
ar
X

iv
:1

60
9.

06
90

2v
1 

 [
m

at
h.

N
T

] 
 2

2 
Se

p 
20

16

PATCHING AND THE p-ADIC LANGLANDS PROGRAM

FOR GL2(Qp)

ANA CARAIANI, MATTHEW EMERTON, TOBY GEE, DAVID GERAGHTY,
VYTAUTAS PAŠKŪNAS, AND SUG WOO SHIN

Abstract. We present a new construction of the p-adic local Langlands cor-
respondence for GL2(Qp) via the patching method of Taylor–Wiles and Kisin.
This construction sheds light on the relationship between the various other
approaches to both the local and global aspects of the p-adic Langlands pro-
gram; in particular, it gives a new proof of many cases of the second author’s
local-global compatibility theorem, and relaxes a hypothesis on the local mod p
representation in that theorem.

1. Introduction

The primary goal of this paper is to explain how (under mild technical hypothe-
ses) the patching construction of [CEG+16], when applied to the group GL2(Qp),
gives rise to the p-adic local Langlands correspondence for GL2(Qp), as constructed
in [Col10b], and as further analyzed in [Paš13] and [CDP14]. As a by-product,
we obtain a new proof of many cases of the local-global compatibility theorem
of [Eme11] (and of some cases not treated there).

1.1. Background. We start by recalling the main results of [CEG+16] and the role
we expect them to play in the (hypothetical) p-adic local Langlands correspondence.
Let F be a finite extension of Qp, and let GF be its absolute Galois group. One
would like to have an analogue of the local Langlands correspondence for all finite-
dimensional, continuous, p-adic representations of GF . Let E be another finite
extension of Qp, which will be our field of coefficients, assumed large enough, with
ring of integers O, uniformizer ̟ and residue field F. To a continuous Galois
representation r : GF → GLn(E) one would like to attach an admissible unitary
E-Banach space representation Π(r) of G := GLn(F ) (or possibly a family of such
Banach space representations). Ideally, such a construction should be compatible
with deformations, should encode the classical local Langlands correspondence and
should be compatible with a global p-adic correspondence, realized in the completed
cohomology of locally symmetric spaces.

It is expected that the Banach spaces Π(r) should encode the classical local
Langlands correspondence in the following way: if r is potentially semi-stable with
regular Hodge–Tate weights, then the subspace of locally algebraic vectors Π(r)l.alg
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in Π(r) should be isomorphic to πsm(r)⊗πalg(r) as a G-representation, where πsm(r)
is the smooth representation of G corresponding via classical local Langlands to the
Weil–Deligne representation obtained from r by Fontaine’s recipe, and πalg(r) is an
algebraic representation of G, whose highest weight vector is determined by the
Hodge–Tate weights of r.

1.2. Example. If F = Qp, n = 2 and r is crystalline with Hodge–Tate weights a < b,
then πsm(r) is a smooth unramified principal series representation, whose Satake
parameters can be calculated in terms of the trace and determinant of Frobenius
on Dcris(r), and πalg(r) = Symb−a−1E2 ⊗ det1−a. (We note that in the literature
different normalisations lead to different twists by a power of det.)

Such a correspondence has been established in the case of n = 2 and F = Qp
by the works of Breuil, Colmez and others, see [Bre08], [Col10a] as well as the
introduction to [Col10b]. Moreover, when n = 2 and F = Qp, this correspon-
dence has been proved (in most cases) to satisfy local-global compatibility with the
p-adically completed cohomology of modular curves, see [Eme11]. However, not
much is known beyond this case. In [CEG+16] we have constructed a candidate
for such a correspondence using the Taylor–Wiles–Kisin patching method, which
has been traditionally employed to prove modularity lifting theorems for Galois
representations. We now describe the end product of the paper [CEG+16].

Let r̄ : GF → GLn(F) be a continuous representation and let R�
p be its universal

framed deformation ring. Under the assumption that p does not divide 2n we
construct an R∞[G]-module M∞, which is finitely generated as a module over the
completed group algebra R∞[[GLn(OF )]], where R∞ is a complete local noetherian
R�
p -algebra with residue field F. If y ∈ SpecR∞ is an E-valued point then

Πy := Homcont
O (M∞ ⊗R∞,y O, E)

is an admissible unitary E-Banach space representation of G. The composition

R�
p → R∞

y
→ E defines an E-valued point x ∈ SpecR�

p and thus a continuous
Galois representation rx : GF → GLn(E). We expect that the Banach space
representation Πy depends only on x and that it should be related to rx by the
hypothetical p-adic Langlands correspondence; see §6 of [CEG+16] for a detailed
discussion. We show in [CEG+16, Theorem 4.35] that if πsm(rx) is generic and x lies
on an automorphic component of a potentially crystalline deformation ring of r̄ then
Πl.alg
y
∼= πsm(rx)⊗πalg(rx) as expected; moreover, the points x such that πsm(rx) is

generic are Zariski dense in every irreducible component of a potentially crystalline
deformation ring. (It is expected that every irreducible component of a potentially
crystalline deformation ring is automorphic; this expectation is motivated by the
Fontaine–Mazur and Breuil–Mézard conjectures. However, it is intrinsic to our
method that we would not be able to access these non-automorphic components
even if they existed.)

However, there are many natural questions regarding our construction for GLn(F )
that we cannot answer at the moment and that appear to be genuinely deep, as
they are intertwined with questions about local-global compatibility for p-adically
completed cohomology, with the Breuil–Mézard conjecture on the geometry of local
deformation rings and with the Fontaine–Mazur conjecture for global Galois repre-
sentations. For example, it is not clear that Πy depends only on x, it is not clear
that Πy is non-zero for an arbitrary y, and that furthermore Πl.alg

y is non-zero if rx
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is potentially semistable of regular weight, and it is not at all clear that M∞ does
not depend on the different choices made during the patching process.

1.3. The present paper. In this paper, we specialize the construction of [CEG+16]
to the case F = Qp and n = 2 (so that G := GL2(Qp) and K := GL2(Zp) from
now on) to confirm our expectation that, firstly, M∞ does not depend on any of
the choices made during the patching process and, secondly, that it does recover
the p-adic local Langlands correspondence as constructed by Colmez.

We achieve the first part without appealing to Colmez’s construction (which relies
on the theory of (ϕ,Γ)-modules). The proof that M∞ is uniquely determined high-
lights some key features of the GL2(Qp) setting beyond the use of (ϕ,Γ)-modules:
the classification of irreducible mod p representations of GL2(Qp) in terms of Serre
weights and Hecke operators, and the fact that the Weil–Deligne representation
and the Hodge–Tate weights determine a (irreducible) 2-dimensional crystalline
representation of GQp uniquely (up to isomorphism).

When combined with the results of [Paš13] (which do rely on Colmez’s functor
V̌), we obtain thatM∞ realizes the p-adic Langlands correspondence as constructed
by Colmez.

We also obtain a new proof of local-global compatibility, which helps clarify the
relationship between different perspectives and approaches to p-adic local Lang-
lands.

1.4. Arithmetic actions. In the body of the paper we restrict the representations
r̄ we consider by assuming that EndGQp

(r̄) = F and that r̄ 6∼=
(
ω ∗
0 1

)
⊗ χ for any

character χ : GQp → F×. For simplicity, let us assume in this introduction that r̄

is irreducible and let Rp be its universal deformation ring. Then R�
p is formally

smooth over Rp. Moreover, (as F = Qp and n = 2) we may also assume that R∞

is formally smooth over R�
p , and thus over Rp.

The following definition is meant to axiomatize the key properties of the patched
module M∞.

1.5. Definition. Let d be a non-negative integer, let R∞ := Rp[[x1, . . . , xd]] and let
M be a non-zero R∞[G]-module. We say that the action of R∞ on M is arithmetic
if the following conditions hold:

(AA1) M is a finitely generated module over the completed group algebraR∞[[K]];
(AA2) M is projective in the category of pseudo-compact O[[K]]-modules;
(AA3) for each pair of integers a < b, the action of R∞ on

M(σ◦) := Homcont
O[[K]](M, (σ◦)d)d

factors through the action of R∞(σ) := Rp(σ)[[x1, . . . , xd]]. Here Rp(σ) is
the quotient of Rp constructed by Kisin, which parameterizes crystalline
representations with Hodge–Tate weights (a, b), σ◦ is a K-invariant O-

lattice in σ := Symb−a−1E2 ⊗ det1−a and (∗)d := Homcont
O (∗,O) denotes

the Schikhof dual.
Moreover, M(σ◦) is maximal Cohen–Macaulay over R∞(σ) and the

R∞(σ)[1/p]-module M(σ◦)[1/p] is locally free of rank 1 over its support.
(AA4) for each σ as above and each maximal ideal y of R∞[1/p] in the support of

M(σ◦), there is a non-zero G-equivariant map

πsm(rx)⊗ πalg(rx)→ Πl.alg
y
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where x is the image of y in SpecRp.

