.

(3.3.6) Proposition. The image of w = u + iv : FO —> € is the whole

complex plane minus a finite number of lines, parall:

to the real axis, starting at some finite point, and

being infinite to the left. [

For a proof, see [Hilbert 1909], [Courant 1950], for example. Of course, the

missing lines "are" the critical integral curves.



- 50 -

3.4 The boundary of Fo .

We construct a surface F with boundary by adding ideal boundarv points

to F0 = F = j(o . There are two kinds of boundary points. First, consider

nnzl

Cauchy sequences {P } in F0 which converge in F - P to some point

c
->

all Pn lie in the same component of N —:ko . Two such sequences {Pnj

and {Q_} represent the same point if 1lim P = lim Q =R and for anv
n > n > n -

neighbourhood N < F - P of R almost all Pn and Qn lie in one and

the same component of N - j[o . We denote the space of equivalence
classes by F1 . The points in Fl-Fc are called finite boundarv points.
Note that v has a unique extension to F., . Two equivalent sequences

1

{Qn} can be deformed into each other within the same component of any N —:ko:

Therefore 1lim v(P_) = lim v(Q )
gs n 5 n

F1 is not yet a bordered surface; there are finitely many points still

missing. To add these in a second step we consider Cauchy sequences {Pn}

{P

in F1 ; two such sequences {Pn} and {Qn} are regarded as representing

the same point if 1lim W(Pn) = lim w(Qn) in € . Here we use that w =
> >

also has a unique extension to Fl . We denote the space of these equivalence

classes by F . There 1is an inclusion

(3.4.1) Fo == S ——p Fe

P.= lim Pn » and which have for any neighbourhood N cF-P of P almost

n

utiv

the points in F - F. are called infinite boundary points. There is a pro-

1

jection

m: F—»F , n({Pn}) = lim Pn .

1

4

’
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m is surjective, and n(E) =B 4f B Fo . For n-l(g) there are the

following possibilities:

(3.4.2) (i) If B € F_, there is only one point over P .
) » E

C(ii)  If POG.KO— P ,P. ¥ P , there are two points P" and

P over P ; they correspond to the right and left si

of the integral curve K containing P, . Thus K has

two well-distinguished lifts K+ , K to F.

(iii) If P,€ ¥, then there are m(P) + 1 (finite) boundar

points above E .

(iv) There are the 4g - = (m(s)-1) (infinite) boundary
sey

points above P

- The potential function u extends to F by
(3.4.3) u(P) = u(n(P)) .

The boundary arcs of F are stream lines of the associated flow. We

extend v to F by the formula

(3.4.4) v(P) = lim v(Pn) of {P } represents P,
>

This is well-defined for the same reason as above. We summarize the

results in the following

(3.4.5) Proposition. The complex mapping function extends to a continu

function w =u + iv : F — € . The gradient flow of the real part u

= (m(S)+1) stagnation points and 4g - = (m(S)-1) poles, all in the
S S

= . i i ints an
boundary F FO The image of boundary arcs between stagnation poi

poles are finite or semi-infinite horizontal lines in C . L]
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(3.4.6)
a Sl a' S2 al
—— > ~—<
:\k\)‘I -’/*\' ; /‘:
I
c ! N e I C P
| = = 1
; N . 1
[ . :
] — |
a S1 a' S, a''
F F

g=1, m(Sl) = m(Sz) =

The identifications are indicated. The example corresponds to (3.2.8)_(&).

3555 The combinatoric of the branchlng graph..

Sele s dd 15

So far we have studied the singularities of Ehe flowlli  'of the harmonic

function u : F —R by considering the graph of 1ntegral curves between

e AJL,‘L

stagnation points and the pole P . The eas1est-case is when the gtaph 5C

of critical 1ntegral curves is generic. - But 1f j(

of multiplicity m = m(S) 2 2 , then there are.only_~m+1.*1ntegral curves

entering S , and the same number leav1ng s . Formally thete should be i

curves of each kind, and one should th1nk “of S as_che sum ‘or 11m1t f ‘m

generic stagnation points each of multlpllclty one.



