LOCAL-GLOBAL COMPATIBILITY AND THE
ACTION OF MONODROMY ON NEARBY CYCLES
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Abstract

We strengthen the local-global compatibility of Langlands correspondences for GL,
in the case when n is even and | # p. Let L be a CM field, and let T1 be a cusp-
idal automorphic representation of GL, (AL) which is conjugate self-dual. Assume
that Il is cohomological and not “slightly regular,” as defined by Shin. In this case,
Chenevier and Harris constructed an l-adic Galois representation R;(I1) and proved
the local-global compatibility up to semisimplification at primes v not dividing 1.
We extend this compatibility by showing that the Frobenius semisimplification of the
restriction of R;(I1) to the decomposition group at v corresponds to the image of
I1, via the local Langlands correspondence. We follow the strategy of Taylor and
Yoshida, where it was assumed that 11 is square-integrable at a finite place. To make
the argument work, we study the action of the monodromy operator N on the com-
plex of nearby cycles on a scheme which is locally étale over a product of strictly
semistable schemes and we derive a generalization of the weight spectral sequence in
this case. We also prove the Ramanujan—Petersson conjecture for I1 as above.
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1. Introduction
In this paper, we strengthen the local-global compatibility of the Langlands corre-
spondence.

THEOREM 1.1

Let n € Zx, be an integer, and let L be any CM field with complex conjugation c. Let

[ be a prime of Q, and let 1; be an isomorphism ] : Q; —> C. Let T be a cuspidal

automorphic representation of GLy, (A L) such that

. MV~TIloc;

. IT is cohomological for some irreducible algebraic representation B of
GL, (L ®g C).

Let

R;(T) : Gal(L/L) — GL,(Qy)

be the Galois representation associated to 11 by [Sh3] and [CH]. Let p # [, and let
v be a place of L above p. Then we have the following isomorphism of Weil-Deligne
representations

SS —

F—
WD(RI(H)|Gal(I:y/Ly)) =Yy 1$n,Ly (IT,).

Here £, 1, (I1,) is the image of IT) under the local Langlands correspondence,
where the geometric normalization is used.

In the process of proving Theorem 1.1, we also prove the Ramanujan—Petersson
conjecture for IT as above.

THEOREM 1.2

Letn € Z>» be aninteger; and let L be any CM field. Let I1 be a cuspidal automorphic

representation of GL, (A1) such that

o IIV~Tloc;

. Ileo is cohomological for some irreducible algebraic representation B of
GL, (L ®q C).

Then I1 is tempered at any finite place of L.

The above theorems are already known when 7 is odd, or when 7 is even and I1
is slightly regular, by the work of Shin [Sh3]. They are also known if IT is square-
integrable at a finite place by the work of Harris and Taylor [HT] and Taylor and
Yoshida [TY]. If n is even, then Chenevier and Harris [CH] construct a global Gal(i /
L)-representation R;(IT) which is compatible with the local Langlands correspon-
dence up to semisimplification. Theorem 1.2 was proven by Clozel [CI2] at the places
where IT is unramified. We extend the local-global compatibility up to Frobenius
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semisimplification by proving that both Weil-Deligne representations are pure. We
use Theorem 1.2 to deduce that ll_lin,;@y (IT,) is pure. For the representation
WD(RI(H)|Ga1(]:y / Ly)), our strategy is as follows: we find the Galois representa-
tion R;(I1)®? in the cohomology of a system of Shimura varieties Xy associated to
a unitary group which looks like

U(l,n—1) xU(1,n —1) x U(0,n)?2

at infinity. Following the same structure of argument as Taylor and Yoshida in [TY],
we prove that the Weil-Deligne representation associated to

2
Rl(n)® |Ga1(Zy/L)

is pure by explicitly computing the action of the monodromy operator N on the coho-
mology of the system of Shimura varieties. We use Theorem 1.2 at a crucial point in
the computation. We conclude that WD (R; (H)|Ga1( i,/ Ly))F S must also be pure.
We briefly outline our computation of the action of N on the Weil-Deligne rep-
resentation associated to R; (H)®2|Gal( Py/Ly) First, we base change IT to a CM field
F' such that there is a place p of F’ above the place y of L where BCf/, (IT), has
an Iwahori fixed vector. It suffices to study the Weil-Deligne representation corre-
sponding to T1° = BCp- ;s (IT) and to prove that it is pure. We then take a quadratic
extension F of F’ which is also a CM field and in which the place p splits p = p;p».
We let o € Gal(F/ F’) be the automorphism which sends p; to p,. We choose F and
F’ such that they contain an imaginary quadratic field E in which p splits. We take a
Q-group G which satisfies the following:
. G is quasi-split at all finite places;
. G (R) has signature (1,7 — 1) at two embeddings which differ by ¢ and (0, n)
everywhere else;
. G(Ag) ~GL1(Ag) X GLy(AF).
We let IT' = BCF,p/(I1°). Then the Galois representation R;(I1°) can be seen in the
11> _part of the (base change of the) cohomology of a system of Shimura varieties
associated to G. We let Xy be the inverse system of Shimura varieties associated
to the group G. We let the level U vary outside p1p, and be equal to the Iwahori
subgroup at p; and p,. We construct an integral model of Xy which parameterizes
abelian varieties with Iwahori level structure at p; and p,. By abuse of notation, we
will denote this integral model by Xy as well. The special fiber Yy of Xy has a strat-
ification by Yy, s 7, where the S, T C {1,...,n} are related to the Newton polygons
of the p-divisible groups above p; and p,. We compute the completed strict local
rings at closed geometric points of Xy and use this computation to show that Xy is
locally étale over a product of strictly semistable schemes, which on the special fiber
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are closely related to the strata Y7, s 7. If we let Ay be the universal abelian variety
over Xy, then Ay has the same stratification and the same geometry as Xy .

Let £ be an irreducible algebraic representation of G over Q;, which determines
nonnegative integers f¢, mg and an endomorphism ag € End(a‘\)'{;é /Xv) ®z Q. We are
interested in understanding the IT*°-part of

Hj(XU,fg) = agl‘lj-i_mg (Azév@l(té))'

Thus, we study the cohomology of the generic fiber H/ (A", Q;), and we do so
via the cohomology of the complex of nearby cycles Ry Q; over the special fiber of
A’{',E. The key ingredients in studying the complex of nearby cycles together with the
action of monodromy are logarithmic schemes, the Rapoport—Zink weight spectral
sequence (see [RZ]) as constructed by Saito [Sa] (which on the level of complexes
of sheaves describes the action of monodromy on the complex of nearby cycles for
strictly semistable schemes), and the formula

(RY Q) x,xx, =~ (RYQ)) x, @ (RYQ))x,,

where X; and X, are semistable schemes. Using these ingredients, we deduce the
existence of a spectral sequence relating terms of the form H/ (‘A’Z,ES,T’ Q) (up to
twisting and shifting) to the object we are interested in, H/ (:A;'lnf,@l). The coho-
mology of each stratum H/ (A?]ES’T,@Z) is closely related to the cohomology of
Igusa varieties. The next step is to’compute the IT1*°-part of the cohomology of cer-
tain Igusa varieties, for which we adapt the strategy of [Sh3, Theorem 6.1]. Using
the result on Igusa varieties, we prove Theorem 1.2 and then we also make use of
the classification of tempered representations. We prove that the IT!**®-part of each
H/ (A’ng,T, Q;) vanishes outside the middle dimension and thus that our spectral
sequence degenerates at E. The E; page of the spectral sequence provides us with
the exact filtration of the TT!1:*-part of

lim H>""2(Xy, L¢),
ur

which exhibits its purity.
2. An integral model

2.1. Shimura varieties

Let E be an imaginary quadratic field in which p splits, let ¢ be the nontrivial element
in Gal(E£/Q), and choose a prime u of E above p. From now on, we assume that n
is an even positive integer.
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Let F be a totally real field of finite degree over , and let w be a prime of
F; above p. Let F, be a quadratic totally real extension of F; in which w splits
w = wiwsy. Let d = [F, : Q], and we assume that d > 3. Let F = F,.E. Let p; be
the prime of F above w; and u for i = 1,2. We denote by p; for 2 < i <r the rest
of the primes which lie above the prime u of E. We choose embeddings 7; : F — C
with i = 1,2 such that 7, = 71 o 0, where o is the element of Gal(F/Q) which takes
p1 to po. In particular, this means that tg := 11|g = 12| g is well defined. By abuse
of notation, we also denote by o the Galois automorphism of F; taking wj to w,.

We work with a Shimura variety corresponding to the PEL datum (F, *, V, (-, -},
h), where F is the CM field defined above and where % = ¢ is the involution given
by complex conjugation. We take V' to be the F-vector space F” for some integer .
The pairing

(,):VxV—->Q

is a nondegenerate Hermitian pairing such that { fvy, v2) = (vy, f*vy) forall f € F
and vy, v, € V. The last element we need is an R-algebra homomorphism % : C —
Endfr (V) ®q R such that the bilinear pairing

(v1,v2) = (v1, h(i)v2)

is symmetric and positive definite.
We define an algebraic group G over Q by

G(R) = {(g.4) € Endpgor(V ®q R) x R | (gv1,gv2) = Mv1.v2)}

for any Q-algebra R. For 0 € Homg ., (F,C), we let (ps,qs) be the signature at &
of the pairing (-,-) on V ®g R. We claim that we can find a PEL datum as above such
that (pz,q¢:) = (1,n — 1) for t = 177 or 7, and (p¢,q.) = (0,n) otherwise and such
that G, is quasi-split at every finite place v.

LEMMA 2.1

Let F be a CM field as above. For any embeddings ty,t, : F — C there exists a
PEL datum (F,*,V,(-,-), h) as above such that the associated group G is quasi-split
at every finite place and has signature (1,n — 1) at 1 and 15 and (0,n) everywhere
else.

Proof

This lemma is standard and follows from computations in Galois cohomology found
in [Cl1, Section 2], but see also [HT, Lemma 1.7]. The problem is that of constructing
a global unitary similitude group with prescribed local conditions. It is enough to
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consider the case of a unitary group G° over Q, by taking it to be the algebraic group
defined by ker(G(R) — R*) sending (g,A) — A.

A group G defined as above has a quasi-split inner form over Q denoted G,
defined as in Section 3 of [Sh3]. This inner form G, is the group of similitudes which
preserves the nondegenerate Hermitian pairing (vq, v2) = v1{®*v§ with ® € GL,(Q)
having entries

@ = (=1 T8 ny1—j

and ¢ € F* an element of trace 0. Let G’ be the adjoint group of G?. It suffices to
show that the tuple of prescribed local conditions, classified by elements in
@, H'(F»,,,G’), is in the image of the map

H'(F;,G') > @ H' (F>,,G),
v

where the sum is taken over all places v of F,. For n odd, [Cl1, Lemme 2.1] ensures
that the above map is surjective, so there is no cohomological obstruction for finding
the global unitary group. In the case we are interested in, # is even and the image of
the above map is equal to the kernel of

P H (F20.G") — Z/2L.
v

We can use [Cl1, Lemme 2.2] to compute all the local invariants (i.e., the images of
HY(F,,,G') — Z/2Z for all places v). At the finite places, the sum of the invariants
is 0 (mod 2) (this is guaranteed by the existence of the quasi-split inner form G, of
G, which has the same local invariants at finite places). At the infinite places t; and
7, the invariants are #n/2 4+ 1 (mod 2), and at all other infinite places they are n/2
(mod 2). The global invariant is nd /2 +2 (mod 2), where d is the degree of F, over
Q. Since d is even, the image in Z/27Z is equal to 0 (mod 2), so the prescribed local
unitary groups arise from a global unitary group. O

We choose the R-homomorphism /4 : C — Endr (V) ®q R such that under the
natural R-algebra isomorphism Endr (V)r >~ [ | M, (C) it equals

T|g=1E

N zlp, _0 ,
0 zl,, .

where 7 runs over elements of Homg . (F, C).

Now that we have defined the PEL datum, we can set up our moduli problem.
Note that the reflex field of the PEL datumis F’ = F; - E.Let S/ F’ be a scheme, and
let A/S be an abelian scheme of dimension d#n. Suppose that we have an embedding
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i:F —End(4)®zQ.Lie A is alocally free O g-module of rank d n with an action of
F . We can decompose Lie A = Lie™ A ®Lie™ A, where Liet A4 = Lie 4 ®os0E O3,
and the map E < F’ — g is the natural map followed by the structure map. Lie™ A
is defined in the same way using the complex conjugate of the natural map E <> F’.
We ask that Lie™ A be a free @ g-module of rank 2 and that Lie™ 4 ~ 05 ® F, I be
an Os-module with an action of F5.

Definition 2.2
If the conditions above are satisfied, we call the pair (A, i) compatible.

Remark

This is an adaptation to our situation of the notion of compatibility defined in [HT,
Section III.1], which fulfills the same purpose as the determinant condition defined in
[Ko2, p. 390].

For an open compact subgroup U C G(A*°), we consider the contravariant func-
tor Xy mapping

Connected, locally Noetherian
F’-schemes with geometric point | — (Sets),

(S,s)
(S,5) > {(A. A i)}/ ~.
where
. A is an abelian scheme over S';
. A:A— AV is apolarization;

. i+ F < End°(4) = End 4 ® Q is such that (A4,7) is compatible and A o
i(f)=i(f*)V oA, forall f €F,

. n is a m1(S, s)-invariant U-orbit of isomorphisms of Hermitian F' ®g A*°-
modules

n:V ®gA® — VA,

which take the fixed pairing (-,-) on V to an (A*)*-multiple of the A-Weil
pairing on VAg; here,

VAs = (lim A[N](k(s))) ®z Q

is the adelic Tate module.
We consider two quadruples as above equivalent if there is an isogeny between the
abelian varieties which is compatible with the additional structures. If s’ is a dif-
ferent geometric point of S, then there is a canonical bijection between Xy (S, s)
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and Xy (S,s’). We can forget about the geometric points and extend the definition
from connected to arbitrary locally Noetherian F’-schemes. When U is sufficiently
small, this functor is representable by a smooth and quasi-projective variety Xy / F’
of dimension 21 — 2 (this is explained in [Ko2, p. 391]). The variety Xy is a disjoint
union of |ker! (G, Q)| copies of the canonical model of the Shimura variety. As U
varies, the inverse system of the Xy has a natural right action of G(A*°).

Let Ay be the universal abelian variety over Xy . The action of G(A®) on the
inverse system of the Xy extends to an action by quasi-isogenies on the inverse sys-
tem of the Ay . The following construction goes through as in [HT, Section IIL.2]. Let
[ be a rational prime (we impose no conditions on [ yet, but we restrict to / different
from p when we work with an integral model over the ring of integers in a p-adic
field), and let & be an irreducible algebraic representation of G over Qf¢. This defines
a lisse Q“-sheaf £¢; over each Xy, and the action of G(A>) extends to the inverse
system of sheaves. The direct limit

H' (X, Lep) =lim H' (Xu xpr F', Le1)

is a (semisimple) admissible representation of G(A®) with a continuous action of
Gal(F’/F’). We can decompose it as

H'(X.%e1) =P @ R ().
T

where the sum runs over irreducible admissible representations 7w of G(A®°) over
Qf¢. The Rg, ; () are finite-dimensional continuous representations of Gal(F'/F’)
over Q7. We suppress the / from £¢; and Ré’l(n) where it is understood from
context. To the irreducible representation ¢ of G we can associate as in [HT, Sec-
tion I1.2] nonnegative integers mg and 7z and an idempotent €z € Q[Sy,.] (Where
Smy 18 the symmetric group on my letters). As in [TY, p. 476], define for each integer
N >2,

mg

N]x—N
clme. ) = [ [T g e olve=oy)
x=1y#1

where [N], denotes the endomorphism generated by multiplication by N on the xth
factor and y ranges from 0 to 2[F, : Q]n? but excluding 1. Set

ag = ag N = €g P (e(mg, N)),

which can be thought of as an element of End(a%'lnf /Xvu) ®z Q. Here P(e(mg, N))
is the polynomial

P(X)=((X —1)*" 3 41)"



LOCAL-GLOBAL COMPATIBILITY AND MONODROMY 2319

If we let proj : :A;ZS — Xy be the natural projection, then €(mg, N) is an idempotent
on each of the sheaves R/ proj, Q; (), hence also on

H' (XU X Fr F/, ijl‘Oj*@[ (IS)) = H'TJ (Argé X F/ F’,Q[ (l‘g))
We get an endomorphism € (mg, N') of H¥/ (Ap,* x g/ F',Q(t¢)), which is an idem-
potent on each graded piece of a filtration of length at most 4n — 3. In this case,
mg

P(e(mg, N)) must be an idempotent on all of H'*/ (Ay* xpr F',Q(tg)). We have
an isomorphism

Hi(XU XFEr F’, cfg) = agHH_mg (Azg XF’ F’, @l(té))a
which commutes with the action of G(A®°).

2.2. An integral model for Iwahori level structure
Let K = F,,, >~ F,,, where the isomorphism is via o, and denote by O the ring of
integers of K and by s a uniformizer of Og.

Let S/Ok be a scheme, and let A/S be an abelian scheme of dimension dn.
Suppose that we have an embedding i : O < End(A4) ®z7Z(p). Lie A is alocally free
O s-module of rank dn with an action of F. We can decompose Lie A = Lie™ 4 @
Lie~ A, where Liet A = Lie 4 ®, »®0; OF . There are two natural actions of O
on Lie™ 4 via O — O Fy, = O composed with the structure map for j = 1,2.
These two actions differ by the automorphism o € Gal(F/Q). There is also a third
action via the embedding i of O into the ring of endomorphisms of A. We ask that
Lie™ A be locally free of rank 2, that the part of Liet A where the first action of
OF on Lie™ A coincides with i be locally free of rank 1, and that the part where the
second action coincides with i also be locally free of rank 1.

Definition 2.3
If the above conditions are satisfied, then we call (A,i) compatible. One can check

that, for S/ K, this notion of compatibility coincides with the one in Definition 2.2.

If p is locally nilpotent on S, then (A4, ) is compatible if and only if

. A[p?°] is a compatible, 1-dimensional Barsotti-Tate @ g-module fori = 1,2,
and
. A[p?°] is ind-étale for i > 2.

By a compatible Barsotti-Tate @ x-module, we mean that the two actions on it by O g
via endomorphisms or via the structure map coincide.

We now define a few integral models for our Shimura varieties Xy. We can
decompose G(A) as
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G(A®) = G(A®?) x Qs x [ [ GLa(Fy)).

i=1

Foreachi,let A; be an O Fy, -lattice in Fp”i which is stable under GL, (O Fy, ) and self-
dual with respect to {-,-). For each m = (my,...,m,) and compact open subgroup
U? C G(A*P), we define the compact open subgroup U? (1) of G(A®) as

.
UP (i) =UP x % x err(GLoni (Ai) = GLo,, (Ai/mFE! A)).
i=1

The corresponding moduli problem of sufficiently small level U? (1) over Ok is
given by the functor

Connected, locally Noetherian
O g -schemes with geometric point | — (Sets),

(S.s)
(S’ S) = {(A’ A’a i’ ﬁp’ {Oli }{:1)}/ ~,
where
. A is an abelian scheme over S';
. A:A— AV is a prime-to- p polarization;

. i : O — End(A4) ®z Z(p) such that (A,7) is compatible and A o i(f) =
i(f*)Y oA, VfeOF;

. n? isam(S,s)-invariant U ?-orbit of isomorphisms of Hermitian F' ®@g A°>#-
modules

T]ZV®QAOO’p — VPAS,

which take the fixed pairing (-,-) on V to an (A°?)*-multiple of the A-Weil
pairing on VAj (here, V? Ay is the adelic Tate module away from p);

. fori =1,2,a; :p; " A;/A; — A[p;""] is a Drinfeld p"’ -structure, that is, the
set of a; (x),x € (p; ™ A;/A;) forms a full set of sections of A[p;"'] in the
sense of [KM, Section 1.8];

. fori >2, 0 :(p; " A;i/A) = Alp;"] is an isomorphism of S-schemes with
(0] Fy, -actions;
. two tuples (A, A,i,77,{e;}I_,) and (A", 1,7, @P), {a]}7_,) are equivalent

if there is a prime-to- p isogeny A — A’ taking A,i,7?,a; to yA', i, (ﬁp),,alf
for some y € Zz‘p).
This moduli problem is representable by a projective scheme over @ g, which will be
denoted Xyp ;. The projectivity follows from [L, Theorem 5.3.3.1, Remark
5.3.3.2]. If m; = m, = 0, this scheme is smooth as in [HT, Lemma II1.4.1.2], since
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we can check smoothness on the completed strict local rings at closed geometric
points and these are isomorphic to deformation rings for p-divisible groups (with
level structure only at p; for i > 2, when the p-divisible group is étale). Moreover, if
my = my =0, the dimension of Xy ;; is 2n — 1.

When my = m, = 0, we denote Xy, 5 by Xy, . If Ay, is the universal abelian
scheme over Xy,, we write §; = Ay, [p?°] fori = 1,2 and § = §; x §,. Over a
base where p is nilpotent, each of the §; is a 1-dimensional compatible Barsotti—Tate
O g-module.

Let F be the residue field of Og. Let X Uo = XU, XspecOx SpecT be the special
fiber of Xy,. We define a stratification on XUO in terms of 0 < hy,hy, <n — 1. The
scheme X g; 1-12] il be the reduced closed subscheme of X, U, Whose closed geomet-
ric points s are those for which the maximal étale quotient of §; has O -height at
most /;. Let )fg:}‘ h2) = ngol’hZ] - ()fgzol_l’hﬂ U Xg’ol ha=1ly,

LEMMA 2.4
The scheme X l(Jho 1:h2) o nonempty and smooth of pure dimension hy + h».

Proof
In order to see that this is true, note that the formal completion of X, U, at any closed
point is isomorphic to F[[T2, ..., Ty, Sa, ..., Sy]] since it is the universal formal defor-

mation ring of a product of two 1-dimensional compatible Barsotti—Tate groups of
height n each. (In fact, it is the product of the universal deformation rings for each
of the two Barsotti—Tate groups.) Thus, X U, has dimension 2n — 2 and, as in [HT,
Lemma II.1.1], each closed stratum X ([Jhol hal has dimension at least 47 + h,. The

lower bound on the dimension also holds for each open stratum X ((]]:) 112) T order
to get the upper bound on the dimension it suffices to show that the lowest stratum
X ((2)’0) is nonempty. Indeed, once we have a closed point s in any stratum X g; ! ’hz),

we can compute the formal completion (X g(’) ! ’hZ))g\ asin [HT, Lemma II.1.3] and find
that the dimension is exactly &; + h,. We start with a closed point of the lowest stra-
tum X I(J?)’O) =X L[?O’O] and prove that this stratum has dimension 0. The higher closed

olh1.ha] _
strata Xy = Uy <h jo <hs
(h1,h2) that the open strata X g:) 112) are also nonempty.

X l(/Jo] J2) are nonempty, and it follows by induction on

It remains to see that X ((J(:)’O) is nonempty. This can be done using Honda—Tate the-
ory as in the proof of [HT, Corollary V.4.5], whose ingredients for Shimura varieties
associated to more general unitary groups are supplied in [Sh1, Sections 8—12]. In our
case, Honda—Tate theory exhibits a bijection between p-adic types over F (see [Shl,
Section 8] for the general definition) and pairs (A, ), where A/F is an abelian variety
of dimension dn and where i : F < End(A) ®z Q. The abelian variety A must also
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satisfy the following: A[p?°] is ind-étale for i > 2, and A[p{°] is 1-dimensional of
étale height h; for i = 1,2. Note that the slopes of the p-divisible groups A[p{°] are
fixed for all i. All our p-adic types will be simple and given by pairs (M, ), where
M is a CM field extension of F, and 1 € Q[3], where P is the set of places of M
above p. The coefficients in 1 of places x of M above p; are related to the slope of
the corresponding p-divisible group at p; as in [Sh3, Corollary 8.5]. More precisely,
A[x°] has pure slope 7y /ey, . It follows that the coefficients of 7 at places x and x¢
above p satisfy the compatibility

Nx + Mxc =éx/p,

so to know 7 it is enough to specify 7, - x as x runs through places of M above u.

In order to exhibit a pair (A4,i) with the right slope of A[p{°] it suffices to
exhibit its corresponding p-adic type. For this, we can simply take M = F and
Np; = % -p; fori = 1,2 and n,, = 0 otherwise. The only facts remaining to
be checked are that the associated pair (A, 7) has a polarization A which induces ¢ on
F and that the triple (A4,i, ) can be given additional structure to make it into a point
on X l(]oo,o). First, we endow (A, i) with a polarization Ao for which the Rosati involu-
tion induces ¢ on F using [Ko2, Lemma 9.2], and we use Lemma 5.5, an analogue
of [HT, Lemma V.4.1], to construct an F'-module Wy together with a nondegenerate
Hermitian pairing such that

Wo ® AP ~VPA and Wo®R>~V ®qgR

as Hermitian F' ®g A°?-modules (resp., F' ® g R-modules). Then we use the differ-
ence (in the Galois cohomology sense) between W, and V' as Hermitian F'-modules
over Q to find a polarization A such that V7 A with its A-Weil pairing is equivalent to
V ® A°°-? with its standard pairing, as in [HT, Lemma V.4.3]. Note that the argument
is not circular, since the proof of Lemma 5.5 is independent of this section. O

The next lemma is an analogue of [TY, Lemma 3.1].

LEMMA 2.5
If0 < hy,hy <n—1, then the Zariski closure of)fg(l)l 1) contains Xl(](z)’o).