The last condition says that M encodes the classical local Langlands correspon-
dence. This is what motivated us to call such actions arithmetic. (In fact in the
main body of the paper we use a reformulation of condition (AA4), see §3.1 and
Remark 3.3.) To motivate (AA3), we note for the sake of the reader familiar with
Kisin’s proof of the Fontaine–Mazur conjecture [Kis09] that the modules M(σ◦)
are analogues of the patched modules denoted by M∞ in [Kis09], except that Kisin
patches algebraic automorphic forms for definite quaternion algebras and in this
paper we will ultimately be making use of patching arguments for algebraic auto-
morphic forms on forms of U(2).

1.6. Uniqueness of M∞. As already mentioned, the patched module M∞ of
[CEG+16] carries an arithmetic action of R∞ for some d. In order to prove that
M∞ is uniquely determined, it is enough to show that for any given d, any R∞[G]-
module M with an arithmetic action of R∞ is uniquely determined. The following
is our main result, which for simplicity we state under the assumption that r̄ is
irreducible.

1.7. Theorem. Let M be an R∞[G]-module with an arithmetic action of R∞.

(1) If π is any irreducible G-subrepresentation of the Pontryagin dual M∨ of
M then π is isomorphic to the representation of G associated to r̄ by the
mod p local Langlands correspondence for GL2(Qp).

(2) Let π →֒ J be an injective envelope of the above π in the category of smooth

locally admissible representations of G on O-torsion modules. Let P̃ be the

Pontryagin dual of J . Then P̃ carries a unique arithmetic action of Rp
and, moreover,

M ∼= P̃ ⊗̂Rp R∞

as R∞[G]-modules.

The theorem completely characterizes modules with an arithmetic action and shows
that M∞ does not depend on the choices made in the patching process. A further
consequence is that the Banach space Πy depends only on the image of y in SpecRp,
as expected.

Let us sketch the proof of Theorem 1.7 assuming for simplicity that d = 0. The
first step is to show that M∨ is an injective object in the category of smooth lo-
cally admissible representations of G on O-torsion modules and that its G-socle
is isomorphic to π. This is done by computing HomG(π

′,M∨) and showing that
Ext1G(π

′,M∨
∞) vanishes for all irreducible F-representations π′ of G; see Proposi-

tion 4.2 and Theorem 4.15. The arguments here use the foundational results of
Barthel–Livné [BL94] and Breuil [Bre03a] on the classification of irreducible mod p
representations of G, arguments related to the weight part of Serre’s conjecture,
and the fact that the rings Rp(σ) are formally smooth over O, whenever σ is of the

form Symb−a−1E2 ⊗ det1−a with 1 ≤ b − a ≤ p.
This first step allows us to conclude thatM∨ is an injective envelope of π, which

depends only on r̄. Since injective envelopes are unique up to isomorphism, we
conclude that any two modules with an arithmetic action of Rp are isomorphic as
G-representations. Therefore, it remains to show that any two arithmetic actions

of Rp on P̃ coincide. As Rp is O-torsion free, it is enough to show that two such

actions induce the same action on the unitaryE-Banach space Π := Homcont
O (M,E).
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SinceM is a projective O[[K]]-module by (AA2) one may show using the “capture”
arguments that appear in [CDP14, §2.4], [Eme11, Prop. 5.4.1] that the subspace
of K-algebraic vectors in Π is dense. Since the actions of Rp on Π are continuous
it is enough to show that they agree on this dense subspace. Since the subspace
of K-algebraic vectors is semi-simple as a K-representation, it is enough to show
that the two actions agree on σ-isotypic subspaces in Π for all irreducible algebraic
K-representations σ. These are precisely the representations σ in axiom (AA3).
Taking duals one more time, we are left with showing that any two arithmetic
actions induce the same action of Rp on M(σ◦)[1/p] for all σ as above.

At this point we use another special feature of 2-dimensional crystalline represen-
tations of GQp : the associated Weil–Deligne representation together with Hodge–
Tate weights determine a 2-dimensional crystalline representation of GQp up to
isomorphism. Using this fact and axioms (AA3) and (AA4) for the arithmetic

action we show that the action of the Hecke algebra H(σ) := EndG(c-Ind
G
K σ) on

M(σ◦)[1/p] completely determines the action of Rp(σ) onM(σ◦)[1/p]; see the proof
of Theorem 4.30 as well as the key Proposition 2.13. Since the action of H(σ) on
M(σ◦)[1/p] depends only on the G-module structure of M , we are able to conclude
that the two arithmetic actions are the same. The reduction from the case when d
is arbitrary to the case when d = 0 is carried out in §4.16.

1.8. Remark. As we have already remarked, the arguments up to this point make
no use of (ϕ,Γ)-modules. Indeed the proof of Theorem 1.7 does not use them. One
of the objectives of this project was to find out how much of the p-adic Langlands
for GL2(Qp) correspondence can one recover from the patched moduleM∞ without
using Colmez’s functors, as these constructions are not available for groups other
than GL2(Qp), while our patched module M∞ is. Along the same lines, in section
§5 we show that to a large extent we can recover a fundamental theorem of Berger–
Breuil [BB10] on the uniqueness of unitary completions of locally algebraic principal
series without making use of (ϕ,Γ)-modules, see Theorem 5.1 and Remark 5.3.

1.9. Remark. As already explained, Theorem 1.7 implies that Πy depends only on
the image of y in SpecRp. However, we are still not able to deduce using only our
methods that Πy is non-zero for an arbitrary y ∈ m-SpecR∞[1/p]. Since M∞ is
not a finitely generated module over R∞ theoretically it could happen that Πy 6= 0
for a dense subset of m-SpecR∞[1/p], but Πy = 0 at all other maximal ideals.
We can only prove that this pathological situation does not occur after combining
Theorem 1.7 with the results of [Paš13].

In §6 we relate the arithmetic action of Rp on P̃ to the results of [Paš13], where
an action of Rp on an injective envelope of π in the subcategory of representations
with a fixed central character is constructed using Colmez’s functor; see Theorem
6.18. Then by appealing to the results of [Paš13] we show that Πy and rx cor-
respond to each other under the p-adic Langlands correspondence as defined by
Colmez [Col10b], for all y ∈ m-SpecR∞[1/p], where x denotes the image of y in
m-SpecRp[1/p].

It follows from the construction of M∞ that after quotienting out by a certain
ideal of R∞ we obtain a dual of completed cohomology, see [CEG+16, Corollary
2.11]. This property combined with Theorem 1.7 and with the results in §6 enables
us to obtain a new proof of local-global compatibility as in [Eme11] as well as
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obtaining a genuinely new result, when ρ|GQp
is isomorphic to

(
1 ∗
0 ω

)
⊗ χ, where ω

is the cyclotomic character modulo p. (See Remark 7.7.)

1.10. Prospects for generalization. Since our primary goal in this paper is to
build some new connections between various existing ideas related to the p-adic
Langlands program, we have not striven for maximal generality, and we expect
that some of our hypotheses on r̄ : GQp → GL2(Fp) could be relaxed. In particular,
it should be possible to prove results when p = 2 by using results of Thorne [Tho]
to redo the patching in [CEG+16]. It may also be possible to extend our results to
cover more general r̄ (recall that we assume that r̄ has only scalar endomorphisms,
and that it is not a twist of an extension of the trivial character by the mod p
cyclotomic character). In Section 6.27 we discuss the particular case where r̄ has
scalar semisimplification; as this discussion (and the arguments of [Paš13]) show,
while it may well be possible to generalise our arguments, they will necessarily be
considerably more involved in cases where r̄ does not satisfy the hypotheses that
we have imposed.

Since the patching construction in [CEG+16] applies equally well to the case
of GL2(F ) for any finite extension F/Qp, or indeed to GLn(F ), it is natural to ask
whether any of our arguments can be extended to such cases (where there is at
present no construction of a p-adic local Langlands correspondence). As explained
in Remark 3.2, the natural analogues of our axioms (AA1)-(AA4) hold, even in
the generality of GLn(F ). Unfortunately, the prospects for proving analogues of
our main theorems are less rosy, as it seems that none of the main inputs to our
arguments will hold. Indeed, already for the case of GL2(Qp2) there is no ana-
logue available of the classification in [Bre03a] of the irreducible F-representations
of GL2(Qp), and it is clear from the results of [BP12] that any such classification
would be much more complicated.

Furthermore, beyond the case of GL2(Qp) it is no longer the case that crystalline
representations are (essentially) determined by their underlying Weil–Deligne rep-
resentations, so there is no possibility of deducing that a p-adic correspondence is
uniquely determined by the classical correspondence in the way that we do here,
and no hope that an analogue of the results of [BB10] could hold. Finally, it is
possible to use the constructions of [Paš04] to show that for GL2(Qp2) the patched
module M∞ is not a projective GL2(Qp2)-module.

1.11. Outline of the paper. In Section 2 we recall some well-known results about
Hecke algebras and crystalline deformation rings for GL2(Qp). The main result in
this section is Proposition 2.15, which describes the crystalline deformation rings
corresponding to Serre weights as completions of the corresponding Hecke algebras.
In Section 3 we explain our axioms for a module with an arithmetic action, and
show how the results of [CEG+16] produce patched modules M∞ satisfying these
axioms.

