Chapter 3

Dipol Functions

3l The potential function.

Sl The critical graph of the gradient flow.

3.3 The conjugate harmonic function and the mapping function.
34 The boundary of Fo

3.5 The combinatoric of the branching graph.

3.6 The branching complex.

In this chapter the function theoretic side of the Hilbert uniformization is
developed. Based on the main existence theorem fof dipol function, i.e. har-
monic functions with a dipol singularity Re(%) of prescribed strength and
direction we study the gradient flow and its critical graph t}co . The main
work consists of extending or covering :kg by a branching graph, i.e. to
add to ﬁX% "virtual integral curves" to obtain a generic graph. Together
with the dissected surface F0 =F - jCo this forms the branching complex
from which the original surface can be reobtained. The mapping function w
extends to the branching complex, and the image of its boundary will éonsti-

tute a parallel slit domain, the objects of the next chapter.
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3.1 The potential function.

Throughout this chapter let F be a fixed Riemann surface, compact, closed
and connected, of arbitrary genus g ; furthermore, a pcint P € F and a
direction x € T(F) at P is given. The local parameters are denoted by

z 2 —C, W =2z (Z) a region in ¢
a a “a

Let z = x+1iy be a local parameter in a neighbourhood :f the basepoint P

We call 2z directed if
(3.1.1) z(P) = 0 , Dz(x) = é% = dx

holds. By composing with a translation and a rotation anv parameter can be
directed; two directed parameters are scalar multiples of each other. We
need to consider projective classes of directed parameters near P : they are
represented by pairs (z,a) , where z' satisfies (3.1.1), and a is a posi-
tive real number; the equivalence is given by (z,a) ~ (cz,ca) for c > 0 ;
an equivalence class is denoted by o = (z:a) . There is a bijective corres-
pondence between projective parameter classes and éositive real numbers, but

there is no canonical identification.

The uniformization principle we will use has a strong heuristic background.
Imagine an electrical dipole placed at P , pointing in zhe direction 6f X
The result will be a vector field or flow with a‘single‘kdipole) singularity’
and several stagnation points (zeroes). The positions of these stagnation
points and the stream lines connecting them are completely determined by the
complex structure of F ; vice versa, the positions of the stagnation points
and the graph of the connecting stream lines - partly geometric and partly
combinatoric data - determines the complex structure. To make this precise

we study the potential function for such a flow. Let: q = (z:a) and b € R



be given. A real function

for @ and b if u
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F— R = R U @ is called a dipol function

satisfies the following conditions:

(3.1.2) (i) u is finite and harmonic on F-P ; i.e.
2 2
Au = 2 : = 3 = 0 .
ox” oy~
(i) u has (as a function of z) the form

ax
2,2
X +y

u(z) = Re(g) + o(z) = + ¢(z)

for some real, smcoth function ¢ defined in a neighbourhood

of P such that 5(0) =1b .

The existence of dipol functions is a classical result in function theory.
Earlier based only on heuristic arguments, the existence follows from Diri-
chlet's principle after Hilbert's re-establishing of the Dirichlet principle:
u minimizes the (modified) Dirichiet integral away from P among all conti-
F-P —> R with finite Dirichlet

nuous, piecewise differentiable functions h :

integral such that h-s is continuous near P , and continuously extendable

to P, where s(z) = 7x 2 + —%r is a specially adapted function. We refer
X +y (o

to [Hilbert 1909], (Courant 1950, F.51-55, 77], ([Weyl 1913, §§14,15], (Springer
1957, p.211], ([Siegel 1964, P.224-240] or (Farkas - Kra 1980, p.45-48] for a
proof of the following statement.

(3.1.3) PEF,and x =a

F be a Riemann surface,

Proposition. Let

direction at P

. Then for any a = (z:a) and

b € R there is a unique dipol function. L]
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3.2. The critical graph of the gradient flow.

Viewed as a potential u induces a flow

_ Jdug
(3:2.1) ¢ = grad = 3y dx * 3y dy

in a local parameter z = x + iy . Near the dipol P the vector field @

has stream lines as shown. The index at P is 2

(3.2.2)

index = 42

A critical point S of u is a zero of ¢ ,

du
9x

(3.2.3) gradu(s) 0, (0) = %5(0) =0

X + iy with 2z(S) =0, S 4is called a stagnation

for a local parameter z
point. Since u is harmonic, it is in some neighbourhood of S the real
part of a holomorphic function f with %g(zo) = 0 ,' hence

f(z) = al(z - zo)m+1 + az(z - zo)m+2 £ for some local parameter =z ,
z = z(S) valid in this neighbourhood; the number m = m(S) 2 1 is the

multiplicity of S . The following figures show the stream lines near zeroes.
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(3.2.4)

=k §\3 BN
> 74 ) C/
\)//.*\‘: :’\7/;7 M-S

]
w

m=1 m= 2 m

index = -1 index = -2 index = -3

The indices of all critical points must add up to the Euler characteristic
x(F) = 2 - 2g of F ; since there is precisely one pole P of index -2 ,
there are 2g zeroes if counted with their multiplicities. We denote the

set of stagnation points by J.

To describe the combinatorial structure of the vector field ¢ we use the

graph of critical stream lines. Let So 5 be two distinct points in

l ’
fu {P } , and take £, = u(So) ; t1 = u(Sl) as points in R ; assume
to < t1 . A curve K : [to’tl] —» F is called an integral curve from S0

to S1 , if it has the following properties:

(3.2.5) (i) K(to) =S K(tl) =

(ii) u(K(t)) =
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(iii) K is continuous on [to.tl] and smooth on ]to.tl[ , and

&K, L
do(t) = gradu(k(t)) 70 fiir t € ]to,tl[

Such a K 1is called an integral curve leaving So » or entering S1

The graph :K has the points of :f and P as vertices; a vertex S + P .
i.e. a stagnation point, is called a finite vertex. There is exactly one
edge K from SO to Sl , denoted by K = (So,Sl) if and only if there is

an integral curve K from SO to S, . We denote the set of all edges entering

1
> «
S by 3<(S) » and the set of all edges leaving S by K(S) . We have

(3.2.6)  #%(S) = #R(S) = m(S) + 1

We call an edge critical if it leaves a finite vertex. All vertices together

with the critical edges form a subgraph, called the critical graph 5{0 .

X is a directed graph, imbedded into the surface F ; indeed, this fact

will become particularity important.

being a directed graph makes J U {P } a partially ordered set. If
° g P
K : So — Sl , we call S0 higher than S1 . There are, in general, several

highest vertices in fko 5P is the unique lowest vertex P

We say :Zo decomposes if there are connected, full subgraphs having all P
and only P  1is common. Of particular interest is the case of a generic :ko H
we call tko generic, if m(S) =1 for all S € :f . Then there are 2g
vertices, all are highest vertices, and :110 decomposes into 2g subgraphs

as shown in the next figure.

(3.2.7) o

v @
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(3.2.8) Example. The four possible critical graphs
(1) (3)

N (
D

(2) (4)
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3.3 The conjugate harmonic function and the mapping function.

As a harmonic function wu is, locally, the real part of a holomorphic function

f . The conjugate harmonic function v = Im(f) is locally (up to an additive

)
)

2 ’ : v Ju \
constant) determined by the Cauchy-Riemann equations 3x - T3v ' av
(<D, v N

12

oY)
Qs

X

Before we can integrate these differential forms we must disect F along the

critical curves of the flow ¢ = gradu . This vields an open sub-surface
(3.3.1) F = F-X
o o

Using the flow ¢ one can construct a contraction of FO 3 in particular, F
o

is simply-connected. Choose an arbitrary point P' € Fo and define

g
(3.3.2) v(g) = j [%%dy - —dx]
P

for C € Fo ; the integration is along any path in F0 from P' to (

v is a harmonic function Fo —» R . We set
(313230 w=u+ iv s w:F —»¢(

w is a holomorphic function, called the complex potential, or mapping function

associated with u

If we choose a different point P' € FO in (3.3.2) to define another harmonic

conjugate v , then they differ only by the constant

'[Sn
: v -3 = [(3u, _3u
(3.3.4) bv =v - v J [axdy aydx]
P'

Thus w can be characterized as follows.
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(3.3.5) Proposition. Let a direction x at P € F be given. For any

projective parameter class a = (z:a) and anv com-

plex number b = bu+ibv there is a unique harmonic

function u and a unique holomorphic function w

such that

(i) u is defined outside P ,

(ii) w is defined outside the critical graph of grad u ,

(i{i) u = Re(w)

(iv) w(z) = % + g(z) for some g defined in a neighbourhood of

P, with g(0) = b . .

w has the name mapping function because it is a uniformizer or (local) para-

meter for the dissected surface Fo with maximal image.

(3.3.6) Proposition. The image of w = u + iv : FO —> € is the whole

complex plane minus a finite number of lines, parall:

to the real axis, starting at some finite point, and

being infinite to the left. [

For a proof, see [Hilbert 1909], [Courant 1950], for example. Of course, the

missing lines "are" the critical integral curves.
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3.4 The boundary of Fo .