(3.5.1%)

On the other hand, the fact that 360 is a surface graph imposes strong

conditions on jCO if merely considered as a graph. But znother implication

> -
is a kind of orientability; namely the sets X(s) and X.(S) have a unique

cyclic ordering induced by the complex structure of F .

(3.5.2)

2
]
]
*~
KZ\ ;// k
f"’ \“.. L
P e 3
/
’
L.=K, K
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(We order the entering integral curves counter-clockwise, and the leaving

ones clockwise.)

Furthermore, to each entering integral curve K there are two well-dis-
tinguished leaving integral curves K  and K+ , considered as left

and right branches into which K splits at S

Thus .}% is more than a graph; and we will use the advantage of orientabilit
to remedy the disadvantage of degeneracy. We will introduce virtual integral
curves énd complete :ko to a formally generic graph. The new graph J? can
be mapped to the complex plane by the mapping function w = utiv » and

this mapping describes the Riemann surface E .

To formulate the construction of J& we need several notions about finite

linear and cyclic sets.

Let n stand for the set {1,2,...,n} . With the natural ordering

1 <2< ... <n it will be denoted by [m] . A linear order on an arbitrary
set A with n elements is then (determined by) a bijective function

@ :n—>A . Acyclic ordering of A 1is represénted by a bijective function

a :n—» A, but two such @, oy are called equivalent, if ail .

is a cyclic permutation of n . Let <n> denote the set n with the
(standard) cyclic ordering represented by the identity; we write

1 <2< .0 <n <1

A different way to declare linear or cyclic orderings is with successor re-
lations; in the case of a cyclic set A with n elements this is even

a function succ : A — A with sudck(a) # a forall 0 <k <n , and
succ™(a) = a

In contrast to linear sets there is of course no maximal or minimal element

in a cyclic set.
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Example.

- - .
The cyclic ordering on K (S) and X(S) is determined as follows. Let
N be a parametric disc around S, containing no other stagnation point
nor the pole P , and let z : N—» C be a parameter. N - X(S) has

m(S)+1 components. For K € X(S) there are twovintegral curves L L

2

1 ’

leaving S which are #n the boundary of the component intersecting K .

Assume z is such that z(S) = 0 , z(K) 1is contained in the positive real:s

and Z(Ll) lies in the lower half-plane; then K := L1 and k' := |

- -

In X(S) we declare: succ(Kl) = K, if and only if K: =K, . And in
<« >
X(S) we declare: succ(Ll) = L2 if and only if there is some K € X(s)

with L. =K' and L. = K~

1 2
(3.5.3)
+
e
n
S
. ¢ — K
b ~
/ \ K ",
L% 2 =
Kl ’ L2 =K
+ -
K] =K

The choice of an element a 1in a cyclic set A with n ~elements deter-
N - o ,: n_l -
mines a linear ordering by setting a < succ(a) < ... succ”™ “(a) . If we

write a;, < a

1 ay for three elements of A , we mean 0Sk, Sk, <n

2 K 2 3

when a, = succ 2(al) and a; = succ 3(al) . A function f : A—» B

< A

-

between two cyclic sets is called monotone, if a, £ a, = ag always implies

f(al) < f(az) < f(aj) .



_56_

Let a, a' be two (distinct) elements of a cyclic set A with n

elements such that a' = succz(a) for some 0 < ¢ < n . Then (&, . ca®]
denotes the interval of all succk(a) » 05k s e . Note that it is

a linear set.

Let Ai be a linear set for all i €I . If I is itself linear with

elements i1 < i, < ... < ir » then we denote by

(3.5.4) [ Ai = [Ai ,...,Ai ]

iNE T 1 r

L—

the linear union of all Ai., i.e. the disjoint union with the old ordering

on each Ai , and max Ai < min A,
k Tk+1

If I is only a cyclic set, then we denote by
(3.5.5) CO> A, = <A, ,.. LA >

the cyclic union of all Ai » 1i.e. the disjoint union with the old successor

relation extended by succ(max A.) = min A .
i succ(i)

Let B be a linear set B :m— B . We introduce an abstract linear

set B : m+l —» é whose elements are to be interpreted as the gaps
of B . The gap between two successive elements bl’ b2 is denoted by
bl\/b7 ; the gap to the left of the minimum 8(1) of B, resp. to

the right of the maximum 8(m) of B » is denoted by \/B(1) , resp.