Section 4 proves that the axioms determine M∞ (essentially) uniquely, giving
a new construction of the p-adic local Langlands correspondence for GL2(Qp). It
begins by showing thatM∞ is a projective GL2(Qp)-module (Theorem 4.15), before
making a category-theoretic argument that allows us to “factor out” the patching
variables (Proposition 4.22). We then use the “capture” machinery to complete the
proof.
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In Section 5 we explain how our results can be used to give a new proof (not
making use of (ϕ,Γ)-modules) that certain locally algebraic principal series repre-
sentations admit at most one unitary completion. Section 6 combines our results
with those of [Paš13] to show that our construction is compatible with Colmez’s
correspondence, and as a byproduct extends some results of [Paš13] to a situation
where the central character is not fixed.

Finally, in Section 7 we explain how our results give a new proof of the second
author’s local-global compatibility theorem, and briefly explain how such results
can be extended to quaternion algebras over totally real fields (Remark 7.8).

1.12. Acknowledgements. This paper has its germ in conversations between
three of us (M.E., T.G., V.P.) during the 2011 Durham Symposium on Automor-
phic Forms and Galois Representation, and we would like to thank the organizers
Fred Diamond, Payman Kassaei and Minhyong Kim as well as Durham University,
EPSRC and the LMS for providing a fertile atmosphere for discussion. The ideas
of the paper were developed further when the six of us participated in focussed
research groups on “The p-adic Langlands program for non-split groups” at the
Banff Centre and AIM; we would like to thank AIM and BIRS for providing an
excellent working atmosphere, and for their financial support.

1.13. Notation. We fix an odd prime p, an algebraic closure Qp of Qp, and a finite

extension E/Qp in Qp, which will be our coefficient field. We write O = OE for
the ring of integers in E, ̟ = ̟E for a uniformiser, and F := O/̟ for the residue
field. We will assume without comment that E and F are sufficiently large, and in
particular that if we are working with representations of the absolute Galois group
of a p-adic field K, then the images of all embeddings K →֒ Qp are contained in E.

1.13.1. Galois-theoretic notation. If K is a field, we let GK denote its absolute
Galois group. Let ε denote the p-adic cyclotomic character, and ε = ω the mod p
cyclotomic character. If K is a finite extension of Qp for some p, we write IK for
the inertia subgroup of GK . If R is a local ring we write mR for the maximal ideal
of R. If F is a number field and v is a finite place of F then we let Frobv denote a
geometric Frobenius element of GFv .

If K/Qp is a finite extension, we write ArtK : K× ∼
−→ W ab

K for the Artin
map normalized to send uniformizers to geometric Frobenius elements. To avoid
cluttering up the notation, we will use ArtQp to regard characters of Q×

p , Z
×
p as

characters of GQp , IQp respectively, without explicitly mentioning ArtQp when we
do so.

If K is a p-adic field and ρ a de Rham representation of GK over E and if
τ : K →֒ E then we will write HTτ (ρ) for the multiset of Hodge–Tate numbers of
ρ with respect to τ . By definition, the multiset HTτ (ρ) contains i with multiplicity

dimE(ρ ⊗τ,K K̂(i))GK . Thus for example HTτ (ε) = {−1}. If ρ is moreover crys-
talline then we have the associated filtered ϕ-module Dcris(ρ) := (ρ ⊗Qp Bcris)

GK ,
where Bcris is Fontaine’s crystalline period ring.

1.13.2. Local Langlands correspondence. Let n ∈ Z≥1, let K be a finite extension
of Qp, and let rec denote the local Langlands correspondence from isomorphism
classes of irreducible smooth representations of GLn(K) over C to isomorphism
classes of n-dimensional Frobenius semisimple Weil–Deligne representations of WK

defined in [HT01]. Fix an isomorphism ı : Qp → C. We define the local Langlands
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correspondence recp overQp by ı◦recp = rec◦ı. Then rp(π) := recp(π⊗| det |
(1−n)/2)

is independent of the choice of ı. In this paper we are mostly concerned with the
case that n = 2 and K = Qp.

1.13.3. Notation for duals. IfA is a topologicalO-module, we writeA∨ := Homcont
O (A,E/O)

for the Pontryagin dual of A. We apply this to O-modules that are either discrete
or profinite, so that the usual formalism of Pontryagin duality applies.

If A is a pseudocompactO-torsion free O-module, we write Ad := Homcont
O (A,O)

for its Schikhof dual.
If F is a free module of finite rank over a ring R, then we write F ∗ := HomR(F,R)

to denote its R-linear dual, which is again a free R-module of the same rank over
R as F .

If R is a commutative O-algebra, and if A is an R-module that is pseudocompact
and O-torsion free as an O-module, then we may form its Schikhof dual Ad, which
has a natural R-module structure via the transpose action, extending its O-module
structure. If F is a finite rank free R-module, then A ⊗R F is again an R-module
that is pseudocompact as an O-module (if F has rank n then it is non-canonically
isomorphic to a direct sum of n copies of A), and there is a canonical isomorphism

of R-modules (A⊗R F )
d ∼
−→ Ad ⊗R F

∗.

1.13.4. Group-theoretic notation. Throughout the paper we write G = GL2(Qp)
and K = GL2(Zp), and let Z = Z(G) denote the centre of G. We also let B denote
the Borel subgroup of G consisting of upper triangular matrices, and T denote the
diagonal torus contained in B.

If χ : T → E× is a continuous character, then we define the continuous induction
(IndGB χ)cont to be the E-vector space of continuous functions f : G→ E satisfying
the condition f(bg) = χ(b)f(g) for all b ∈ B and g ∈ G; it forms a G-representation
with respect to the right regular action. If χ is in fact a smooth character, then
we may also form the smooth induction (IndGB χ)sm; this is the E-subspace of

(IndGB χ)cont consisting of smooth functions, and is a G-subrepresentation of the
continuous induction.

If χ1 and χ2 are continuous characters of Q×
p , then the character χ1 ⊗ χ2 : T →

E× is defined via
(
a 0
0 d

)
7→ χ1(a)χ2(d). Any continuous E-valued character χ of T

is of this form, and χ is smooth if and only if χ1 and χ2 are.

2. Galois deformation rings and Hecke algebras

2.1. Galois deformation rings. Recall that we assume throughout the paper
that p is an odd prime. Fix a continuous representation r̄ : GQp → GL2(F), where
as before F/Fp is a finite extension. Possibly enlarging F, we fix a sufficiently large
extension E/Qp with ring of integers O and residue field F.

We will make the following assumption from now on.

2.2. Assumption. Assume that EndGQp
(r̄) = F, and that r̄ 6∼=

(
ω ∗
0 1

)
⊗ χ, for any

character χ : GQp → F×.

In particular this assumption implies that r̄ has a universal deformationO-algebraRp,
and that either r̄ is (absolutely) irreducible, or r̄ is a non-split extension of charac-
ters.

We begin by recalling the relationship between crystalline deformation rings
of r̄, and the representation theory of G := GL2(Qp) and K := GL2(Zp). Given
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a pair of integers a ∈ Z and b ∈ Z≥0, we let σa,b be the absolutely irreducible

E-representation deta⊗SymbE2 of K. Note that this is just the algebraic repre-
sentation of highest weight (a + b, a) with respect to the Borel subgroup given by
the upper-triangular matrices in G.

We say that a representation r : GQp → GL2(Qp) is crystalline of Hodge type

σ = σa,b if it is crystalline with Hodge–Tate weights (1 − a,−a − b),1 we write
Rp(σ), for the reduced, p-torsion free quotient of Rp corresponding to crystalline
deformations of Hodge type σ.

2.3. The morphism from the Hecke algebra to the deformation ring. We
briefly recall some results from [CEG+16, §4], specialised to the case of crystalline
representations of GL2(Qp).

Set σ = σa,b, and let H(σ) := EndG(c-Ind
G
K σ). The action of K on σ extends

to the action of G. This gives rise to the isomorphism of G-representations:

(c-IndGK 1)⊗ σ ∼= c-IndGK σ, f ⊗ v 7→ [g 7→ f(g)σ(g)v].

The map

(2.4) H(1)→ H(σ), φ 7→ φ⊗ idσ

is an isomorphism of E-algebras by Lemma 1.4 of [ST06]. Using the above iso-
morphism we will identify elements of H(σ) with E-valued K-biinvariant functions
on G, supported on finitely many double cosets.

2.5. Proposition. Let S ∈ H(σ) be the function supported on the double coset of( p 0
0 p

)
, with value p2a+b at

( p 0
0 p

)
, and let T ∈ H(σ) be the function supported on

the double coset2 of
(
p 0
0 1

)
, with value pa+b at

(
p 0
0 1

)
. Then H(σ) = E[S±1, T ] as an

E-algebra.

Proof. This is immediate from (2.4) and the Satake isomorphism. �

Let r, s be integers with r < s, and let t, d ∈ E with d ∈ E×. We let D :=
D(r, s, t, d) be the two-dimensional filtered ϕ-module that has e1, e2 as a basis of
its underlying E-vector space, has its E-linear Frobenius endomorphism ϕ being
given by

ϕ(e1) = e2, ϕ(e2) = −de1 + te2,

and has its Hodge filtration given by

FiliD = D if i ≤ r, FiliD = Ee1 if r + 1 ≤ i ≤ s, and FiliD = 0 if i > s.