We construct a surface F with boundary by adding ideal boundarv points

to F0 = F = j(o . There are two kinds of boundary points. First, consider

nnzl

Cauchy sequences {P } in F0 which converge in F - P to some point

c
->

all Pn lie in the same component of N —:ko . Two such sequences {Pnj

and {Q_} represent the same point if 1lim P = lim Q =R and for anv
n > n > n -

neighbourhood N < F - P of R almost all Pn and Qn lie in one and

the same component of N - j[o . We denote the space of equivalence
classes by F1 . The points in Fl-Fc are called finite boundarv points.
Note that v has a unique extension to F., . Two equivalent sequences

1

{Qn} can be deformed into each other within the same component of any N —:ko:

Therefore 1lim v(P_) = lim v(Q )
gs n 5 n

F1 is not yet a bordered surface; there are finitely many points still

missing. To add these in a second step we consider Cauchy sequences {Pn}

{P

in F1 ; two such sequences {Pn} and {Qn} are regarded as representing

the same point if 1lim W(Pn) = lim w(Qn) in € . Here we use that w =
> >

also has a unique extension to Fl . We denote the space of these equivalence

classes by F . There 1is an inclusion

(3.4.1) Fo == S ——p Fe

P.= lim Pn » and which have for any neighbourhood N cF-P of P almost

n

utiv

the points in F - F. are called infinite boundary points. There is a pro-

1

jection

m: F—»F , n({Pn}) = lim Pn .

1

4

’
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m is surjective, and n(E) =B 4f B Fo . For n-l(g) there are the

following possibilities:

(3.4.2) (i) If B € F_, there is only one point over P .
) » E

C(ii)  If POG.KO— P ,P. ¥ P , there are two points P" and

P over P ; they correspond to the right and left si

of the integral curve K containing P, . Thus K has

two well-distinguished lifts K+ , K to F.

(iii) If P,€ ¥, then there are m(P) + 1 (finite) boundar

points above E .

(iv) There are the 4g - = (m(s)-1) (infinite) boundary
sey

points above P

- The potential function u extends to F by
(3.4.3) u(P) = u(n(P)) .

The boundary arcs of F are stream lines of the associated flow. We

extend v to F by the formula

(3.4.4) v(P) = lim v(Pn) of {P } represents P,
>

This is well-defined for the same reason as above. We summarize the

results in the following

(3.4.5) Proposition. The complex mapping function extends to a continu

function w =u + iv : F — € . The gradient flow of the real part u

= (m(S)+1) stagnation points and 4g - = (m(S)-1) poles, all in the
S S

= . i i ints an
boundary F FO The image of boundary arcs between stagnation poi

poles are finite or semi-infinite horizontal lines in C . L]
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(3.4.6)
a Sl a' S2 al
—— > ~—<
:\k\)‘I -’/*\' ; /‘:
I
c ! N e I C P
| = = 1
; N . 1
[ . :
] — |
a S1 a' S, a''
F F

g=1, m(Sl) = m(Sz) =

The identifications are indicated. The example corresponds to (3.2.8)_(&).

3555 The combinatoric of the branchlng graph..

Sele s dd 15

So far we have studied the singularities of Ehe flowlli  'of the harmonic

function u : F —R by considering the graph of 1ntegral curves between

e AJL,‘L

stagnation points and the pole P . The eas1est-case is when the gtaph 5C

of critical 1ntegral curves is generic. - But 1f j(

of multiplicity m = m(S) 2 2 , then there are.only_~m+1.*1ntegral curves

entering S , and the same number leav1ng s . Formally thete should be i

curves of each kind, and one should th1nk “of S as_che sum ‘or 11m1t f ‘m

generic stagnation points each of multlpllclty one.



(3.5.1%)

On the other hand, the fact that 360 is a surface graph imposes strong

conditions on jCO if merely considered as a graph. But znother implication

> -
is a kind of orientability; namely the sets X(s) and X.(S) have a unique

cyclic ordering induced by the complex structure of F .

(3.5.2)

2
]
]
*~
KZ\ ;// k
f"’ \“.. L
P e 3
/
’
L.=K, K



— S& =

(We order the entering integral curves counter-clockwise, and the leaving

ones clockwise.)

Furthermore, to each entering integral curve K there are two well-dis-
tinguished leaving integral curves K  and K+ , considered as left

and right branches into which K splits at S

Thus .}% is more than a graph; and we will use the advantage of orientabilit
to remedy the disadvantage of degeneracy. We will introduce virtual integral
curves énd complete :ko to a formally generic graph. The new graph J? can
be mapped to the complex plane by the mapping function w = utiv » and

this mapping describes the Riemann surface E .

To formulate the construction of J& we need several notions about finite

linear and cyclic sets.

Let n stand for the set {1,2,...,n} . With the natural ordering

1 <2< ... <n it will be denoted by [m] . A linear order on an arbitrary
set A with n elements is then (determined by) a bijective function

@ :n—>A . Acyclic ordering of A 1is represénted by a bijective function

a :n—» A, but two such @, oy are called equivalent, if ail .

is a cyclic permutation of n . Let <n> denote the set n with the
(standard) cyclic ordering represented by the identity; we write

1 <2< .0 <n <1

A different way to declare linear or cyclic orderings is with successor re-
lations; in the case of a cyclic set A with n elements this is even

a function succ : A — A with sudck(a) # a forall 0 <k <n , and
succ™(a) = a

In contrast to linear sets there is of course no maximal or minimal element

in a cyclic set.
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Example.

- - .
The cyclic ordering on K (S) and X(S) is determined as follows. Let
N be a parametric disc around S, containing no other stagnation point
nor the pole P , and let z : N—» C be a parameter. N - X(S) has

m(S)+1 components. For K € X(S) there are twovintegral curves L L

2

1 ’

leaving S which are #n the boundary of the component intersecting K .

Assume z is such that z(S) = 0 , z(K) 1is contained in the positive real:s

and Z(Ll) lies in the lower half-plane; then K := L1 and k' := |

- -

In X(S) we declare: succ(Kl) = K, if and only if K: =K, . And in
<« >
X(S) we declare: succ(Ll) = L2 if and only if there is some K € X(s)

with L. =K' and L. = K~

1 2
(3.5.3)
+
e
n
S
. ¢ — K
b ~
/ \ K ",
L% 2 =
Kl ’ L2 =K
+ -
K] =K

The choice of an element a 1in a cyclic set A with n ~elements deter-
N - o ,: n_l -
mines a linear ordering by setting a < succ(a) < ... succ”™ “(a) . If we

write a;, < a

1 ay for three elements of A , we mean 0Sk, Sk, <n

2 K 2 3

when a, = succ 2(al) and a; = succ 3(al) . A function f : A—» B

< A

-

between two cyclic sets is called monotone, if a, £ a, = ag always implies

f(al) < f(az) < f(aj) .
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Let a, a' be two (distinct) elements of a cyclic set A with n

elements such that a' = succz(a) for some 0 < ¢ < n . Then (&, . ca®]
denotes the interval of all succk(a) » 05k s e . Note that it is

a linear set.

Let Ai be a linear set for all i €I . If I is itself linear with

elements i1 < i, < ... < ir » then we denote by

(3.5.4) [ Ai = [Ai ,...,Ai ]

iNE T 1 r

L—

the linear union of all Ai., i.e. the disjoint union with the old ordering

on each Ai , and max Ai < min A,
k Tk+1

If I is only a cyclic set, then we denote by
(3.5.5) CO> A, = <A, ,.. LA >

the cyclic union of all Ai » 1i.e. the disjoint union with the old successor

relation extended by succ(max A.) = min A .
i succ(i)

Let B be a linear set B :m— B . We introduce an abstract linear

set B : m+l —» é whose elements are to be interpreted as the gaps
of B . The gap between two successive elements bl’ b2 is denoted by
bl\/b7 ; the gap to the left of the minimum 8(1) of B, resp. to

the right of the maximum 8(m) of B » is denoted by \/B(1) , resp.

B(m)\/ .

Let a : n —»*» A be another linear set; a shuffle function is a monotone

function ¢ : A — B . It induces a decomposition of A into intervals

A= (B e )M1) L, i€ mbl, such that A - (3 A = Dby

The shuffling of A into B via g is the linear union
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(3.;.6) A : B := [Al,a(l).Az,...,s(m),Am

+1]

Now we begin with a single vertex S , which is a finite stagnation point,
and set m = m(S) . Choose a cyclic set C(S) with 2m elements and

a surjective, monotone function
(3.5:7) € = gg : €(S) — X(S)

-

This amounts to viewing each K €X(S) as a multiple edge such that

there is a total number of 2m instead of m+l , but in addition the
=l

set € "(K) of replicas of K has a linear order. e is called a de-

generacy function. If €(C) = K we say C .lies over K .

o
Corresponding to these entering edges we introduce a cyclic set ¥©(S)

of 2m leaving integral curves, and another degeneracy function

{3.5.8) § = &g :é-_(s) — X(s)

and two branching functions

+ + - = S
(3.5.9) B =Bg,» B =By :€(s) —»€(s)
such that €, § , B+ and 8 satisfy the following properties.

(3.5.10) (i) «

S is monotone and surjective.

(ii) GS is monotone and surjective.
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U
KA K

hNd

(S ]

KB
o1
k3

K

N
L
/// 1

k|

->
This figure shows a possible distribution of the cyclic sets €(S) (inner
% =9 -~
circle) and €(S) (outer circle) over ‘K(S) via e , resp. over X(S)
via & . Here m(S) = 3 . For reasons suggested by the geometry we draw

the leaving edges as double lines with a joint arrow.
8 A1) + - - :
(iii) g and B are bijective.
+ - | >
(iv)  p'(c) # g (C) , for ail c €€(s) .