Proof

The proof follows exactly like the proof of [TY, Lemma 3.1]. Let x be a closed
geometric point of X ((](:)’0). The main point is to note that the formal completion of
X Uy X SpecF at x is isomorphic to the equicharacteristic universal deformation ring
of 81 x X & x, so it is isomorphic to

SpfF[[T%..... Ty, Sa.....Sull.
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We can choose the T;, the S;, and formal parameters X on the universal deformation
of §1,x and Y on the universal deformation of &,  such that

n
(X)) =7X + > LX*F T 4 X" (mod X*'+1)
i=2
and
" i—1
[F)¥)=aY + > Six™ 4+ 5% (mod S,
i=2
We get a morphism

SpecF[[Ts,...,Tn,S2, ..., Sull = Xu,

lying over x : SpecF — X U, such that if k denotes the algebraic closure of the field
of fractions of

SpecF([Ta, ..., Tn,S2y - Sull/(Tas s Tueiys S2s -+ s Sneny)s

then the induced map Spec k — Xy, factors through X g(') 1:h2) 0

For i = 1,2, let Iw, ,, be the subgroup of matrices in GL, (@) which reduce
modulo p; to B, (F) (here B,(F) C GL,(F) is the Borel subgroup). We define an
integral model for Xy, where U € G(A™) is equal to

P P1P2 (77 x
UP xUZVP2(m) x Iwp,p, X 1wy g, X Z,.

We define the following functor Xy from connected locally Noetherian O x-schemes
with a geometric point to sets sending

(S,8) = (A, 4,i,77,€1,6, a;),

where (4, A,i, 7, ;) is as in the definition of Xy, and, for i = 1,2, where €; is a
chain of isogenies

Ci G 4="8i0—>851—>— Gin="5 4/ alpi]

of compatible Barsotti-Tate () x-modules each of degree #F and with composite the
canonical map §; 4 — §; 4/ alpi].

LEMMA 2.6

If U? is sufficiently small, the functor Xy is represented by a scheme Xy which
is finite over Xy,. The scheme Xy has some irreducible components of dimension
2n — 1.
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Proof
The chains of isogenies €; can be viewed as flags

0=KioCKii CKin=25pi],

where K; ; =ker(§;0 — §;,;). All the K; ; are closed finite flat subgroup schemes
with Ok-action and X ;/JK; j—1 of order #F. The representability can be proved in
the same way as in [TY, Lemma 3.2] except in two steps. First, we note that the func-
tor sending S to points of Xy, (S) together with flags €; of & [p;] is representable
by a scheme X 2/ over Xy,. (If we let #; denote the sheaf of Hopf algebras over Xy,
defining §;[p,], then X, will be a closed subscheme of the Grassmanian of chains
of locally free direct summands of #;.) Then, we see in the same way that the func-
tor sending S to points of X, (S) together with flags €, of %,[ps] is representable
by a scheme Xy over X;,. We also have that Xy is projective and finite over X, .
(Indeed, for each closed geometric point x of Xy, there are finitely many choices of
flags of O g-submodules of each §; ,.) On the generic fiber, the morphism Xy — Xy,
is finite étale and Xy, has dimension 2n — 1, so Xy has some components of dimen-
sion 2n — 1. O

We say that an isogeny § — &’ of 1-dimensional compatible Barsotti—Tate O g -
modules of degree #[F has connected kernel if it induces the zero map on Lie§.
If we let f =[F:F,] and let F : § — §) be the Frobenius map, then Fr:
€ — €% is an isogeny of 1-dimensional compatible Barsotti-Tate ( g-modules
and has connected kernel. The following lemma appears as in [TY, Lemma 3.3].

LEMMA 2.7

Let W denote the ring of integers of the completion of the maximal unramified exten-
sion of K. Suppose that R is an Artinian local W -algebra with residue field F. Sup-
pose that

€8> G — - —> g =5/5[pil

is a chain of isogenies of degree #IF of 1-dimensional compatible formal Barsotti—Tate
O -modules over R of Ok -height g with composite equal to multiplication by 7. If
every isogeny has connected kernel, then R is an F-algebra and € is the pullback of a
chain of isogenies of Barsotti-Tate O g -modules over F, with all isogenies isomorphic
to F7.

Now let Xy = Xy x spec K Spec I denote the special fiber of Xy. Fori = 1,2 and
1 < j <n,letY; ; denote the closed subscheme of Xy over which §; ;_; — §; ; has
connected kernel. Note that, since each Lie §; ; is locally free of rank 1 over Ox,,, we
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can pick a local basis for all of them. Then we can find locally X, ; € I'(Xy., Ox,)
to represent the linear maps Lie §; j_; — Lie§; ;. Thus, each Y; ; is cut out locally
in Xy by the equation X; ; = 0.

PROPOSITION 2.8

Let s be a closed geometric point of Xy such that §; s has étale height h; fori =1,2.
Let W be the ring of integers of the completion of the maximal unramified extension
of K. Let O )/}U s be the completion of the strict henselization of Xy at s, that is, the
completed local ring of X Xspec @y Spec W at s. Then

n n
(DQU’S:W[[Tl,...,Tn,Sl,...,Sn]]/( T -~ [] Si_”)

i=h;+1 i=hy+1

Assume that Yy j, for k =1,...,n —hy and ji € {1,...,n} are distinct sub-
schemes of Xy which contain s as a geometric point. We can choose the generators

T; such that the completed local ring (9;,\1 ¢ Is cut out in (%\(U by the equation
T

Tx+n, = 0. The analogous statement is true for Y, j with k =1,...,n — hy and

Sk+n, = 0.

Proof

First we prove that Xy has pure dimension 2n — 1 by using Deligne’s homogeneity
principle. We will follow closely the proof of [TY, Proposition 3.4.1]. The dimension
Xl(](:)’o) is constant, say it is
equal to m. Then we claim that (9)’}[/ s has dimension m for every closed geometric
point of Xy . Indeed, assume that the subset of Xy, where (9;}(} s has dimension
different from m, is nonempty. Then this subset is closed, so its projection to X,

A . .
of O Xy, @S § Tuns over geometric points of Xy above

is also closed and so it must contain some X (0‘ h2) (since the dimension of (9’\U s

only depends on the stratum of Xy, that s is above). By Lemma 2.5, the closure of
X g(') 1:h2) contains X [(]0 0), which is a contradiction. Thus, Xy has pure dimension m
and by Lemma 2.6, m = 2n — 1.

The completed local ring O% s is the universal deformation ring for tuples
(A, A,i,7P,€1,6,,a5) deformlng (As,/ls,ls,ns,‘é’ls,‘é’“,oz, s). Deforming the
abelian variety Aj is the same as deforming its p-divisible group A[p°] by Serre—
Tate theory and As[p®°] = As[u®] x A[(u€)®°]. The polarization A together with
A[u®] determine A[(u€)®°], so it suffices to deform As[u®°] as an O p-module
together with the level structure. At primes other than p; and p,, the p-divisible
group is étale, so the deformation is uniquely determined. Moreover, A[(p1p2)*°]
decomposes as A[p7°] x A[p5°] (because OF Rq,., OFélpz ~0Of,p, XOF,p,),soit
suffices to consider deformations of the chains



2326 ANA CARAIANI
Cis:Gis=80—>81—> = Gn="5:/5spil

fori = 1,2 separately.
Letd ~ ¥ x (K/(9K)h be a p-divisible @ g-module over F of dimension 1 and
total height n. Let

€ 8=6—>9 — - —> 8, =89/8[n]

be a chain of isogenies of degree #IF. Since we are working over I, the chain € splits
into a formal part and an étale part. Let €° be the chain obtained from € by restricting
it to the formal part

Y53 oo, =3/3 ]

Let J € {l1,...,n} be the subset of indices j for which §;_; — §; has connected
kernel. (The cardinality of J is n — h.) Also assume that the chain €' consists of

g5 =(K/n'0k) & (K/Og)"7

for all j € J with the obvious isogenies between them.
We claim that the universal deformation ring of € is isomorphic to

W[[Tl,...,Tn]]/(l_[ T; —n).

jeJ

We will follow the proof of [D, Proposition 4.5]. To see the claim, we first con-
sider deformations of § without level structure. By [D, Proposition 4.5], the universal
deformation ring of X is

RO = W[[Xh+177Xh]]/(Xh+1’7Xn _jT)

Let 3 be the universal deformation of . By considering the connected-étale exact
sequence, we see that the deformations of § are classified by extensions of the form

0>%—¢—(K/0g)"—>0.

Thus, the universal deformations of ¢ are classified by elements of Hom(7'9, 2),
where T9 is the Tate module of §. The latter ring is noncanonically isomorphic to

R~ W[[Xl,...,Xn]]/(H X; —n).

jel

Let S be the universal deformation ring for deformations of the chain €, and let
S0 be the universal deformation ring for the chain €°. Let



LOCAL-GLOBAL COMPATIBILITY AND MONODROMY 2327

C:E=6)>6 > — 8, =6/6[n]

be the universal deformation of € which corresponds when restricted to the formal
part to the universal chain

Y53 oo, =3/3 ]
Each deformation 7 of §; is defined by a connected-étale exact sequence
0—3%;, =8 — (K/0x)" -0,

50 it is defined by an element f; € Hom(T'¢;, % ;). We will explore the compatibili-
ties between the Hom(7'§;, E j) as j ranges from 0 to 7. If j € J, then ;9] 1> 9
has connected kernel, so T9,_; ~ T'§,. The isogeny ¥ ;_; — 3; determines a map
Hom(T'§;_1, P j—1) = Hom(T'§;, P 7), which determines the extension ﬁ Thus,
in order to know the extension classes of ;9 it suffices to focus on the case j ¢ J.

Let (e;) jes be a basis of O, which we identify with T'¢; for each j. We claim
that it suffices to know fj(e;) € > j foreach j ¢ J.Indeed, if j ¢ J, then we know
that X;_; ~ 5;, and we also have a map T§;_; — T§; sending

./ .
ejr—>ej forj'# jande; — me;.

Thus, for i # j, we can identify f;_i(e;) € i]j_l with fj(e;) € i]j. Hence if we
know fj(ej), then we also know fj-(e;) for all j' > j. Thus we know f;(e;), but
recall that f,, corresponds to the extension

0— 2/2[r] - §/9[x] - (K/n ' Ok)" -0,
which is isomorphic to the extension
O—>§~]—>§—>(K/(9K)h — 0.

Therefore, we also know fy(e;) and by extension all fj/(e;) for j < j. This proves
the claim that the only parameters needed to construct all the extensions ;éj are the
elements f;(e;) € I, forall j ¢ J.

We have amap S° ® go R — S induced by restricting the Iwahori level structure
to the formal part. From the discussion above, we see that this map is finite and that
S is obtained from S° ® zo R by adjoining for each j € J a root T; of

S(T)=X

in £, where f : & — ¥ is the composite of the isogenies £ ; — %41 — -+ — 2. If
we quotient S by all the T'; for j ¢ J, we are left only with deformations of the chain
€9, since all of the connected-étale exact sequences will split. Thus S/(7T}) j¢5 >~ S°.
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Now, the formal part €° can be written as a chain
= f]o—>--~—>2~]j — o> 3/3n]
of length n — h. Choose bases ¢ for Lie §; over S as j runs over J such that
en =e; forthe largest j € J
maps to

eg =e; forthe smallest j € J

under the isomorphism §, = §y/%[r] = &, induced by 7. Let T; € SO represent
the linear map Lie ¥ ;; — Lie X;, where j’ is the largest element of J for which
j' < j.Then

HT]'ZTF.

jeJ

Moreover, S°/(T;);es = F by Lemma 2.7. (See also the proof of [TY, Proposition
3.4].) Hence we have a surjection

Wittt/ [] 1-7)—s.

j=h1+1

which by dimension reasons must be an isomorphism.
Applying the preceding argument to the chains €; s and €, , we conclude that

n n
(9)’}U’S:W[[Tl,...,T,,,Sl,...,S,,]]/( [T n-= [] Si—n).
i=h;+1 i=h>+1

Moreover, the closed subvariety Y7, ;, of Xy is exactly the locus where §;, 1 — §;,

has connected kernel, so if s is a geometric point of Y7 j, , then (9?,1 ool is cut out in
T

O )A(U’ , by the equation Ty 5, = 0. (Indeed, by our choice of the parameters T 44,

with 1 <k <n — hy, the condition that §; ;1 — §y,j, has connected kernel is

equivalent to Ty 45, =0.) O

For S, T € {l1,...,n} nonempty, let
Yus,r = (m Yl,i) N (ﬂ Yz,j)-
ieS JET

Then Yy, s 7 is smooth over SpecF of pure dimension 2n —#S —#T (we can check
smoothness on completed local rings) and it is also proper over SpeclF, since
Yu.s.r < Xy is a closed immersion and Xy is proper over Spec IF. We also define
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YO s = YU,S,T\(( U YU,S’,T) U ( U YU,S,T’))-

528 T/2T

h2)

Note that the inverse image of X g’ 1#2) with respect to the finite flat map Xy — Xy,

18

U Y 5.1

#S=n—h;

#T=n—h>
Note that, when we consider the Shimura variety Xy, , with U; having Iwahori level
structure at only one of the primes p; for i = 1,2, this will be flat over Xy, since it
can be checked that it is a finite map between regular schemes of the same dimension
(for the same reason as in the setting of [TY]). The morphism Xy — Xy, is the fiber
product of the morphisms Xy, — Xy, fori = 1,2, soitis flat as well.

LEMMA 2.9
The Shimura variety Xy is locally étale over

r S
Xy = Spec(QK[Xl,...,Xn,Yl,...,Yn]/(l—[Xi ~= v —n)
j—1

i=1

with1 <r,s <n.

Proof
Let x be a closed point of Xg7. The completion of the strict henselization of Xy at x
O%,,.x is isomorphic to

r N
Ors =WIlX1...o. Xa Yoo Yall/ ([T X =7 [T Y5 = )
j=1

i=1

for certain 1 <r,s < n. We show that there is an open affine neighborhood U of x
in X such that U is étale over X, . Note that there are local equations 7; = 0 with
1 <i<randS;=0with 1 <j <s which define the closed subschemes Y7 ; with
1 <i <randY,; with 1 < j < passing through x. Moreover, the parameters 7;
and S; satisfy

r S
l_[Tizun and l_[Sizu’n
i=1 j=1

with u and v’ units in the local ring Ox,, x. We will explain why this is the case for
the 7;. In the completion of the strict henselization (9§U . both T; and X; cut out the
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completion of the strict henselization (991.;'796’ which means that 7; and X; differ by
a unit. Taking the product of the T}, we find that [];_, 7; = ux foru € (9§\(U x aunit
in the completion of the strict henselization of the local ring. At the same time, in an
open neighborhood of x, the special fiber of X is a union of the divisors corresponding
to7; =0for1<i <r,so that ]_[:=1 T; belongs to the ideal of Oy, , generated by
7. We conclude that u is actually a unit in the local ring O x,, x, not only in O )’}U X
In a neighborhood of x, we can change one of the 7; by u~! and one of the S; by
(u")~! to ensure that

We now adapt the argument used in the proof of [ Y, Proposition 4.8] to our situa-
tion. We first construct an unramified morphism f from a neighborhood of x in Xy to
Spec Ok[X1,..., Xn,Y1,...,Y,]. We can do this simply by sending the X; to the T;
fori =1,...,r andthe Y tothe §; for j = 1,...,s. The rest of the X; and Y; can be
sent to parameters in a neighborhood of x which approximate the remaining param-
eters in (9;}(} x modulo the square of the maximal ideal. Then f will be formally
unramified at the point x. By [GD2, Corollaire 18.4.7], we see that, when restricted
to an open affine neighborhood Spec A of x in X, f/|spec4 can be decomposed as
a closed immersion Spec A — Spec B followed by an étale morphism Spec B —
Spec Ok [X1,..., Xn,Y1,...,Yy]. The closed immersion translates into the fact that
A ~ B/I for someideal I of B. The inverse image of I in W[X1,..., X, Y1,...,Yx]
is an ideal J which contains [];_, X; — 7 and []}_, ¥; — 7. The morphism f fac-
tors through the morphism g : Spec A — Spec Ok [X1,..., Xn, Y1,...,Y,]/J which
is étale. Moreover, J is actually generated by [];_; X; —  and ]_[j-=1 Y; — m, since
g induces an isomorphism on completed strict local rings

WXt Xn Y10 Yall/T S Oy

This completes the proof of the lemma. O

Let Ay be the universal abelian variety over the integral model Xy . Let £ be
an irreducible representation of G over Q fora prime number / # p. The sheaf £¢
extends to a lisse sheaf on the integral models Xy, and Xy . Also, ag € End(ef%rgs /
Xv) ®z Q extends as an étale morphism on Argg over the integral model. We have

HI (Xy xpr Fj. £¢) > ag HI 1 (Apf xpr F) Qu(tg)).

and we can compute the latter via the nearby cycles RyQ; on Argg over the integral
model of X. Note that ,Aarlnf is smooth over Xy, so A'gs is locally étale over
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r N
Xrigm 1= Spec@K[Xl,...,X,,,Yl,...,Yn,Zl,...,Zm]/(l_[ X;, - [ ¥, —71)
j=1 j=1

for some nonnegative integer m.

3. Sheaves of nearby cycles

In this section, we start to understand the complex of nearby cycles on a scheme
X /O which has the same geometric properties as our Iwahori level Shimura variety
Xy. We work with K/Q,, a finite extension with ring of integers O which has
uniformizer 7 and residue field F. Let /g = Gal(K/K"™) C Gx = Gal(K/K) be the
inertia subgroup of K. Let A be either one of Z/I"7Z, Z;, Qy, or Q forl # p prime.
Let X/Ok be a scheme such that X is locally étale over

r S
Xrosm :Spec(9K[X1,...,X,,,Yl,...,Y,,,Zl,...,Zm]/(H X, - []Y —n).
ji=1 ji=1

Let Y be the special fiber of X. Assume that Y is a union of closed subschemes Y7 ;

with j € {1,...,n} which are cut out locally by one equation and that this equation
over X, s m corresponds to X; = 0. Similarly, assume that Y is a union of closed
subschemes Y> ; with j € {1,...,n} which are cut out over X, ,, by Y; =0.

Let j : Xg < X be the inclusion of the generic fiber, and leti : Y < X be the
inclusion of the special fiber. Let S = Spec O g, with generic point 7 and closed point
s. Let K be an algebraic closure of K, with ring of integers Of. Let S = SpecOz,
with generic point 7 and closed point 5. Let X = X xg S be the base change of X
to S, with generic fiber j : X 7= X and special fiber 7 : X5 < X. The sheaves of
nearby cycles associated to the constant sheaf A on Xg are sheaves R¥ YA on X;
defined for k > 0 as

RFyA =i*R¥ j A
and they have continuous actions of /.

PROPOSITION 3.1
The action of Ix on RXYA is trivial for any k > 0.

The proof of this proposition is based on endowing X with a logarithmic struc-
ture, showing that the resulting log scheme is log smooth over Spec Ok (with the
canonical log structure determined by the special fiber), and then using the explicit
computation of the action of /x on the sheaves of nearby cycles that was done by
Nakayama in [Na, Theorem 3.5].
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3.1. Log structures

Definition 3.2

A log structure on a scheme Z is a sheaf of monoids M together with a morphism « :
M — Oz such that « induces an isomorphism o~ ! (0%) ~ 0. A scheme endowed
with a log structure is a log scheme. A morphism of log schemes (Z1, M) — (Z>,
M) consists of a pair (f,h), where f : Z; — Z, is a morphism of schemes and
h: f*M, — M, is a morphism of sheaves of monoids.

From now on, we regard (9} as a subsheaf of M via ¢~!, and we define M :=
M/0O7.

Given a scheme Z and a closed subscheme V with complement U, there is a
canonical way to associate to V' a log structure. If j : U < X is an open immersion,
we can simply define M = j,((Ox | U)*) N Ox — Ox. This amounts to formally
“adjoining” the sections of @y which are invertible outside V' to the units @%. The
sheaf M will be supported on V.

If P is a monoid, then the scheme Spec Z[ P] has a canonical log structure asso-
ciated to the natural map P — Z[P]. A chart for a log structure on Z is given by a
monoid P and a map Z — Spec Z[ P] such that the log structure on Z is pulled back
from the canonical log structure on Spec Z[ P]. A chart for a morphism of log schemes
Z1 — Z, is a triple of maps Z; — SpecZ[Q], Z, — SpecZ[P], and P — Q such
that the first two maps are charts for the log structures on Z; and Z, and such that
the obvious diagram is commutative.

For more background on log schemes, the reader should consult [I1] and [K].

For a scheme over Ok, we let j denote the open immersion of its generic fiber
and we let i denote the closed immersion of its special fiber into the scheme. We
endow S = Spec Ok with the log structure given by N = j,.(K*) N Og — Ok. The
sheaf N is trivial outside the closed point and is isomorphic to a copy of N over the
closed point. Another way to describe the log structure on S is by pullback of the
canonical log structure via the map

S — Spec Z[N],

where 1 = 7 € Og.

We endow X with the log structure given by M = j. (0% ) N Ox — Ox. Itis
easy to check that the only sections of @x which are invertible outside the special
fiber but not invertible globally are those given locally by the images of the X; for
1 <i <randtheY; for 1 <j <s.On étale neighborhoods U of X which are étale
over X, s m, this log structure is given by the chart

U — Xy 5m —> SpecZ[Prs],
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where
Prs:=N"@®N)/((1,...,1,0,...,0) = (0,...,0,1,....1)).

The map X; s ,n — Spec Z[ P, 5] can be described as follows: the element with 1 only
in the kth place (0,...,0,1,0,...,0) € P,y maps to Xi if k <r andto Y;_, if k >
r + 1. Note that the log structure on X is trivial outside the special fiber, so X is a
vertical log scheme.

The map X — S induces a map of the corresponding log schemes. Etale locally,
this map has a chart subordinate to the map of monoids N — P, s such that

1~(1,...,1,0,...,0)=(0,...,0,1,...,1)

to reflect the relations X¢,..., X, =7Y;,...,. Y, =m.

LEMMA 3.3
The map of log schemes (X, M) — (S, N) is log smooth.

Proof

The map of monoids N — P, ; induces a map on groups Z — PS5, which is injec-
tive and has torsion-free cokernel Z" 572, Since the map of log schemes (X, M) —
(S, N) is given étale locally by charts subordinate to such maps of monoids, by [K,
Theorem 3.5] the map (X, M) — (S, N) is log smooth. O

3.2. Nearby cycles and log schemes
There is a generalization of the functor of nearby cycles to the category of log schemes.

Recall that O ¢ is the integral closure of Ok in K and that § = Spec Oz with
generic point 77 and closed point 5. The canonical log structure associated to the spe-
cial fiber (given by the inclusion j.(K*) N @ < O ) defines a log scheme S with
generic point 7 and closed point 5. Note that § is a log geometric point of S, so it has
the same underlying scheme as 5. The Galois group G acts on § through its tame
quotient. Let X =X x5 S inthe category of log schemes, with special fiber X5 and
generic fiber Xj. Note that, in general, the underlying scheme of X5 is not the same
as that of Xj. This is because X5 is the fiber product of X5 and § in the category of
integral and saturated log schemes and saturation corresponds to normalization, so it
changes the underlying scheme.

The sheaves of log nearby cycles are sheaves on Xy defined by

RkwlOgA — ’l?*ka*A,

where 7, j are the obvious maps and where the direct and inverse images are taken
with respect to the Kummer étale topology. Theorem 3.2 of [Na] states that when
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X/S is a log smooth scheme, we have R%y¥!°¢A = A and RPy'°¢A = 0 for p > 0.
Let

€

<

— X,

which restricts to € : X7 — X7, be the morphism that simply forgets the log structure.
Note that we have j.€, = €4 j«, by commutativity of the square

i
Xi ——

l

i
X5 ——

<,

-

<,

We also have i * RE, F ~ Ré*f*? for every Kummer étale sheaf ¥, by strict base
change (see [11, Proposition 6.3]). We deduce that

lT*]T*G* = g*;*j*,
so the corresponding derived functors must satisfy a similar relation. When we write

this out, using RY/'°®A = A by Nakayama’s result and Re.A = A because the log
structure is vertical and so € is an isomorphism, we get

RFyIA = RFEL(A | X5).

Therefore, it suffices to figure out what the sheaves R¥&, A 100k like and how I acts
on them, where € : X5 — Xj5. This has been done in general by Nakayama, thus deriv-
ing an [GDK, Théoreéme 1.3.3]-type formula for log smooth schemes. We describe his
argument below and specialize to our particular case.

LEMMA 3.4 ([Na, Theorem 3.5])
We hold that Ik acts on RPe.(A | X5) through its tame quotient.

Proof

Let S’ = Spec Og: be endowed with the canonical log structure (here K! C K is
the maximal extension of K which is tamely ramified). The closed point s* with its
induced log structure is a universal Kummer étale cover of s, and /g acts on it through
its tame quotient /?. Moreover, the projection § — s’ is a limit of universal Kummer
homeomorphisms, and it remains so after base change with X (see [I1, Theorem
2.8]). Thus, every automorphism of X5 comes from a unique automorphism of X,
on which I acts through I°. O
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Now we have the commutative diagram

1 o 1
XEOg % ong

X:fl L X;l

where the objects in the top row are log schemes and the objects in the bottom row are
their underlying schemes. The morphisms labeled € are forgetting the log structure,
and we have € = e oax = f 0 €. We can use either of these decompositions to compute
RKE,A. For example, we have Ré,A = RB«Re, A, which translates into having a
spectral sequence

R"*B.RFe, A = R"E,A.

We know that RFe, A = A\¥ M® ® A(—k), where

rel

ME = coker(N® — M) /torsion.