B(m)\/ .

Let a : n —»*» A be another linear set; a shuffle function is a monotone

function ¢ : A — B . It induces a decomposition of A into intervals

A= (B e )M1) L, i€ mbl, such that A - (3 A = Dby

The shuffling of A into B via g is the linear union
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(3.;.6) A : B := [Al,a(l).Az,...,s(m),Am

+1]

Now we begin with a single vertex S , which is a finite stagnation point,
and set m = m(S) . Choose a cyclic set C(S) with 2m elements and

a surjective, monotone function
(3.5:7) € = gg : €(S) — X(S)

-

This amounts to viewing each K €X(S) as a multiple edge such that

there is a total number of 2m instead of m+l , but in addition the
=l

set € "(K) of replicas of K has a linear order. e is called a de-

generacy function. If €(C) = K we say C .lies over K .

o
Corresponding to these entering edges we introduce a cyclic set ¥©(S)

of 2m leaving integral curves, and another degeneracy function

{3.5.8) § = &g :é-_(s) — X(s)

and two branching functions

+ + - = S
(3.5.9) B =Bg,» B =By :€(s) —»€(s)
such that €, § , B+ and 8 satisfy the following properties.

(3.5.10) (i) «

S is monotone and surjective.

(ii) GS is monotone and surjective.
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U
KA K

hNd

(S ]

KB
o1
k3

K

N
L
/// 1

k|

->
This figure shows a possible distribution of the cyclic sets €(S) (inner
% =9 -~
circle) and €(S) (outer circle) over ‘K(S) via e , resp. over X(S)
via & . Here m(S) = 3 . For reasons suggested by the geometry we draw

the leaving edges as double lines with a joint arrow.
8 A1) + - - :
(iii) g and B are bijective.
+ - | >
(iv)  p'(c) # g (C) , for ail c €€(s) .

(v) B+(C1) = B'(Cz) if and only if a'(cl) = B+(C2) for all

C,»C, € E(({(SH

C1
+ =\ ! R -
B (C,) /\ : ]\ B (c))
\ e et / 1
- +
B (Cz) B (CZ) !
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(vi) If C is minimal in E-I(K) for some K € X(S) , then B (C)

is minimal in 6-1(1(—)

g(c) 4=A

— ->
(vii) If C1 < C2 are successors in € 1(I() for some K €’X(S) , then

- - “
B+(C1) < B (C'2) are successors in §& 1(K') for some K' € 'X(S)

B (C,)

+
gtec)) %/

Gy %

= = +
(viii) If C 1is maximal in € 1(l() for some K € X(S) , then B (C)

+).

is maximal in 6_1(1(

st (c)
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Thus we will have the following diagram.

ES BS és
= 3 - = /\ - -
(3.5.11) X(s) « efs) . 2¥(s) > X(s)
: +
Bs
(3.5.12) Lemma. There are degeneracy functions Eg > és and branching
functions B; , Bé with the properties (i) - (viii) above.

We will give an algorithm producing, for any choice of €g » the functions
+ -
55 s BS and BS . Since this involves several other choices, the result

is not unique unless m = 1
[e]

-> —>
Proof. Let €g be any degeneracy function €(s) — k() , satisfying

(i) . The lemma is proved by induction on m .

If m=1, there is no choice at all.

(2.5.13) i _ 1
v
Ky —< — c: 4 ] b= c!
A A
|

With the notation of (3.5.13) we have e(Ci) = K, and 6(Ci) = Ki

(i=1,2), 87 =87(c,) = ¢y and 87(c)) = 8¥(c,) =























































































































































