We note that t is the trace and d is the determinant of ϕ on D, and both are
therefore determined uniquely by D. The same construction works if E is replaced
with an E-algebra A. We will still write D(r, s, t, d) for the resulting ϕ-module with
A-coefficients if the coefficient algebra is clear from the context.

2.6. Lemma. If V is an indecomposable 2-dimensional crystalline representation
of GQp over E with distinct Hodge–Tate weights (s, r) then there exists a unique
pair (t, d) ∈ E×E× such that Dcris(V ) ∼= D(r, s, t, d). Moreover, vp(d) = r+ s and
vp(t) ≥ r.

1Note that this convention agrees with those of [CEG+16] and [Eme11].
2The function supported on the double coset KgK with value 1 at g, viewed as an element of

H(1), acts on v ∈ V K by the formula [KgK]v =
∑

hK⊂KgK hv.
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Proof. This is well known, and is a straightforward computation using the fact
that Dcris(V ) is weakly admissible. For the sake of completeness, we sketch the
proof; the key fact one employs is that V 7→ Dcris(V ) is a fully faithful embedding
of the category of crystalline representations of GQp into the category of weakly
admissible filtered ϕ-modules. (Indeed, it induces an equivalence between these
two categories, but that more difficult fact isn’t needed for this computation.) We
choose e1 to be a basis for FilsDcris(V ); the assumption that V is indecomposable
implies that FilsDcris(V ) is not stable under ϕ, and so if we write e2 := ϕ(e1) then
e1, e2 is a basis for Dcris(V ), and ϕ has a matrix of the required form for a uniquely
determined t and d. The asserted relations between vp(t), vp(d), r, and s follow
from the weak admissibility of Dcris(V ). �

In fact, it will be helpful to state a generalisation of the previous result to the
context of finite dimensional E-algebras. (Note that the definition ofD(r, s, t, d) ex-
tends naturally to the case when t and d are taken to lie in such a finite-dimensional
algebra.)

2.7. Lemma. If A is an Artinian local E-algebra with residue field E′, and if
VA is a crystalline representation of rank two over A whose associated residual
representation VE′ := E′⊗AVA is indecomposable with distinct Hodge–Tate weights
(s, r), and if Dcris(VA) denotes the filtered ϕ-module associated to VA, then there
exists a unique pair (t, d) ∈ A×A× such that Dcris(VA) ∼= D(r, s, t, d).

Proof. Choose a basis e1 for Fil
sDcris(VE′), and choose e1 ∈ FilsDcris(VA) lifting e1.

By Nakayama’s lemma, e1 generates FilsDcris(VA), and by considering the length
of FilsDcris(VA) as an E-vector space, we see that FilsDcris(VA) is a free A-module
of rank one.

Let e2 = φ(e1), and write e2 for the image of e2 in Dcris(VE′ ). As in the proof
of Lemma 2.6, e1, e2 is a basis of Dcris(VE′), and thus by another application of
Nakayama’s lemma, e1, e2 are an A-basis of Dcris(VA). The matrix of φ in this basis
is evidently of the required form. �

2.8. Corollary. If V is an indecomposable 2-dimensional crystalline representa-
tion of GQp over E with distinct Hodge–Tate weights (s, r), for which Dcris(V ) ∼=
D(r, s, t0, d0), then the formal crystalline deformation ring of V is naturally iso-
morphic to E[[t− t0, d− d0]].

Proof. This is immediate from Lemma 2.7, and the fact that V 7→ Dcris(V ) is an
equivalence of categories. �

Suppose that r̄ has a crystalline lift of Hodge type σ. By [CEG+16, Thm. 4.1]
there is a natural E-algebra homomorphism η : H(σ) → Rp(σ)[1/p] interpolating
a normalized local Langlands correspondence rp (introduced in Section 1.13). In
order to characterise this map, one considers the composite

H(σ)
η
−→ Rp(σ)[1/p] →֒

(
Rp(σ)

)an
,

where
(
Rp(σ)

)an
denotes the ring of rigid analytic functions on the rigid analytic

generic fibre of Spf Rp(σ). Over
(
Rp(σ)

)an
, we may consider the universal filtered ϕ-

module, and the underlying universal Weil group representation (given by forgetting
the filtration). The trace and determinant of Frobenius on this representation are

certain elements of
(
Rp(σ)

)an
(which in fact lie in Rp(σ)[1/p]), and η is characterised
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by the fact that it identifies appropriately chosen generators of H(σ) with this
universal trace and determinant.

It is straightforward to give explicit formulas for these generators of H(σ), but
we have found it interesting (in part with an eye to making arguments in more
general contexts) to also derive the facts that we need without using such explicit
formulas.

Regarding explicit formulas, we have the following result.

2.9. Proposition. The elements η(S), η(T ) ∈ Rp(σ)[1/p] are characterised by the

following property: if x : Rp(σ)[1/p]→ Qp is an E-algebra morphism, and Vx is the

corresponding two-dimensional Qp-representation of GQp , then x(η(T )) = pa+bt,

and x(η(S)) = p2a+b−1d, where t, d are respectively the trace and the determinant
of ϕ on Dcris(Vx).

Proof. Lemma 2.7 implies that there are uniquely determined t, d ∈ Qp, such that
Dcris(Vx) ∼= D(r, s, t, d), where r = −a − b and s = 1 − a. The Weil–Deligne rep-
resentation associated to D(r, s, t, d) is an unramified 2-dimensional representation
of WQp , on which the geometric Frobenius Frobp acts by the matrix of crystalline

Frobenius on D(r, s, t, d), which is
(
0 −d
1 t

)
. Thus

WD(Dcris(Vx)) = recp(χ1)⊕ recp(χ2),

where χ1, χ2 : Q×
p → Q

×

p are unramified characters, such that χ1(p) + χ2(p) = t
and χ1(p)χ2(p) = d.

If π = (IndGB | � |χ1 ⊗ χ2)sm then π ⊗ | det |−1/2 ∼= ιGB(χ1 ⊗ χ2), where ι
G
B denotes

smooth normalized parabolic induction.Then

rp(π) = recp(ι
G
B(χ1 ⊗ χ2)) = recp(χ1)⊕ recp(χ2).

The action of H(1) on πK is given by sending [K
(
p 0
0 1

)
K] to p|p|χ1(p) + χ2(p) = t

and [K
( p 0
0 p

)
K] to |p|χ1(p)χ2(p) = p−1d. By [CEG+16, Thm. 4.1] and the fact

that the evident isomorphism between πK = HomK(1,1⊗ π) and HomK(σ, σ ⊗ π)
is equivariant with respect to the actions by H(1) and H(σ) via the isomorphism
(2.4), we see that

(2.10) x(η(T )) = p−rt = pa+bt, x(η(S)) = p−r−sd = p2a+b−1d.

Since Rp(σ)[1/p] is a reduced Jacobson ring, the formulas determine η(T ) and η(S)
uniquely. �

2.11. Corollary. η(S) and η(T ) are contained in the normalisation of Rp(σ) in
Rp(σ)[1/p].

Proof. It follows from (2.10) and Lemma 2.6 that for all closed points x : Rp(σ)[1/p]→

Qp, we have x(η(S)), x(η(T )) ∈ Zp. The result follows from [dJ95, Prop. 7.3.6]. �

A key fact that we will use, which is special to our context of 2-dimensional
crystalline representations of GQp , is that the morphism

(Spf R(σ))an →
(
SpecH(σ)

)an

induced by η is an open immersion of rigid analytic spaces, where the superscript
an signifies the associated rigid analytic space. We prove this statement (in its
infinitesimal form) in the following result.
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2.12. Lemma. Let σ = σa,b with a ∈ Z and b ∈ Z≥0. Then

dimκ(y) κ(y)⊗H(σ) Rp(σ)[1/p] ≤ 1, ∀y ∈ m-SpecH(σ).

Proof. Let us assume that A := κ(y) ⊗H(σ) Rp(σ)[1/p] is non-zero. If x, x′ ∈
m-SpecA then Frobenius on Dcris(Vx) and Dcris(Vx′) will have the same trace and
determinant (since, by Proposition 2.9, these are determined by the images of T
and S in κ(y)); denote them by t and d. It follows from Lemma 2.6 that Dcris(Vx) ∼=
Dcris(Vx′) and hence x = x′. Since D(r, s, t, d) can be constructed over κ(y) (as t
and d lie in κ(y)), so can Vx and thus κ(x) = κ(y). To complete the proof of the
lemma it is enough to show that the map my → mx/m

2
x is surjective. Since we

know that Rp(σ)[1/p] is a regular ring of dimension 2 by [Kis08, Thm. 3.3.8], it is
enough to construct a 2-dimensional family of deformations of Dcris(Vx) to the ring
of dual numbers κ(y)[ǫ], which induces a non-trivial deformation of the images of
S, T . That this is possible is immediate from Corollary 2.8 and Proposition 2.9. �

2.13. Proposition. Let σ = σa,b with a ∈ Z and b ∈ Z≥0. Let y ∈ m-SpecH(σ)
be the image of x ∈ m-SpecRp(σ)[1/p] under the morphism induced by η : H(σ)→
Rp(σ)[1/p]. Then η induces an isomorphism of completions:

Ĥ(σ)
my

∼=
−→ ̂Rp(σ)[1/p]mx .