Recall that N is the log structure on O g associated to its special fiber. The map of log
schemes (X, M) — (O, N) induces a map from the (pullback of ) N to M. We form
M using this map. The formula for R¥e, A follows from [KN, Theorem 2.4], as
explained in [Na, Section 3.6]. Theorem 2.4 of [KN] is a statement about log schemes
over C, but the same proof also applies to the case of log schemes over a field of
characteristic p, as explained in [I1].

On the other hand, at a geometric point X of X 51, we have (B+«F )z = F[Ex] for
a sheaf ¥ of A-modules on X §1, where Ej is the cokernel of the map of log inertia
groups

I, — I.

Indeed, B~ () consists of #coker(/, — Iy) points, which follows from the fact that
X E“l is the normalization of (X; x5 §)°". The higher derived functors R" %, % are all
trivial since B is exact. Therefore, the spectral sequence becomes

ANeME @ A[Ez] ® A(—k) = (RFELN)z.

rel,x

The tame inertia acts on the stalks of these sheaves through I’ =~ I > A[l5] —
A[E%].
In our particular case, it is easy to compute RKE, A globally. Let

Z()y= lm .
(m,p)=1
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We have

I, = Hom(M&, 7 (1))
and

Iy = Hom(N#, 7 (1)).

The map of inertia groups is induced by the map N& — M, which is determined
by 1 (1,...,1,0,...,0), where the first n terms are nonzero. Any homomorphism
of N& = 7 — 7/(1) can be obtained from some homomorphism M£" — 7' (1). Thus
E5 is trivial for all log geometric points X, and I’ acts trivially on the stalks of the
sheaves of nearby cycles.

Moreover, in our situation we can check that § is an isomorphism, which follows
from the fact that X is reduced, which can be checked étale locally. Indeed, if X is
reduced, then the underlying scheme of X ;"g is the same as X3, since X ;Og is defined
as the inverse limit over n € N prime to p of fiber products of fs log schemes

(XivM) X(]F,N)’yn (IE‘7N)’

where y, is the identity on the underlying schemes and is multiplication by n on the
nontrivial part of the log structures. The underlying scheme of a fiber product of fs
log schemes is not usually the same as the fiber product of underlying schemes. The
reason for this is that the log structure on the fiber product does not a priori need to be
saturated, so we may need to introduce additional units. However, it can be checked
that if X is reduced, then the product log structure is already saturated. Thus we have
the global isomorphism
RFE A ~ AFME ® A(—k).

The above discussion also allows us to determine the sheaves of nearby cycles.
Indeed, we have RFYA ~ AKME ® A(—k), and MZ can be computed explicitly
on neighborhoods. If U is a neighborhood of X with U étale over X, s, then the
log structure on U is induced from the log structure on X, 5. Let Jy,J> C{1,...,n}
be sets of indices with cardinalities r and s, respectively, corresponding to sets of
divisors Yy ; and Y, ; which intersect U.

PROPOSITION 3.5
Fori=1,2and j =1,...,n, let aj- :Yi,j = Y denote the closed immersion. Then
we have the following isomorphism of sheaves on U

REyA ()| ~ Ak[((@ a_}.*A)/A) o ((@ aﬁ*A)/A)}

jeJq JjeJ2

’

U
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where for i = 1,2 we are quotienting by the canonical diagonal map

A— @ a;*A.

JEJi

Proof
This follows from the fact that on U a chart for the log structure M |7 can be given
by the map

U — Xy 5.m — SpecZ[ Py ¢]

as explained in Section 3.1, so that M|y can be identified with ((B;cj, a}.Z)/
Z)® (Bjes, a342)] T)u-

We can now define a global map of sheaves

/\k[(éa}*l\) ® (éa}*A)] — AN @5 A = RFYA (k).

J=1 J=1

It is enough to describe a global map of sheaves a’. 7 — MS'. Locally, on neigh-

rel
borhoods U, we map section 1 € az.*Z(U ) to the iinage in Mrgell)(U ) of a generator
for the local equation defining Y; ; (this is independent of the choice of generator).
These local maps over neighborhoods U glue to give a global map, since the two
images of 1 in M(U xx U’) differ by units, so they are identified once we pass to
ME (U xx U’). We see from the local description in Proposition 3.5 that the above
map of sheaves is surjective and that the kernel is generated by images of the two
diagonal maps A — @’ _, ai-*A fori =1,2.
COROLLARY 3.6
There is a global isomorphism

Ak[((@ a}*A>/A) ® ((@ ai*A)/A)] ~ RFyA (k).

jed JEJ2

Let £1 = (D)= aj,A)/A, and let £ = (D, a7, A)/A. From the above
corollary, we see that R¥yA (k) can be decomposed as Z;;o AL @ AL, If
X was actually a product of strictly semistable schemes X = X; xg X5, then the
sheaves Al £1 and A¥~/ £, would have an interpretation as pullbacks of the sheaves
of nearby cycles R A and RK~* /A associated to X and X», respectively. Corollary
3.6 would then look like a Kiinneth-type formula computing the sheaves of nearby
cycles for a product of strictly semistable schemes. In fact, in such a situation, the
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computation of the sheaves of nearby cycles reflects the stronger relation between the
actual complexes of nearby cycles

RYA X, xsx> = RYAx, ®F RyAx,,

which takes place in the derived category of constructible sheaves of A-modules on
(X1 x5 X3)s. This result was proved in [12] for a product of schemes of finite type.
The isomorphism is stated in the case when A is torsion; however, the analogue mor-
phism for A a finite extension of Z; or Q; can be defined by passage to the limit (see
the formalism in [E]) and it will still be an isomorphism. Here we would like to give
a different proof of this result in the case of the product of two strictly semistable
schemes. We will use log schemes, specifically Nakayama’s computation of log van-
ishing cycles for log smooth schemes.

Recall that the scheme S has generic point 1 and closed point s. We will freely
use the notation S, S and § ,§, and also the corresponding notation for a scheme X
fixed in the beginning of this section. We first need a preliminary result.

LEMMA 3.7
Let X be a strictly semistable scheme over S. Then the sheaves RFWA are flat
over A.

Proof
By [Sa, Proposition 1.1.2.1], we have an exact sequence of sheaves on X 3

0— RFYA — i*RFT1j, A(1) > R¥F1yA(1) — 0.

We will prove by induction on k that R" %A is flat over A. Indeed, R" YA = 0,
so the induction hypothesis is true for £ = 0. For the induction step, note that we can

compute i * R"~k+1

J+A using log étale cohomology. Since X is strictly semistable,
it can be endowed with the canonical log structure M; associated to the special fiber.

If ozi1 :Y1,; < Y are the closed embeddings, then we have

n
M = (M, /0% ) ~ Pal,Z. (1)
i=1
By [Na, Proposition 2.0.2, Theorem 0.2 (purity for log smooth morphisms)], we can

*Rn—k-‘rl

compute i Jj«A in the same way that we have computed R¥yA above, get-

ting
i*Rn_k+lj*/\ ~ /\n—k-‘rl(MlgP) Qz A(—=n+k —1),

which is flat over A by 1. In the short exact sequence
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0— R" % yA —i*R"*+1j A1) > R *F1yA(1) >0

the middle term is flat, the right term is flat by the induction hypothesis, and so the
left term must be flat as well. O

PROPOSITION 3.8
Let X1 and X, be strictly semistable schemes over S. Then we have the following
equality in the derived category of constructible A[I]-modules on (X1 x5 X2)s

RW(AX”,) ®§ RW(AXZJ,) = R¢(A(X1XSXz)n)’

where the external tensor product of complexes is obtained by taking pri ® pry and
where the superscript L refers to left derived tensor product.

Proof

We have seen from the above discussion that in the case of a log smooth scheme with
vertical log structure, the complex of vanishing cycles depends only on the special
fiber endowed with the canonical log structure. In other words, for i = 1,2, we have
Ry Ax; , ~ Ré; «Ax, ; as complexes on X; s, where ¢€; : Xi,g — X,',g is the identity
morphism on the underlying schemes and forgets the log structure. Analogously, we
also have RYA (x,xsx5), = RéxA, where

& (X1 x5 X2)5 —> (X1 x5 X2)5

is the morphism which forgets the log structure. (Here we have used the fact that
the fiber product of log smooth schemes with vertical log structure is log smooth
with vertical log structure and that the underlying scheme of the fiber product of log
schemes X 1 X5 X 2 1s just X 1X§ Xz; the latter holds since the induced log structure
on X 1X5 X » is saturated.) Therefore, it suffices to prove that we have an isomorphism

= ~ RE . L p= .
RG*A(Xlxgiz)s - REI’*AXl,s ®5 Rez’*AXz,s

in the derived category of constructible sheaves of A [/;]-modules on (X x S X2)s.
It is enough to show that the Kiinneth map

€=Ré1:Ag, , ®F Réouhy, — R&A(g 7y, =D,

which is defined as in [AGV, XVII, Equation 5.4.1.4], induces an isomorphism on
the cohomology of the two complexes above, for then the map itself will be a quasi-
isomorphism. The cohomology of the product complex can be computed using a Kiin-
neth formula as H"(€) = @ _, RKE| A ®; R"*&, . A. In general, the Kiinneth
formula involves a spectral sequence with terms
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n—I
EY" =3 " TorMBI(REE) LA R TRE, L A) = HM(€)
k=0

(see [GD1, XVII, Equation 6.5.4.2] for a statement using homology). In our case, the
cohomology sheaves R¥ €;x A\ are flat A-modules with trivial /s-action by Lemmas
3.1 and 3.7, so for [ > 0 all the Eé’"_l terms vanish. (Alternatively, one can prove
the formula for H" (€) by taking flat resolutions for both of the factor complexes and
using the fact that the cohomology sheaves of the flat complexes are flat as well.)

In order to prove that the induced map H"(€) — H" (D) is an isomorphism, it
suffices to check that it induces an isomorphism on stalks at geometric points. Let x
be a geometric point of X; xg X5 above the geometric point § of S. The point x will
project to geometric points x; and x, of X; and X,. From [I1] it follows that there is

an isomorphism on stalks
R¥& « Ay, ~ H*(J;, A)
for0 <k <nandi = 1,2, where J; is the relative log inertia group
ker (" (X;, x;) = 7,°%(S, 5)).
A similar statement holds for the stalks at x
R"éAx >~ H"(J,N),

where J is the relative log inertia group ker(mr;8(X, x) — 7;"%(S. s)). Directly from
the definition of the log fundamental group we can compute J = J; x J>. We have
the following commutative diagram

H"(C)x H" (D)

i .

n
P H (1. M) & H ¥ (J2,A) —— H"(J1 x ]2, \)
k=0

where the bottom arrow is the Kiinneth map in group cohomology and is also an
isomorphism. (Again, the Kiinneth spectral sequence
n—I
EY" =" Torf (H*(J1. A), H" % (2. A))
k=0
degenerates at E5, and all terms outside the vertical line / = 0 vanish because these
cohomology groups are flat A-modules.) Therefore, the top arrow H"(€)yx —
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H"(D), has to be an isomorphism for all geometric points x of X, which means
that it comes from a global isomorphism of sheaves on X . O

4. The monodromy filtration

4.1. Overview of the strictly semistable case

In this section, we explain a way of writing down explicitly the monodromy filtration
on the complex of nearby cycles R{A in the case of a strictly semistable scheme. Our
exposition follows that of [Sa], which constructs the monodromy filtration using per-
verse sheaves. We let A = Z/17Z,7;,Q; or Q. In fact, the proofs use A = Z/1"7Z;
then the results extend to A = Z;, Q;, Q;.

Let X1/0Ok be a strictly semistable scheme of relative dimension n — 1 with
generic fiber X1 ; and special fiber Y1 = X 5. Let RYyA = i*Rj«A be the complex
of nearby cycles over Yl,]h_“‘ Let Dq,..., Dy, be the irreducible components of Y7, and
for each index set / C{1,...,m} let Y7 =();c; Di, and let ay : Y7 — Y; be the
immersion. The scheme Y; is smooth of dimension n — 1 — k if #/ = k + 1. For all

0<k<m—1, we set
Yl()_ Y

IC{1,...m}#I=k+1

and we let ay, : Yl(k) — Y be the projection. We identify agA = AKH1ag, A.

We work in the derived category of bounded complexes of constructible sheaves
of A-modules on Y . We denote this category by D? (Y1 5. A).

Let d[rr] be the boundary of = with respect to the Kummer sequence obtained by
applying i * Rj to the exact sequence of étale sheaves on X 5,

0—>A(1)—>(9}1n—>(9}1n—>0

for A = 7Z/1"Z. Taking an inverse limit over r and tensoring, we get an element
d[r) €i* R juA(1) for A =Q; or Q. Let 0 : Ay, — i*R" j.A(1) be the map send-
ing 1 to d[x]. Let § : Ay, — ao«A be the canonical map. The following result appears
as [Sa, Corollary 1.3].

PROPOSITION 4.1
We have the following.
1. There is an isomorphism of exact sequences

SA SA

AY] HO*A

]

Ay, _9_ i*RYj A1) _ou_ ... oY i*R"j,A(n) — 0

an—1xsA — 0
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where the first vertical arrow is the identity and all the other vertical arrows are
isomorphisms.
2. For k > 0, we have an exact sequence

0— RFYA — i*RFF j A1) > - > i*R" j.A(n — k) — 0,

where all the horizontal maps are induced from 6U.

Note 4.1(A)
We note the following.

1. The vertical isomorphisms in the first part of Proposition 4.1 come from the
Kummer sequence corresponding to each of the D; fori = 1,...,m. The maps 0; :
Ap; — i*R'j.A(1) are defined by sending 1 to d[x;], where 7; is the generator of
the ideal defining D; and 0 is the connecting differential in the Kummer sequence.
The isomorphism ag« A — i *R' j, A(1) is the direct sum of the §; fori =1,...,m.

2. Putting together the two isomorphisms, we get a quasi-isomorphism of com-
plexes

REYA(K)[—k] S [agsA = -+ — apn_1sA — 0], )

where Ry A (k) is put in degree k and a,_ 1A is put in degree n — 1.

LEMMA 4.2
The complex aj« A[—1] is a —(n — 1)-shifted perverse sheaf for all0 <l <n —1, and
so also is the complex Ry A (k)[—k] forall 0 <k <n — 1.

Proof

Since Yl(l) is smooth of dimension n — 1 — [, we know that A[—[] is a —(n — 1)-
shifted perverse sheaf on Yl(l). The map ay : YO Sy is finite, and since the direct
image for a finite map is exact for the perverse ¢-structure, we deduce that aj,. A[—!/]
is a —(n — 1)-shifted perverse sheaf on Y. This is true for each 0 </ <n — 1. The
complex R¥yA (k)[—k] is a successive extension of terms of the form a;, A[—I] (as
objects in the triangulated category D?(Yz, A)). Because the category of —(n — 1)-
shifted perverse sheaves is stable under extensions, we conclude that RKyA (k)[—k]
is also a —(n — 1)-shifted perverse sheaf. O

Assume that A = Z/I"Z. Let £ € Db (Y} 7 A) be represented by the complex

> R gk s R

Definition 4.3
We define 7<; £ to be the standard truncation of &£ represented by the complex
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o> 2 s ker(2F - £F ) 0.

Then 7 is a functor on D? (Y 7 A). We also define T K to be represented by the
complex

v 2 R s im(gR > £ 0.

For every k, we have a quasi-isomorphism t<x £ = T<x L, which is given degree
by degree by the inclusion map.

COROLLARY 4.4
The complex RYA is a —(n — 1)-shifted perverse sheaf and the truncations t<x Ry A
make up a decreasing filtration of Ry by —(n — 1)-shifted perverse sheaves.

Proof

Since the cohomology of R{¥A vanishes in degrees greater than n — 1, we have
RYA ~ 1,1 RYA, so it suffices to prove by induction that each t<x RYA is a
—(n — 1)-shifted perverse sheaf. For k = 0, we have <o RYA ~ ROy A, which is a
—(n — 1)-shifted perverse sheaf by Lemma 4.2. For k > 1, we have a distinguished
triangle

(t<k—1 RYA, t<k RYA, REYA[-K]),

and assuming that t<x_; RYA is a —(n — 1)-shifted perverse sheaf, we conclude that
<k RYA is as well. The distinguished triangles become short exact sequences in the
abelian category of perverse sheaves, from which we deduce that the 7<x RYyA make
up a decreasing filtration of Ry A and that the graded pieces of this filtration are the
RFyA[—k]. O

Note 4.5
For A =7Z;,Qy or Q;, we still have standard truncation functors t<x which give us a
distinguished triangle

(t<k—1 RYA, Tk RYA, RFYA[-k]),

but the < are defined differently. With the new definition, the proof and results of
Corollary 4.4 still go through for A = Q; or Q.

The complex Ry¥A has an action of Iy which acts trivially on the cohomology
sheaves Rkl//A. From this, it follows that the action of I factors through the action
of its tame pro-/-quotient. Let 7 be a generator of the pro-/ part of the tame inertia
(i.e., such that #; (T") is a generator of Z; (1), where #; : I; — Z;(1) is the tame inertial
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character). We are interested in understanding the action of 7 on R{¥A. For A = Q;
or Q;, we are interested in understanding the action of N = log 7' by recovering its
monodromy filtration (convolution of the kernel and image filtrations). However, the
monodromy filtration of N is the same as the monodromy filtration of v :=T — 1, so
we will explain how to compute the latter.

We have seen that T acts trivially on the R¥yA, which means that v sends
T<k RYA = T<p_1 RYA = T<k—1 RYA. We get an induced map

b REYA[—k] > RFTyA[—k + 1].
We record [Sa, Lemma 2.5(4)].

LEMMA 4.6
The map v and the isomorphisms of item 2 of Note 4.1(A) make a commutative dia-
gram

REHIYA[—(k + 1)) —— [0 Qgra A (—(k +1)) 205 o
iﬁ l l@zlm
REYA[—k] — = [arah(—k) —2 o iy A(—k) —22 s o

ey A~k + 1))

|

o an—1xA(=H)]

where the sheaves an—1+AN(—(k + 1)) and ap—1+A(—k) are put in degree n — 1.

Note 4.7
When A = Q; or Q;, the monodromy operator N = log T is defined and it induces a
map

N : REyA[—k] — RF WAk +1].

This map coincides with v, since log7 =T —1 (mod (T — 1)?) and (T — 1)? sends
TskRIﬂA — ‘L'fk_leﬁA.

From the preceding commutative diagram, it is easy to see that the map v is
injective, since we can just compute the cone of the map of complexes on the right.
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In general, to compute the kernel and cokernel of a map of perverse sheaves, we have
to compute the cone C of that map, then the perverse truncation rfOC will be the
cokernel and T£_1 C [—1] will be the kernel (see the proof of [BBD, Théoreéme 1.3.6]).
Itis straightfor;vard to check that the cone of v is quasi-isomorphic to g« A (—k)[—k],
which is a —(n — 1)-shifted perverse sheaf. We deduce that v has kernel 0 and cokernel
apx A (=) [—k].

The fact that v is injective means that the canonical filtration 7<x RYA coincides
with the kernel filtration of v on RYA and that the RKyA[—k] for0 <k <n — 1 are
the graded pieces of the kernel filtration. Moreover, the graded pieces of the induced
image filtration of v on the R¥yA are agyps A(—h)[—(k +h)] forO<h <n—1—k.
This information suffices to reconstruct the graded pieces of the monodromy filtration
on RYA.

PROPOSITION 4.8
There is an isomorphism

D aw+mxA=h)[=(k + h)] — G} RyA.
h—k=r

This isomorphism, together with the spectral sequence associated to the mon-
odromy filtration, induces the weight spectral sequence (see [Sa, Corollary 2.2.4]).

4.2. The product of strictly semistable schemes

Let X; and X be strictly semistable schemes of relative dimension n — 1 over O,
and let A =7Z/1"7,7;,Q; or Q; (we will be more specific about A where it is
important). Let RyA x, be the complex of nearby cycles on X; 5 fori = 1,2, and
let RYA x, xx, be the complex of nearby cycles on (X; xs X2)5. By Proposition 3.8,
we have

Rl//AXlxXz ~ RI/IAXI QA RWAXZ,

and notice that this isomorphism is compatible with the action of the inertia / in
G k. From Proposition 3.1, the action of [ is trivial on the cohomology sheaves of
Ry A x,xx,, so only the pro-/ part of I acts nontrivially on RYAx,xx,.Let T be a
generator of the pro-/ part of /, and set v =T — 1. Let v, vy, v, denote the action of
von RYyAx, xx,, RYyAx,, and RYA x,, respectively. Since the above isomorphism
is compatible with the action of T', we deduce that T" acts on Ry Ax, @a[r] RYAx,
viaT ® T. From this, we conclude that v acts on RYyAx; @A) RYAx, asvi ® 1+
1®vy+ v Qs
As in the proof of Proposition 3.5, we have a decomposition
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k
RFyA ~ P R'yAx, ® R yAx,.
=0

We will see that v induces a map
b REYA X [=k] = R A X x, [k + 1]

which acts on R' A x, @A R¥! A x,[—k] by 11 ® 1 4+ 1 ® il,. First we prove a few

preliminary results.

Fori = 1,2 and 0 </ < n, define the following schemes.

. Let Y; /F be the special fiber of Xj;.

. Let D; 1,..., Dim, be the irreducible components of X;.

. For J C{1,...,m;}, let Y; s be ();cs Di,j, and let a’; 1 Y;; — Y; be the
immersion. Note that if the cardinality of J is & + 1, then the scheme Y; s is
smooth of dimensionn — h — 1.

. Forall 0 <h <m; — 1, set Yi(h) = | lys—p41 Yi,s. and let af : Yl.(h) — Y; be
the projection.

Then for each i = 1,2, we have a resolution of R"yA x; [—h] in terms of the sheaves

az.*A

RM"WAx, [-h] 5 [al A(=h) — - —d'_ | A(=h)],

n—1%

where ai_l*A(—h) is put in degree n — 1.

Now let Y /IF be the special fiber of X x X5. Let

YJl,Jz = ﬂ (Djl XF DJZ)

J1€J1,j2€02

Set Y (h-h2) — Llss, =y +1.45,=hp+1 You,00- and letap, p, : Y 11:h2) sy be the pro-
jection. The scheme Y 1:h2) g smooth of dimension 21 — 2 — h1 — hy. Note that
y@ih2) — y "0 5y 12 and that ap, e A ~ ay A ®aj A, where the tensor
product of sheaves is an external tensor product.

LEMMA 4.9
We have the following resolution of R* YA x, ® R*""yA x,[~k] as the complex
ah,k—h*l\(—k) - ah,k—h+1*A(—k) 2] ah+1,k—h*A(—k) —> > an—l,n—l*A(_k)v

where the sheaf an—1 n—1+A(—k) is put in degree 2n — 2. The general term of the
complex which appears in degree hy + h; is

B an A=)
hi1>h
h>>k—h
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For each hy, h, the complexes ap, p,+« A(—k)[—h1 — h2] are —(2n — 2)-shifted per-
verse sheaves, so the complex R¥ A x, xx,[—k] is also a —(2n — 2)-shifted perverse
sheaf.

Proof

Each of the complexes R"yA x, and RF=hyA X, have resolutions in terms of
a}“*/\(—h) and aiz*A(—k +h), respectively, where h < hy <n—landk—h <h, <
n — 1. We form the double complex associated to the product of these resolutions, and
the single complex associated to it is a resolution of R" A x; ® RK=hy A X, [—k] of
the following form:

ap A(—h) ® ag_,, A~k + h)
b WA ® A Ak +h) ®ah A(—h) a3y, A=k + )
A(—=h) @ a2_, A(—k + h).

_>..._>al 1%

n—1x

In the above complex, the sheaf a,_,,A(—h) ® a>_,,A(—k + h) is put in degree

n—1%
2n — 2. Now we use the formula

any s N—k) = ay A(=h) ® aj  A(—k + h)

to conclude the first part of the lemma. The complex ay, p,«A(—k)[—h1 — h2] is the
direct image via aj, j,« of the complex A(—k)[—h1—h2] on Y hih2) Since y (h1-h2)
is smooth of dimension 2n —2 —h; — h,, we know that A(—k)[—hy —hy]isa—(2n —
2)-shifted perverse sheaf, so its direct image under the finite map ap, p,« is also a
—(2n —2)-shifted perverse sheaf. We have just seen that each R" A x, ® RF"yA x,
can be obtained from successive extensions of factors of the form ap, p,«A(—k) X
[—h1 — h2], and since the category of —(2n — 2)-shifted perverse sheaves is stable
under extensions, we deduce that R A x, ® R¥"yA x,[—k] is a —(2n — 2)-shifted
perverse sheaf. Now RKYA x,xx,[—k] = @2:0 R'"WAx, ® RF"hyA x, [—k], so it
is also a —(2n — 2)-shifted perverse sheaf. Ol

COROLLARY 4.10

We hold that Ry A x,xx, is a —(2n — 2)-shifted perverse sheaf. The standard trun-
cation t< RYA x,xx, is a filtration by —(2n — 2)-shifted perverse sheaves, and the
graded pieces of this filtration are the R*YA x, xx, [—k].

Proof

The proof is exactly the same as that of Corollary 4.4. It suffices to show that each
<k RYA is a —(2n — 2)-shifted perverse sheaf, and we can do this by induction,
using the distinguished triangle
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(T<k—1 RYA X, xX5. T<k RYA X, x x5, RkWAXMXz [—=kD.
Once everything is proved to be in an abelian category, the distinguished triangle
becomes a short exact sequence, and we get a filtration on RYA x, xx, with its desired
graded pieces. O
Now we can deduce that there is a map

B2 REYA x, 0, [—k] = RE I A xyx, [~k — 1)

Indeed, since T acts trivially on the cohomology sheaves of RY'A x,xx,, we deduce
that v sends T<x RYAx,xx, t0 T<x—1 RYA x,xx,, which induces v. It remains to
check that this induced map ¥ restricted to R*yAx, ® R¥~"yA x, is the same map
asv; ® 1 + 1 ® v, sending

RM"WAx, ® Ry x, [k
— (R"'yAx, ® R "yAx, @ R'yAx, ® R¥"1yAx,)[—(k - 1)].