(v) B+(C1) = B'(Cz) if and only if a'(cl) = B+(C2) for all

C,»C, € E(({(SH

C1
+ =\ ! R -
B (C,) /\ : ]\ B (c))
\ e et / 1
- +
B (Cz) B (CZ) !
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(vi) If C is minimal in E-I(K) for some K € X(S) , then B (C)

is minimal in 6-1(1(—)

g(c) 4=A

— ->
(vii) If C1 < C2 are successors in € 1(I() for some K €’X(S) , then

- - “
B+(C1) < B (C'2) are successors in §& 1(K') for some K' € 'X(S)

B (C,)

+
gtec)) %/

Gy %

= = +
(viii) If C 1is maximal in € 1(l() for some K € X(S) , then B (C)

+).

is maximal in 6_1(1(

st (c)
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Thus we will have the following diagram.

ES BS és
= 3 - = /\ - -
(3.5.11) X(s) « efs) . 2¥(s) > X(s)
: +
Bs
(3.5.12) Lemma. There are degeneracy functions Eg > és and branching
functions B; , Bé with the properties (i) - (viii) above.

We will give an algorithm producing, for any choice of €g » the functions
+ -
55 s BS and BS . Since this involves several other choices, the result

is not unique unless m = 1
[e]

-> —>
Proof. Let €g be any degeneracy function €(s) — k() , satisfying

(i) . The lemma is proved by induction on m .

If m=1, there is no choice at all.

(2.5.13) i _ 1
v
Ky —< — c: 4 ] b= c!
A A
|

With the notation of (3.5.13) we have e(Ci) = K, and 6(Ci) = Ki

(i=1,2), 87 =87(c,) = ¢y and 87(c)) = 8¥(c,) =
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-+ -
Assume m 2 2 . There must be K € X(S) such that f#e 1(K) =1 ; other-
R .
wise €(S) would have more then 2m elements. Vice versa, there must

be K' € K(S) such that #E_l(K') 2 2 ; otherwise €(S) would have

less than 2m elements. Thus we can find some K and K' = succ(K)
such that
(3.5.14) L) = (),
(3.5:15) s_l(succ(K)) = [CZ,...,Cr] , 3%r < 2m,
s
hold; then C2 = succ(Cl) because of (i) and we write €(S) = (CI’CZ""’C7
<
Write €(S) = €C15C55...,C5 > . To satisfy (vi) and (viii) with C = <,
we set
(3.5.16) BY(c) = ¢} and &(c) =K,

B (cl) := C)  and a(ci) = K

(3.5.17) To satisfy (vi) with C = C, we set

2

B-(CZ) :

]
O
-t

And (v) forces

(3.5.18) B+(Cz) -

|
(@]

(3.5.19)

m

>
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Corsider the remaining entering edges B(S) \ {CI,CZ} = <C3’""C2m> as
-
a cyclic set over the cyclic set X(S) \ {K} , and similarily

€(s) \ (Ci,C;} = (Ci,...,Cém> over X(S) \ {K+} as cyclic sets.

(3.5.20)
'
C3
v s
< g A=E=seace ]
- ’, ‘ 4 ’I.
= - 0
— ' - 7 5
o ‘ . L7 by
K . / : n ey
A 7 LUBEPN
., & II 1 C
K+ , Cl J’ t13
£ c! CZ

1

> >
The restriction €' : ¥€(S) - {Cl’C7} — X(S) \ {K+} is still a dege-
neracy function, satisfying (i) . By induction there exist extensions

- = d
s, B+ » B of our definitions (3.5.16 - 18) ‘to all of €(S) , resp.

€(S) , with the properties (i) - (viii) in the restricted situation.
Obviously these extensionsare surjective and monotone in the case of S ,
and bijective in the case of B , B+ ; thus (ii) and (iii) hold. (iv) is
true by inspection; (v), (vi) and (viii) hold by construction. Note that

(vii) corresponds to (vi) in the restricted situation: .

The following figures show examples for this algorithm.
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K] . K
3 kl i
(3.5.22) . C5 C4
K. 2 K! 2
’ |
v =4
|
Lr
K4 > — < X

Next we combine the data so far constructed for each vertex S . Let

K = (SI’SZ) be an edge in 3(0 . The set Ggl(K) is a linear subset
1

« _ -
of ‘E(sl) , and ESI(K) is a linear subset of E(SZ) . We choose a shuffle
2
function
_ = -1 -
(3.5.23) 9 =0y i ig (K) —» e_ (K)
1 =

The following figures show examples.
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(3.5.24)
&3
St
K (- g
2 /"\\\ K!
" SK
Kl
| %
P

K
N\
+
|
L ;

Out of the functions £g > és Y B; and Bé for each finite vertex S

of ]% » and of the functions o, for each edge K between finite vertices

K
of hk% the branching graph i? is constructed.

The vertices of 33 are the elements of _ﬂ_f?(s) », S a finite vertex,

and an additional vertex P . We write
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(3.5.26) L(s) := €(s) |
F(P ) := (P}
vert(df) := A & (S) A (Eo}
S

for the set of vertices over S , resp. of all vertices. P is the only

vertex over P

For each vertex C # P  there will be exactly two edges B'(C) and
B(C) from C to P , called the right and left branch of C ; there

will be no other edges.

(3.5.27) edg(#) := 1 (B¥(C),7(c)}
C

This describes & as a graph completely.

But we need an edge B of & to have an edge path (Kl’KZ’""Kn) in
k, from S to P  associated to it, when B is B'(C) or B7(C) ,
and C lies over S . Therefore we will define sets 89(x) for each
edge K in jto whose elements are the edges B of & ; and their
will be, for any B , exactly one edge path (Kl""’Kn) such that

B € &g(Ki) for ‘i = 15...,n . Corresponding to the cyclic orderings on

the o5 (S) there will be linear ordering on each & (K)

Let S be any vertex in :ko . We duplicate € (S) to obtain
ot -+
(3.5.28) €s) = ¢ > [£,07]
“
c € €(s)

=+ . .. . .
where [C ,C ] 1is the linear set consisting of two copies of C with

- +
the ordering C < C . As a new degeneracy function one has
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(3.5.29) d d : ‘ét(s) — 'JE(S) , d(c) = d(C+) := §(C)

Because of this doubling we drew the leaving edges always as double lipes.
Now let S be a highest vertex in ]Lo . For an edge K = (s,s') leaving

S we define

(3.5.30) G =alky= ] [¢,ch

L

d(Cc) =K

“.
as a subset of “€7(S)

Here we identify the edge B+(C) for C€ (S) c ver(&#) with
+, .\t 5t SN 5
B (C)' € f3+(S) and B (C) € Eit(s) . Note that &&(K) is a linear

. set. The shuffle function

€es) 2 671w SN

S

extends to a new shuffle function
' -1 -1 - S +y
(3.5.31) S, = s : odf(K) = d T(K) —» ¢ ,(K)", s(c) =s(c’) = a(C)
S

Assume that S' 1is a finite vertex in JCO » and that for all edges

K = (S,S') in }:0 we have defined linear sets o (K) and shuffle functions

s+ B — Ly
S‘

Let K' =(S',S") be an edge leaving S' . Consider a gap y of the

linear set d-l(K') = (Cn,C+,C—,C+,...,C-,C+] of the special form
SI 1 1 2 2 r r
(3.5.32) R
= = " o- )
or Y, Ci\/Ci+l, (i Iy-eu, 21

or Yr = Cr\/

P O
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They are linearly ordered (by their index). Gaps of this form correspond

to gaps of E(S') via

! ==l
! Ve,
(s*‘i‘lci\/(.e‘)‘1ciJrl .= 1,001,

resp. .o (B+)_1C;\/[

-2
]

-2
[}

resp.

|

Note that these 73 are indeed gaps of different e-l(K') because
- i SI
- +
B , B have the properties (2.7.10)(vi) - (viii) . Thus there is

an interval

(3.5.33) F o= sy e (KD

assigned to each y = Yo "Yr . And we define

(3.5.34) FE) = 1B =18 ... ]
Y o 'r

where the union is over all gaps in d-l(K') of the forms (3.5.31) .

Since S" 1is allowed to be P in this last step, this finishes the

construction of §?

The following figure shows the shuffling at a vertex S' over an edge

K' = (S',8") ; here S. and S

1 , are highest vertices in Jﬁo



-68-

]
(0%}

S \/._<__ m(Sl)
1 /
m(S') =

y
/"
~ n(s,) = 1

|
N

52/ \.—\_

R R
Yy [Cl,C C,,C

127222
Y, =8
| dgr (K")
%k
2 o
1= "o
"I,L (;Yl
C, 2
-+
! -
Yz - [C3’ C3]

The figure shows the doubles cd , C+ still with one arrow , since

+

for the shuffling the gaps C \/C are disregarded.



Summing up we have:

= a cyclic set & (S) over each vertex S in ]ﬁo , and EO alone

over P
)
— a degeneracy function eg ¢ o (5) —» X(s) ;

- a linear set & (K) over each edge K in :?O 3

- a shuffle function S G(K) —» E_l(K)—

= The set of vertices is vert(é§ ) consists of Eo and all elements
in some &9(3); thus the vertices are in addition also distributed

over the entering edges of ‘K via e : vert(f) —» edg(X)

= The edges of &% consist of a vertex C € &6(S) and an edge path
(Kl""’Kn) from S to Po in :Z% ; abstractly B==(C;Kl,.",Kn)

is an element of o& (K) precisely if K = Ki for some i =1,...,n.