Proof. This can be proved by explicit computation, taking into account Corol-
lary 2.8 and Proposition 2.9.

We can also deduce it in more pure thought manner as follows: Since H(σ) ∼=
E[T, S±1] by Proposition 2.5 and Rp(σ)[1/p] is a regular ring of dimension 2 as in
the preceding proof, both completions are regular rings of dimension 2. It follows
from Lemma 2.12 that κ(y) = κ(x) and the map induces a surjection on tangent
spaces. Hence the map is an isomorphism. �

If 0 ≤ b ≤ p − 1, then σa,b has a unique (up to homothety) K-invariant lattice

σ◦
a,b, which is isomorphic to deta⊗SymbO2 as a K-representation. We let σa,b be

its reduction modulo ̟. Then σa,b is the absolutely irreducible F-representation
deta⊗SymbF2 of GL2(Fp); note that every (absolutely) irreducible F-representation
of GL2(Fp) is of this form for some uniquely determined a, b with 0 ≤ a < p − 1.
We refer to such representations as Serre weights.

If σ = σa,b is a Serre weight with the property that r̄ has a lift r : GQp → GL2(Zp)
that is crystalline of Hodge type σ = σa,b, then we say that σ is a Serre weight of r̄.

Again we consider σ = σa,b with any a ∈ Z and b ∈ Z≥0. Let

σ◦ := deta ⊗ SymbO2, σ := deta ⊗ SymbF2

so that σ◦/̟ = σ. We let

H(σ◦) := EndG(c-Ind
G
K σ

◦), H(σ) := EndG(c-Ind
G
K σ).

Note that H(σ◦) is p-torsion free, since c-IndGK σ
◦ is.

2.14. Lemma. (1) For any σ, there is a natural isomorphism H(σ) ∼= H(σ◦)[1/p],
and a natural inclusion H(σ◦)/̟ →֒ H(σ). Furthermore, the O-subalgebra O[S±1, T ]
of H(σ) is contained in H(σ◦).

(2) If, in addition σ = σa,b with 0 ≤ b ≤ p − 1, then O[S±1, T ] = H(σ◦), and
there is a natural isomorphism H(σ◦)/̟ ∼= H(σ).
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Proof. The isomorphism of (1) follows immediately from the fact that c-IndGK σ
◦ is a

finitely generatedO[G]-module. To see the claimed inclusion, apply HomG(c-Ind
G
K σ

◦,−)
to the exact sequence

0→ c-IndGK σ
◦ ̟
→ c-IndGK σ

◦ → c-IndGK σ → 0

so as to obtain an injective map

H(σ◦)/̟ →֒ HomG(c-Ind
G
K σ

◦, c-IndGK σ)
∼= H(σ).

To see the final claim of (1), we recall that from (2.4) and Frobenius reciprocity we
have natural isomorphisms

H(1) ≃ H(σ) ≃ HomK(σ, c-IndGK σ);

the image of φ ∈ H(1) under the composite map sends v ∈ σ to the function
g 7→ φ(g−1)σ(g)v. A direct computation of the actions of S, T on the standard basis

of σ◦ then verifies that S±1 and T lie in the O-submodule HomK(σ◦, c-IndGK σ
◦) of

H(σ).
To prove (2), we note that it follows from [Bre03b, §2] and [BL94] that the

composite F[S±1, T ] → H(σ◦)/̟ → H(σ) is an isomorphism. Since the second of
these maps is injective, by (1), we conclude that each of these maps is in fact an
isomorphism, confirming the second claim of (2). Furthermore, this shows that the
inclusion O[S±1, T ] →֒ H(σ◦) of (1) becomes an isomorphism both after reducing
modulo ̟ as well as after inverting ̟ (because H(σ) is generated by S±1 and T
by Proposition 2.5). Thus it is an isomorphism, completing the proof of (2). �

The following lemma is well known, but for lack of a convenient reference we
sketch a proof.

2.15. Lemma. Assume that r̄ satisfies Assumption 2.2. Then r̄ has at most two
Serre weights. Furthermore, if we let σ = σa,b be a Serre weight of r̄ then the
following hold:

(1) The deformation ring Rp(σ) is formally smooth of relative dimension 2
over O.

(2) The morphism of E-algebras η : H(σ) → Rp(σ)[1/p] induces a morphism
of O-algebras H(σ◦)→ Rp(σ).

(3) The character ω1−2a−b det r̄ is unramified, and if we let
• µ = (ω1−2a−b det r̄)(Frobp), and
• if r̄ is irreducible, then λ = 0, and

• if r̄ is reducible, then we can write r̄ ∼= ωa+b ⊗

(
χ1 ∗
0 χ2ω

−b−1

)
for

unramified characters χ1, χ2, and let λ = χ1(Frobp),
then the composition

α : H(σ◦)→ Rp(σ)→ F

maps T 7→ λ and S 7→ µ.

(4) Let Ĥ(σ◦) be the completion of H(σ◦) with respect to the kernel of α.
Then the map H(σ◦)→ Rp(σ) induces an isomorphism of local O-algebras

Ĥ(σ◦)
∼=
→ Rp(σ). In coordinates, we have Rp(σ) = O[[S − µ̃, T − λ̃]], where

the tilde denotes the Teichmüller lift.
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(5) If we set π := (c-IndGK σ) ⊗H(σ),α F, then π is an absolutely irreducible
representation of G, and is independent of the choice of Serre weight σ
of r̄.

Proof. The claim that r̄ has at most two Serre weights is immediate from the proof
of [BDJ10, Thm. 3.17], which explicitly describes the Serre weights of r̄. Concretely,
in the case at hand these weights are as follows (see also the discussion of [Eme11,
§3.5], which uses the same conventions as this paper). If r̄ is irreducible, then we
may write

r̄|IQp
∼= ωm−1 ⊗

(
ωn+1
2 0

0 ω
p(n+1)
2

)
,

where ω2 is a fundamental character of niveau 2, and 0 ≤ m < p−1, 0 ≤ n ≤ p−2.
Then the Serre weights of r̄ are σm,n and σm+n,p−1−n (with m + n taken modulo
p− 1). If r̄ is reducible, then we may write

r̄|IQp
∼= ωm+n ⊗

(
1 ∗
0 ω−n−1

)
,

where 0 ≤ m < p− 1, 0 ≤ n < p− 1. Then (under Assumption 2.2) if n 6= 0, the
unique Serre weight of r̄ is σm,n, while if n = 0, then σm,0 and σm,p−1 are the two
Serre weights of r̄.

Part (2) follows from (1) by Lemma 2.14 (2) and Corollary 2.11. We prove
parts (1), (3) and (4) simultaneously. If σ is not of the form σa,p−1, the claims
about Rp(σ) are a standard consequence of (unipotent) Fontaine–Laffaille theory;
for example, the irreducible case withO = Zp is [FM95, Thm. B2], and the reducible
case follows in the same way. The key point is that the corresponding weakly
admissible modules are either reducible, or are uniquely determined by the trace
and determinant of ϕ, by Lemma 2.6. Concretely, if r̄ is irreducible, then the
crystalline lifts of r̄ of Hodge type σa,b correspond exactly to the weakly admissible

modules D(−(a + b), 1 − a, t, d) where vp(t) > −a − b and p2a+b−1d = µ. The
claimed description of the deformation ring then follows.

Similarly, if r̄ is reducible, then it follows from Fontaine–Laffaille theory (and
Assumption 2.2) that any crystalline lift of Hodge type σa,b is necessarily reducible
and indecomposable, and one finds that these crystalline lifts correspond precisely
to those weakly admissible modules withD(−(a+b), 1−a, t, d) where vp(t) = −a−b,

pa+bt = λ, and p2a+b−1d = µ.
This leaves only the case that σ is of the form σa,p−1. In this case the result is

immediate from the main result of [BLZ04], which shows that the above description
of the weakly admissible modules continues to hold.

Finally, (5) is immediate from the main results of [BL94, Bre03a], together with
the explicit description of σ, λ, established above. More precisely, in the case
that r̄ is irreducible, the absolute irreducibility of π is [Bre03a, Thm. 1.1], and its
independence of the choice of σ is [Bre03a, Thm. 1.3]. If r̄ is reducible and has
only a single Serre weight, then the absolute irreducibility of π is [BL94, Thm.
33(2)]. In the remaining case that r̄ is reducible and has two Serre weights, then
Assumption 2.2 together with the explicit description of λ, µ above implies that
λ2 6= µ, and the absolute irreducibility of π is again [BL94, Thm. 33(2)]. The
independence of π of the choice of σ is [BL94, Cor. 36(2)(b)]. �
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2.16.Remark. It follows from the explicit description of π that it is either a principal
series representation or supersingular, and not either one-dimensional or an element
of the special series. (This would no longer be the case if we allowed r̄ to be a twist
of an extension of the trivial character by the mod p cyclotomic character, when
in fact π would be an extension of a one-dimensional representation and a special
representation, which would also depend on the Serre weight if r̄ is peu ramifié.)