First notice that, for each 0 < h <k <n — 1, the complex 1<, RYAx, ®
T<k—n RYAx, is a —(2n — 2)-shifted perverse sheaf because it is the external tensor
product of —(n — 1)-shifted perverse sheaves on X; and on X, (see [BBD, Proposi-
tion 4.2.8]). Let

T<h—1 RYA X, ® Tk RYAx, + t<n RYAx, ® t<k—n—1 RYAx,
be the image of
T<h—1 RYAx, @ T<k—n RYAx, ® T<h RYAx, ® T<k—p—1RYAx,
= T<k—1 RYA x,xx, .
We have a commutative diagram of —(2n — 2)-shifted perverse sheaves

< RYAx, @ t<k—nRYAx,

T<k RYAx,xx,

lv1®l+l®l¢'2+m®v2 v

T<p—1 RYAx, @ T<k—nRYAx,
= = — > T 1 RYA
+1-pRYAx, ® T<j_n_1RVAx, k-1 RYAxxz

where the horizontal maps are the natural maps of complexes.

LEMMA 4.11
Assume that N = Z/1"Z. The image of Ry y—p = t<h RYAx, ® t<p—nRYAx, in
RFYA[—k] is R"yA x, ® RE=hyA x, [—k].
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Proof
The map of perverse sheaves Rjx_p — T<x RYAx,xx, — RFYA[—k] factors
through

RMyAx, ® R¥"yAx,[—k] < REyA[—k].

This can be checked on the level of complexes. We only need to know that the natural
map

g -
Rpje—n = R*YAx, ® RE"YAx, [—k]
is a surjection. This follows once we know that the triangle

S/ g _
Ri—1j—1 + Rnj—n-1 = Rni—n — R'WAx, ® RE YAy, [—k]

is distinguished, since then it has to be a short exact sequence of —(2n — 2)-shifted
perverse sheaves, so g would be a surjection. To check that the triangle is distin-
guished, it suffices to compute the fiber of g and check that it is quasi-isomorphic
to

M=T<p 1 RYAx, @ t<p-n RYAx, + t<pRYAx, @ T<—p-1RYAx,.

Let X" be arepresentative for RyA x,, and let £ be a representative for Ry A x, .
The degree j < k term of M and of the fiber of g are both equal to

h—1
( @ X & xj—i) @ JIk+h ®ker(;€k—h N :Ck—h-i-l)
i=j—k+I+1

@ker(K" > XK g £/

and the differentials are identical. The last nonzero term M¥ in M appears in degree
k and is equal to

ker(K" — X" @ im(2*F "1 - gk
+im(K" 1 > KM @ ker(£F " — ki,

The main problem is checking that the following map of complexes is a quasi-isomor-
phism

MK 0

3 |

ker(K" — K1) @ ker(EF — gh—htly — = HI(K)Q HF (%)
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where the left vertical arrow A is the natural inclusion. It is equivalent to prove that
the object in the lower right corner is the cokernel of A. This follows from the Kiin-
neth spectral sequence, when computing the cohomology of the product of the two
complexes

K= [im(]{h_l — J{h) — ker(JCh — JCh“)]
and
£ = [im(LF71 — L5 - ker(£FTh — £F).

Indeed, since H'(K) = R"yAx, and H'(£) = R¥""yA x, are both flat over A, the
Kiinneth spectral sequence degenerates. We get H2(K ® £) = HY(K) ® H'(L),
and this is exactly the statement that H” (X) @ H* (&) is the cokernel of A. [

Note 4.12
The result of this lemma extends to A = Q; and to A = Q.

Putting together the above discussion and keeping in mind that the image of v ®
vy in REYA x, xx,[—(k — 1)] is trivial, we conclude the following result.

PROPOSITION 4.13
The action of N on Ry A x,xx, induces a map

b1 REYA x xx, [k — R¥ WA x xx, [—(k — 1)]

which coincides with vy ® 1 + 1 ® v, when restricted to R"WA x, ® Ry A x,[—k]
foreach O <h <k.

We now use the decomposition of R¥y¥A x,xx,[—k] in terms of RFyAy, ®
RK=hy A x, k] for 0 < h < k and the resolution of R*yA x, ® RF""yA x,[—k] in
terms of ap, p,«A(=k)[—(h1 + h3)] to get a resolution of RKWA x, < x,[—k] of the
form

®ck ®ck
B an AT > D ap, py AR T2
hi+hy=k hi+hy=k+j

3)

where the first term is put in degree k and where the coefficients c,’fl n, count how
many copies of @y, j,+A(—k) show up in the direct sum.
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LEMMA 4.14
Let c}]f] n, be the coefficient of an, hyx AN(—=k)[—=(h1 + h2)] in the resolution of
REWA x| x,[—k]. Then

iy = min(min(hy, ho) + Ly o =k + Lk + 1),

Proof

The coefficient c}fl o records the number of values of 0 < 4 < k for which the term
R" YAx, ® Rk—h YA x, appears in the resolution of aj, p,+«A(—k)[—(h1 + h2)]. This
count is clearly bounded by k + 1 because there are k + 1 possible values of . When
hi +hy—k+ 1<k +1, the count is

min(min(hl,hz) +1,hy+hy—k + 1)

because ap, p,«A(—k)[—(h1 + h2)] shows up in the resolution of R~/ yAy, ®
Rk=hi+iyAy, forall 0 < j <hy+ hy—k + 1 which satisfy 0 < h; — j < k. When
both /iy and h, are less than k, all the j €0,...,h; + hy —k + 1 satisfy the require-
ment. When /1, > k, there are exactly /1; + 1 values of j which satisfy the requirement
and we can treat the case &; > k analogously to get i, + 1 values of j. This covers
the case hy + hy < 2k. In the case h; + hy > 2k, we need to count all 0 < j <k
which satisfy 0 < h; — j <k. The result is

min(min(hl,hz) + 1,k + 1).

This completes the determination of c;l‘l By O

Note that, for all &1 + hy < 2k — 2, we have c;l‘l hy = c]}fl_}lz. For hi + hy, =
2k — 1, we always have min(hy, /) + 1 <k <k + 1 so that
C}]:I,hz = c,]f;,llz =min(hy, hy) + 1.
However, c,’;,k =k+1>k= cl,gjcl, and for iy + h, > 2k, we have C}I:I,hz > c,’f;}lz.
We now have an explicit description of

0 REYA x, xx,[—k] = RF VWA x, xx, [—k]

as a map of complexes with terms of the form By 4 p,—k+; ahl’hz*A(—k)eBcﬁbhz,
which are put in degree k + j. Writing v = v; ® 1 + 1 ® v, as a map of complexes,
we are able to compute both the kernel and cokernel of v.

We now restrict to A = Q; or Q;. In this case, N = log T is defined, acts trivially
on the cohomology sheaves R¥yA X;xX5» and so induces a map

N : REyA x, xx, [—k] = RF 1A x, xx, [—K).
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Since N =T —1 (mod (T —1)?) and (T —1)? sends 1<t RYA — <o RYA (here
7<k denote the truncation functors for ;- or Q;-sheaves), the two maps N and ¥
coincide, so we will work with N from now on, to which the results of Proposi-
tion 4.13 apply.

First we need a preliminary result which allows us to compute the kernels and
cokernels of certain morphisms of —(2n — 2)-shifted perverse sheaves. Note that,
while Df (Y, A) is not known to be a derived category of some category of A-sheaves,
being constructed as a “projective limit” of derived categories, it is nevertheless
endowed with a standard ¢-structure whose core is the category of A-sheaves. There-
fore, by [BBD, Proposition 3.1.10], we have a realization functor from the bounded
derived category of A-sheaves to Dé’ (Y, A). Using this functor, we think of a bounded
complex of A-sheaves as an element in ch(Y, A) and of a morphism of complexes
as a morphism in ch(Y, A).

LEMMA 4.15

Assume that € — D is a morphism in Dﬁ’(Y, A) which satisfies the following: €
and D are (the image of) complexes (€¥)xey and (D¥)iey of 1-adic sheaves, and
f is a map of complexes defined degree by degree as f k.ek Dk Assume that
each f¥ is injective as a map of sheaves. Let D = coker(f*), and let D be (the
image in Df (Y, A) of) the complex with terms DX and differential d induced by the
differential d of D. Assume that the short exact sequence of sheaves

k _
0kl ok Hk o

is splittable. Assume also that €*[—k] and D*[—k] are —(2n — 2)-shifted perverse
sheaves.

Then D*[—k] is a —(2n — 2)-shifted perverse sheaf and thus so is O (since it
is an extension of D¥[—k] for finitely many k). Moreover; the following is an exact
sequence of —(2n — 2)-shifted perverse sheaves:

0>C€—>D—>D—0.

Proof

DF[—k] is a —(2n — 2)-shifted perverse sheaf because it is a direct factor of D¥[—k],
and so D is also a —(2n — 2)-shifted perverse sheaf. If A was torsion, then we could
identify the category Df(Y, A) with a full subcategory of the derived category of
the category of sheaves of A-modules (whose objects have bounded constructible
cohomology) and the corollary would follow from a standard diagram chase in the
derived category of an abelian category. However, the cases we are interested in are
A = Q; or Q. It is possible that by checking the definition of the category Dé’ (Y,A)
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carefully, we could ensure that a version of the diagram chase applies to our case.
However, an alternative approach uses Beilinson’s result which identifies Df (Y,A)
with the derived category of perverse sheaves on Y (see [B, Theorem 1.3]).

We see that the map f : € — D is injective, since we can think of it as a map of
filtered objects which is injective on the kth graded pieces for each k. Indeed, € is a
successive extension of the —(2n — 2)-shifted perverse sheaves €*[—k] and D is a
successive extension of D¥[—k], and the fact that f is a map of complexes implies
that f respects these extensions. Let k be the largest integer for which either of €%
and D is nonzero. We have the commutative diagram of exact sequences

0 — €F[-k] €’ €k +1] —= 0
lf"[—k] J/ lf"l[—kH]
0 — DF[—k] D’ Dk +1] —=0

where the arrows on the left and on the right are injective. The fact that the middle map
is also injective follows from a standard diagram chase. (Note that we are working
in the category of —(2n — 2)-shifted perverse sheaves, which is abelian, so we can
perform diagram chases by [Re].) The injectivity of f follows by induction.

By a repeated application of the snake lemma in the abelian category of —(2n —
2)-shifted perverse sheaves, we see that the cokernel of f is a successive extension
of terms of the form ¥ [—k]. In order to identify this cokernel with D, it suffices to
check that the differential of £ coincides in Ext! (D¥[—k], D¥~'[—k + 1]) with the
extension class which defines the cokernel. To check this, it is enough to see that the
following square is commutative:

D=k 4+ 1] — D¥[—k + 1]
J/fk“[—k+1] J/f"[—k+1]
DF -k +1] — D¥[—k +1]

where the top (resp., bottom) horizontal map is the boundary map obtained from
considering the distinguished triangle (D¥[—k], D', D%~ [—k + 1]) (resp., (DF[—k],
D', D* [~k +1])) in DE(Y, A). The top boundary map is the differential of £, and
if the square is commutative, then the bottom map must be the differential of ©. The
commutativity can be checked by hand, by making the boundary maps explicit using
the construction of the cone. (There is a natural map
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DF[—k] D’
0 DF 1~k +1]

which is a quasi-isomorphism in Df (Y, A). The boundary map of the distinguished
triangle is obtained by composing the inverse of this quasi-isomorphism with the
natural map

D[kl — D’

L

DF[-k] ——= 0

The same construction works for O and it is straightforward to check the commuta-
tivity now.) O

LEMMA 4.16
Let k > 1. Consider the map

N : Rk‘//AXlxXz [—k] — Rk_llﬂ/\xlxxz[—(k —1)].
Define the complex
. A8 A8
Pre = [ak s A(—k) = ag 415 A(—k) ® agy1 15 A(—k) = -+ = ap—1 p—15sA(=Kk)],

where ay i« A(—k) is put in degree 2k. The factor ay, p,+«A(—k) appears in the res-
olution of P in degree hy + hy whenever hy,hy € {k,k + 1,...,n — 1}. Also define
the complex
k—1
Ry = [@a,‘,k—l—j*/\(—(k —1)) > = ag—p -1+ A(—(k — 1))],
j=0
where the first term is put in degree k — 1 and the term ap, p,+« A(—(k — 1)) appears
in degree hy + hy whenever hy,h, € {0,1,...,k —1}.
Then Py ~ ker(N) and Ry ~ coker(N).

Proof
Note that both # and Ry are —(2n — 2)-shifted perverse sheaves by the same argu-
ment that we have used before. The proof goes as follows. We first define a map
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Pr — RFYA x, xx,[—k] and check that N kills the image of $;. We use Lemma 4.15
to check that the map P4 — R¥YAx, xx,[—k] is an injection and to compute its
cokernel @y. Then we check using Lemma 4.15 again that the induced map @ —
Ry A[—(k — 1)] is an injection, and we identify its cokernel with Ry.

For the first step, note that it suffices to define the maps

Frh2 s ay o A(—k) = apy e A(—k)BETD

for all hy,hy; > k and we do so by x — (x,—x,...,(—l)kx). These maps are
clearly compatible with the differentials AS, so they induce a map f : P —
RKWA x,xx,[—k] (this is a map of complexes between & and the standard repre-
sentative of R¥yA X, xX»[—k]). Moreover, we can check that the restriction

N :ahl,hz*A(_k)®(k+l) N ahl,hz*A(—k)eBk

sends (x,—x,...,(—Dkx)— (0,...,0).

Indeed, the jth factor aj, j,+A(—k) appears in the resolution of R/ YAy, ®
R¥=JyAx,[—k]. The latter object is sent by Ny ® 1 to R/7lyAx, ®
RFIyAx,[~(k — 1)] for 1 < j <k, and by 1 ® N to RIYyAx, ®
RE1=7 Ay, [—(k — 1)] for 0 < j <k — 1. We also know that N; ® 1 Kkills
R°YAx, ® REyAx,[—k], and similarly 1 ® N, kills R¥yAx, ® ROYAx,[—k].
By Lemma 4.6, we find that, for 1 < j <k —1,

(0,...,0,x,0,...,0) > (0,....x ,(T), x ;(T),0,...,0),

where the term x is put in position j and the terms x ® #;(7T) are put in positions
j —1and j. We also have

(x.0,....0) ~ (x ® 4(T).0....,0)
and
0,....0,x)~ (0,...,0,x ® t;(T)).
Thus, we find that N sends
(x,—x,.... (—1)kx)
B (x@u(T)—x @ 1(T),....(~D¥ x @ 1;(T) + (=D*x ® 11(T)),

and the term on the right is (0, ...,0). Since we have exhibited N o f as a chain map
and we have checked that it vanishes degree by degree, we conclude that N o f = 0.
Thus, f(P%) CkerN.
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Note that, for all i1, hy > k, we can identify the quotient of ay, j,«A(—k)®*+D
by fhih2 (an, hyxA(=k)) with ap, ,hz*A(—k)eBk. The resulting exact sequence

hy.hyp
0= ap e A—K) 5 ap e A=) ®EHD Sy A (k)@ 50

is splittable because the third term is free over A. By Lemma 4.15, the map f : P, —
R*yA X, xX,|[—k] is injective and we can identify degree by degree the complex @
representing the cokernel of f. In degrees less than 2k — 1, the terms of @ are the
same as those of R¥yA X, xX,|—k], and in degrees at least 2k — 1 they are the terms
of RKVWA x xx,[—k +1].

To prove that the induced map @ — Rk_ll/fAXIsz [—(k — 1)] is injective, it
suffices to check degree by degree, and the proof is analogous to the one for f :
Pr — RFYA x,xx,[—k]. The cokernel is identified with Ry degree by degree, via
the exact sequence

_ A_]hl,hz ok
0= ap, s A=) BED T 57 ) W A(—(k — 1)

— apy s A (—(k —1)) >0

forO<hy,hy <k-—1. ]

Note 4.16(A)
We have the following.

1. The complex $% has as its factors exactly the terms ay, p,« A(—k)[—(h1 + h2)]
for which cgl T c,’j:}lz = 1, while Ry has as its factors the terms ap, p,+A(—(k —
1))[—(h1 + h3)] for which cgl_}lz — c]}fl =L

2. Another way to express the kernel of N is as the image of R?X /A x, xx, [—2k]
in R¥yA x, xx,[—k] under the map

NF®@1-NFT® Ny + -+ (-DF1 ® NE.

This follows from Lemmas 4.6 and 4.16.

COROLLARY 4.17

The filtration of RYA x,xx, by <k RYA x,xx, induces a filtration on ker N. The first
graded piece of this filtration Grlker N is ROWA XxX,- The graded piece
Grftlker N of this filtration is Py.

Proof

We have already seen that N maps all of ROyA X;xX, t0 0, since T acts trivially on
the cohomology of R¥Ax, xx,. This identifies the first graded piece to be
RYAx,xx,.
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In order to identify the (k + 1)st graded piece, we once more pretend that our
shifted perverse sheaves have elements. We can do this since the (2 — 2n)-shifted
perverse sheaves form an abelian category and we only need to do this in order to
simplify the exposition. First notice that Grfker N P, since anything in the kernel
of N reduces to something in the kernel of N .

So it suffices to show that any x € # lifts to some X € ker N. Pick any X €
Tk RYAx,xx, lifting x. Since N sends x to 0, we conclude that N maps X to
T<k_2RYAx,xx,. The image of N¥ in R¥"2yAx, xx,[—k + 2] depends on our
choice of the lift X. However, the image of NX in R;_; only depends on x. If
we can show that that image is 0, we conclude that we can pick a lift X such that
NX € t<x—3RY¥A. We can continue applying the same argument while modifying
our choice of lift X such that NX € 1<x_; RYA x, xx, for larger and larger j. In the
end, we see that Nx = 0.

It remains to check that the map #;, — Ri—; sending x € &% to the image of N x
in Rx—q is 0. We can see this by checking that any map P, — Ry—q is 0. Indeed,
we have the following decompositions of $#; and Rj_; as (2 — 2n)-shifted perverse
sheaves:

$ 8
Pr = [k N—K) 5> a oy 10 A=) @ ap s 1 ax A—K) = -+ 5> a1 po1w A(—K)]

and

k—1

Ri—1 = [@aj,k—z—j*/\(—(k —2)) > - > ag_p k—2x A (—(k — 2))]-
j=0

Each of the factors ay, p,+A is a direct sum of factors of the form ay, j,+«A, where
card J; = h; fori = 1,2 and where ay, s, : Yj,,7, <= Y is a closed immersion. Each
factor ay,, s« is a simple (2 — 2n)-shifted perverse sheaf, so we have decompo-
sitions into simple factors for both #, and Ry_;. It is straightforward to see that
Py and Ri—1 have no simple factors in common. Thus, any map #r — Rr_; must
vanish. The same holds true for any map & — Ry_; forany 2 < j <k. O

The filtration with graded pieces $#, on ker N induces a filtration on ker N/
im N Nker N whose graded pieces are & /im N. Indeed, it suffices to check that
the image of im N in # coincides with im N. The simplest way to see this is again
by using a diagram chase. First, it is obvious that, for

N : R¥yA x, xx,[—k] = R YA x, xx, [k + 1],

we have im N - Grfim N. Now let x € Gr¥im N. This means that there exists a
lift ¥ € T<f_1 RYAx,xx, of x and an element j € Tofy ; RYAx,xx, with0 < j <
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2n — k such that ¥ = N 7. In order to conclude that x € im N, it suffices to show
that we can take j = 0. In the case j > 1, let y € Rk*+J WA x,xx, be the image of .
We have Ny = 0, and in this case we have seen in the proof of Corollary 4.17 that
we can find 1V e T<k+j—1RVA x,xx, such that N(y — 71 = 0. In other words,
# = N7 and we can replace j by j — 1. After finitely many steps, we can find
7Y € T, RYA x,xx, such that ¥ = N§) . Thus, x € im N.

LEMMA 4.18
The filtration of Ry A x,xx, by t<k RYA induces a filtration onker N/im N Nker N
with the (k + 1)st graded piece ay j« A(—k)[—2k] for0 <k <n —1.

Proof
First, we need to compute the quotient R%yA X;xX,/im N, which is the same as
R°UAx,xx,/@1 = R and R1 =~ ag o« A by Lemma 4.16.

Now we must compute for each k > 0 the quotient of (2 — 2n)-shifted perverse
sheaves $;/im N. This is the same as P /@1, which is also the image of P in
Ry41 via

Pr > RFYA[—k] = Ricq1.

Recall that we have decompositions for both # and Ry in terms of simple objects
in the category of (2 — 2n)-shifted perverse sheaves,

) 8
Pre = [ar s AN—k) > g g1 A=) ® dps 1 sn A—k) =+ 2 ay_ 1 p_12 A(—K)]

and

k+1
Rictr = [P ki M) > -+ > ag e (K) |

J=0

The only simple factors that show up in both decompositions are those that show up
in ag k«A(—k)[—2k], so these are the only factors that may have nonzero image in
Rit1. Thus, P /im N is a quotient of ag g+ A(—k)[—2k], and it remains to see that
it is the whole thing. As seen in Lemma 4.16, the map #y — R+ can be described
as a composition of chain maps. The composition in degree 2k is the map

g s A (—k) = ag g A(—K) T o ap o A(—F),

where the inclusion sends x — (x,—x,...,(—1)*T1x) and the surjection is a quo-
tient by (x,x,0,...,0), (0,x,x,0,...,0),...,(0,...,0,x,x) for x € ag g+ A(=k). It
is elementary to check that the composition of these two maps is an isomorphism, so
we are done. O
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Analogously, we can compute the kernel and cokernel of
N'i : RkwAXl x X2 [_k] - Rk_j WAXI [_k + ]]
for 2 < j <k <2n — 2 and use this to recover the graded pieces of a filtration on
ker N/ /ker N/~! and on (ker N/ /ker N/=1)/(im N Nker N/).
LEMMA 4.19
Let2 < j <2n —2. The filtration of RYA x,xx, by t<k RYA induces a filtration on
(ker N7 /ker N/~1)/(im N Nker N7).
The first graded piece of this filtration is isomorphic to
j—1
@Paij1-ixA=j + D[-j +11.
i=0
For k > 1, the (k + 1)st graded piece is isomorphic to
(ker N7/ /ker N/71)/(im N Nker N/),
where
N7 RFH=YyA[—(k + j — 1)] » R¥TyA[—k + 1].
More explicitly, the (k + 1)st graded piece is isomorphic to
J
EBak+i—1,k+j—i*A(—(k +j—1D)[-2k—j +1].
i=1

Proof
We prove the lemma by induction on j. The base case j = 1 is proven in Corol-
lary 4.17 and Lemma 4.18. Assume that it is true for j — 1.

To prove the first claim, note that the first graded piece of

(ker N/ /im N Nker N7)/(ker N'~!/im N Nker N/ 1)
has to be a quotient of
RITWAx xxs [—) +11/Q) = R;.

This is true because 7<;—1 RYAx,xx, Cker N/ and 1< ;o RYA x,xx, Cker N/ 71,
and
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RITWA xx (= + 1= Tt RYA x50/ T<j 2 RUA X x5 -

More precisely, the first graded piece has to be a quotient of

Rj/(ker N'72/im N Nker N/~2)
by the second graded piece of

(ker N7 /ker N772)/ (im N Nker N/71).
(Here, we abusively write
ker N72/im N Nker N/ 2,

where we mean the image of this object in R;.) By the induction hypothesis, this

second graded piece is

j—1
@ai,_i—i*/\(_j + D[-Jj].

i=1
Continuing this argument, we see that in order to get the first graded piece of (ker N/ /
ker N/=1)/(im N Nker N/), we must quotient R ; successively by
j—k
P arti-1.j-ixA—j + D=k —j + 1],

i=1

with k going from j — 1 down to 1. (This corresponds to quotienting out succes-
sively by the jth graded piece of ker N/(im N Nker N), the (j — 1)st graded piece of
(ker N2/ker N)/(im N N ker N?), down to the second graded piece of (ker N/~!/
ker N7=2)/(im N Nker N/~1).) We know that

j—1
Rj= [@ai,j—l—i*/\(—(j —D) == a1 A (= — 1))],
i=0
with the general term in degree k 4+ j — 1 equal to

j—k
@ak—i-i—l,j—i*/\(_(j - 1)).

i=1

After quotienting out successively, we are left with only the degree j — 1 term, which
is

Jj—1
PDaij+1-isA (=G = D) =G = D],
i=0

as desired.
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In order to identify the (k + 1)st graded piece of
(ker N7 /ker N/~ /(im N Nker N7)

for k > 1, we first identify the kernel of N/ : R**/=1yAy «x, — RF 1WA x, xx,
as a map of perverse sheaves, as in Lemma 4.16. Then we can identify it with the (k +
1)st graded piece of ker N/ as in Lemma 4.18 and quotient by @ ;- Finally, we can
use induction as above to compute the (k + 1)st graded piece of (ker N/ /ker N/~1)/
(imN Nker N7/). O

COROLLARY 4.20
The preceding filtration is a direct sum.