As final examples the next figure shows all possibilities of branching

graphs for g =1 . The cases (1) - (4) correspond to the table (3.2.8) ;

(1) generic case, (2) 2 choices for 9y (3) 3 choices for €g
(4) 2 choices for each of o , @ .
K K
1 2
(3.5.36)

(1) \;\\\
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3.6 The branching complex.

The graph & associated to the degeneracy functions €5 > 65 » the

branching functions B B; » and the shuffle functions g,, will now

Si K

be regarded as a one-dimensional complex. The vertices C € o&2(S) » S EY,

and ?O are the 0O-cells. For each edge B = (C;Kl,...,Kn) with

), Sl = S and Sn+l =P we take a copy -of [-W.u(sl);

and identify -= with P , and u(Sl) with C . The curves

K, [u(Si+l),u(Si)] —> F  give an injective map w: B E[-m,u(Sl)] - F ,

m(t) = Ki(t) if u(Si+1) £tsg u(Si) . Topologically, o is a bouquet of

circles formed by BC = B+(C) U B(C) ; since there are 2m(S) vertices

C over S in o » we have X 2m(S) = 4g such circles; all have the
S

point P  and only P in common.

'
)

[+]

(3.6.1)

Recall the bordered surface 7 : F —» F over F , constructed as the
closure of the open surface F0 =F - 3(0 . The two harmonic functions u,

are extended to F , and u(n(z)) = z(z) for all z € F , and

= -1
v(n(z)) = v(z) for all z in the interior of F =7 (Fo) . In the

0
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boundary of F there are m(P )+l infinite boundary points, all lying
over the pole P . We identify all infinite boundary points to a single

point P , and identify P € F with P € i?; this attaches the bouquet

et} to F . The two-dimensional complex F . on is called the branching
complex.

Extending the functions u and v from F to Fud is easily

done for u by

(36.2) u(t) := t for t € BY(C) = BT(C) = [-=,u(S)] if C e & (s).

n
n

Note that wu(w(t)) = u(t) because ofl(3.2.5)(iii).

To define v on o remember that B+(C) and B (C) are to be thought
of as virtuell integral curves of the flow Eu . Hence v will be constant
on these l-cells, and moreover with the same constant value v(€) on

B+(C) and B (C) . Defining these values is an inductive procedure.

Let M be the set of all (non-critical) edges K = (P ,S) in K-k .
and let TfM be the set of all vertices C of & such that e(C) € M.
‘If C € EfM then v 1is defined on K = (C) , or in other words there

is a unique lift K to F ; we set

(3.6.3) v(€) = v(eg(C) = v() = v(®) , ce ¥, .

It is implied that v has the constant value v(C) along the l-cells

B'(C) and B(C)
We need the following fact for the inductive step.

(3:61.4) Let K' = (S,S') be an edge leaving S , and let C,» C, be

two vertices of oF over S such that B+(C1) and B-(CZ) are successive

1
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in e—l(K") for some (non-critical) K" = (S",S) . This follows from

(3.5.10)(vii) .

There are three immediate consequences of (3.5.3, 4) which we formulate
as hypotheses for the induction to come. First recall that there are

two lifts E+ and K  of K to F , since K 1is critical.
(3.6.5) If Bb is minimal in &;(K') , then v(BO) = v(K )
+ - 2 . '
I1f B =8 (Cl) and B, =B (CZ) are successive in oF (K )
then V(Bl) = V(Bz) .

If Bm is maximal in a?(x') , then v(Bm) = V(E+)

In the inductive step we consider C € vert(#) with €(C) = K critical;

and we assume that v(C') is defined for all C' € vert(&) with B+(C')
e : o : . e _ -1 -

or B (C') in (K) . Reading the shuffle function sg ¢ (K) —» ¢ “(K)

backwards s-l(K) is distributed over gaps of of (K) , but only over

those gaps of the special form B+(¢;;\/%'(CZ) , or the minimal and

the maximal (end) gap. (3.6.5) is used as part of the inductive hypothesis
to extend v from ag(K) to B (K) = (K) 5 s—l(K)iin a gapwise constant
manner. :

(3.6.6) If C € e-l(K) is in o8'(K) smaller then the minimal element
B, of oF(K) , then v(C) := v(B) = v(K )

If C€ e Y(K) lies in '(K) between B B, € & (k) , then

1’

v(C) : V(Bl) = V(BZ) .

If CE€ s-l(K) is in 6&'(K) larger then the maximal element Bm of

% (K) , then v(C) := v(B ) = v(k 5
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Of course, v has the constant value v(C) on B+(C) and B (C)

Note that (3.6.5) is still valid. This completes the definition of v

on the l-cells.

(3:6.7)

Vg
V5=V,
V3=V2
Yy

The two figures show the value distribution over a highest stagnation

point.
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c
y 3 V
, ; VI v1 v, 2
Vg vy V] l 3
V3 V3

Here we have two value distributions according to the two choices of

the shuffle function. In the next figure there are three choices.

W'
< . \l vl vl.
Vs
)
VIQ +Y >1V Y.
. ITRLILN LY AN
3 <+ V2=v3 ¥ ~
W > Y27 V3
v 1 v v ¥
5 5 5 v5
v5 v
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Our next aim is a linear ordering of the vertices of & . The values
v(C) establish a partial ordering on vert(a#) ; this will be sharpened

to a total, i.e. linear ordering.

Consider again the set M of (3.8.3). The constant values of v on
each K € M must be distinct, since the mapping function - w = u + iy
is injective on FO =F - U(O - Thus we can regard M with the linear

ordering induced by v . Furthermore, ¢ l(K) is a linear set for each

>

K € M . This turns t?M into a linear set by

=4k

(3.6.9) E? e (K)

=0 ]
" oken

Arguing as always by downward induction in j(o we see the folleowing-fact.

(3.6.10) If €»C, € vert(ogff) with V(Cl) = V(CZ) , then there is

some edge K in 360 such that

sither (1) B*(cl),B'(cz) e &) ,

or i) B+(C2),B_(C1) € F(K) holds.

This is an immediate consequence of (3.6.6) where no new value is intro-
duced, only existing values are given to successors and predecessors.
Note also that the alternative in (3.6.10) is independent of K , since

the shuffle functions are monotone.

Now we are ready to define the ordering. Given CI’CZ € vert(dr) we

declare:

(3.6.11) 1 <€ if "(Cl) < v(Cz) in R
or if v(Cl) = v(Cz) in R and
B+(C1) < B‘(Cv) in o&(K) for some edge

K satisfying (3.6.10)
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Because (3.6.10) is a true alternative, < 1is a well-defined linear

ordering.

There is an obvious pairing of the vertices C in & , i.e. a decompo-
sition into disjoint- subsets of exactly two elements. Alreadv for each

&#(S) we have a pairing, induced by the function

(3.6.12)  Ag = (871 o 8+ €(S) — €(S) — E(S5)

)\S is a bijection of o (S) = €(S) . Because of (3.5.10)(iii, iv, v)

it has the following properties:

(3.6.13) PRI (R for all C € &(S) ,
-1 - --1 4
(3.6.14) (Bg) " =By = (Bg)  © Bg
On the set vert(dr) = JLJ;(S) the XS induce a fixpoint-free involution A,

i.e. a pairing.

Altogether we have for the branching complex

w = utiv

v
a|

u&

=

where w = u + iv is the extended complex potential or mapping function.
For C a vertex of JG over a stagnation point S we denote by

(3.6.15) Lo = w(B,) = w(BT(C)) = w(B(C))
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the image of the cycle BC under w . LC is a semi-infinite slit in

the complex plane, parallel to the Xx-axis, with right endpoint

(3.6.16) S (u(C),V(C)) = (u(s),v(c)) ,

Le={z=x+1iy | x s u(s), y = v(C)}

These slits are not necessarily distinct nor disjoint.

Using the ordering of vert(g%) we can write

(3.6.17) L= (LN L )
C1 C2 Cl.g

if Cl < C2 <IN < C&g in vert(gf) . Note that the pairing A becomes

a permutation of L .
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Chapter 4

Parallel s1it Domains

4.1 Configurations of slit pairs.

4.2  The space F(L)

4.3 Equivalence of configurations.

4.4 Regularity of configurations.

4.5  The space PSC(g)

4.6 F(€) as a Riemann surface.

4.7 The harmonic function h

4.8 The support of a configuration.

4.9  The action of Sim(C) on PSC(g) .
4.10 The canonical homology basis of F(L) .
4.11 The canonical polygon of F(£) .

4.12 The canonical rectangulation of F(£ ) .

A parallel slit domain is the image of the boundary of the branching complex

together with the combinatorial data of the branching graph. Thus associated
to a dipol function is a configuration of slits in the complex plane ﬁogether
with boundary coordinations. The space PSC(g) of these parallel slit domains

will be a concrete model for the moduli space fﬁ(g) .

After introducing certain configurations of slits as representatives we describe
the regularity conditions and the equivalence relations. With the help of some
basic moves of configurations we prove that PSC(g) is connected. Various othe

properties and notions are introduced.
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4.1 Configuration of slit pairs.