2.17. Remark. If π has central character ψ, then det r̄ = ψω−1.

3. Patched modules and arithmetic actions

We now introduce the notion of an arithmetic action of (a power series ring over)
Rp on anO[G]-module. It is not obvious from the definition that any examples exist,
but we will explain later in this section how to deduce the existence of an example
from the results of [CEG+16] (that is, from the Taylor–Wiles patching method).
The rest of the paper is devoted to showing a uniqueness result for such actions,
and thus deducing that they encode the p-adic local Langlands correspondence
for GL2(Qp). We anticipate that the axiomatic approach taken here will be useful
in other contexts (for example, for proving local-global compatibility in the p-
adic Langlands correspondence for GL2(Qp) in global settings other than those
considered in [Eme11] or [CEG+16]).

3.1. Axioms. Fix an integer d ≥ 0, and set R∞ := Rp⊗̂OO[[x1, . . . , xd]]. Then an
O[G]-module with an arithmetic action of R∞ is by definition a non-zero R∞[G]-
module M∞ satisfying the following axioms.

(AA1) M∞ is a finitely generated R∞[[K]]-module.
(AA2) M∞ is projective in the category of pseudocompact O[[K]]-modules.

Let σ◦ be a K-stable O-lattice in σ = σa,b. Set

M∞(σ◦) :=
(
Homcont

O[[K]](M∞, (σ
◦)d)

)d
,

where we are considering continuous homomorphisms for the profinite topology on
M∞ and the p-adic topology on (σ◦)d. This is a finitely generated R∞-module by
(AA1) and [Paš15, Cor. 2.5].

(AA3) For any σ, the action of R∞ onM∞(σ◦) factors through Rp(σ)[[x1, . . . , xd]].
Furthermore,M∞(σ◦) is maximal Cohen–Macaulay overRp(σ)[[x1, . . . , xd]],
and the Rp(σ)[[x1, . . . , xd]][1/p]-moduleM∞(σ◦)[1/p] is locally free of rank
one over its support.

For each σ◦, we have a natural action of H(σ◦) on M∞(σ◦), and thus of H(σ) on
M∞(σ◦)[1/p].

(AA4) For any σ, the action of H(σ) on M∞(σ◦)[1/p] is given by the composite

H(σ)
η
→ Rp(σ)[1/p]→ Rp(σ)[[x1, . . . , xd]][1/p],

where H(σ)
η
→ Rp(σ)[1/p] is defined in [CEG+16, Thm. 4.1].

3.2. Remark. While these axioms may appear somewhat mysterious, as we will see
in the next subsection they arise very naturally in the constructions of [CEG+16].
(Indeed, those constructions give modules M∞ satisfying obvious analogues of the
above conditions for GLn(K) for any finite extension K/Qp; however, our argu-
ments in the rest of the paper will only apply to the case of GL2(Qp).)
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In these examples, axioms (AA1) and (AA2) essentially follow from the facts
that spaces of automorphic forms are finite-dimensional, and that the cohomology
of zero-dimensional Shimura varieties is concentrated in a single degree (degree
zero). Axioms (AA3) and (AA4) come from the existence of Galois representations
attached to automorphic forms on unitary groups, and from local-global compati-
bility at p for automorphic forms of level prime to p. We explicate (AA3) further
in the following remark.

The following remark explains how axiom (AA4) is related to Breuil’s original
formulation of the p-adic Langlands correspondence in terms of unitary completions
of locally algebraic vectors; see also the proof of Proposition 6.17 below.

3.3. Remark. Axiom (AA4) is, in the presence of axioms (AA1)-(AA3), equivalent
to an alternative axiom (AA4’), which expresses a pointwise compatibility with
the classical local Langlands correspondence, as we now explain. Write R∞(σ) :=
Rp(σ)[[x1, . . . , xd]]. If y is a maximal ideal of R∞(σ)[1/p] in the support ofM∞(σ◦),
then we write

Πy := Homcont
O (M∞ ⊗R∞(σ),y Oκ(y), E).

We write x for the corresponding maximal ideal of Rp(σ)[1/p], rx for the defor-
mation of r̄ corresponding to x, and set πsm(rx) := r−1

p (WD(rx)
F−ss), which is

the smooth representation of G corresponding to the Weil–Deligne representation
associated to rx by the classical Langlands correspondence rp (normalised as in Sec-
tion 1.13). We write πalg(rx) for the algebraic representation of G whose restriction
to K is equal to σ.

(AA4’) For any σ and for any y and x as above, there is a non-zero G-equivariant
map

πsm(rx)⊗ πalg(rx)→ Πl.alg
y .

That (AA1)-(AA4) imply (AA4’) is a straightforward consequence of the defining
property of the map η. Conversely, assume (AA1)-(AA3) and (AA4’), and write
R∞(σ) for R∞(σ)/Ann(M∞(σ◦)). It follows from (AA3) that the natural map
R∞(σ)[1/p]→ EndR∞(σ)[1/p](M∞(σ◦)[1/p]) is an isomorphism, as it is injective and
the cokernel is not supported on any maximal ideal of R∞(σ)[1/p]. In particular
the action of H(σ◦) onM∞(σ◦) induces a homomorphism η′ : H(σ)→ R∞(σ)[1/p].
We have to show that this agrees with the map induced by η.

It follows from (AA4’) and the defining property of η that η and η′ agree mod-
ulo every maximal ideal of Rp(σ)[1/p] in the support of M∞(σ◦). It follows from

(AA3) that R∞(σ)[1/p] is a union of irreducible components of R∞(σ)[1/p]. Since
R∞(σ)[1/p] is reduced we conclude that R∞(σ)[1/p] is reduced, thus the intersec-
tion of all maximal ideals is equal to zero. Hence (AA4) holds.

3.4. Existence of a patched module M∞. We now briefly recall some of main
results of [CEG+16], specialised to the case of two-dimensional representations. We
emphasise that these results use only the Taylor–Wiles–Kisin patching method, and
use nothing about the p-adic Langlands correspondence for GL2(Qp). (We should
perhaps remark, though, that we do make implicit use of the results of [BLGGT14]
in the globalisation part of the argument, and thus of the Taylor–Wiles–Kisin
method for unitary groups of rank 4, and not just for U(2).) We freely use the
notation of [CEG+16].

Enlarging F if necessary, we see from [CEG+16, Lem. 2.2] that the hypotheses
on r̄ at the start of [CEG+16, §2.1] are automatically satisfied. We fix the choice
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of weight ξ and inertial type τ in [CEG+16, §2.3] in the following way: we take τ
to be trivial, and we take ξ to be the weight corresponding to a Serre weight of r̄,
as in Lemma 2.15.

With this choice, the modification of the Taylor–Wiles–Kisin method carried
out in [CEG+16, §2.6] produces for some d > 0 an R∞-module M∞ with an action
of G. (Note that for our choice of r̄, ξ and τ , the various framed deformation
rings appearing in [CEG+16] are formal power series rings over O, and the framed
deformation ring of r̄ is formally smooth over Rp, so all of these rings are absorbed
into the power series ring O[[x1, . . . , xd]]. The module M∞ is patched from the
cohomology of a definite unitary group over some totally real field in which p splits
completely.)

This R∞[G]-module automatically satisfies the axioms (AA1)–(AA4) above. In-
deed, (AA1) and (AA2) follow from [CEG+16, Prop. 2.10], and (AA3) follows
from [CEG+16, Lem. 4.17(1), 4.18(1)]. Finally, (AA4) is [CEG+16, Thm. 4.19].

4. Existence and uniqueness of arithmetic actions

We fix an O[G]-module M∞ with an arithmetic action of R∞ in the sense of
Section 3.1.

4.1. Serre weights and cosocles. Now let σ = σa,b be a Serre weight, and let
σ◦ be a K-stable O-lattice in σa,b, so that σ◦/̟σ◦ = σ. We define M∞(σ) =

Homcont
O[[K]](M∞, (σ)

∨)∨, so that by (AA2) we have M∞(σ) = M∞(σ◦)/̟M∞(σ◦).

By definition, the deformation ring Rp(σ) = Rp(σa,b) is non-zero if and only if σ is
a Serre weight of r̄. Set R∞(σ) = Rp(σ)[[x1, . . . , xd]].

We let π denote the absolutely irreducible F-representation of G associated to r̄
via Lemma 2.15 (5).

4.2. Proposition. (1) We have M∞(σ◦) 6= 0 if and only if σ is a Serre weight
of r̄, in which case M∞(σ◦) is a free R∞(σ)-module of rank one.

(2) If σ is a Serre weight of r̄ then the action of H(σ) onM∞(σ) factors through
the natural map Rp(σ)/̟ → R∞(σ)/̟, and M∞(σ) is a flat H(σ)-module.

(3) If π′ is an irreducible smooth F-representation of G then we have

HomG(π
′,M∨

∞) 6= 0

if and only if π′ is isomorphic to π.