Proof

This follows from the decomposition theorem for pure perverse sheaves (see [BBD,
Théoreme 5.3.8]), once we notice that the (k + 1)st graded piece of the filtration is
a pure —(2n — 2)-shifted perverse sheaf of weight (=2k — j + 1) +2(k +j — 1) =
j — 1, which is independent of k. O

Let
Gr/Gr, RYA = (ker N” Nim N9)/(ket N’ "' Nim N9) + (ker N” Nim N9t
The monodromy filtration M, Ry¥A has graded pieces Grf” RyA isomorphic to
GrM RyA ~ @ Gr¥Grp, RYA
p—q=r
by [Sa, Lemma 2.1], so to understand the graded pieces of the monodromy filtration,

it suffices to understand the Gr? Gr, R{/A. Lemma 4.19 exhibits a decomposition of
Gr’Gr, RY/A as a direct sum with the (k + 1)st term isomorphic to

P

@ak—i-i—l,k-f-p—i*[\(_(k +p—1))[-2k-p+1].

i=1
The action of N4 induces an isomorphism of Gr’Gr p+q RYA with Gr?Gr, RYA(q),
so there is a direct sum decomposition of the latter with the (k + 1)st term isomorphic
to

ptq
D akvi-tktprg-isA(=(k + p=1)[-2k — p—g +1].

i=1

We can use the spectral sequence associated to a filtration (as in [S, Lemme 5.2.18])
to compute the terms in the monodromy spectral sequence
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EP" = H™(Yz. G RyA) = €D H™(Y5.GriGr,RYA)
p—q=-r
= H" Yz, RYA) = H" (X, A).

COROLLARY 4.21
There is a direct sum decomposition

H™ (Y, Gr?Gr, RyA)
p+q

~ @ @ H™ (Yg, akti-1 -+ ptrq-ixA(=(k + p = 1))[-2k — p —q + 1])
k>0 i=1

compatible with the action of Gg. This can be rewritten as

H™(Ys, Gr¢Gr, RYA)
p+q

~ @ @ Hm—2k—p—q+1(Yﬁfk—i-i—l,k—i-p—i-q—i)’ A=k + p— 1)))
k>0i=1

4.3. More general schemes
In this section, we explain how the results of the previous section concerning products
of strictly semistable schemes apply to more general schemes, in particular to the
Shimura varieties X7 /O . In this section, we will use A = Q; or Q;.

Let X'/Og be a scheme such that the completions of the strict henselizations
(9;},’ , at closed geometric points s are isomorphic to

W[[Xl,...,Xn,Yl,...,Yn]]/(Xl,...,Xr—ﬂ,Yl,...,Ys—ﬂ)

for some indices iy, ...,ir, j1,...,Js €{1,...,n} and some 1 < r,s <n. Also assume
that the special fiber Y’ is a union of closed subschemes Yl’,j with j € {1,...,n}
which are cut out by one local equation such that if s is a closed geometric point
of Y] ;, then j € {i1,....i,} and Y] ; is cut out in O%, ; by the equation X; = 0.
Similarly, assume that Y’ is a union of closed subschemes Y2’ j with j € {1,...,n}
which are cut out by one local equation such that if s is a closed geometric point of
Y, ;. then j €{ji,....jr-} and Y, ; is cut outin O% ; by the equation Y; = 0.

Let X/ X’ be smooth of dimension m, let Y be the special fiber of X, and let
Y= Yi’j xx’ X fori =1,2and j =1,...,n. Asin Lemma 2.9, X’ is locally étale

over

r S
Xr.s =Spec@K[Xl,...,Xn,Yl,...,Yn]/<l_[X,- ~= v —n),
j—1

i=1
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so X is locally étale over
r S
Xrsm = Spec OK[X1.o. X V1o Yoo Zoo Zal /([ Xi = 2 [T ¥ = 7).
i=1 j-1

which is a product of strictly semistable schemes. The results of Section 3 apply to
X', and it is easy to check that they also apply to X. In particular, we know that the
inertia Ix acts trivially on the sheaves of nearby cycles R¥yA of X, and we have
a description of the R¥\/A in terms of the log structure we put on X/ Spec Ok. Let
a; :Y; ; = Y denote the closed immersion for i = 1,2 and j € {1,...,n}. Then by
Corollary 3.6, we have an isomorphism

n n
REYA (k) ~ /\k((@a}*A)/A ® (@aﬁ*A)/A).
J=1 j=1
Fori =1,2and J; C{l1,...,n}, let
Yr.0,= ( N Ylajl) n ( N Yl,jz)’
J1€J1 Ja€J>
andletay, s, : Yy, 7, = Y be the closed immersion. Set

hih)
y (h1-h2) — I_I Y, 0ne
#J1=h1+1,#Jr=hr+1

and let aj,, , : Y #172) Y be the projection. The scheme Y *#*1:52) is smooth of
dimension dim Y — h; — h; (we can see this from the strict local rings).
We can write

k n n
REyA ~ @Ak ((@a}*A)/A) ® Akh ((@ aﬁ*A)/A)(—k)
h=0 j=1 j=1

and then define the map of sheaves on Y

k

O : REYA > D ap j—ne A(—k)
h=0

as a sum of maps for & going from O to k. First, define, fori = 1,2,

hj hi+1 n

S, :/\((é}la;*A)/A) - A (jg:;la;*/\)

by sending
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i i i i i
aj AN /\ajhl_*A—> @ aj AN /\ajh,-*A/\aj*A

JF# I sesdn
via the cup product with the canonical map
n
Ay D
ji=1
More explicitly, on an open U of Y, the map sends
ae AU xy Y}l X oo Xy )’;ﬁ),

to

@lyio-aly)e P AUy Yix Y] oxy Y] ).
JFJ1seesdn;

and it is easy to check that this is well defined. Then notice that

n
AhH1 (@a}*/\) ® pkF1=h (@af*A) >~ ap k—hx/\.
j=1
Indeed, for Jy,J, C{1,...,n} with#J; =h + 1,#J, =k + 1 — h, we have

1 2 ~
( /\ ajl*A) ®< /\ a.iz*A) =ay, e
J1€J1 Jja€J>
because Yy, 1, = (M, ez, Y1.11) X¥ (M ,es, Y2./») and we can sum the above iden-

tity over all Jq, J> of the prescribed cardinality.

LEMMA 4.22
The following sequence is exact:

k k+1
REYA % @ s e AR Ohir — P an s 1w M) Ohirion
h=0 h=0
2n—2
— @ Clh,zn—z—h*/\(—k)eac/’;*z"‘z—” — 0,
h=0

where the first map is the one defined above and the coefficients c}’fl n, are defined
in Lemma 4.14. The remaining maps in the sequence are global maps of sheaves
corresponding to N8 £ Ay, where §; € @?’:1 a;*A is equal to (1,...,1) fori =
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1,2. These maps are defined on each of the c}]f] Iy factors in the unique way which
makes them compatible with the maps in the resolution (3).
We can think of 0y as a quasi-isomorphism of R*yA[—k] with the complex

k 2n-2
K K
@ah,k—h*/\(_k)@ch’k_h —> e @ ah,zn_z_h*[\(—k)®ch,2n—2—h7
h=0 h=0

where the leftmost term is put in degree k.

Proof

It suffices to check exactness locally, and we know that X is locally étale over prod-
ucts X1 X@, X» of strictly semistable schemes. Lemma 4.9 proves the above state-
ment in the case of X{ X@, X2, and the corresponding sheaves on Y are obtained by
restriction (étale pullback) from the special fiber Y1 xg Y2 of X1 X@, X>. O

COROLLARY 4.23

The complex RYA is a —dimY -shifted perverse sheaf, and the canonical filtration
<k RYA with graded pieces R¥YA[—k] is a filtration by —dim Y -shifted perverse
sheaves. The monodromy operator N sends t<x RYA to t<j—1 RYA, and this induces
a map

N : REyA[—k] — RF WAk +1].

The next step is to understand the action of monodromy N and to obtain an
explicit description of N in terms of the resolution of R¥yA given by Lemma 4.22.
This can be done étale locally, since on the nearby cycles for X1 X@, X> we know that
N acts as N; ® 1 + 1 ® N, from Proposition 4.13, and we have a good description
of N 1 and Nz from Lemma 4.6. However, we present here a different method for
computing N, which works in greater generality.

PROPOSITION 4.24
The following diagram is commutative:

RFHFLYA[—k — 1] = [0 REFIYA]

E | o

REYA[—k] —— [i*RFF1j,A(1) —— RFHIyA(1)]

where in the right column the sheaves R¥TY WA are put in degree k + 1.
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The proof of this proposition is identical to the proof of [Sa, Lemma 2.5(4)],
which is meant for the strictly semistable case but does not use semistability. The
fact that the above formula could hold was suggested to us by reading Ogus’s paper
(see [O]), which proves an analogous formula for log smooth schemes in the complex
analytic world. The same result should hold for any log smooth scheme X /O g with
vertical log structure and where the action of I on RKyA is trivial for all k.

For 0 <k <2n — 2, define the complex

k
Ck
Lr = [@(ah,k—h*/\(—k))ea hk—h _y ...

h=0

2n—2

k
- @ (ah,Zn—Z—h*A(—k))®ch,2n_2_h ] i

h=0

where the sheaves ap, x—p+«A(—k) are put in degree k. We will define a map of com-
plexes f : £x4+1 — Lk degree by degree, as a sum over iy + hy =k’ of maps

@ck ®c)
fhl’h2 ®1(T) :ahl,hz*A Chyoho —>ah1,h2*A(l) Chihz

Note that each coefficient c],f o records the number of values of 0 < A’ < k for
which the term ap,, j,«A(—k) appears in the resolution of

h/

/\((jé:}la}*A)/A) ® k/‘\h’((;ga?*/\)/lx)(—k).

The set of such 4’ has cardinality c}’f Lo and is always a subset of consecutive integers
in {1,...,k}. Denote the set of 4’ by C/fl o Thus, we can order the terms ap, p,« A

k
by A’ and get a basis for (ap, ,hz*A)eBchl "2 over ap, p,«/\. It is easy to explain what
fh1h2 does to each element of C l]z€1+h12: it sends

W e c,f:,}z — {0 =1,k N c,fl By

When both A’/ — 1,4’ € C}]l‘1 T the element of the basis of (ahl’hz*A)@Cfi;lzz given
by (0,...,0,1,0,...,0), where the 1 appears in the position corresponding to /', is
sent to the element of the basis of (a;, ,hz*A)EBczl 2 given by (0,...,0,1,1,0,...,0),
where the two “1’s” are in the positions corresponding to ' — 1 and &'. If i/ — 1 ¢

Ck , buth'eCk ,  thenh’=0and(1,0....,0)+> (1,0,...,0).If ' —1eCF ,
1,712 1,712 1,12
but i’ ¢ C;’fl It then ”’ =k + 1 and (0,...,0,1) — (0,...,0, 1). This completes the

definition of f%1:52
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COROLLARY 4.25
The following diagram is commutative:

RV A[—k —1] —= £i41

| z

RFyA[—k] = L

The map f is a map of complexes which acts degree by degree as

>k —11@u(T),

hi+hy=k’
®ch ®ch
where f"72 cay o AV s g AP was defined above.

Proof

This can be checked étale locally using Proposition 4.13, which states that N = N; ®
1+41® ]\_/2 over a product X1 Xg, X» of strictly semistable schemes, and using the
fact that each of the N,- can be described as

0 Qo A (= + D) =22 o o Gl A=k + 1))
J/®II(T) l
a A(=k) _n at A(=k) A A at A(=k)
k* k+1x% n—1x*
fori =1,2.

This can also be checked globally by using Proposition 4.24 to replace the left-
most column of our diagram by

0o —— > Rk+1WA

J/ J/®t1 )

i*Rk+1j*A(1) - Rk-HWA(])

where the left column is put in degree k. In fact, it suffices to understand the map of
complexes
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0 —— RFFlyA
l J/id
P*RKFUj A —— Rk+HIyA
and check that it is compatible with the map

2n—2

k+1
0 @ (ah,znfth*A(_k _ 1))69%.211—2—11
h=0
‘/./'kt@t/(T)l \L.f'z”_2®t1(7)_l
k ok 2n—2 %
D (@ni—ne A=k = 1) 75— o —— (B (an2n—2-neA(—k — 1)) Feh 22
h=0 h=0

Let X = Cone(f ® t;(T)™ " : £x 41 — L (—1)). The triangle

REYA[—k —1] — i*RFTj A[—k — 1]

N (T)~!

—— RFHIyA[—k —1] REyA[—k]

is distinguished. It suffices to see that we can define amap g : i * R¥*1 j, A[—k] = X
which makes the first two squares of the following diagram commute:

N@u(T)~!
RFYA[—k—1] —— i*RFHj A[—k—1] ——— RfTIyYA[—k —1] —_ > RFyA[—k]

\Lﬁk[l] \Lg[l] \LHIH»\ lw

S®1(1T)~!
L (—=D[-1] —————> K[-1] ——————> L Li(—1)

If the middle square is commutative, then there must exist 8’ : RKyA[—k — 1] —
£ (—1)[—1] making the diagram a morphism of distinguished triangles. Then 6’
would make the first square commutative, so 6’ and 6;[—1] coincide once they are
pushed forward to J[—1]. However,

Hom(RFyA[—k — 1], £x41[—1]) ~ Hom(R*yA[—k], RET 'y A[—k —1]) =0,

so the Hom exact sequence associated to the bottom distinguished triangle implies
that 6’ = 0;[—1]. The diagram above is a morphism of distinguished triangles with
Ox[—1] as the leftmost morphism. This tells us that the third triangle in the diagram is
also commutative, which is what we wanted to prove.
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We can compute i * R¥*1 j, A using the log structure on X

P*REHL Ak + 1)
n n
~ Ak“((@a}*/\ @@aﬁ*/\)/a,...,1,0,...,0)—(o,...,o,l,...,l)).
j=1 j=1

Here we have again used the formula i * R¥ j, A (k) >~ AK (M%) ® A, which follows
from [Na, Proposition 2.0.2]. We can also compute K explicitly, since we have an
explicit description of each f k'.h1:h2 The first nonzero term of K appears in degree
k and it is isomorphic to

k
Zah,k—h*/\~
h=0

There is a natural map of complexes i * R¥*+1 j, A[—k] — X, which sends

ajJx A — @ aJl’,Jz*A69 @ a-’lJﬁ*A’
JI/DJ[,#JII =#J1+1 .12/312,#]2'=#12+1

when J1, J, are both nonempty. The map sends

aj, g« — @ ay, A and ag,j,« A — @ ay s\
#J5=1 #J]=1

It is easy to see that the above map is well defined on i* R¥*+1 j, A[—k] and that it
is indeed a map of complexes. It remains to see that the above map of complexes
i*Rk+1 j, A[—k] — K makes the first two squares of the diagram commute. This is
tedious but straightforward to verify. O

Remark 4.26
Another way of proving Corollary 4.25 is to notice that Proposition 4.24 shows that
the map

N : RFTYyA[—k — 1] —> RFyA[—k]

is given by the cup product with the map y ® #;(T) : M (—k — 1) — A(=k)[1],

rel

where y : Mriﬁ) — A[1] is the map corresponding to the class of the extension

0—>A—>M®P—>ME -0

of sheaves of A-modules on Y. Locally, X is étale over a product of strictly semistable
schemes X; X, X, and the extension M #P is a Baire sum of extensions
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O—>A—>M1gp—>1\;lf§el—>0

and
0—>A— M — M, —0,

which correspond to the log structures of X; and X, and which by Proposition 4.24
determine the maps Ny and N,. The Baire sum of extensions translates into N =
Ni ® 1 +1® N, locally on Y. However, it is straightforward to check locally on ¥
that the map f : £x — £Lx 41 is the same as Ny ® 1 + 1 ® N,. Thus, f and N are
maps of perverse sheaves on ¥ which agree locally on Y, which means that f and N
agree globally. This proves the corollary without appealing to Proposition 4.24. (In
fact, it suggests an alternate proof of Proposition 4.24.)

The following results, Lemma 4.27 to Corollary 4.31, are just generalizations of
Lemma 4.16 to Corollary 4.21. We merely sketch their proofs here.

LEMMA 4.27
The map N : R*yA[—k] — R¥=""WA[—k + 1] has kernel

AS A8
Pre > ag gx A(—=k) = ag k115 A(=K) © ag 1,6 A(=k) = - = ap—1n—1:A(=k)],

where the first term is put in degree 2k, and it has cokernel
k—1
Ry =~ [@aj,k—l—j*/\(—(k —1) = > ap_g 1A (—(k = 1))],
j=0

where the first term is put in degree k — 1.

Proof
The proof is identical to the proof of Lemma 4.16, since by Proposition 4.24 we have
a description of N as a degree by degree map

fiikﬁxk_l. Ul

COROLLARY 4.28
The filtration of RYA by t<x RYA induces a filtration on ker N. The first graded
piece of this filtration Gr' ker N is R°WA. The graded piece Grftlker N of this

filtration is Py.

Proof
This can be proved the same way as Corollary 4.17. The only tricky part is seeing that
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we can identify a graded piece of ker N with a graded piece of ker N . In other words,
we want to show that, for N : R€yA[—k] — RF~'yA[—k 4+ 1] and x € ker N, we can
find a lift X € 7<x RY'A of x such that X € ker N. As in the proof of Corollary 4.17,
we can define a map #, — Ri_; sending x to the image of NX in Rj_;, which
turns out to be independent of the lift X. We want to see that this map vanishes, but in
fact any map P, — Ri—; vanishes. Note that

ahy hyx A[=h1 — ha] ~ @ as,t«AN[—h1 — h2).
#S=h1+1,#T=h2+l

The scheme Ys 7 is smooth of pure dimension dimY — /& — h5 and so it is a disjoint
union of its irreducible (connected) components which are smooth of pure dimension
dimY — Ay — hy. Thus, each as, 7+« A[—h1 — h»] is the direct sum of the pushforwards
of the —dim Y -shifted perverse sheaves A[—h; — h3] on the irreducible components
of Ys 7. Thus, we have a decomposition of ap, j,«A[—h1 — h3] in terms of simple
objects in the category of — dim Y -shifted perverse sheaves. It is easy to check that $
and Ry _; for k > j > 1 have no simple factors in common, so any map £, — Ry_;
must vanish. O

Remark 4.29

The same techniques used in Section 4.2 apply in order to completely determine the
graded pieces of (ker N/ /ker N/~1)/(im N Nker N/) induced by the filtration of
Ry A by 1< RYA. The only tricky part is seeing that we can also identify the kth
graded piece of im N with

im(N : RFTYWA[—k — 1] — RFyA[—k]),

but this can be proved in the same way as the corresponding statement about the
kernels of N and N. We get a complete description of the graded pieces of (ker N/ /
ker N7=1)/im N.

LEMMA 4.30
For 1 < j <2n — 2, the filtration of RYyA by t<x RYA induces a filtration on
(ker N/ /ker N/=1)/imN. For 0 <k <n—1—(j —1)/2, the (k + 1)st graded
piece of this filtration is isomorphic to
J
B akri-risj-ish(—C + j — D)[=2k — j +1].

i=1

As in Corollary 4.20, since each graded piece of the filtration is pure of weight j — 1,
the filtration is in fact a direct sum.
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Let
Gt/Gr, RYA = (ker N” Nim N9)/(kert N*"' Nim N?) + (ker N? Nim N9T1).
The monodromy filtration M, Ry¥'A has graded pieces Grﬁ” RyA isomorphic to

GrY RyA ~ P GriGr,RyA,
p—q=r

and if we understand the cohomology of Y with coefficients in each Gr?Gr, RY/A,
then we can compute the cohomology of Yz with respect to RyA. The next result
tells us how to compute H” (Y, Gr?Gr, RYA).

COROLLARY 4.31
There is a direct sum decomposition

H™(Ys,Gr?Gr, RYA)
p+q

x~ @ @ H"™ (Y, ak+i-1 k+p+g—i=» M=k + p = D)) [-2k — p —q + 1))
k>0 i=1

compatible with the action of Gg. This can be rewritten as

H™(Yz,GriGr, RYA)
p+q

o ki Lk »
:@@Hm 2k—p q+l(Y[§( +i—1,k+p+q l),A(—(k—i-p— 1)))
k>0i=1

Remark 4.32

The isomorphism above is functorial with respect to étale morphisms which preserve
the stratification by Ys 7 with S, T C {1,...,n}. The reason for this is that étale mor-
phisms preserve both the kernel and the image filtration of N as well as the canonical
filtration T<x RYA.

5. The cohomology of closed strata

In this section, we go back to working with the Iwahori level Shimura variety Xy /O g
as well as with the Shimura variety Xy,/Ok with no level structure at p; and p,,
both corresponding to the unitary group G. Recall that K = F,,; >~ F,,, with ring of
integers Ok, uniformizer s, and residue field FF.

5.1. Igusa varieties
Let g = pFFrl Fix 0 < hy,h, <n — 1, and consider the stratum X((]}:)I’h2) of the
Shimura variety Xpy,. Choose a compatible 1-dimensional formal Of,, =
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Og-module X;, of height n — h; and also a compatible 1-dimensional formal
OF,p, >~ Og-module X, of height n — h,. Giving ¥ and X is equivalent to giving
atriple (X,Ax,ix), where

. Y is a Barsotti—Tate group over F,

. Ay : ¥ — XV is a polarization, and

. ix : O — End(X) ®z Z(p) such that (X,ix) is compatible.

Note that (S[p®])® = ¥; fori = 1,2 while (Z[p®])* =~ (K /Ok)" .

Assume that the level Uy corresponds to the vector m = (0,0, ms, ..., m;). Let
- 0
m' = ((ml- ,m?[)i=1,2,m3,---,mr),
with the same entries m 7. The I i (h1.h2) (hl h2)
3,...,m, as m. The Igusa variety IgU,, i overX xpF

is defined to be the moduli space of the set of the following 1s0morph1sms of finite
flat group schemes for i = 1,2:

0 - 0
. al 3, [p;n"] >80 [p:n’ ], which extends étale locally to any (m{)’ > mY, and

. et . (pl_ml Or o /(9F p,)hi = get[plmi 1.

In other words if S/F is a scheme, then an S-point of the Igusa variety Ig(hl’hZ)

corresponds to a tuple

(A,)t,i, n?, (a?)i=1,27 (Olft)i=1,27 (oe,-)iz3),

where
. A is an abelian scheme over S with §4,; = A[p{®
. A:A— AV is a prime-to- p polarization;

d i : Or — End(A4) ®z Z(p) such that (4,i) is compatible and A o i(f) =
i(f*)Yod.V[feOF;

. NPV ®gA®? — VPAis a (S, s)-invariant U ?-orbit of isomorphisms
of F ®g A®>?-modules, sending the standard pairing on V ®g A°>? to an
(A"o Py multlple of the )L Weil pairing;

. Zo[p ] = ;92 ; [pl ] is an Og-equivariant 1som0rph1sm of finite flat
group schemes which extends to any higher level (m’ )0 > m fori =1,2
and some integer (m’ )?;

et et
. ot Ee‘[p:n’ 1 — %%, [p;n’ ] is an @ g-equivariant isomorphism of étale group
schemes fori =1, 2;
. o S[p] = Ga, [pi"] is an OFy, -equivariant isomorphism of étale group

schemes for3 <i <r.
Two such tuples are considered equivalent if there exists a prime-to-p isogeny f :
A — A’ taking (4, 4,,77, a0, a8, ;) to (A, yA', i’ 77 0 a' o)) for y € Z,-

(hl

The Igusa varieties Ig,;, h2) form an inverse system which has an action of

G(A°?) inherited from the actlon on X l(]lz) 112) 1 et
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.
JE\(Qp) = Q) x D, X GL, (K) x DX, . X GLi, (K) x [ [ GLa(Fy)).
i=3

which is the group of quasi-self-isogenies of (X, Ax,ix) (to compute J#1:#2)(Q,)
we use the duality induced from the polarization). The automorphisms of (¥, Ax,ix)

1512) Thig can be extended to an action of a certain

UP,m
submonoid of J(hl’h2)(Qp) on the inverse system of Igg'[‘,’}”;f),

an action of the entire group J ¢*1-72)(Q p) on the directed system ch (Igg’;’}}f), Le).
(For a definition of this action, see [Sh1, Section 5] and [Ma, Section 4].)
We also define an Iwahori—Igusa variety of the first kind 7 l(]h"hZ) /X U, as the

moduli space of chains of isogenies fori = 1,2

have an action on the right on Ig

and furthermore to

g_et = gi,o — gj’l —> e —> gi,h,— == giet/giet[pi]

4

of étale Barsotti-Tate @ x-modules, each isogeny having degree #[F and with com-

posite equal to the natural map g — §7'/6[p;]. Then I l(,h‘ h2) is finite étale over

X gf} 1%2) and naturally inherits the action of G(A%). Moreover, for m® = m% = 0
and m§' = m§ = 1, we know that Igg’;fﬁz, /1 [(]hl 2) o F is finite étale and Galois with

Galois group By, (IF) x By, (F). (Here By, (IF) € GLj, (IF) is the Borel subgroup.)

LEMMA 5.1
For S, T C{1,...,n} with #§ =n — hy,#T = n — hy, there exists a finite map of
X112 cchemes

Uo

hi,h
0 Ygr — I3

which is bijective on the sets of geometric points.