A slit is a semi-infinite line, i.e. a subset of € of the form

(4.1.1) Lo=f{z=x+iy€¢C | x <a, y=n2)

for some point SO = a + ib of € . Thus a slit determines a point
S0 = S(Lo) as its right endpoint, and vice versa, a point SO determines

a slit L = L(S) as above. A translation Lé of L, by some t € C,

L' =L+t = {2+t | z €L}, S' =S +t
o (o) o Q o

we call parallel, if t is imaginary. A configuration of slit pairs

of genus g consists of an ordered sequence Ll""’LAg of 4g slits

together with a pairing function A € ZAg such that the following con-

ditions are satisfied:
(4.1.2) (1) the sequence has decreasing imaginary parts, i.e.

Im(S(Li)) 2 Im(S(L,,,)) for i =1,..,4g-1 ;

i+l

(ii) the orbits of X partition the indices (1,...,4g} into

2g pairs of indices, i.e.

y 2
A(L) #4i, A7(4) =1 for i = 1,...,4g.

(iii)  the slits of a pair are parallel, i.e.

Re(S(Li)) Re(S(LA(i))) for 1i=1,..,4g

Note that the slits of such a configuration are not necessarily distinct;

some of them can be equal, or contained in each other.

We denote a configuration as L = (Ll""’th;A) , and abbreviate

s, =s(L,)
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Examples, and how to draw them.

(1)
Ll g =1
L?
L3 L = (Ll' L2' L3, LA; A)
A= (12) (34)
L

Of course, the slits are infinite to the left. The pairing function will

usually be written as a permutation in cycle notation.

(2)
by g = 2
i)
f—— L, ¢ N
e 1
Kk s . X = (15) (28) (47) (36)
6 L
L 7
8

In this example the position of the slits does no longer (as in Ex. (1),
(3)) already determine the pairing by (4.1.2)(iii) here A'=(16)(28)(47)(35)
is another possible pairing. It is sometimes convenient to indicate the

pairing as above.

(3)

1 R= (Ll, LZ, Ly, Ls A)

(13) (24)

-
>
]




(4)

(6)

(7)

(8)
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To indicate that Li c Li+1 we draw the
L
LI L2
3
LA
L1
Ly
L3
L&
L

A= (13) (24)

A = (12) (34)

= (Ll’ LZ’ L3, La) and
by = Ly

A= (13) (24)

lines close to each other.
A= (13) (24)

L =LyclL

g ks
A= (13) (24)
Ly=1L,
Ly=1Ly=1L,

A = (13) (24)
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4.2 The space F(L).

It is straight forward why a configuration L = (Ll' ety ng; \) of slit
pairs might represent a Riemann surface: one cuts C = € U open along

the slits Li and then reglues upper to lower edges of the boundary accor-
ding to the pairing funcﬁion A. But not every L represents a surface; in
general, this gluing leads only to a two dimensional complex; furthermore,

different configurations may represent the same surface. To single out the

admissible configurations we next describe the space F(L) associated with

L..
Let L = (Ll,...,l_.ag;/\) be given. The 4g+l sets
(4.2.1) F°={z €T | Im(z) 2 Im(S,)}
k —

F" = {(z e C | Im(Sk) 2 Im(z) 2 Im(Sk+1)} for k = 1,...,4g-1

4g =

F=={zeC | Imn(S, ) 2 Im(z)}

l e m

are closed subspaces of € = € U » , and all contain =. F° and Fl.g are homeo-
morphic to the extended upper and lower half-plane, respectively; and F

for k = 1,...,4g-1 is a horizontal strip containing « , which may degene-
rate into a line if Lk n I_k+l # Q.' Since Fk are not disjoint, we denote

a point in Fk by (z,k) with z ¢ Fk , 2z ¥ » . Apart from = the Fk are now

disjoint. On the disjoint union

points are identified by the following
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(4.2.3) gluing-rules:

(1) F* 3 (2.k) ~ (z,k+1) € F<*L

if Im(z) = Im(Sk) and Fe(z) 2 Re(SkH)
(k = 0,...,4g-1)

) i /
(2) F* Iy (2,k-1) ~ (2" a(k)) € pMK)
5 ] Y =
if z € Lk , z' € L)\(k) and Re(z) = Re(z') .

(k = 1,...,4g)

s "'/”",/,’/////'/,//
A SRR - AT
/F Fid S0 e / ///,5. /
P R R ET Tl e AT Tt

Le 208 rag g by A g

e —
7, g / //’ L //// Saw /
LU A | 4

(3) Fk 3 (z,k) ~ (z',A(k)-1) € F'\(k)_l

if zeLk, z!

(k = 1,...,4g)

€ LA(k) and Re(z) = Re(z)

Ltd A r TG it e i o

=« I 0.4 = . I s

f & T &x) / ' / Sa .
[ SXEL I ” (2, A1) / S ;

L__¢ S P pEEREET

NN NN RN NN TN I T N
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Then we define

(4.2.4) F(L) := F'/~

as the (2-dimensional) complex associated with the configuration L. L is

called non-degenerate or regular if F(L) is a closed surface of genus g.

Note that F(L) can fail to be a surface for two reasons: by not being a
2-manifold, and - more surprisingly - by not having genus g. (The follo-
wing figures show the gluing process in the case of degenerate and non-

degenerate configurations.) Our definition of regularity is inappropriate;

but we will replace it in 4.4 by a direct criterion for the configuration

itself.

The following figures (4.2.5) show some exampies of the gluing-process.
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(4.2.5}

(1)

b — F‘l’ L ARG s iy . )
LA
2 F — s ya
2 7 i o
F
L S Moo 2 i

Ul

,/ R ) /. o
Q e
A// //// /_‘.‘/" //
/// / // -/ //‘///'
T el

F(L)

S LL A SRS L7 7t
. /// /////// / / S

ICy ; '
) A TRTE
Fl

/ s sy
n=C — 5 e -l ...
, o : K L 2 =)
2 TR A e ,
3=C L Y Y
(i = -~ -—--
AT . = 7
s ,// .
LA 75 ’ &
s D L 7
> < -~ . -
s B=C 7 s < 7 o b /,
,
A 4 LSS / J 7



(3)

L,2L

I~

(4)

=L

AN L

o # . )
— - i / .

A . / 7K T
> 7 5 7 ’ ’ ‘ ]

Fl
e
N
e PR R
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4.3 Equivalence of configuratiocns.

That different configurations L and L' mayv give the same surface

F(L) = F(L') one can see from the following examples.

(4.3.1)

—_—
s
——

= (13)(24) A= (13) (24)

We see here the basic phenomenon: if a slit Li touches a longer slit L.
from above/below, it jumps by a vertical shift up or down to the other side

of the pair (j,A(j)) to touch now Lk(j) from below/above.

In general, let a configuration L = (L ..qLag;A) be given. There are two

l)

kinds of crossings (or jumps). We need some notation to describe them. For

k = 1,...,4g set h = Im(SAOd)-Im(Sk) . For 1 <£m<ns4g let Pnn denote

the cyclic permutation of the subset {m,gnn} in the set of all indices, i.e.

p =(m m+l ... n) as an element of Z4g in circle notation.
m,n
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(4.3.2)
(i) If Lecpy €5 and k< A(k) , then L = L' = (L',....L' :1')
- 1 ~+g
where
L! =L, for i = 1,...,k=-2
i i
1 = = = =
L1 i+ for i k-1,...,A(k)-1 ,
1 -
By = Li-gthy o
Lt = Li for i = A(k)+l,...,4g
and Al

Schematically such a jump is illustrated as follows and called a crossing -

over -.
1o L!
L, L,
L2 b2
L L
k-1 k
. ‘;:::::::>—-ffff’“—____——_————_———_— : A"
Tk e .
: L L., .
A ; // (k)
A(k) k-17 "k
Lo+ bato+
L L




(ii)

We call this second
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~ Tl (T [
If L, < L, and k < A(k) , then L=L "(L1'°"'LAg'* )
where
I = L, for i =1,..,k s
i i
] = .= x")
Li Li+l for i k+1,...,a(k)-2 )
1 = - Im(
LA(k)-l Lk+1+-hk for Im(SA(k)) Im(Sk) )
Li = Li for i = A(k),...,4g

PRe1, A(k) -1

type of a jump a crossing-under.

= -

k+2

= seEa s

Ak)-1
i

A (k)

4g



The equivalence relation generated by (i) and (ii) is denoted by = , and
the equivalence class of L = (Ll,...,LAg;A) by &L = [Ll""’L’ ;AY . Each

equivalence class contains only finitely many configurations.

(4.3.3) Proposition

(i) If Ll = L2 are equivalent, then F(Ll) = F(L,) are homeomorphic.

(ii) 1In particular, if Ll = L, and one is regular, so is the other. @

~

Hence we talk of regular (non-degenerate) classes L = [Ll,".,Lag;lj.
We write also F(of) instead of F(L) .
Proof: Assume L1 = L2 by a single crossing. The homeomorphism is the iden-

tity on each strip Fk which is not a line. On all others the gluing rules

are invariant under crossings. =

o

The following table gives the four possible "types" of non-degenerate confi-

gurations for g = 1 . The columns are complete equivalence classes.



(4.3.4)

——————
T ————
p— e — t
| G
|
I
— ) |
!
generic case
\‘I e ——l
- i
\
\
\
.__ \
-= / By
e
1 '
= 5
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4.4 Regularity of configurations.