Proof. It follows from (AA3) that M∞(σ◦) 6= 0 only if Rp(σ)[1/p] 6= 0, which
is equivalent to σ being a Serre weight of r̄. In this case, since σ = σa,b with
0 ≤ b ≤ p − 1, R∞(σ) is formally smooth over O by Lemma 2.15, so it follows
from (AA3) and the Auslander–Buchsbaum theorem thatM∞(σ◦) is a free R∞(σ)-
module of finite rank, and that M∞(σ◦)[1/p] is a locally free R∞(σ)[1/p]-module
of rank 1. Thus M∞(σ◦) is free of rank one over R∞(σ). This proves the “only if”
direction of (1).

For (2), note that M∞(σ◦) 6= 0 if and only if M∞(σ) 6= 0, so we may assume
that M∞(σ◦) 6= 0. The first part of (2) follows from (AA4) together with Lem-
mas 2.15 (2) and 2.14 (2). For the remaining part of (2), note that Rp(σ)/̟ is flat
over H(σ) by Lemmas 2.14 and 2.15, and M∞(σ) is flat over Rp(σ)/̟ by the only
if part of (1), as required.

To prove (3) we first note that it is enough to prove the statement for absolutely
irreducible π′ as we may enlarge the field F. Let us assume that π′ is absolutely
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irreducible and let σ′ be an irreducible representation of K contained in the socle
of π′. It follows from [BL94, Bre03a] that the surjection c-IndGK σ

′
։ π′ factors

through the map

(4.3) (c-IndGK σ
′)⊗H(σ′),α′ F ։ π′

where α′ : H(σ′) → F is given by the action of H(σ′) on the one dimensional
F-vector space HomK(σ′, π′). Moreover, (4.3) is an isomorphism unless π′ is a
character or special series. Since

M∞(σ′) ∼= HomK(σ′,M∨
∞)∨ ∼= HomG(c-Ind

G
K σ

′,M∨
∞)∨,

from (4.3) we obtain a surjection of R∞(σ′)-modules

M∞(σ′)⊗H(σ′),α′ F ∼= HomG(c-Ind
G
K σ

′ ⊗H(σ′),α′ F,M∨
∞)∨ ։ HomG(π

′,M∨
∞)∨,

which moreover is an isomorphism if π′ is not a character or special series. Thus
if HomG(π

′,M∨
∞) 6= 0 then we deduce from the previous displayed expression that

M∞(σ′) ⊗H(σ′),α′ F 6= 0. In particular, M∞(σ′) 6= 0 and hence σ′ is a Serre weight
for r̄ by the only if part of (1).

We claim that α′ coincides with the morphism α of Lemma 2.15 (3) (with
σ′ in place of σ). To see this, note that by the only if part of (1), we have
that

(
Rp(σ

′)/̟
)
⊗H(σ′),α′ F 6= 0, and hence by Lemma 2.15 (4), we find that

Ĥ(σ′) ⊗H(σ′),α′ F 6= 0, where Ĥ(σ′) denotes the completion of H(σ′) with respect
to the kernel of the morphism α. This proves that α and α′ coincide.

Part (5) of Lemma 2.15 now implies that π ∼= (c-IndGK σ
′) ⊗H(σ′),α′ F. Hence,

(4.3) gives us a G-equivariant surjection π ։ π′, which is an isomorphism as π is
irreducible.

Conversely, it follows from from (AA1) that there is an irreducible smooth F-
representation π′ of G such that HomG(π

′,M∨
∞) is non-zero; we have just seen

that π ∼= π′, so that HomG(π,M
∨
∞) 6= 0, as required.

Finally, suppose that σ is a Serre weight of r̄. Then as above we have an iso-
morphism of R∞(σ)-modules

M∞(σ)⊗H(σ),α F ∼= HomG(π,M
∨
∞)∨ 6= 0

so that M∞(σ) 6= 0. This completes the proof of the “if” direction of (1). �

4.4. Smooth and admissible representations. We record a few definitions,
following Section 2 of [Paš13]. Let (R,m) be a complete local noetherian O-algebra
with residue field F. Then ModsmG (R) is the full subcategory of the category of
R[G]-modules consisting of smooth objects. More precisely, these are objects V
such that

V =
⋃

H,n

V H [mn],

where the union is taken over open compact subgroups H ⊂ G and over positive
integers n.

We say that an object V of ModsmG (R) is admissible if V H [mn] is a finitely
generated R-module for every compact open subgroup H ⊂ G and every n ≥ 1.
Moreover, V is called locally admissible if, for every v ∈ V , the smallest R[G]-

submodule of V containing v is admissible. We let Modl.admG (R) denote the full
subcategory of ModsmG (R) consisting of locally admissible representations.
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The categories ModsmG (R) and Modl.admG (R) are abelian (see [Eme10] for the
second one) and have enough injectives.

4.5. Definition. (1) A monomorphism ι : N →֒ M in an abelian category is
called essential if, for every non-zero subobject M ′ ⊂ M , ι(N) ∩ M ′ is
non-zero.

(2) An injective envelope of an object N of an abelian category is an essential
monomorphism ι : N →֒ I with I an injective object of the abelian category.

If they exist, injective envelopes are unique up to (non-unique) isomorphism. By
Lemma 2.3 of [Paš13], the category ModsmG (R) admits injective envelopes. The

category Modl.admG (R) also admits injective envelopes. (This follows from [Paš10,

Lem. 3.2] and the fact that the inclusion of Modl.admG (R) into ModsmG (R) has a right
adjoint, namely the functor to which any smooth G-representation associates its
maximal locally admissible subrepresentation.)

4.6. Lemma. If V is a locally admissible representation of G, then the inclusion
socG(V ) →֒ V is essential.

Proof. Any non-zero subrepresentation of V contains a non-zero finitely gener-
ated subrepresentation. Thus it suffices to show that any non-zero finitely gen-
erated subrepresentation W of V has a non-zero intersection with socG(V ). Since
socG(V )∩W = socG(W ), it suffices to show that any such subrepresentation has a
non-zero socle. This follows from the fact that every finitely generated admissible
representation of G is of finite length by [Eme10, Thm. 2.3.8]. �

4.7. Definition. (1) An epimorphism q : M ։ N in an abelian category is
called essential if a morphism s : M ′ → M is an epimorphism whenever
q ◦ s is an epimorphism.

(2) A projective envelope of an object N of an abelian category is an essential
epimorphism q : P ։ N with P a projective object in the abelian category.

Pontryagin duality reverses arrows, so it exchanges injective and projective objects
as well as injective and projective envelopes.

4.8. Projectivity of M∞. Our first aim is to show thatM∨
∞ is an injective locally

admissible representation of G.

4.9. Lemma. M∨
∞ is an admissible R∞-representation, and thus in particular lies

in Modl.admG (O).

Proof. Dually it is enough by [Eme10, Lem. 2.2.11] to show that M∞ is a finitely
generated R∞[[K]]-module, which is (AA1). �

4.10. Lemma. Let m be a maximal ideal of H(σ) with residue field κ(m). Then

Tor
H(σ)
i (c-IndGK σ, κ(m)) = 0, ∀i > 0.

Proof. Since the map F → F is faithfully flat, we can and do assume that F is
algebraically closed. Since H(σ) = F[S±1, T ], we have m = (S − µ, T − λ) for some
µ ∈ F×, λ ∈ F. Since the sequence S − µ, T − λ is regular in H(σ), the Koszul
complex K• associated to it is a resolution of κ(m) by free H(σ)-modules, [Mat89,

Thm. 16.5 (i)]. Thus the complex K• ⊗H(σ) c-Ind
G
K σ computes the Tor-groups we

are after, and to verify the claim it is enough to show that the sequence S−µ, T −λ
is regular on c-IndGK σ.
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If f ∈ c-IndGK σ then (Sf)(g) = f(gz), where z =
( p 0
0 p

)
. Since such an f is

supported only on finitely many cosets K\G, we deduce that the map

c-IndGK σ
S−µ
−→ c-IndGK σ

is injective. The quotient is isomorphic to c-IndGZK σ, where z acts on σ by µ. It

follows from the proof of [BL94, Thm. 19] that c-IndGZK σ is a free F[T ]-module.
Thus the map

c-IndGZK σ
T−λ
−→ c-IndGZK σ

is injective, and the sequence S − µ, T − λ is regular on c-IndGK σ, as required. �

4.11. Lemma. Let m be a maximal ideal of H(σ). Then

ExtiG
(
κ(m)⊗H(σ) c-Ind

G
K σ,M

∨
∞

)
= 0, ∀i ≥ 1,

where the Ext-groups are computed in ModsmG (O).

Proof. We first prove that ExtiG
(
c-IndGK σ,M

∨
∞

)
= 0, for all i ≥ 1. Let M∨

∞ →֒ J•

be an injective resolution of M∨
∞ in ModsmG (O). Since

HomK(τ, J |K) ∼= HomG(c-Ind
G
K τ, J)

and the functor c-IndGK is exact, the restriction of an injective object in ModsmG (O)
to K is injective in ModsmK (O). Thus (J•)|K is an injective resolution of M∨

∞|K in

ModsmK (O). Since HomG(c-Ind
G
K σ, J

•) ∼= HomK(σ, (J•)|K), we conclude that we
have natural isomorphisms

ExtiG
(
c-IndGK σ,M

∨
∞

)
∼= ExtiK

(
σ,M∨

∞

)
, ∀i ≥ 0.