Proof
The proof is a straightforward generalization of the proof of [TY, Lemma 4.1]. [

Recall that, for a given m with m; = m, = 0, we take
U=UPxUJ"P2(m) x Wy, X Wy p, X L7,

restricting ourselves to Iwahori level structure at p; and p,. Now we let the level away
from p vary. Define

HI (Y

: j 0
win),s. 7> L&) = h_n)chf Yu,sr.Le).

u>r

H (Y57 £e) = li_rQHj(YU,S,T, Le),
UI)
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H/ (II(Vi’(1 >’;2’ L) =lim H] (11" xs F. £¢).
ur

Without restriction on m’, we can define

H] (g™ £0) = lim HJ (g0} £¢).

ur,m
Uu?,m

For m% = m$ = 0, the Igusa variety Ig(h‘ h2) 4

m$ =1, then Igg,‘;,',’;i)

Bhl (F) X th (F)

is defined over F. If in addition m{' =

h2)

(over IF) is a Ga101s cover of I[(Jhl with Galois group

COROLLARY 5.2
Let m' = (0,0,1,1,m3,...,m,). For every S,T C{1,...,n — 1} with #S =n —
h1,#T =n —hy and j € Z>q, we have the following isomorphism

Hg(Yl(},S,T xp F, Lg) ~ HJ(I(hl,hz) xp I, xs)Bhl(F)thz(F)

By taking a direct limit over U? and over m = (0,0, ms, ..., m,) and considering
the definitions of the Igusa varieties, we get an isomorphism

H ( Iw(m)ST";CE)

P1p2 x X
Up (m)xlwh] 1 ODK.nfhl XIWh2"’2X(9DK,n—h2

~ HJ(Ig(hlshz) £ )

Taking a limit over general m’ satisfying m(l) = mg =0, we define

j hi,h . hi,h
HI (g™ £ = lim  H] gy )2 xa . £¢).
ur.m’
m?=mg=0

Then the above isomorphism becomes

H ( .S, T";CS) ~ HJ(Ig(hl,hz)’;CE)U;I'QxIwhl,plXIwhz,p2.

PROPOSITION 5.3 _
The action of Frobg on HZ (1g"""2) | £, coincides with the action of (1, (p~FFr1,
—1,1,—1,1,1)) € G(A®P) x JHLm2)(Q,).

Proof

Let Fr: x — x? be the absolute Frobenius on F, and let f = [F :[F,]. To compute
the action of the geometric Frobenius Froby on H/ J (Ig(hl’hZ) &L¢), we notice that
the absolute Frobenius acts on each H; (Ig(h1 h2) e R, £e) as (Fr*)/ x (Frob%)~!.
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However, the absolute Frobenius acts trivially on étale cohomology, so the action of
Froby coincides with the action induced from

(Fr*)f :Ig(hl,hz) Ig(hlshZ)

U urm'

We claim that (Fr*)/ acts the same as the element (1, p~FFr] —1,1,—1,1,1) of

,

G(A™P) x Qp /Ly x Z x GLy, (K) x Z x GLy, (K) x [ [ GLa(Fp,).
i=3
where the two copies of Z are identified with D Ix< n—h; / (951(’"7}” fori =1,2 via
the valuation of the determinant. To verify this claim, we use the explicit description
of the action of a submonoid J **1-42)(Q p) on the inverse system of Igusa varieties
Igy's"2) found in [Ma, Section 4] which generalizes that in [HT, p. 122]. First, it is
easy to see that

(Fr*)f S(A N, ﬁp,a?,aft,ai) — (A(q)’ A(q)’ l-(q)7 (ﬁp)(q)7 (ot?)(q), (aft)(q),otlgq)),

where F/ : A — A@ is the natural map and where the structures of A are inherited
from the structures of A via F/ .

On the other hand, the element j = (1, p~FF»] 1 1,—1,1,1) acts via a quasi-
isogeny of X. One can check that the inverse of the quasi-isogeny defined by j is
j71: % — 2@, which is a genuine isogeny. If we were working with points of

g(h"hz) (which are compatible systems of points of IgU1 h2) for all UP and '),

then j should act by precomposing all the isomorphisms o, o' for i = 1,2 and
o; for 3 <i <r. Since j|A[p[_°°]el =1fori =1,2 and j|A[p,9°] =1for3<ic<r,
the isomorphisms ;' and «; stay the same. However, a? o j is now only a quasi-
isogeny of Barsotti-Tate D g-modules and we need to change the abelian variety A
by an isogeny in order to get back the isomorphisms. Let j; = j |E[p;_>o]o fori =1,2.
Then (i)' : Z[p°]° — E[p%°] is a genuine isogeny induced by the action of 7; €
Dy, .- Let Ki C A[pPF:F”]] be the finite flat subgroup scheme a? (ker(j;)™"). Let
K=K, ® K, C Aul IFP]] Let X1 C A[(u)IFF»]] be the annihilator of X under
the A-Weil pairing. Let A=4 JK @KL, andlet f: A — A be the natural projection
map. Then

BY = oo ji: (Zp)° — Alp]°

is an isomorphism. The quotient abelian variety A inherits the structures of A through
the natural projection and it is easy to see that A = A9 Thus, the action of j coin-
cides with the action of (Fr*)/ . This concludes the proof. O
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COROLLARY 5.4
We have an isomorphism of admissible G(A?) x (Frobg)%-modules

' W, UNTP2 (myxi I
HE (Yoo iy 5.7+ L) = HY (g2 £g)Ur = 000 Wioa

where Froby acts as (p_f,—l, 1,-1,1,1) e J(hl’hZ)(Qp).

5.2. Counting points on Igusa varieties
We wish to apply the trace formula in order to compute the cohomology of Igusa
varieties. A key input of this is counting the F-points of Igusa varieties. Most of
this is worked out in [Sh1]. The only missing ingredient is supplied by the main
lemma in this section, which is an analogue of [HT, Lemma V.4.1] and of what those
authors call “the vanishing of the Kottwitz invariant.”” The F-points of Igusa varieties
are counted by counting p-adic types and other data (e.g., polarizations and level
structure). We can keep track of p-adic types via Honda-Tate theory; we need to
check that these p-adic types actually correspond to a point on one of our Igusa
varieties.

A simple p-adic type over F is a triple (M, n, k), where
. M is a CM field, with 3 being the set of places of M over p,
. n= ZxE‘B nxX is an element of Q[3], the Q-vector space with basis I3,
. k: F — M is a Q-algebra homomorphism
such that n, > 0 for all x € P and 1 + c«n = erspx(p) - x in Q[B], where p =
[Liegp x*(P)_ Here c is the complex conjugation on M and

cx Q[P — QIF]

is the Q-linear map satisfying x + x¢. (See [Shl, p. 24] for the general definition of
a p-adic type.) As in [Sh1], we drop « from the notation, since it is well understood
as the F-algebra structure map of M.
We can recover a simple p-adic type from the following data:
. aCM field M/ F;
. for i = 1,2 places p; of M above p; such that [Mj, : Fy.Jn = [M : F](n—h;)
and such that there is no intermediate field F C N C M with p;|x both inert
in M.
Using this data, we can define a simple p-adic type (M, n), where the coefficients
of 7 at places above u are nonzero only for p; and p,. The abelian variety A/F
corresponding to (M, n) will have an action of M via i : M < End°(4). By Honda—
Tate theory, the pair (A4, i) will also satisfy the following:
. M is the center of End?,,- (A);
. A[plc.’o]0 = A[p{°] has dimension 1 and A[p{°]° has height i; fori =1,2;
. A[p$°] is ind-étale for i > 2.
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LEMMA 5.5
Let M/F be a CM field as above. Let A/F be the corresponding abelian variety
equipped with i : M < End®(A). Then we can find

. a polarization Ao : A — AV for which the Rosati involution induces ¢ on
i(M), and

. a finitely generated M -module Wy together with a nondegenerate Hermitian
pairing

(o Wox Wy —Q

such that the following are satisfied:
. there is an isomorphism of M ® A°P-modules

W() ®Aoo,p :> VPA,

which takes (-,-)o to an (A°P)*-multiple of the Ao-Weil pairing on VP A;
and
. there is an isomorphism of F ®g R-modules

W()(X)QR:) V ®oR,

which takes (-, )¢ to an R*-multiple of our standard pairing (-,-) on V ®g R.

Proof

By [Ko2, Lemma 9.2], there is a polarization Ao : A — AV such that the Ao-Rosati
involution preserves M and acts on it as c¢. The next step is to show that, up to isogeny,
we can lift (4,7, Ao) from FtoO xac. Using [Tat, Theorem 2], we can find some lift
of A to an abelian scheme A /Okac in such a way that i lifts to an action i of M on A.
As in the proof of [HT, Lemma V.4.1], we find a polarization 2 of A which reduces
to A. However, we want to be more specific about choosing our lift A. Indeed, for
any lift, Lie A Rac K9 is an F @ K% ~ (K4¢)Hom(F.K)_module, so we have a
decomposition

Lied Qo 0 K~ @  (LicA)..
t€Hom(F,K4c)

Let Hom(F, K%)™" be the set of places T € Hom(F, K¢) which induces the place
u of E. We want to make sure that the set of places 7 € Hom(F, K%“)" for which
(Lie A), is nontrivial has exactly two elements 7] and t which differ by our distin-
guished element o € Gal(F/Q); that is,

r_
T, =T, 00.
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In order to ensure this, we need to go through Tate’s original argument for construct-
ing lifts A of A (see [Tat, Section 4]).

First, let @ = ) 'z jjomm.xacy Pz - T with the &z nonnegative integers satisfying
®; + Pz = n. For any such ®, we can construct an abelian variety Ag over Ogac
such that

Liedp ®opac K~ @  (Liedo):
t€Hom(F,K4c)

satisfies dim(Lie /Iq;), = &,. This is done as in [Tat, Lemme 4], which proves the
case n = 1. We pick any 7/ € Hom(F, K¢) inducing the places p; of F fori =1,2
such that tj = 7] o . We lift the 7] to elements 7; € Hom(M, K“¢) inducing p;. We
let &z, = 1 and ®;z = 0 for any other 7 € Hom(M, K%)* . For T ¢ Hom(M, K%)*,
we define ®; = n — ®zc. This determines ® € Q[Hom(M, K%¢)] entirely. This P is
not quite a p-adic type for M ; however, it is easy to associate a p-adic type to it: we

define n =73 |, nx - x by

ex/p [M : F] ®-
Nx = (M, Qp] Z 7

where the sum is over embeddings T € Hom(M, K““) which induce the place x of M.
By Honda—Tate theory, the reduction of the abelian scheme A &/ O gac associated to O
has p-adic type 1. Indeed, the height of the p-divisible group at x of the reduction of
Agis (n-[My Qp])/[M : F] (see [Shl, Proposition 8.4] together with an expression
of dim A in terms of M). The dimension of the p-divisible group at x of the reduction
is ) @z, where we are summing over all embeddings T which induce x.

Now we set A = Ag. It remains to check that A/Ogac has special fiber isoge-
nous to A/F and this follows from the fact that the reductions of A and A are both
associated to the same p-adic type 7. Indeed, it suffices to verify this for places x
above u. We have

dim A[x>]

= 0 = - —_—
x ¥/P height A[e>]

for all places x # p; fori = 1,2. When x = p;, we have

_ [M: F]
Nx =€x/p- (M, : Fpi]'n'[FPi :Qp]
) dim A[x*]

= G I Ry Q] height A

Therefore, the p-adic type associated to A is also 7.
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There are exactly two distinct embeddings 1,7, € Hom(F, K*“)* such that
(Lie A); # (0) only when t = 71 or 75. Moreover, these embeddings are related by
7, = 1, 0 0. Therefore, we can find an embedding « : K%¢ < Csuchthatk o7} = 1;
fori =1,2. We set

Wo = Hy ((A XSpec O gac ,k Spec (C)((C)’ Q)

From here on, the proof proceeds as in the proof of [HT, Lemma V.4.1]. U

5.3. Vanishing of cohomology

Let IT' be an automorphic representation of GL1(Ag) x GL, (A ), and assume that

' is cuspidal. Let @ : A% /E* — C be any Hecke character such that @ |4x g~ is

the composite of Artg and the natural surjective character W — Gal(E/Q) S+
Also assume that T1! and F satisfy

. nl~n1los;

. 1L, is generic and E!-cohomological, for some irreducible algebraic repre-
sentation E! of G,,(C), which is the image of (;£ under the base change from
Gc to Gn,(C;

. Ramp/q URamg(w) U Ramg(I1) C Splg,p, -

Let G = Gg, U {00} be a finite set of places of F, which contains the places of F
above places of Q which are ramified in F and the places where II is ramified. For
1#p,lett:Q > C,and let wp € Itrj (G(Qp)) be such that BC(ymp) ~ I1,. If
we write [T' =y @ I® and 1), = 7,0 ® 7y, ® 7y, ® (R)j—5 7y, ), then 7y 0
Yy and oy, Hgi for all 1 <i <r. Under the identification F,, >~ F},, assume
that Hg - Hg , (this condition will be satisfied in all our applications, since we
choose T1° to be the base change of some cuspidal automorphic representation IT of

GLn (AF 1 E ))
Define the following elements of Groth(G(A%?) x J*1:42)(Q p)) (the Groth-
endieck group of admissible representations):

[He (1112, £o)] = Y (—1)" 27T H (g™ 1), ).

1

If R € Groth(G(A®) x G'), we can write R = Y s g, (1 ° ® p) [ ][p], where
7% and p run over Irr; (G(A®)) and Irr; (G'), respectively. We define

R{z®}:=>"n@®®plp).  R[x®]:=) n(x®® p)r]p].
0 o

Also define

RI“Sy:=Y xS}, RII"):= ) R[x®)

A
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where each sum runs over 7 € Irt}"(G(A®)) such that BC () ~ 1°.
Let Redf,h1 h2) (7 ) be the morphism from Groth(G(Q})) to Groth(J (h1.h2) @Qp))
defined by

(—1)h1+h2ﬂp,0 ® Red” "M (”Pl) ® Red?—"2:h2 (”pz) ® (® ﬂpi)’

i>2
where
Red” ™" : Groth(GL, (K)) — Groth(DX. | ;s—py X GLa(K))
is obtained by composing the normalized Jacquet functor
J : Groth(GL, (K)) — Groth(GL,—;(K) x GL;(K))
with the Jacquet-Langlands map
LJ : Groth(GL,—4(K)) — Groth(DIX(,l/(n_h))

defined by Badulescu in [Bad]. Assume the following result, which will be proved in
Section 6.

THEOREM 5.6
We have the following equality in Groth(G(Ag,\{p}) X J M ’hz)((@p):

BCe\(py(He (12" £6){TT9})
=eo(-D)" T C T, ()] Red 2 ()],
where Cg is a positive integer and eqg = % 1.

Let S,T C{1,...,n— 1} with #S =n — h{,#T = n — h,. From Theorem 5.6
and Corollary 5.4, we obtain the equality

BC?(He(Yyymy,5.7- £6)[1"7))
r ybiP2
= eoColiT TP |Red ™2 (0 @ 7y, @ 11y,)] - dim| () 1)
i=3
in Groth(G (A>?) x (Froby)%). The group morphism
Red”"2) : Groth(Q x GL,(K) x GL,(K)) — Groth(Frob%)

is the composite of normalized Jacquet functors
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J;i : Groth(GL, (K)) — Groth(GL,—p, (K) X GLj, (K))
fori = 1,2 with the map
Groth(Q} x GLy—p, (K) X GLp, (K) X GLy_p, (K) X GLp, (K)) — Groth(Frob?)
which sends [¢; ® 1 ® ax ® B2 ® ¥] to

Z vol(Dg ., /K*) " -vol(D . /K™)
61,02

.trOll(‘PSpn_hl @) 'traz((pspn_hz(¢2)) -(dim B1)™71-p1
(dim o)1z - [rec(gy ' 65 (/% o Nigy,) ™).

where the sum is over characters ¢y, ¢, of K*/Og.

LEMMA 5.7
We have the following equality in Groth(G (A%?) x (Frobg)?%):

BCP(HYiyeiy.5.7- L)1)

r p1p
= eoColy  TTH7] dim[(® ”m)UPl 2]
i=3
n—#S n—#T
X (_1)2n—#S—#T—h1—h2 (I’l — #S) (n _ #T)
(mX::o hziz:o hy h

x Red(hl’hZ)(”p,O Q p, & ”Pz))'

Proof
The proof is a straightforward generalization of the proof of [TY, Lemma 4.3]. O

THEOREM 5.8
Assume that TI)  ~ T1) has an Iwahori fixed vector. Then T~ TI)  is tempered.

Proof

By [HT, Corollary VIL.2.18], ¢;my,; is tempered if and only if for all o € Wk, every
eigenvalue a of &£, k(1) )(0) (where &£, x(TT}) is the image of IT) under the
local Langlands correspondence, normalized as in [Sh3]) satisfies

lual? € g2

We first use a standard argument to show that we can always ensure that
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2 %z
lual” € g2,

and then we use a classification of irreducible, generic, (-preunitary representations
of GL, (K) together with the cohomology of Igusa varieties to show the full result.
The space H* (X, &L¢) decomposes as a G(A°°)-module as

H*(X. 2¢) = P> @ RE (7).

nvOO

where 7% runs over Irr;(G(A®°)) and where R’g_l(n"o) is a finite-dimensional
Gal(F / F)-representation. Define the Gal(F / F )-representation

RE(Y) =Y RE (™),
ﬂOO

where the sum is over the 7% € Irr; (G(A®°)) which are cohomological, unramified
outside Ggy, and such that BC(y;7>®) = I11*°. Also define the element R;(T1!) €
Groth(Gal(F/ F)) by

Ry(m") =) (-DFRF@Y.
k
We claim that we have the following identity in Groth(Wk):

Ri(") = eoCq - [(p0 0 Arig ) lwg ® ;7' £k (TT9) ® 177" L x (TI],)].

This can be deduced from [Kol] or by combining Theorem 5.6 with Mantovan’s
formula (see [Ma, Theorem 22]).

From the above identity, using the fact that TTJ ~ I17_, we see that |, (ap)|* €
q” for any eigenvalues o, B of any o € Wk, since R;( IT!) is found in the cohomology
of some proper, smooth variety Xy over K. In particular, we know that |;x|? € ¢ 32,
Moreover, if one eigenvalue « of o satisfies |¢;a|? € g7, then all other eigenvalues of
o would be forced to satisfy it as well. A result of Harris and Taylor [HT, Lemma
1.3.8] (which makes use of the classification of unitary representations of [Tad]) says
that if 7, is a generic, (;-preunitary representation of GL, (K) with central character
[¥r,, | = 1, then 7y, is isomorphic to

n-IndSn ) (771 > oo x 7 x my|det|*! x my|det| 74 x -+ x ;| det|* x 7;|det| ™)

P(K)
for some parabolic subgroup P of GL,. The ny,...,m,, 7y, ..., 7, are square-inte-
grable representations of smaller linear groups with [/, | = |,/ | =1 for all j, j'.
J
Moreover, we musthave 0 <a; <1/2for j =1,...,¢.If s # 0, then for any 0 € Wg

there is an eigenvalue o of £k , (7, )(0) with |e|? € g%, but then this must happen
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for all eigenvalues of £k ,(7p;)(0). So then ¢ = 0 and 7y, is tempered. If s =0,
then every eigenvalue « of a lift of Frobenius 0 € Wk must satisfy

|L[O[|2 c qZ:I:Za_/
for some j € 1,...,¢. Note that each j corresponds to at least one such eigenvalue «,
so we must have a; = 1/4 forall j =1,...,t. To summarize, rr, is either tempered

or it is of the form

n-IndSL (5

ik (ril det | sy det| V4 oy det | V4 x| det | 7).

We now focus on the second case in order to get a contradiction. Since iy, has
an Iwabhori fixed vector, each n} must be equal to Spsj (x;), where x; is an unram-
ified character of K*. We can compute Red ") (17, o ® 7, ® 7,,) explicitly and
compare it to the cohomology of a closed stratum Yj,,s,7 via Lemma 5.7.

We can compute Red/'1-42) (7 p,0 @7y, ®7p,) using an analogue of [HT, Lemma
1.3.9], which follows as well from [BZ, Lemma 2.12]. Indeed,

(K
Ji (n-Ind 38 (Spy, (1) - | det |4

X Spsl (Xl) . |det|—1/4 X oo X Spst (Xt) . |det|_1/4))
is equal to

GLy, _ L
Z[n-lndP;Z';{(;()((Spll(Xl ® |det[S17hF4) %o x Spx, (1 ® |det | ky 1/4))]

GLy. —
x [n-Ind 76 ((Spy, -1y G1 @ [ det|['/4) -+ Spy, i, (4 ® | det|™H/))].

where the sum is over all nonnegative integers /j,k; <s; with h; = Z;zl (L +kj).
Here P/ and P/’ are parabolic subgroups with Levi components GL;, x --- x GLg,
and GLg, _;, X--- x GL4, g, , respectively.

Let VE . =rec(y; x 7 ' 4k (Y, 0 NkyE,) ™), where

1 —

-3 lfk—l,

€ =10 ifk =2,
1 : —

After we apply the functor
Groth(GLy—p, (K) x GLj, (K) x GL,_p, (K) x GLy, (K) x Q) — Groth(Frobf),

we get
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(h1,h2) _ (h1,h2)
Red™ ™!+ (7Tp,0 ®7p, & 7rp2) - Z Viija ( 1112] @ 2[ ]1/2] S Jl]2])
J1:J2:k

where

hi.h Ly, (K) .
yir) = r[dlm(n Ind ey (8P, i Ol | 1514 @ Sy, (| FY4)

i=1

Whipj
® @ Spy, (111" ® &) Sy, (1] |-1/4)))

J#Ji J#Ji

hi!
_El (sj; +hi —m)ls;; Tz, (5512

and where the sum is over the ji, j» for which s;, > n —h; fori =1,2. Here Pl.’ for
i = 1,2 are parabolic subgroups of GL, (K).

P1P2
Let D(TT') = egCq [T11°°] dim[ ()5 mp;) " |- Then

BC?(H(Yyyeiy.5.1- L)1)

n—#S n—#T

= D(IT!) x (Z Z (_I)Zn—#S—#T—hl—hz (n ZI#S) (n ;;#T)

h1=0hy,=0

<X AR eV e 1)) )

J1572:k

We can compute the coefficient of [V}ih] in BC?(H(Yi,s,7,£¢))[11°] by sum-
ming first over ji, j» and then over /1, h, going fromn —s;,,n — 5, ton —#S and
n—#T, respectively. Note that the coefﬁcient of [V2 ,]is exactly twice that of [V/ vl

]
iz
and of [V3 ,]. The sum we get for Vi Jis

J1J2
(n —#S)!(n —#T)!
(sjl —#S)!(Sj2 —#T)!Sjl !szll_[j;éjl (Sj !)2 Hj;éjz(sj!)z

—#S —#T
% nZ nZ (_1)2n—#S—#T—h1—h2 Sj1 —#S Sja —#T
h1+Sj1—n h2+Sj2_n '

h1=nfsj1 h2=nfsj2

D(I1h)

The sum in parentheses can be decomposed as

n—#S

n—#S—h Si1 —#S
(2 e (ra)

hi=n—sj,
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n—#T
s, —#T
% ( Z (_1)n—#T—h2 ( J2 ))’
homnss, hy+s;, —n
which is equal to O unless both s;, =#S and s;, =#T. So
BCP (H(Yiyin.s.7- L))

Z (n—#S)(n —#T)!s;,1s,!

= D(IT!) x
(514
5, =#8,5j, =#T IT;7Y

< (V) ) + 20V 1,1 + V3D

Since each Yy s, 7 is proper and smooth, it follows from the Weil conjectures that
H/ (Yw@iy,s,7» L¢) is strictly pure of weight mg — 21¢ + j. This property means that,
for some (hence every) lift o of Froby, every eigenvalue of o on H’ (Y, 5,75 L&)
is a Weil g™ ~2%+/ _number (see the definitions above [TY, Lemma 1.4]). However,
the [Vﬁjz] are strictly pure of weight mg — 21 +2n —2—¢, —(#S —1)—#T - 1) =
mg — 21 +2n —#S — #T — 2¢x. So

BCP(H’ (Y. s.7+ L)) =0

unless j =2n —#S —#T £ 1 or j =2n —#S —#T . However, if the Igusa cohomol-
ogy is nonzero for some j = 2n —#S —#T £ 1, then there exist ji, j, withs;, =#S
and s, = #T . Hence, the cohomology must also be nonzero for j = 2n — #S —#T.
The coefficients of [V}‘l jz] all have the same sign, so they are either strictly positive or
strictly negative only depending on D(I1"). However, BC? (H (Yiy(m),s,7- £¢)[T1"°]
is an alternating sum, so the weight 2n —#S —#7T =+ 1 part of the cohomology should
appear with a different sign from the weight 2n — #S — #7 part. This is a contradic-
tion, so it must be the case that 7, 2~ 7y, is tempered. O

COROLLARY 5.9

Letn € Z>, be aninteger; and let L be any CM field. Let I1 be a cuspidal automorphic
representation of GL, (A1) satisfying

. IV ~Toc;

. I is cohomological for some irreducible algebraic representation E.

Then T1 is tempered at every finite place w of L.

Proof

By [TY, Lemma 1.4.3], an irreducible smooth representation IT of GL,(K) is tem-
pered if and only if £k ,(IT) is pure of some weight. By [TY, Lemma 1.4.1], purity
is preserved under a restriction to the Weil-Deligne representation of Wk for a finite
extension K’/ K of fields.
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Fix a place v of L above p, where p # [. We will find a CM field F’ such that

. F’ = EFy, where E is an imaginary quadratic field in which p splits and
Fy = (F")*=! has [F; : Q] > 2,

. F’ is soluble and Galois over L,

. H‘I),, = BCps/1(IT) is a cuspidal automorphic representation of GL, (Af/),
and

. there is a place p of F above v such that IT9 o has an Iwahori fixed vector

and a CM field F which is a quadratic extension of F’ such that

. p =pipo splitsin F,

. Ramp/q URamg(w) U Ramg(I1) C Splg, g o, and

. H(I’, = BCp/ Fr(H%,) is a cuspidal automorphic representation of GL, (AF).
To find F’ and F we proceed as follows, using the same argument at the end of
Section 7 of [Sh3]. For a CM field F, we use the sets &(F) and ¥ (F), which are
defined in the proof of [Sh3, Theorem 7.5].