Recall that a configuration L = (Ll,“.,Lag;k) of genus g is by the defini-
tion in 4.2 called regular (or non-degenerate) if the 2-complex F(L) is a

surface of genus g . We distinguish three cases of F(L) not being a surface
of genus g: (I) z, = = has no neighbourhood homeomorphic to a disc, (I1) a

point z = = has no neighbourhood homeomorphic to a disc, (ITI) F(L) is a sur

face of genus smaller than g . The cases do not exclude each other.

We begin with (I). Choose R > 0 such that R > [Sil for i=l,...,4g , and con

sider the vertical

(4.4.1) vVt = {(z,k) €F' [z # =, Re(z) = -R, 0 € k < 4g)

k

with its components Vé = V' A F . If we glue these intervals according to

(4.2.3) (2) and (3)

(Zsk-l) - (Z')A(k)) and

(z,k) ~ (z2',A(k)-1) for =z € Lk , z' € LA(k) ,
we obtain
(4.4.2) V(L) := V'/~

V(L) 1is independent of R as long as R is large enough. Furthermore,

V(Ll) = V(Lz) if L1 = L2 5



P
TR

X

I
|
L

L (g=4) V(L)

If V(L) is connected, then it is homeomorphic to R ; if it is disconnected,
then it is the union of a line and circles and single points.

The set

(4.4.4) uU=u'/~ , U'= ((z,k)GFk max( [x{,|y[ 2R, z=x+iy, 0<k<4g}
| B

is a neighbourhood of z =« in F(L) , And U is a disc if and only if V(L)

is connected.

(4.4.5)
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But the connectivity of V(L) depends only on A , since the slits Li are

normalized to form a decreasing sequence, (4.1.2) (i). Let us call the pairing

function A connected if the algorithm

(4.4.6) g.i=1 , &% A(i) for i odd

I
|

2. +1 for i

. =L, even
i+l i

runs to produce a sequence of 8g numbers

L.y L (which contains each of
1 8g

the numbers 1,...,4g exactly twice). This settles case (I).

For cases (II) and (III) assume z #z @ , z € Lk ; then (z,k-1) € Fk_l and

(z,k) € Fk are two points in F' . Let us consider the identifications of

(z,k-1) and form the sequence (upwards and downwards) of indices ¢, and
points z, , starting with & =k , z =z :
i o o
1 . . = =R'
if z . €L, pof = -D, oz €L, Re(z__) ez )
r+l e
it z € Lio_l : 2_1 = (2 -1) , =z 1 € Ll-l 5 Re(z_l) = Re(zo)
L =k z =2z
o o
- 5 = =Rz
if 2z €L, L= Ale) z) €L, , Re(z,) e(z )
o 1
. . = = Re(z )
if z € L11+1 : L, = A(L+1) , z, €L, Re(z,) (z
. _ = Re(z )
if oz, € L12+1 23 = A(2,41) Re(z3) -
. = = Re(z )
if oz €L L= A(e _+D) Re(z ) -
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This algorithm either terminates at both ends wWwith statements z

z ¢ Ly -1 » Or it is recurrent at both ends because z_ =2z , ; = z
=T -r" s o e o

In the terminating case one finds neighbourhoods of (z_

y ¥ -1) in F
. r r
and of (zs, 25) in F S which (together with other half-discs in the case

z_ = st or z__ = Sl—r) form a neighbourhood of (z,k) in F(L)

In the recurrent case there is no disc neighbourhood for (z,k) ir F(L)

Among the indices ¢ ol e choose one with minimal r = Re(S, )
-r+l o s-1 Ej

and call this index m o, and set m, = A(ml) - By a sequence of crossings

one can now move Lml (or Lmz) into the same. position: this foilows by induc-

tion on r+s ; it is true for rts = 1 ; and if r+s > 1 one can recuce the

length of the recurrence circle by crossing La(y, ) over/under the pair

s=1

LA(ZS) » Lgg or by crossing LA(QS) over/under the pair Li(eg-7) » Leg g
(whatever is possible). Thus we end with a configuration L' = (Li""’LLg;A')

equivalent to L with a pair of indices n < A'(n) such that

(4.4.8) L'n = L'A(n) and

Re(Sm) s RE(Sm) = Re(SA.(n) =r for all n < m < A'(n)
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holds. This degenerary condition has 3 subcases:
(1) all m with n <m< A'(n) satisfy LYS L' = 4!, o
m n A'(n)

(2)  there is some m with n < < A'(n) satisfying LA = LA =L

T

A(n) 3

(3) there is some m with n < q < A'(n) satisfying L' = L =L' =
m > ' (m) n

- Ln"\'(n)

The case (3) is really a special case of (2). (1) means an interval attached
between two distinct points of F(L') ; (2) means two points of F(L') are
identified, which are equal in subcase (3) ; thus F(L') is still a surface,
but of genus g-1 or smaller, since F(L') is homeomorphic to the surface

. . . . 1 i) ' !
associated with the new configuration where Ln o LA'(n) > Lm and LA'(m)

have been deleted.

Thus we have

(4.4.9) Proposition. A configuration L of genus g is non-degenerate

if and only if the following conditions are satis-

(i) V(L) is connected,

(ii) L is not equivalent to some L' with a pair of indices

LT ! ' = ! 1 k such
n < A'(n) such that Lk = Ln LA'(n) for al such
that n < k < A'(n) . L]
An immediate consequence is that A(k) # k-1 , k+l for all k , and

A(l) = 4g for the pairing function of a regular configuration. Furthermore,

for each pair n < A(n) there exists another pair m < A(m) such that

‘

n<m< An) <Alm) or m<n < A(m) <r(n) ; we call two pairs interlocked



_98_

in this way a gquadrupel.
Assume (4.4.9) (ii) holds with several k1 < kzu.. i.e. n < kl < k, <...< A'(n

and Lél,L£7,“. c Lé = Li,(n) - Then either we can apply an equivalence relatio

. < I . [] } ] .
crossing L, = over the pair Lkl, LA'(kl) (if A'(ky) is not among the ki)'

or there is a nested system of situations as (4.4.9) (ii). In any case, we find
an index r such that A'(vr) = r+2 and L' cL'=L"', . Thus (4.4.9) (ii)
i ="r r+2

is equivalent to

(4.4.10) L is not equivalent to some L' containing one of the following

subconfigurations:

|

(1) (2)

(3) (4)

Of course, (2), (3) and (4) are .subcases of (1), and (4) is a subcase of (3).
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4.5 The space PSC(g).

A configuration L = (L .wL, ;A) of slit pairs is determined by the sequence
of endpoints (sl,_”ség) together with the pairing function A . This com-:
prises a point in CASXEAg - Let Conf(g) denote the subspace consisting of
all configurations, i.e. points satisfying (4.1.2), and RegConf(g) the sub-

space of all regular configurations (where ZAg is regarded as a discrete

space),

(4.5.1) Reg Conf(g) < Conf(g) c Cl‘gxzag

Since for g 2 2 there always exist different A satisfying (4.1.2) (ii),
Reg Conf(g) and Conf(g) are in general not connected. We will use the maximal-

coordinate-norm on these spaces, and define the metric on Conf(g) by

| i=l,...,4g} + max{[A(i)-A'(i)[ | i=1,...,4g}

(4.5.2) d(L,L') = max(lSi-S]!_I 1

The set of equivalence classes of non-degenerate configurations becomes the

quotient space
(4.5.3) PST(g) = RegConf(g)/=

and is called the space of parallel slit domains.

(4.5.4) Reg Conf(g) < Conf(g) < ¢"B « £4g
PSc(g) € Conf(g)/=

The metric on PSC(g) is
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(4.5.5) AL, ¥') = min{d(L,L') | LeEX ,L'€e &'}

Note that each class & contains only finitely many configurations.

We will see in the next chapter that PSC(g) 1is a manifold of dimension 6g ;
it has also a cellular decomposition which we will study in detail somewhere
else. The case g =0 is special in-so-far PSC(0) consists of a single point
represented by the empty configuration & =0 ; and F(g) =¢ = S2

Here we will only prove the connectedness of PSC€(g) , which needs some prepa-

rations.

(4.5.6) Proposition. PSC(g) is connected.

The proof uses some standard paths in PSC(g) which are important for many
later computations. To study them serves also the purpose to get familiar with

the topology of PSC(g) .

Rotating a slit inside a pair.

Assume L = (Ll,quAg;X) is a rgular configuration, and A(m) = m+2 for some

m . To start we also assume Re(Sm+1) < Re(Sm) = Re(Sm+2)

(4.5.7)
L : — S
m . m
-
Lm+1' E Sm+l
o
Lm+2 Sm+2

As indicated in the figure, we define a path L(t) , te€ [0,1] , keeping all

slits Lk fixed for k = m+l , and moving Lm+1 along the dotted arrow:



= 1ol -

(4.5.8) [ Lk , k 2 m+l , t € (0,1] ,
L(t) = < L . +t-h k = m+l O<t<h—l
k m+1 : el s S S h o
hl
L Lm+l -(1l-t)n y k = m+1 , Tr £ts1l,
where h1 = Im(Sm) -Im(5h+l) , and h2 = Im(Sm+1) -Im(Sm+2) » h= h1+-h2 are

the heights between the slits. (Note that the regularity implies h > Q .)

Because of the crossing-under

(L »L , L

1’ "m’ m+l L

+h1, Lm+2’""L4g;,A) = (Ll,".,Lm, Lm+1-h2’ m+2""’L4g; A) o,
this is a closed path, furthermore L(t) is always regular, therefore a loop
in  PSC(g) . Note, that A remains unchanged throughout. Slightly more gene-
ral, if Re(Sm+l) is arbitrary, one can consider the path moving Sm+1 £ S
then jumping down to Sm+2 » and moving it back to its old position. In this
case, SA(m+l) has to be moved also, keeping the same real part as Sm+l 3

this might make it necessary to move other slits as well in order not to violat

the regularity. The following two figures are better than more formulas.

(4.5.9)
— S
"""" .. m
=
Eiin Sm+1
i A
Sm+2
A " v rec.s ] ‘..'.
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(4.5.10)
s S
.-. m
o
. A(m) = n+1
—% § : -
s m+1 A(n) = n+2
- e
PO
Sm+2
'1
ﬁ%‘V'¥fTIEI' Sn+1
e

Moving a slit over a pair.

Assume L = (Llp.qLAg;:) is a regular configuration, and Lm-l ¢ Lm ,

¢

Ll(m)+l ¢ Lk(m) for some index m . Again, to simplify the situation, we

assume also Re(Sm_l) < Re(sm)
(4.5.11)
: Sm-l
¥
1 - s
m m
L () : Sx(m)
b
°

e S

The curly line indicates that there can be (and actually must be for reasons

of regularity) more slits between L~ and Ll(m)

Now we move S down to L , cross-over to L , and more downward
m-1 m A(m)

some distance:
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(4.5.12) ( L, , k<m-1 or k>A(m) , 0sts1
hv
Ly , m < k £ x(m) ,ogr_g?l,
i}
Lk(t) = Lisl , m-1 <k < A(m)-1 Fetsl
h
—~ = m- < < —
Lm-l t-h , k m-1 , 0 st < h s
o
L Lm_l-t'}1—h2 , k = AX(m) , Tré tsi |
and
h
X B L ,
h
i =
h
Ao p ,Tlétél,

) < Im(S) , h, = Im(S) - Im(sx(m)) . hy = In(s, )

h, =
where 1 Im(Sm_1
- = = i tial) cyelj

Im(SA(m)+l) , and h h1+h3/2 , and p Po-1,A(m) 1S the (partial) cyclic
t ; §
permutation. Obviously, t +—— [L(t)] = [Ll(t)"",LAg(t);A ] is a continuous

path in PSC(g)
The following figure shows the general situation.

(4.5.13)
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Moving a slit through a quadrupel.

Let I = (Ll'""ng;A) be a regular configuration with quadruple A(n+l) =n+3

A(n+2) = n+4 for some index n
(4.5.14)
S
: n
Iy
‘ Sn+2
IIT v
v IV ;
?' II Sn+2 I
x
JOBERS, ¢ ' S
I l[ n+3
/
v II ;
: 'S
+4
v oIV n
o
The figure indicates how L is moved to the other side of L seley s
n n+1 n+é4

All slits except Ln stay fixed (only changing their index). The path is a
composition of four paths: (I) moves Ln over the pair Ln+1’ Ln+3 ; (II) is
a half-rotation in the pair Ln+2, Ln+6 ;3 (ITI) is a half-rotation in the pair

Ln+l’ Ln+3 ; and (IV) finally is a move over the pair Ln+2’ Ln+4

Retracting a configuration into a generic one.

we can move successively all

Given a regular configuration L = (LI”H,L,g;A)

is kept fixed and LZ""'L

slits apart from eachother. In the first move L1 o

are simultanuously moved downwards or upwards, till the height between Ll and

L is 1 . In the next step, L1 and L2 are kept fixed, and L3,...,LQg are

2

moved till the height between L2 and L3 is also 1 . And so on,

till all

. slits are disjoint and two successive slits have height distance 1 . Note that
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this path depends on the configuration, not on the equivalence class, i.e. thi
is a path in RegConf(g) . On the other hand, there are no crossings involved,
and therefore A remains unchanged. In two final steps we can move all slits

hofizonuﬂly to make Re(Sk) =0 for all k , and then move all slits up or dowr

(without changing their distances) to normalize to S being the point (0,-1)

1

in the plane. The final result therefore depends just on A

Y
A
(4.5.15) ,l
: y X
Sl=(0,—1)
Sz=(0,-2)
SAg=(O,-4g)
In other words, we have
(4.5.16) Proposition. The components of RegConf(g) correspond bijective-

ly to the connected pairing functions; each component

is contractible. (]

The number of components for g = 0,1,2,3 is 1,1,21 and 1485 , respectively.
In terms of a cell decomposition the interior of such a component in RegConf(g

becomes a top dimensional "cell" in PSC(g) .
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Proof of Proposition (4.5.16):

Let £ = [Llp”,Lag;A] be a regular parallei slit domain. To prove the con-

nectivity of PSC(g) we can assume that the representing configuration

ER= (Ll,.”,Lag;A) has been moved into a normalized position (4.5.15), i.e.
Sk = (0,-k)
Since X is non-degenerate, * is connected. Thus there must be some index

P such that | < p < i(1) ; for the same reason, there must be some such p
with A(1l) < A(p) in addition. So choose, e.g. the smallest p such that

Hie be the indices of all slits between

I < p < A(Ll) < A(p) . Let e c 1

n-1°"

il
and L

L and Lp (numbered upwards), and 'bm’""bl those of the slits between Lp

v and a_ ,...,a those of the slits between LA(I) and Lk(p)

A(1) (A |

C41o5007)




= 107 -

We will now "empty" the quadruple, compartment by compartment.

(I) First, we make a half-rotation downwards of the Lai inside the pair

Lp, LA(P) , starting with Lal . This leads to the following situation

(where we - incorrectly - keep the old indices of the slits).

(4.5.18)
Ll
Lck
15
p 1
o } 2
|
| ?
-
I |
| "
YED)

/
Lyp)

(II) Then, we make a half-rotation downward of the Lbj and La.1 , inside

the pair Ll’ LA(I) , starting with Lbl
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(4.5.19) 2

/ | B
L .

Lp ) Ly

A(p)

(IIT) In the last step, all Leys Lbj’ La; make a more downwards over the pair

Lp’ LA(p) » Starting with LCl

(4.5.20)
) el Y .
p /

) LA(l) —
A(p) —
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In the resulting configuration we have a configuration L' = (Li,.",LLg;A’)
- with correct indices - which starts with a quadruple 15253,4 , i.e. AN(1)=3
A'(2) = 4 , and in which the remaining slits Lé'””LZg form a subconfiguratio

of genus g-1 . L' 1is so decomposed into two independent configurations. By

induction on the genus, the assertion follows. .

By this method, any £ € PSC(g) is moved to the standard

o o _ o o o
4.5.20) & = (L Lf 2%

where sg = (0,-k) for k=1,.,4g , and A%=(13)(24)(57)(68)...(4k+1 4k+3)
(4k+2 4k+4)...(4g-3 4g-1)(4g-2 4g) . This afo will be used as the basepcint

in PSc(g) .
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4.6 F(EL) as a Riemann surface.

Let &£ = [Ll,...,L A] be a regular configuration class of slit pairs.

&g;

Then F(&€) 1is not only a surface, but a Riemann surface.

(4.6.1) Proposition. Let ¥ be in Psc(g) .

Then F(&£) 1is a Riemann surface.

Proof. To define charts for a holomorphic atlas on F(£) = F'/~ we need
4g-1

only consider those components of F' = A Fk
k=0

generated into lines. For k = 1,...4g-1 let h = Im(Sk) = Im(Sk+1) be

which are not de-

the height of Fk » and set h = min{hk | hk >00} . If 2z + © is an

interior point of Fk , we use int(Fk) -+ C as a chart.

If z + = lies on some Lk , let k1 < k2 SEC < kr be sequence of all

indices such that there is some z € C with Re(zk_) = Re(z) and
i i

(z,k) - (2 ,k;) in F' . With
i

Uz ) = L€ €| |z -c| <n/2) (i=1,...,r)

set

U = (@K | 6 Uz n PNy (i=1,...,1)

Kk
are either open intervals (if F ! is degenerated into a line), or de-
compose into one or two upper and lower disjoint half-discs (if F * has

positive height h )
i

Those Uy which are intervals can be ignored, since they are identified
i

with boundary diameters of half-discs. There remains an even number 2s

of half-discs; their boundary radii are identified in pairs according

to the pairing function A . The resulting disc
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:
U= (1 U}'()/-,
i=1 i

is a neighbourhood of z in F(&) = F'/- . The function (C.ki) - (Q-zk

is well-defined and continuous; it covers the disc Dh = {u€CcC | |ui< h/Z{
precisely s times. Thus by choosing a branch of %/  we have a chart
for z .

Finally, if 2z = » , we consider

R = {c€ C | [c] > lsil for i=1,...,4g}

0] =
and set
Ul = {(g,k) | ¢ €U, n F
k ’ R
for k = o,1,... 4g . As before, the U' are intervals, the union of

k

two (spherical) triangles, or extended upper or lower half-planes. Their

boundary is identified to form a disc

4g
- Ui)/~

k=0

U = (

and the function (g,k) —» i is a homeomorphism onto

G
- 1
Dl ={u€ec| |ul < =
R
Since all functions involved are holomorphic, the coordinate change between

two charts with non-empty intersection is holomorphic. .