First we find a CM field Fy which is soluble and Galois over L and a place pg
above v such that the last two conditions for F’,p are satisfied for Fy, po instead. To
see that the second to last condition for F’ only eliminates finitely many choices for
the CM field, we can use the same argument as Clozel in [CI2, Section 1]. Indeed, if
BCp//p(IT) is not cuspidal, then we would have IT ® € > IT for € the Artin character
of L associated to F’. But then the character € would occur in the semisimplifica-
tion of R; ® R; ® 0™~ !, where R; is the Galois representation associated to IT by
Chenevier and Harris [CH] and o is the cyclotomic character. Thus, there are only
finitely many choices for € and so for F’/L, which are excluded.

Next, we choose E € &(Fp) such that p splits in E. We take F' = EFy and p
any place of F’ above pg. Let F; be the maximal totally real subfield of F’, and let
w be the place of F; below p. Next, we pick F” € & (F’) different from F’ and such
that w splits in F”. Take F = F" F’.

We can find a character ¥ of A% /E* such that IT' = y ® 1% together with
F satisfy the assumptions in the beginning of the section. (For the specific condi-
tions that 1 must satisfy, see Lemma 7.1.) We also know that H(I)«",pl ~ 1%  hasan

F.,p>
Iwahori fixed vector, thus we are in the situation of Theorem 5.8. O

PROPOSITION 5.10
Assume again that the conditions in the beginning of this section are satisfied and that
Hgl ~ ng has a nonzero Iwahori fixed vector. Then

BCP?(H’ (Yygiy.s.7- Le)[TTVC]) =0

unless j =2n —#S —#T.
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Proof
We go through the same computation as in the proof of Theorem 5.8 except that we
use the fact that m,, >~ 7y, is tempered, so it is of the form

(K
n—Ind?,IEK() )(Spsl (x1) X = x Spy, (x1))

where the y; are unramified characters of K.
We can compute Red ! ’h2)(np,0 ® mp, ® mp,) as in the proof of Theorem 5.8,
where

n (K
J; (n-Ind 325 (Spy, (1) X -+ x Spy, (x¢) - | det )

is equal to

GLp, _ -
Z[H_IndPi’?}{()k) (Spkl (y1 ® | det|*! k1) X eee X Spk, (x: ® | det|* k:))]

GLp; (k
x [“'I“dP{/(K)) (SPsy &, (1) X+ x Spy, _, (x0))].

where the sum is over all nonnegative integers k; <s; with h; =Y. _, k;.

j=1
Let V;, j, =rec(y 1XIT21| |'"" (Y, oNg/g,)"). After we apply the functor

J1

Groth(GLn_h1 (K) x GLy, (K) x GL,—p, (K) x GLp, (K) x Q;) — Groth(Frob%),

we get
hi,h
Red(hl’hz)(np,o ® 7y @ 7py) = Z VJ('UI'Z 2)[Vj1j2]v
J1sj2:k
where
(h1.h2) 2 . GLy,. (K) e Wh; p;
yjl,jZ = 1_[ dlm(n-lndpi/(}() (Spsj‘l. (X]zl | l) ® ® Spsj‘ (X])))

i=1 J#Ji
3 13[ hi!
im1 (Sji + h; —n)!Sji!Hj;éji (Sj!)z

and where the sum is over the j;, j> for which s, > n — h; fori =1,2. Here Pi’ for
i = 1,2 are parabolic subgroups of GLj, (K).
pP1P2
Let D(IT') = ¢gCg [TT1*°?] dim[ (R} _; npi)U” |- The same computation as
in the proof of Theorem 5.8 gives us

BCP(H(Y1y).s5.7-Le)[T5])

Z (n—#S)!(n —#T)!s;, s, !

:D(Hl) l_[j(sj!)z

Viijal-
S =#S,S_/'2 =#T
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Since mp, ~ m,, is tempered, we know that [V, ;,] is strictly pure of weight 2n —
#S —#T . The Weil conjectures tell us then that BC? (H/ (Yy(zy.s5.7- £&)[I11°]) =
Ounless j =2n —#S —#T. O

6. The cohomology of Igusa varieties

The goal of this section is to explain how to prove Theorem 5.6. The proof will be
a straightforward generalization of the proof of [Sh3, Theorem 6.1] and so we will
follow closely the argument and the notation of that paper.

We summarize without proof the results in [Sh3] on transfer and on the twisted
trace formula. We emphasize the place oo, since that is the only place of Q where our
group G differs from the group G considered in [Sh3]. All of the results and notation
are as in [Sh3], except in the proof of Lemmas 6.3 and 6.4, where we also use the
notation of [Sh2].

We start by explaining the notation we use throughout this section, which is
consistent with the notation of [Sh3]. Recall that we have fixed a unitary simili-
tude group G over QQ, which satisfies certain local conditions as in Lemma 2.1. In
this section, we work with a quasi-split form of G, denoted by G,,, as well as with
groups Gy, », Which are endoscopic groups for G,. We denote an element in the set
{Gn} U{Gpn, n, | N1 +n2=n,n1 >ny >0} as G;, where 7 is a multiset of positive
integers (in our case, 7 will have length 1 or 2). In other words, 7 runs through the
elements of the set {n} U {(n1,nz) |ny +n, =n,ny >n, > 0}.

If r €{1,2} and 7 = (n;)}_, with n; € Z¢, define

,
GL; :=[ [ GLy, .
i=1

Leti; : GL; — GLy (N = Y; n;) be the natural map. Let

(Dii :iﬁ(ch]s---,q)n‘)y

J

where @, is the matrix in GL, with entries ($,);; = (—1)i+15i,n+1_j.

Let K be some local non-archimedean local field, and let H be a connected
reductive group over K. We denote by Irr(H (K)) (resp., Irr; (H(K))) the set of iso-
morphism classes of irreducible admissible representations of G(K) over C (resp.,
over Q). Let CX(H(K)) be the space of smooth compactly supported C-valued
functions on H(K). Let P be a K -rational parabolic subgroup of H with a Levi sub-
group M. For mps € Irr(M(K)) and 7w € Irr(H(K)), we can define the normalized
Jacquet module J 1{'{ (;r) and the normalized parabolic induction n—IndIg . We can
define a character §p : M(K) — RZ by

dp(m)= |det(ad(m))|Lie(P)/Lie(M) K
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We can view §p as a character valued in @f via Ll_l.
If

h ~
J )(Qp) = DIX(,l/(n_h) x GLy(K),
where K/Q is finite, then we define S;/(zJ(h))(g) = 1{12 N h(g ), where g* €
GL,_;(K) x GLj(K) is any element whose conjugacy class matches that of g. If

2
hi.h2) ~
JE) ~ GLy < [ T(DF, 1 jgu-n) X RFy, 10, GLa) X [ | RF,, /0, GLa.

i=1 i>2

we define S;/(ijl,hz) c JBh) Q) — Q;‘ to be the product of the characters

51/2 .
SP(J(h ) fori =1,2.
Let7ni = (n;)]_, forsome r € {1,2} and n; € Zx¢. Let G;; be the Q-group defined

by
G;(R) ={(A.gi) € GL1(R) x GL;(F ®q R) | gi - ®; * gf = A®;}

for any Q-algebra R. For any 7i, the group Gy is quasi-split over Q. In particular, our
unitary group G is an inner form of G,. Since G is quasi-split at all finite places,
there exists an isomorphism

G xg A® >~ G, xg A%,

we fix such an isomorphism.
Also define

G;{ = RE/Q(G;,' XQ E)

Let 6 denote the action on Gj; induced by (id, c) on G; xg E. Lete : Z — {0, 1} be the
unique map such that €(n) =n (mod 2). Let w : A% /E* — C* be any Hecke char-
acter such that @ |4x o= is the composite of Artg and the natural surjective character
Wg — Gal(E/Q) = {£1}. Using the Artin map Artg, we view @ as a character
Wg — C* as well.

Assume that Ram /g URamg(@) C Splg,p, o-

Let £%(G,,) be a set of representatives of isomorphism classes of elliptic endo-
scopic triples for G, over Q. Then &%'(G,) can be identified with the set of triples

{Gn’sn, 77n} U {Gnl,nzysnl,nzy nnl,nz |nl +n2 = O,I’ll 2”2 > 0}7

where (11, 1,) may be excluded in some cases. As we are only interested in the stable
part of the cohomology of Igusa varieties, we are not concerned with these exclu-
sions SO we 1gn0re them in this paper. Here s, =1 € G,,,sn1 =1, Un;,—1In,)) €
Gnl os T - G — G is the identity map, whereas
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My (A (21,82) = ()t, (g1 0 ))

0 g2

We can extend 7y, n, to a morphism of L-groups, which sends z € Wg to

(w(z)_N("l’"z), (w(z)e(n(;nl) I, 0 )) Xz,

@ (2)<n2) . ],
Similarly, we can also define a morphism of L-groups

Eurnz Gy ny = G,
which extends the map

N ~
é‘nlan :G”l,”2 - an

0
(o Ae (8o 802)) > (Am_ (g"’1 ))

0 g2

(See [Sh3, Section 3.2] for the precise definition.) We have the following commutative
diagram of L-morphisms

ﬁn n
L M2 L
Gn1 12 Gn

Bcnl.nzl lscn

L .
Gnl,nz LGn

ni.nyp

We proceed to define local transfers for each of the arrows in the above commutative
diagram so that these transfers are compatible.
Choose the normalization of the local transfer factor A, (, )g’j defined in [Sh3,
n

Section 3.4]. It is possible to give a concrete description of the A, (, )gf -transfer at
finite places v of @Q between functions in C(G,(Qy,)) and functions in
CX (G, 1, (Qy)) as long as v satisfies at least one of the following conditions:
. v € Unrg)qg and v ¢ Ramg(w);
. v € Splg Q>
. v € Splg /g, g and v ¢ Splg .
The transfer ¢, "2 of ¢ € CZ°(G,(Qy)) and ¢? satisfy an identity involving orbital
integrals. Since we are assuming that Ramp /g € Splg, g, . We can define the transfer
at all places v of Q.

It is also possible to define a transfer of pseudocoefficients at infinity. Consider
(G;,55.1;5) € €(G,), which is also an endoscopic triple for G. Fix real elliptic
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maximal tori 7 C G and Tg, C Gj together with an R-isomorphism j : T, 5T
Also fix a Borel subgroup B of G over C containing 7¢. Shelstad [She] defined the
transfer factor A p.

Let £ be an irreducible algebraic representation of G¢. Define y¢ : Ag,00 — C
to be the restriction of § to Ag,co (the connected component of the identity in the
R-points of the maximal Q-split torus in the center of G). Choose K, C G(R) to be
a maximal compact subgroup (admissible in the sense of [A]), and define

q(G) = %dim(G(R)/KOOAG,OO) =2n-—2.

For each 7 € I (G(R), £Y) there exists ¢, € C(G(R), x¢), a pseudocoeffi-
cient for 7r. Any discrete L-parameter ¢, such that 7;¢G. ~ @¢ corresponds to an
L-packet of the form Iy (G5 (R), §(¢G,)"). Define

1
¢Gﬁ=$(<ﬂGﬁ) = TL(g5)| J%;‘bncﬁ

and

Gj .
pn = (-1)7@D (0. (v, yor - 8) det(@x(06;.6)) - 06506 -
N9G; ~0¢

Then ¢C7 is a A ; p-transfer of ¢.
We now review the base change for the groups G;; and G;. Define the group

GF := (Rg/gGL1 xRp/gGL;) x {1.6},

where 0(4,£)07" = (1°,1°¢") and g* = @;"g¢®>" . If we denote by GY and G20
the cosets of {1} and {0} in (G’J{, then G; = Gg 11 Gg@. There is a natural Q-isomor-

phism G5 — G2 which extends to
Gj x Gal(E/Q) = G

so that ¢ € Gal(E/Q) maps to 6.

Let v be a place of Q. A representation I1, € Irr(G;(Qy)) is called 9-stable if
IT, ~ I, o 8 as representations of G;(Q,). If that is the case, then we can choose
an operator A, on the representation space of IT, which induces IT, 5 I, 06 and
which satisfies A12'1v = id. Such an operator is called normalized and it is pinned down
up to sign. We can similarly define the notion of §-stable for I1® € Irr(G; (A®))
and a corresponding intertwining operator Apge for any finite set S of places of Q.
There is a correspondence between 6-stable representations of G;; (Q,) together with
a normalized intertwining operator and representations of G;{ (Qy). We also mention
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that in order for a representation I1 € Irr(Gj; (A)) to be 6-stable it is necessary and
sufficient that IT = ¢ ® I1! satisfy

. (MY ~ ' oc, and

. [Ti— ¥i = ¥¢/¥, where Y1 = Y1 ®-+- ® V¥, is the central character of .
Now we discuss BC-matching functions. It is possible to construct for each finite
place v of Q and f, € C°(G;(Qy)) a function ¢, € CX°(G;(Qy)), which is the
BC-transfer of f,. The transfer can be described concretely in the cases v € Unrg g
and v € Splg g, . except that in the case v € Unrp/q, we have the condition that f,
must be unramified. Moreover, we also have an explicit map

BC; : 1t (G7(Qy)) — I (Gz(Qv)).

where the representations must be unramified in the case v € Unrg/g and where
there is no restriction in the case v € Splg,f, . There are normalized operators
AIO.IU : I, = I, o 6 such that if IT, = BCj(my) and if ¢, and f; are BC-matching
functions, then

tr(nv(fv)A(l)'[v) = tr 7y ().

Note that the left-hand side of the above equality computes the trace of f,0, the
function on Gj;6 obtained from f, via translation by 6.

The next step is to consider the base change at co. Let &; be an irreducible alge-
braic representation of Gj; - . Consider the natural isomorphism

G#(C) ~ G;(C) x Gz (C).

We can define a representation Z; of G; by E; :=§&; ® ;. It is possible to find an
irreducible, 6-stable, generic unitary representation Iz € Irr(G5; (R), Xg_;) together
.. and a function fg; z; € C°(G(R), xg;) such that
. ITg. is the base change onf the L-packet 145 (G5 (R), é}%’ ),

. tr(Hgﬁ(fGﬁ,Eﬁ)oA%Eﬁ)zl and

. JG;.8; and ¢g.. ¢ are BC-matching functions (where ¢¢.. ¢ is defined as a

with a normalized operator A2

L7

pseudocoefficient for the L-packet [1gis. (G (R), 5}1’ ).
The transfer for Enl -, can be defined explicitly since the groups Gj are essentially
products of general linear groups. It can be checked that, for all finite places v of Q,
the transfers are compatible. For v = 0o, we have that the compatibility relation on
the representation-theoretic side follows directly from the commutative diagram of
L-morphisms.
Now we describe the transfer factors A, (, )gﬁ. At v # 00, we can choose

AU( ’ )gﬁ = Ag( ’ )(G};
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via the fixed isomorphism G xg A =~ G, xg A®. We choose the unique A (, )CG‘;*
such that the product formula

l_[ Av(yGﬁ ’ V)gﬁ = ]
v

holds for any y € G(Q) semisimple and yg . € G;(A) a (G, G;;)-regular semisimple
element such that y and yg,, have matching stable conjugacy classes. Let e;(Ax) €
C* denote the constant for which

Doo (VG5 V)6, = €i(Aoo) A B (VG- ¥)

holds. Note that, for 7i = (n), e;(Ax) = 1.

Let ¢p°-? -qb;, € CX(G(A™P) x J(hl’h2)((@p)) be a complex-valued accept-
able function. (For a definition of the notion of acceptable function, see [Sh1, Defi-
nition 6.2].) For each G; € &%(G), we define the function ¢{§ on G;(A) (assuming
that ¢°°7 = [[,2,.00 $v)- For v # p, 0o, we take ¢Iﬁg,v € CZ2(G7(Qy)) to be the
Ay, )(G;ﬁ -transfer of ¢,. We take

¢1;fg,oo 1= e;(Aoo) - (=17 1y, 57) Zdet(a)* (96;)) - 9G; (o)
%5

where @;; runs over L-parameters such that 7;¢; ~ ¢ and where &(¢j;) is the alge-
braic representation of Gj - such that the L-packet associated to ¢;; is Tlaisc (G (R),
§(@a)").

We also take
it » € C(G7(Qp))

to be the function constructed from ¢;, in [Sh2, Section 6.3]. We summarize the con-

struction of ¢I”;, p in the case i = (n). By definition (see the formula above [Sh2,
Lemma 6.5]),

> ~Mg
n _ n
bro.p = Z Mg, “Pp >

(MGnvSGnann)

where the sum is taken over G-endoscopic triples for J#1#2) The set J (Mg, ,Gp)
(which can be identified with a set of cosets of Out(Mg,, , SG,,- G, )) consists of only
one element in our case, so we suppress the index i € (Mg, , Gp) in d;é,wG” * Each
qgf,”G" € C2°(Gn(Qp)) is constructed from a function ¢;,MG" € CX (Mg, (Qp)),
whichisa A, (, )ﬁg;’hz) -transfer of a normalized qﬁ},.

The following proposition is [Sh2, Theorem 7.2].
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PROPOSITION 6.1
If $°P - ¢, € C(G(A™P) x JBh2)(Q,,)) is acceptable, then

(@7 - @), | 0 He (g™ £5))

= (1" ker! Q. G)| Y «(G. GRS T (¢l).

Gji
where the sum runs over the set (G of elliptic endoscopic triples (G;, 55, 1)

Remark 6.2

Theorem 7.2 of [Sh2] is proved under the “unramified hypothesis” (see [Sh3]). How-
ever, the only place where this hypothesis is needed is in the proof of [Sh1, Lemma
11.1]. Lemma 5.5 provides an alternative to the proof of [Sh1, Lemma 11.1] in our
situation, so the results of [Sh1] and [Sh2] carry over. (For details, see the discussion
in the beginning of [Sh3, Section 5.2].) The sign (—1)"1*"2 does not show up in the
statement of the theorem in [Sh2], but we need to include it because our convention
for the alternating sum of the cohomology differs from the usual one by (—1)#1752,

The constants (G, G;) = 1(G)t(G;) | Out(G;, s;.75)|~' can be computed
explicitly. We mention that

2 ifii = (2.1,

| Out(Gj;, 57, M) | =
1 otherwise.

We also have by [Sh3, Corollary 4.7] the relation
Iim(f0) = ©(G3) ™' ST (9)
when ¢ and f are BC-matching functions, that is,

¢ = ¢6 ‘P&, '¢G,g,£ and f= f f@ﬁnfGn,uv

with ¢© a BC-transfer of f© and ¢Gﬁ] a BC-transfer of fg,, . Thus, assuming that
for each 7 there exists [ % guch that ¢1g and f % are BC- -matching, we can write

twr(¢7 - ¢}, | u He (19", £1)) = [ker' (Q, G)| - r(G)Ze Iim(f70),

where €; = 1/2if 7i = (n/2,n/2) or 1 otherwise.
Furthermore, the twisted trace formula by Arthur [A] is an equality between

=0 =0
1557 (f0) = I (£6).
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By combining Proposition 4.8 and [Sh3, Corollary 4.14], we can compute I$§é9 (f9)
as

Z IWMl |d (@510 1) S 2017 Y tr(n- Ind " (Tar)e(f)) 0 A

HM IndQ (H )E

where M runs over Q-Levi subgroups of G;; containing a fixed minimal Levi and
where Q is a parabolic containing M as a Levi. The rest of the notation is defined on

[Sh3, pp. 31-32]. Note that A" . is a normalized intertwining operator for
n- IndQ (TTar)€

n—Indgﬁ (TTa)e.
We are particularly interested in making the above formula explicit when 71 = (n).
In that case, Is%eﬁce () is a sum of

1
5 2 w(Te(N)A,).
H/
where I1’ runs over 6-stable subrepresentations of Rg,, gisc, and of

> 'W ||dt(<I> 1o — 1)a%6|—12u(n -Ind" (T )e (f) 0 A/ wnd (T, )

Mo IWe,| m,

where H;w runs over CID;I f-stable subrepresentations of R/ disc-

Consider the finite set 8;”(] (h1:h2) @G, G;) consisting of certain isomorphism
classes of G -endoscopic triples (Mg, , 55, 1;;) for J (11:h2) This set is defined in [Sh2,
Section 6.2]. Let ¢ Mg, € {£1} be the constant assigned to each triple in [Sh2]. If b is
the isocrystal corresponding to (h1, h2), let M #1:42)(Q p) be the centralizer of vg (b).
The isocrystal b can be described as (b0, by, , ..., by, ), where b, has slopes 0 and
1/(n—h;) for i = 1,2 and slope 0 for i > 2. Then M #1-42) j5 a Qp-rational Levi
subgroup of G. We define a group morphism

n—Redg”’hz) : Groth(G;(Q,)) — Groth(J(hl’hz)(Qp))

as the composition of the following maps

BTG
GrOth(Gﬁ(Qp))_) @ Groth(MGﬁ((@p)) ﬂ Groth(M(hlahZ)(Qp))
(MG »5G; :nG)

JM(hl Jhp)
Jhy1.h2)

— " Groth(J "1:12(Q,)).

The sum runs over (Mg, .s5.7;) € 657(J 112 G Gj). The first map is the direct
sum of maps Groth(G;(Qp)) — Groth(Mg, (Qp)) which are given by P, car;_ -
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Jg(”;MGﬁ)Op, where i € d(Mg.,Gj;) is a Qp-embedding Mg, — Gj; and where

P(iMg) is a parabolic subgroup of G; which contains /(M) as a Levi subgroup.
The map 7, « is a functorial transfer with respect to the L-morphism 7)., . The third

JM(hl’hZ

map L JOngn 2)) is the Jacquet-Langlands map on Grothendieck groups. We also

define

hi,h . hi,h s1/2
Red’(7 ! 2)(71(;%,1,) = n-Redé ! 2)(71Gﬁ,p) ® SP/(J(hlf’z))'

We can describe all the groups and maps above very explicitly in the case 7i = (n).
Indeed, Sfff(J (h1:h2) G| G,) has a unique isomorphism class represented by

(MG, 56,.1G,) = (M2 1 id).

The set (Mg, , G,) is also a singleton in this case, so we suppress i everywhere.
This means that we can also take 7, = id and 7)g,,,+ = id, and by [Sh2, Remark 6.4],
we may also take ¢y, = €p (J 1-h2)) wwhich is the Kottwitz sign of the Qp-group
J#h2) There are isomorphisms

G(Qp) ~ Qp X GLy(Fy,) X GLy(Fp,) X | [ GLa(Fy)),

i>2
M#12)(Q,) ~ Q) x (GLy—p, (Fy,) x GLy, (Fy,))

% (GLu—p, (Fpy) X GL, (Fp,)) x [ [ GLa(Fy,).

i>2
(h1,h2) ~ ()% X
J (Qp) ~ Qp X (DFpl,l/(n—hl) x GLy, (Fm))

x (DF,. 1/(n—ha) X OLiy (Fy,)) x [ [ GLu(Fp))-

i>2

Thus, e, (J #1:12)) = (—1)2172=h1=h2 1f we write 7, = 7,0 ® (Q); 7p, ), then we
have

Red1"2) (z,)) = (=) h2 5, o @ Red” 1M1 (7, )

® Red" 22 (77p,) ® (® ”Pi>'

i>2

LEMMA 6.3
For any 7, € Groth(G,(Qp)), we have

trrp (9L, ) = tr(Red"#2) (7)) (),).

Proof
Set M = Mg,. We know that ¢f%, , =e,(J #1:12)) . ¢M By [Sh2, Lemma 3.9],
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M G M
trnl’((Pp ) ZtI(JPX";(T[p))(¢p )

Here ¢M isa A, (, )J(hl "2 - ep(JBh2)) transfer of ¢9 = ¢, - ;/21(,,1 ) (by
[Sh2, Remark 6.4], we have an explicit description of the transfer factor). Let s, , =
Tl (p).

Note that M is a product of general linear groups and that J *#1-#2) is an inner
form of M. Lemma 2.18 and Remark 2.19 of [Sh2] ensure that

tranp (9M) = w(LIE" " (ar,p)(2)

(hy.h2) 2
tr(LJJ " 2( M,p)®8P/(J(h1 hz)))(qs;)

This concludes the proof. U

LEMMA 6.4
Let i = (n1,nz) with ny > np > 0. For any 1, € Groth(Gy, »,(Qp)),

w7, (g ) = tr(Red "2 (7,)) ().

Proof
The proof is based on making explicit the construction of ¢Iffc,, p from [Sh2, Section 6]
together with the definition of the functor n—Red;lh1 +h2)

following maps:

, which is a composition of the

Groth(Gﬁ (Qp)) — @ GrOth(MGﬁ (@p)) @ﬁiﬁ),* Groth(M(hl,hz)(Qp))

(MG 565 1G5)

Mmhy-h2)
Jh1.h2)

— " Groth(J "1:m2)(Q,)).