The surface F(&E) will always be considered with this atlas as a Riemann
surface. As a distinguished point we take P = o , and as tangential
direction X we take the inverse image of =— %Et under the chart
(Crk)—’%,c=£+in.

Note that the triple Z = [F({¥ ),x] represents a point in Jil(g) .

i
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4.7 The harmonic function 112

When the surface F(¢&f) is constructed by identifving points in

k

F' = _l_‘Fk » and F© ¢ C » only points with equal real part are identified.

k
Hence the function

(4.7.1) h

1]

hx:F(g\f)-w » R

h(z)

Re(z)

is well-defined and continuous. It has one pole at zO = o , which is a

simple dipole of the fbrm

(4.7.2) h(g) = Re() = =X
z 2, 2

X +y

for the local parameter ¢ = % » 2 =X+ iy around z, - Locally, as

a function of the local parameters on Z(£L) =F(), h is the real part

of a holomorphic function; thus h is harmonic,

2 2

(4.7.3) ph=o, &h ., h _
2 2
x oy

for each local parameter 2z = x + iy .

The gradieﬁt flow grad(h) of h has, in local parameters, the lines
Im(z) = constant as flow lines. The zeroes of grad(h) are precisely
the end points S, of all L., in & : there are 4g of them, but on
F(¥) they are identified in'pairs Si = SA(i) 3y counted with their multi-

plicities there are 2g zeroes.
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4.8 The support of a configuration.

The positions of the slits L; in a (regular) configuration class
L= ELI""'Llog;)\] are no longer well-defined because of the jumps en-

forced by the equivalence relation. But the real parts of the endpoints

Si = S(Li) are. Therefore the two functions

(4.8.1) a : PSCig) —» R i
a (L) = min{Re(Si) | 1 i s 4g) ,

and
a PSC(g) — R
a' (&) = max{Re(S,) | 1 < i < 4g}

are well-defined ancé continuous. We have
(4.8.2) a (f) sa(2) for all &€ € psc(g) ,

and equality can occur, e.g. for &€= %0 the base point in PSC(g)

Although these jumps occur a slit can only jump to another slit; hence the
set of real numbers which occur as imaginary parts of endpoints Si is still

invariant (only the multiplicities are not). We can therefore define

(4.8.3) b : PsC(g) —» R

b (L) = min{In(S(L,)) | 1 s i < 4g} ,

and

bt : Pse(g) — R

b+(&f) = max{Im(SLi)) | 1 si < 4g)

Both functions are continuous. In contrast to (4.8.2) we now have

'
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(4.8.4) b (L) < b (£)  for all &L € pSe(g) ,

since all Li contained in the same horizontal would contradict the regu-
larity. (As one can easily see F(&f) would be a surface of genus 0 , or

a surface of genus 0 with some intervals attached like handles.)

The rectangle

(4.8.5) supp(€ ) = {z=x+iy€E C | a-(ef);lxéa+(1),b-(i)§y§b+(of)}

is called the support of of : there are no slits to the right, above or
below it, and to the left there are at least no new slits. In view of (4.8.2)

supp(&f) may reduce to a vertical interval.

(4.8.6)

4.9. The action of Sim(C) on PSC(g) .

Let Sim(C) be the group of similarities of the complex plane € , i.e.

the subgroup of GL(2,C) consisting of matrices

ra b)

(4.9.1) M o= | » a€R, a>0, becC
Lo 1)

The associated MObius transformations M(z) = az+b are the only automorphisms

of the Riemann sphere € = C U = fixing = and mapping horizontal lines to

horizontal lines. As a space Sim(C) 1is the product € x R+ , hence con-
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tractible; as a group Sim(C) is a semi-direct product of the (multiplicative)

group R and the (additive) group € , Sim(C) = € x R_ .

Sim(C) acts on PSC(g) by

jA] = ST
1o oLygidl = ML), (L, )5A]

Obviously ML = (H(Ll),...,H(Lag);k) is again a configuration; it is regular

precisely if L is; and M-L = M:L' precisely if L = L'

(4.9.3) Proposition. Sim(C) acts freely on PSC(g) . Moreover, the

orbit projection PSC(g) —> Sim(C)\PSC(g) is a trivial Sim(C)-bundle.

"Proof. For any £ € PSC(g) we use the lower left corner of supp(f ) ,

t()=t=a(f)+ib (L) €ecC,

and its height

h(&€)=h=b(L)-b &) ER,

to define a continuous map m : PSC(g) — Sim(C) , by

ot

1
m(f) = {E }

—

Applying m(o€) normalizes the support to lie in the upper right quarter-
plane with a (m(%)) =0 = b (m(é€)) and to have height 1 . This induces

a product decomposition

n

(4.9.4) PSC(g) » Sim(C)\PSC(g) x Sim(C) . a
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(4.9.5) Corollary. PSC(g) —> Sim(C)\PSC(g) is a homotopv eguivalence.

+ +
The functions a” , b~ are equivariant with respect to Sim(C)

The reason for our interest in the action by Sim(C) 1is the fact that

F(&€) and F(M-£) are conformally equivalent.

(4.9.6) Proposition. M € Sim(C) induces a conformal map

CM : F(&£)

» F(M-8)

which respects the distinguished point and tangential direction. L]

We will denote the orbit space by

(4.9.7) P3C(g) = PsC(g)/sim(c)

Note that #3B3C(g) 1is homotopy equivalent to PSC(g) since

(4.9.8) PsSc(g) » PBC(g) x Sim(C)

is a homeomorphism; therefore

(4.9.9) dimPBcC(g) = 6g - 3



4.10 The canonical homology basis of F(L).

Let L = (Llpn,Lag;A) be a configuration. The basepoint of F(L) is

zo = o , Define the curve ck (k=l,uq4g) to be the curve from zo to Sk
along the horizontal Im(z) = Im(Sk) , and then from SA(k) back to z_
along the horizontal Im(z) = Im(SA(k))

4.10.1

(5t ) S c

k k

—® & & — — ¢ ¢ ¢ ¢ ¢ oo

ﬁ‘—’—b—ﬁ—b—b—#-—-)—-‘poc'

S\(k) Cx

Since Sk *'bA(k) in F(L) this is a closed curve. We have

(4.10.2) CA(K)
Of course, the curves and their homotopy classes depend on L and not only on
the equivalence class of L . They constitute a marking of the (Riemann) sur-

face F(L) .

These curves generate the fundamental group. As elements of HIF(L) they form
a basis (plus negatives). If L = LO is' the (standard) basepoint in PSc(g) ,
then a, =c, (i=1,...,g) and b.1 = c (i=1,...,g) form a symplectic basis

with respect to the cup product HIXH —> H =1Z , or to the intersection

product f : HIXHl — Z .

The curves ¢, can be used to formulate another regularity criterion: L is

.C is in F(L) freely homo-

regular if and only if none of the curves c i

I
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topic to a constant curve. As can be seen in the figures (4.2.5) (3) the

pinching of such a curve degenerates the surfaces. This characterization is

already in (Shiffman 1939; p.862].
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4.11  The canonical polvgon of F(¥).

Let L = (L ”Lag;\) be a non-degenerate configuration. Recall that the

L
strips Fk of 4.2 all have Z, = = 1in common. We consider only proper
strips of positive height and disregard those degenerated into lines. If we
delete z then Fk-zO is a closed subset of € . For k= l,...,4g-1 we
attach two ends -o , 4+ to obtain a compact Fk ; for k=0, 4g we attach

one end, called += in both cases. To make all Ek disjoint, we denote points

as usual by (z,k) . In the disjoint union

(4.11.1)  F' = I F
we identify points by
(4.11.2) (i) (4=,k) ~ (4=,k') for all k, k' ,
(ii)  (z,k-1) ~ (z,k) for z € Lk » Re(z) 2 Re(Sk)

Then F(L) = F'/~ 1is a schlicht surface with one boundary component. It is
therefore a disc. The boundary is partitioned into at most 8g arcs paired

by

(4.11.3) Example.

: —<—
E : A
B‘ : 5 .
c : . )
= : e
f —-
B3 L "
——.E_—_s A A
: ———




- 120 -

4.12  The canonical rectangulation of F(L).

L, 34) . Consider the (not

Let L be a regular configuration, L = (Ll"' s

necessarily different) horizontals and verticals

{z €C | Im(z)

(4.12.1)  H, Im(s.)} i=l,..,4g

V. = {z € C | Re(z)

Re(Si)} ; i=1,...,4g

The horizontals Hi » used to build F(L) , lead already to a decomposition of

F(L) into biangles Fk . Now we decompose further

IN

)
)

Im(S.) € Im(z) £ Im(S.
(4.12.2)  R.=(zeq - il

n
IN

Re(Sj) Re(z) < Re(Sj+

1

for 0 = i,j £ 4g+l , where the expressions Im(Si) y Re(Sj) are to be dis-
regarded for i,j=0 or i,j=4g+l . Some of these Rij are triangles, four

are biangles, all others are rectangles, or degenerate into points or lines.

(4.12.3) | I
|
Roo ' Ro1 | Ry2
|
|
R0 | B ' Ri2
S B
| |
: [
| ,
R0 | Roq | Ras
|
' e e
| |
R ' R : R
30 | 31 , 32

The union of the bounded Rij is the support supp(L) of the configuration.