Recall that

. ~MG_ j
n _—
brep = Z ZCMG-

Mg 565165 1

as functions on G(Qj), where the first sum is taken over 57(J #1:2) G Gj) and
the second sum is taken over d (Mg, G;;). By [Sh2, Lemma 3.9], we have

~Mg.. ;
t”Tp(‘f)p )=t ( p(,MG )op(”p))(‘pp ), “4)

h
wheregbp "ECOO(MG Qp))isaAp(, )J v 2—transferof¢p ¢p ;/(zj(hl.hz))-

Equation (4) tells us that
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w0l )= Y (g, (1)@ ). 5)

(Mg 56;.165)

where fuy, () = @; cmq.. Jg(’;’,MGa)(np). The first map in the definition of
Red;lhl’hZ) is the direct sum of fMGﬁ over all (Mg, S5, 17)-
Mg
The function ¢, s a Ap( %gl_l'hz)-transfer of the function ¢% €

Ce(MBh2)(Q,)), which is itself a transfer of ¢9 via Ap( . )ﬁ;?hllh,fz)) =

ep(J (h1:h2)) " (All transfer factors are normalized as in [Sh2].) We focus on mak-

. (hy.h)
ing the A, (, )y,

-transfer explicit first, for which we need to have a complete
description of all e?ldOSCOpiC triples (Mg, 5G;»NG;)-
We have the following isomorphisms over Q:
G ~ GL; x l_[ RFp,-/@p GL,,

i>1

Gy ~ GL1 X[ [ RE,, /0, GLny s

i>1

2
M(hl’hz) ~ GL; x l_[ RFPi/Q” GLn—hi,hi X l_[ RFpi/Qp GLy,

i=1 i>2
2
JBh2) ~ GL; x H(D;(’pi,l/(n—hi) X GLhi) X l_[ Rpr/Qp GLy .
i=1 i>2
Consider also the following four groups over Q,, which can be thought of as Levi

subgroups of G, », via the block diagonal embeddings

2
MGﬁ,l = GLI X 1_[ RFpi/Qp GLn—hi,hi—nz,nz X l_[ RFpi/Qp GLnl,nzv

i=1 i>2
2

MGﬁ,Z = GLI x l_[ RFpi/Qp GLn_hi,hi_nlanl x l_[ RFp[/@p GL”I,”2’
i=1 i>2

2
Mg, 3 := GL; x l_[ RFpi/QI) GLyn—n; h;—nin; X l_[RFp,-/Qp GLn, s

i=1 i>2

2
Mg, 4 == GL; x 1_[ RFp;/QIJ GLy—n; hi—n3—jns_; X 1_[ RFpi/QP GLyy ns -

i=1 i>2
Note that we only define MGﬁ, j when it makes sense; for example, MGﬁ,1 is defined

only when h; > nj for i =1,2. We define ¢, : ]\TG; — M (h1:h2) to be the obvi-
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ous block diagonal embedding. We also let
smg, ;= (L (ELEL£Diz12,(1,1)ix2),

where the signs on the Fj;-component are chosen such that sps;_ ; is positive on
the GLj, -block of the Fj,-component and negative on the GLnZ-%lock of the Fy,-
component.

It is easy to check, as on [Sh3, p. 42], that S;ff(J(h1=h2), G, Gj) consists of those
triples (Mg....j,5G=,j»1G,,j) Which make sense. For example, if h; <ny fori =1,2,
then &°(J (#1:72) G G) is empty, but if h; > n; fori = 1,2, then & (J *1-42) G,
Gj;) consists of four elements. The key point is to notice that for a triple (Mg, G,
nG;) to lie in & eff(Jhih2) G G;), it is necessary for 5G; to transfer to an element

of the dual group M (#1142 = J(h1.h2) which is either +1 or —1 in the GL,_p, (C)-
block of the Fj;-component.
We can extend 7, ; to an L-morphism 7¢.. ; LMGﬁ,j — Lpm k) which is

1
compatible with the L-morphism 7; : “G; —% G, when we map LMGﬁ,j = LG;

and L p(1:h2) —l> LG via (a conjugate of ) the obvious block diagonal embedding
(where we always send the GL;, -block to the top left corner and the GL,,-block
to the bottom right corner). The morphism 7¢;,; is defined as on [Sh3, p. 42], by
sending z € Wy, to one of the matrices

w(z)e(”_”l)lnl 0
0 w(z)é(”_"Z)In2

or

(w(z)d"—"z)I,,2 0 )
0 w ()€,

on the Fj,;-component of Mmﬂ. (For i = 1,2, we send z to the first matrix on
the F),-component if the endoscopic group M¢.. ; at p; is GLy—p; h;—n,.n, and to
the second matrix if the component of Mg ; at p; is GLy—p; h;—nyn,- Fori >2,
we send z to the first matrix on the Fy,-component.) This map 7, ; is the unique
L-morphism which makes the diagram

L pg(hi.h2) b Lg

ﬁGﬁT ﬁﬁT
I

L J
Mg;,j —— *G;



LOCAL-GLOBAL COMPATIBILITY AND MONODROMY 2401

M L
commutative. Thus, the function ¢, i/ is a transfer of ¢1’; with respect to the L-
M L
morphism 7g,j, s0 we can define explicitly both ¢, %/ and the representation-
theoretic map 7y ;« : Groth(Mg;,;(Qp)) — Groth(M(hl’hZ)(Qp)). There exists

a unitary character )(;r’ j : Mg ;(Qp) — C* (defined similarly to the character on

[Sh3, p. 43]) such that the Langlands—Shelstad transfer factor with respect to 7jg..,;
differs from the transfer factor associated to the canonical L-morphism by the cocycle
associated to )(;L’ Iz (See [Bor, Section 9] for an explanation of the correspondence

between cocycles in Hl(WQp , Z(Z\TG-E\,]-)) and characters Mg ;(Qp) — C*.)
We can in fact compute XI ; on the different components of Mg, (Qp) by keep-
ing in mind that it is the character Mg ;(Q,) — C* associated to the cocycle in

H'(Wgy Vo, 2 Z (MG_ ])) which takes the conjugacy class of the standard Levi embed-
ding MGQ — M®h) 1o that of 1G,,;- Thus, we have

i () = ()N
(N, /5, (det((g;.185,,) "V ge %)),
wu(NF|u JE, (det((gp;,18p;. L) nz)g;(" nl))))

when i = 1,2 and depending on whether M. ; has the group GLy,_p; p;—nyn, OF
the group GL,,_p; n; —n, n, asits Fy;-component; and

X:’] (gp,-,l’gp,-g, gp,-,S) = {

2 (8oi1 8pr2) = Du(Np, sk, (det(gs " g e ")) when i > 2,

where (A, (gp;,1,8p;,2>8p;,3)i=1,2,(gp;,1,8p;,2)i>2) denotes an element of
Mg..;(Qp). (The value of )(;r, ; is in fact the product of the three types of factors
above.)

We let O ; be a parabolic subgroup of M (h1:h2) containing Mg, as aLevi, and
if we let (¢;)Q~f be the constant term of ¢ along Q ;, then we have

G

Mg..Jj )
¢p "= (¢;)Ql 'X:,j
and

M(hl hy)
(7

1G5.j+(TMg_.j) = n-Indg MG, ® Xus)

for any Mg, ; € Irr; (Mg, ;(Qp)). By [Sh3, Lemma 3.3], we have
MG—.j - *
w(fatg, )@ ) = t0(iiGy e fate , () (B): (6)

The group J #1:#2) is an inner form of M #1-#2) which is a product of general
linear groups. By [Sh2, Lemma 2.18, Remark 2.19],



2402 ANA CARAIANI

t(fiGy«(far; (0p)) (@) = (LI (i, (fu,; (7)) ()

- ol/2 / (7)
=tw(LJ (G, (fu; (7 p) ® e .hz)))(¢P)’

where we have abbreviated M¢.. ; by M. Putting together (5), (6), and (7), we get
the desired result. O

Let E! be the algebraic representation of (G,)c obtained by base change from
y€. Let TI' ~ ¢ ® T1° be an automorphic representation of G, (A) ~ GL;(Ag) x
GL,(AF). Assume that
. nl~T1too,
. 1., is generic and E!-cohomological,
. Ramg(IT) C Splg,f, o
. IT' is cuspidal.
In particular, 1! ~ TIg, which was defined above. Let G, be a finite set of places
of Q such that

Ram ;g URamg (@) U Ramg(IT) U{p} C &sn C Splg,p, o>

and let & = Gg, U {o0}.

THEOREM 6.5
Define Cg = |ker' (Q, G)| - ©(G). For each 0 < hy,hy < n, the following equality
holds in Groth(Gp (A \(py) X J #182)(Q)):

BCey\(py (He(1g"172) £)) {111}
=Cg-eo- (=12 [ g\l [Red 2 ()],

where eq = %1 is independent of (hy, h2).

Proof
The proof goes through identically to the proof of the first part of [Sh3, Theorem 6.1].
We nevertheless give the proof in detail.

First, we explain the choice of test functions to be used in the trace formula. Let
(f™® e H#"(G,(A®)) and fé’ﬁn\{p} € CX(Gn(Agg,\(p))) be any functions. Let $»
and ¢, \(p} be the BC-transfers of (f")® and (f")s;,\(py from G, to G,. Let
%P = ¢° s\ (p}> and choose any ¢, € C2(J":42)(Q,)) such that PP, is
an acceptable function.

For each G; € &€¥(G), we construct the function ¢f’; € C£°(Gj;(A)) associated
to ¢p°-P ¢1’D as above. Recall that (qﬁl";,)6 and (¢>{’;)6ﬁn\{ py are the A(, )g; -transfers of
¢© and ¢, \(p}- Recall that we take
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Bt oo = €7 (Doo) - (=D (. 57) Y det(wa (06,)) - 6,505
%5

where ¢;; runs over L-parameters such that 7j;¢; ~ ¢¢ and where £(gj;) is the alge-
braic representation of G ¢ such that the L-packet associated to ¢;; is Igisc (G (R),
£(¢;)Y). The construction of }le, » can be found in [Sh2].

We need to define a function f 7 which plays the part of a BC-matching function
for d)lﬁ for each 71. We have already defined ( f”)® and JE \(py- Wetake (f™1 m2)6 —

*((f™)®) and f"; ’('{zp} = E*(fgﬁn\{p}). We also define

FE = ei(A) - (=11 . 57) Y det(wx(06,)) - fo,.20m-

Pii

where @j;; runs over L-parameters such that 7j;¢; ~ @¢ and where E(g;) is the alge-
braic representation of Gj; arising from &(g;). It is straightforward to verify from
their definitions that f and ¢;’g7oo are BC-matching functions. Finally, we choose

fj so that its BC-transfer is ¢I”;, p- (Since p splits in E, it can be checked that the
base change map defined in [Sh3, Section 4.2] is surjective at p.) We set

fr= (" fE oy SR SR

The BC-transfer of f i coincides with qﬁfg at places outside & (by compatibility of
transfers), at P and at co. At places in Gg, \ {p}, we know at least that the BC-
transfer of f " has the same trace as qSI against every admissible representation of

Gii(Aep\(p)-
By the discussion following Proposition 6.1, we can compute

tr(¢°P ), | 1y Ho (1g®1°12) £4)) ©)

via the spectral part of the twisted formula, to get

1 ny.n ni,n
Co-DM (3w M)+ D L )
H/

Gnl np.nyFEny

1 Gn n 9
o L2 Y |'W '||dt(d> =Dl O)
MCGy,
X Ztr(n'lndg”(n;u)g(fn) A; IndG"(Hﬁw)g))’

Y

where the first sum runs over 6-stable subrepresentations I1’ of Rg,, gisc and where the
sums in the middle run over groups G, ,, coming from elliptic endoscopic groups
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G, n, for G (with ny > ny > 0 and some (n1,n,) possibly excluded). The group
M runs over proper Levi subgroups of G, containing a fixed minimal Levi, and IT/,
runs over CID;1 f-stable subrepresentations H’M of Ry dgisc-

We claim that the formula above holds for any ¢°°-? ¢>;,, without the assumption
that it is an acceptable function. To see this, note that [Shl, Lemma 6.3] guaran-
tees that there exists some element fr* € J*1:52)(Q,) such that $>°-» (¢;;)(N)(g) =
PP (g)(;ﬁl/lJ (g(fr*)"N) is acceptable for any sufficiently large N. (The paper [Shl]
treats general Igusa varieties, and it is easy to check that our case is covered.) So
the equality of (8) and (9) holds when ¢, is replaced by (qf)},)(N ). Both (8) and (9)
are finite linear combinations of terms of the form tr p((¢},)(N )), where
p € Irr(J 1-h2) (Qp)). In order to see that this is true for (9), we need to translate
it from computing the trace of f i to computing the trace of ¢I”; to computing the
trace of d);,, using Lemmas 6.3 and 6.4. Now the same argument as that for [Shl,
Lemma 6.4] shows that (8) and (9) are equal for ¢°°-? (qf);,)(N ) for every integer N, in
particular for N = 0. Thus, we can work with arbitrary ¢°°-? ¢;.

Choose a decomposition of the normalized intertwining operators

!/ !/ !/ !/
AHl :AHI’GAHI AHl .

Sin e
Set
A’ /
A/Hl . A/HI.G Mg, AH})O 41
o T g e <D
Hl HI.G Hl HC‘)O

Sfin

where the denominators on the right-hand side are the normalized intertwiners chosen
above. In the sum (9), the third term evaluates the trace of f” against representations
induced from proper Levi subgroups. The second term has a similar form: outside the
set & we have the identity (/"1:72)® = ¢*((f™)®), and [Sh3, (4.17)] tells us that

ISy (87, 0y (F™) = (8, e (TI5)) (S M,

where 2‘,,1,,,2* is the transfer from Gy, », to G, on the representation-theoretic side
and consists of taking the parabolic induction of a twist of Hfl. The multiplic-
ity one result of Jacquet and Shalika (see [AC, p. 200]) implies that the string of
Satake parameters outside a finite set & of a cuspidal automorphic representation of
GL, (AF) unramified outside & cannot coincide with the string of Satake parameters
outside G of an automorphic representation of GL, (A f) which is a subquotient of
a representation induced from a proper Levi subgroup. Thus, if we are interested in
the T11-S-part of tr(¢p°>P ), | 1 He (1gr-h2) &L¢)), then only the first term of (9) can
contribute to it.
Thus, we are left to consider
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A
Co (=142 (S50 y o (M) (TS (A )
11!

LD DR (VoM Ry seii) ]

(H/)G#HLG’

where (IT")® runs over a set of unramified representations of G,(A®). On the other
hand, we can also decompose tr(¢°>? ¢, | ; H (1gtr-h2) £L¢)) into a TS -part and
(") ®-parts, where BC((7r')®) # ITS. We conclude as in [Sh3] that

tr(Pem\ip @) | uHe(g"72), £){TTHCY)

Co A! (10
= (—1)”1*”27‘;/173 tr(Me(f&) Ao ).
Now T}, ~ Mg, so tr(Tl5, (fL)AY_ ) = 2(—1)4(9) = 2. We also have
(T (f)AY ) = trumy (g, ) = try Red® 112 () (¢)) (11
by Lemma 6.3 and
(Mo o) Any, )= Tump@enin)- (12)

Putting together (11), (11), and (12) and applying BCg;,\{p}, We get the desired result
with eg = A’HI/A(I’_[1 which is independent of (41, h5). O

7. Proof of the main theorem
Let E/Q be an imaginary quadratic field in which p splits. Let F;/Q be a totally
real field, and let w be a prime of F) above p. Set F' = EF;. Let F, be a totally
real quadratic extension of Q in which w = wjw, splits, and set F = EF,. Letn €
Zs>. Also denote F, by FT. Let I1 be a cuspidal automorphic representation of
GL, (AF).

Consider the following assumptions on (E, F’, F, II):
. [F1:Q]>2;

. Ram /g URamg(w) U Ramg(I1) C Splp;p+ g3

. (MY ~Moc;

. T is cohomological for an irreducible algebraic representation & of
GL, (F/ (20) (C),

. BCp/p/(I1) is cuspidal.
Set I1° = BCp/p/(I1) and E® = BCp/F/(E). The following lemma is the same as
[Sh3, Lemma 7.2].
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LEMMA 7.1
Let TI° and E° be as above. We can find a character r : A% /E* — C* and an
algebraic representation &c of G over C satisfying the following conditions:

* Yo =v°/Y;

. EY is isomorphic to the restriction of E' to Rpp(GLy) xg C, where B’ is
obtained from &c by base change from G to Gy,
. Eclpx =¥, and

i RamQ(lﬂ) C SplF/F"‘,Q'
Moreover, if | splits in E, then
. 1//02” =1, where u is the place above | induced by Ll_l‘L'|E.

Set IT! = ¢ ® I1°. Then II! is a cuspidal automorphic representation of
GL1(Ag) XxGL,(AF). Let £ = 1;&c, where &c is as in Lemma 7.1.

Let Ay be the universal abelian variety over Xy . Since 4y is smooth over Xy,
Azg satisfies the conditions in Section 4.3. In particular, ,AZS is locally étale over a
product of strictly semistable schemes. For S, 7 C {1,...,n}, let Asz,T = AT]S XXy
Yus,r.

Define the following admissible G (A®-?)-modules with a commuting continu-
ous action of Gal(F’/F'):

HY (Xiwgmy, £¢) = im H' (Xy xpr F', &¢) = HY (X, &)™,

ur
H (A5 Q) = 11_11}11"’.(04)3s xpr F', Q).
U»r

Also define the admissible G(A*?) x (Frobr)%-module

roomy, .7 Q1) = @Hj(ﬁzfs,r xp F, Q).
ur

H/ (A

Note that a; is an idempotent on H/ (A;:f(m), ST Q (tg)) and
agHI4e (AS o 7o Qute)) = HY (Ygmy 5.7, Le)-

PROPOSITION 7.2
For each rational prime | # p, there is a G(A®?) x (Frobyp)%-equivariant spectral
sequence with a nilpotent operator N

BCP(Ey™ " (tw(m), £)[11"9])
= BC?(WD(H™ (Xtwim)- £6) a0 DT ).

where
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BCP(EY™ ™ (tw(m), £)[T1-9])

= P BCP(agH™ (ALY, Gr' Gr RyQy (1)) [19]).
k—l=—i

The action of N sends BC? (ag H™1™¢ (A Gr!Gr Ry Q; (tg))[Hl’G]) to

Iw(m)’
BCP (ag H™ ™ (AL, Gr' 1 Gry—y Ry Qu (1)) [T1"©]).
Furthermore, there is a direct sum decomposition
BCP(ag H™ " (A%, Gt Gr Ry Qy (1)) [T1°])

~ @D BCP(Mjmsme—j (k.1)),

j=0
where

k+1

BC?(Mjmame—; (k1)) = €D D HIE" (kD)

s=1#S=j+s#T=j+k+I—s+1
and
]-‘rmg s(k l)
— BCp(agHermE 2j—k— l+1(‘A’IW(m) s, T?Ql(t{-' —j —k+ 1))[1—[1,6])

= BCP(H™ 2 (Y my 5.7, Qu(—j —k + 1) [TT19]).

Proof
Note that A;nf / Ok satisfies the hypotheses of Section 4. We have a spectral sequence
of G(A%?) x (Frobyr)”-modules with a nilpotent operator N

E”" '(Iw(m) g):Hm(,A; XFr ,;,@l(f))s
where

B v, 6) = @@ H" (A xe Bl G Ry Qi)

k—l=—i
N will send H™ (A%, Gr' Gry Ry Q; (1)) to H™ (g, Gr' T 1Gry—y Ry Qi (1))

By Corollary 4.31, we also have a G(A*>?) x (Froby)%-equivariant isomorphism

H™ (Afgg X F, GrlGrk Rl/f@l (l)) >~ @ Mjm_; (k,1),
Jj=0
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where
k+1 .
Mim )= @  H{TkD
s=1 #S=j+s
#T=j+k+I1—s+1
and

HES (k1) = HM 2 (A2 o Q- j — K + 1),

We take ¢ = 1¢, apply ag, replace j by j + mg, and take the inverse limit over U?. We
get a spectral sequence of G(A*>?) x (Frobg)%-modules converging to H/ (Xtw(m)»
L¢). We identify H J (X1w(m), L¢) with its associated Weil-Deligne representation,
and we semisimplify the action of Frobenius. After taking IT!®-isotypical compo-
nents and applying BC?, we get the desired spectral sequence. O

COROLLARY 7.3
Keep the assumptions made in the beginning of this section. The Weil-Deligne repre-

sentation
— F—
WD (BCP?(H**(Xuwm)- £6)lcack/ 1 I1D) "

is pure of weight mg — 2t¢ + 2n — 2.

Proof
By Proposition 5.10,

BCP?(H’ (Yiw(my,s,7. L&)[T1V®]) =0
unless j = 2n —#S — #T. Thus, the terms of the direct sum decomposition
BC?(Mjmime—j(k,1)),
which are all of the form
BCP(H™ 4 (Yiymy, 5,7, Qi (=) —k + D))

with#S = j +sand #T = j +k + 1 —s + 1, vanish unless m = 2n — 2. This means
i,m+mg—i

that the terms of the spectral sequence BC?(E, '(Iw(m), £)[T1"-®]) vanish
unless m = 2n — 2. If m = 2n — 2, then each summand of

BCP(Ey*" 2 (tw(m). £)[11))

has a filtration with graded pieces
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BCP (H* 22~k (Y 5.7, Le(— ) —k + 1) [TTH]),

where k — [ = —i. These graded pieces are strictly pure of weight mg — 21 + 2n —
2 + k —1 — 1, which only depends on i. Thus, the whole of

BCP(Ey*" 7 (tw(m), £)[T1])

is strictly pure of weight mg —21¢ +2n —2—i — 1. The spectral sequence degenerates
at Ey, since E;™ " =0 unless m = 2n — 2, and also the abutment is pure of weight

mg — 2tg + 2n — 2. Thus,
BCP(WD(H™ (Xmy» £6)|gac/ 11D ™)

vanishes for m # 2n —2 and is pure of weight mg —2t¢ +2n—2form =2n—-2. 0O

THEOREM 7.4

Let n € Zs» be an integer, and let L be any CM field. Let | be a prime, and let i
be an isomorphism 1; : Q; — C. Let T1 be a cuspidal automorphic representation of
GL, (AL) satisfying

o IMV~TIloc,

. IT is cohomological for some irreducible algebraic representation E.

Let

R;(TT) : Gal(L/L) — GL,(Q;)

be the Galois representation associated to I1 by [Sh3] and [CH]. Let p # [, and let
y be a place of L above p. Then we have the following isomorphism of Weil-Deligne
representations

F-ss _ _
WD (RI(H)|Ga1(IZy/Ly)) =y 'En,1, ().

Proof

This theorem has been proven by [Sh3] except in the case when 7 is even and E is not
slightly regular. In that exceptional case it is still known that we have an isomorphism
of semisimplified W, -representations by [CH], so it remains to check that the two
monodromy operators N match up. By Corollary 5.9, IT, is tempered. This is equiv-
alent to Ll_léﬂn, L, (ITy) being pure of weight 2n — 2. In order to get an isomorphism
9f Weil-Deligne representations, it suffices to prove that WD (R;(I1)| gy i,/ Ly))F s
is pure.

We first find a CM field F’ such that
d F’ = EF,, where E is an imaginary quadratic field in which p splits and
Fy=(F)"has [F; : Q] > 2,
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J F’ is soluble and Galois over L,

. H%, = BCps/1.(IT) is a cuspidal automorphic representation of GL, (Af/),
and

. there is a place p of F above y such that 1%, p has an Iwahori fixed vector,

and a CM field F which is a quadratic extension of F’ such that
. p =p1ps splitsin F,
. Ramp /g URamg(w@) U Ramg(I1) C Splg, g . and
. H% = BCp/ F/(H%,) is a cuspidal automorphic representation of GL, (AF).
To find F and F’, we proceed as in the proof of Corollary 5.9. Set H}, = H(}, Y,
where v is chosen as in Lemma 7.1.

We claim that we have isomorphisms

®2 - _
Ce - (RI(M)|gucr/rn) = Co - Ri(TM%)®? ~ RP" (M) ® Ri(y) ™",

where ﬁf ( H},;) was defined in Section 4. The first isomorphism is clear. The second
isomorphism can be checked by Chebotarev’s density theorem locally at unramified
places, using the local global compatibility for R;(I1%,) and the formula

Rl(n};) = e()CG . [(ﬂp,O o Art@;”WF‘; ® ll_lipé’n(r[%/,p)®2].

(It can be checked easily, either by computing the weight or by using the spectral
sequences above that R;‘(H};) # 0 if and only if Kk = 2n — 2 and thus that ¢y =
(—1>2=1)

We also have

BCP(H" 7 (Xiy(my, £6)[M 7)) = (dimy ™) - ;' TIP @ R*" (M)

as admissible representations of G(A®?) x Gal(F'/F’). By Corollary 7.3,
?/;])(RIZ”_Z(H},)|GM(I,:£/F‘;)) is pure of weight mg — 2tz + 2n — 2. By [TY, Lemma

0 \®2
WD (R;(I1%)® |Ga1(15,;/F,;))

is also pure. It has weight 21 — 2. The monodromy operator acts on R; (H%/)®2|WF{3
asl ® N + N ® 1, where N is the monodromy operator on R; (H(I)V’NWF{J . We wish
to show that V := WD(R;(I1Y ,)|WF£')F_SS is pure of weight n — 1. Consider the
direct sum decomposition V = ,, Vi, where V; is strictly pure of weight n —
1 + i. It suffices to prove that N* : V; — V_; is injective for every i > 0, since then
we can compare dimensions to deduce that N* is an isomorphism. Let x € V;, and

assume that N'x = 0. Since x € V;, the vector x ® x belongs to the subspace of
WD(R;(11%,)®|w,, ) ¥~ which is strictly pure of weight 27 — 2 + 2i. But then
P
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2i
N?(x @ x) = ZN"x@Nzi-kx =0,
k=0

which  contradicts the purity of WD(R;(I1%,)®?|w,, )F~).  Thus,
P
WD(R;(H%,)|Gal(pé/Fé))F_SS has to be pure. By [TY, Lemma 1.4], purity is pre-

served under finite extensions, so WD(RI(H)|Ga1( i/ Ly))F % is also pure. O
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