Since M∞ is a projective O[[K]]-module by (AA2), M∨
∞ is injective in ModsmK (O),

and thus the Ext-groups vanish as claimed.
Let F• ։ κ(m) be a resolution of κ(m) by finite free H(σ)-modules. Lemma 4.10

implies that the complex F• ⊗H(σ) c-Ind
G
K σ is a resolution of κ(m)⊗H(σ) c-Ind

G
K σ

by acyclic objects for the functor HomG(∗,M
∨
∞). We conclude that the cohomology

of the complex

HomG(F• ⊗H(σ) c-Ind
G
K σ,M

∨
∞)

computes the groups ExtiG
(
κ(m)⊗H(σ) c-Ind

G
K σ,M

∨
∞

)
. We may think of the tran-

sition maps in F• as matrices with entries in H(σ). The functor HomG(∗,M
∨
∞)∨

transposes these matrices twice, thus we get an isomorphism of complexes:

HomG(F•⊗H(σ)c-Ind
G
K σ,M

∨
∞)∨ ∼= F•⊗H(σ)HomG(c-Ind

G
K σ,M

∨
∞)∨ ∼= F•⊗H(σ)M∞(σ).

The above isomorphism induces a natural isomorphism
(
ExtiG

(
κ(m)⊗H(σ) c-Ind

G
K σ,M

∨
∞

))∨
∼= Tor

H(σ)
i

(
κ(m),M∞(σ)

)
, ∀i ≥ 0.

The isomorphism implies the assertion, as M∞(σ) is a flat H(σ)-module by Propo-
sition 4.2 (2). �

4.12. Lemma. Let y : H(σ)→ F′ be a homomorphism of F-algebras, where F′ is a

finite field extension of F. Let λ′ := F′ ⊗H(σ),y c-Ind
G
K σ and let λ be an absolutely

irreducible F-representation of G, which is either principal series or supersingular.
If λ is a subquotient of λ′ then λ′ is isomorphic to a direct sum of finitely many
copies of λ.
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Proof. In the course of the proof we will use the following fact repeatedly: if A and
B are F-representations of G and A is finitely generated as an F[G]-module then:

(4.13) HomG(A,B) ⊗F F ∼= HomG(A⊗F F, B ⊗F F),

where F denotes the algebraic closure of F, see [Paš13, Lem. 5.1]. Then

(4.14) F⊗F λ
′ ∼= F⊗F F

′ ⊗H(σ),y c-Ind
G
K σ
∼=

⊕

ι:F′→F

F⊗H(σ),ι◦y c-Ind
G
K σ,

where the sum is taken over F-algebra homomorphisms ι : F′ → F. By the classifi-
cation theorems of Barthel–Livne [BL94] and Breuil [Bre03a], each representation

F⊗H(σ),ι◦y c-Ind
G
K σ is either irreducible, an extension of a special series by a char-

acter, or an extension of a character by a special series. Since λ is a subquotient of
λ′ by assumption, λ⊗F F is a subquotient of λ′ ⊗F F, and since λ is neither special
series nor a character, we deduce that

λ⊗F F ∼= F⊗H(σ),ι◦y c-Ind
G
K σ,

for some embedding ι : F′ →֒ F. For every τ ∈ Gal(F/F), we have

F⊗H(σ),τ◦ι◦y c-Ind
G
K σ
∼= F⊗

F,τ (F⊗H(σ),ι◦y c-Ind
G
K σ)

∼= F⊗
F,τ (F⊗F λ) ∼= F⊗F λ.

Hence all the summands in (4.14) are isomorphic to λ⊗F F. It follows from (4.13)
that λ′ is isomorphic to a direct sum of copies of λ, as required. �

4.15. Theorem. M∨
∞ is an injective object in Modl.admG (O).

Proof. Let M∨
∞ →֒ J be an injective envelope of M∨

∞ in Modl.admG (O). Lemma 4.6
shows that the composition socGM

∨
∞ →֒ M∨

∞ →֒ J is an essential monomorphism,
and thus induces an isomorphism between socGM

∨
∞ and socG J . Proposition 4.2 (3)

shows that socGM
∨
∞, and thus also socG J , is isomorphic to a direct sum of copies

of the representation π associated to r̄ via Lemma 2.15 (5).
Let us assume that the quotient J/M∨

∞ is non-zero; then there is a smooth
irreducible K-subrepresentation σ ⊂ J/M∨

∞. Let κ be the G-subrepresentation
of J/M∨

∞ generated by σ. Since J/M∨
∞ is locally admissible, and σ is finitely

generated as a K-representation, κ is an admissible representation of G. Thus
HomG(c-Ind

G
K σ, κ)

∼= HomK(σ, κ) is a finite dimensional F-vector space.
Let m be any irreducible H(σ)-submodule of HomG(c-Ind

G
K σ, κ). Since H(σ)

is commutative, and m is finite dimensional over a finite field F, the F-algebra
F′ := EndH(σ)(m) is a finite field extension of F, and m is a one dimensional F′-
vector space. Since H(σ) is commutative and m is irreducible we obtain a surjective
homomorphism of F-algebras y : H(σ) ։ F′. Moreover, by the construction of m,
we obtain a non-zero G-equivariant map:

π′ := F′ ⊗H(σ),y c-Ind
G
K σ → κ ⊂ J/M∨

∞.

Since Ext1G(π
′,M∨

∞) = 0 by Lemma 4.11, by applying HomG(π
′, ∗) to the exact

sequence 0→M∨
∞ → J → J/M∨

∞ → 0, we obtain a short exact sequence

0→ HomG(π
′,M∨

∞)→ HomG(π
′, J)→ HomG(π

′, J/M∨
∞)→ 0.

Moreover, we know that HomG(π
′, J/M∨

∞) is non-zero. Hence, HomG(π
′, J) is non-

zero.
Fix a non-zero G-equivariant map ϕ : π′ → J ; then ϕ(π′) ∩ socG J 6= 0. Since

socG J is isomorphic to a direct sum of copies of π, we find that π is an irreducible
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subquotient of π′. It follows from Lemma 4.12 that π′ is then isomorphic to a
finite direct sum of copies of π, and so in particular is semi-simple. As we’ve
already noted, the map M∨

∞ →֒ J induces an isomorphism socGM
∨
∞
∼= socG J ,

and so the map HomG(π
′,M∨

∞) → HomG(π
′, J) is an isomorphism. This implies

HomG(π
′, J/M∨

∞) = 0, contradicting the assumption J/M∨
∞ 6= 0. Hence M∨

∞ = J
is injective, as required. �

4.16. Removing the patching variables. We now show that we can pass from
M∞ to an arithmetic action of Rp on a projective envelope of π∨, where as always π
is the representation.associated to r̄ via Lemma 2.15 (5). Let (A,m) be a complete

local noetherian O-algebra. Let C(A) be the Pontryagin dual of Modl.adm
G (A),

where, for the moment, we allow G to be any p-adic analytic group. There is a
forgetful functor from C(A) to C(O). In this subsection we prove a structural result
about objects P of C(A) that are projective in C(O). We will apply this result to
P =M∞ and G = GL2(Qp).

4.17. Lemma. Let (A,m) be a complete local noetherian F-algebra with residue
field F. Let P ∈ C(A) be such that P is projective in C(F) and the map P ։

cosocC(F) P is essential. Assume that all irreducible subquotients of cosocC(F) P are
isomorphic to some given object S, for which EndC(F)(S) = F. If HomC(F)(P, S)

∨

is a free A-module of rank 1 then there is an isomorphism A ⊗̂F Proj(S) ∼= P in
C(A), where Proj(S) ։ S is a projective envelope of S in C(F).

Proof. The assumption on the cosocle of P implies that (cosocP )∨ is isomorphic to
a direct sum of copies of λ := S∨. This means that we have natural isomorphisms:

(cosocP )∨ ∼= λ⊗F HomG(λ, (cosocP )
∨) ∼= λ⊗F HomC(F)(cosocP, S).

Taking Pontryagin duals we get a natural isomorphism in C(F):

HomC(F)(cosocP, S)
∨ ⊗̂F S ∼= cosocP.

Since the isomorphism is natural, it is an isomorphism in C(A) with the trivial
action of A on S. Hence, we get a surjection in C(A):

P ։ HomC(F)(cosocP, S)
∨ ⊗̂F S.

The surjection Proj(S) ։ S induces a surjection

HomC(F)(cosocP, S)
∨ ⊗̂F Proj(S) ։ HomC(F)(cosocP, S)

∨ ⊗̂F S,

with trivial A-action on Proj(S). The source of this surjection is projective in C(A),
since in general for a compact A-module m

(4.18) HomC(A)(m ⊗̂F Proj(S),−) ∼= HomA(m,HomC(F)(Proj(S),−)),

and HomC(F)(cosocP, S)
∨ = HomC(F)(P, S)

∨ is projective since it is a free A-module
of rank 1.

Hence there is a map HomC(F)(cosocP, S)
∨ ⊗̂F Proj(S) → P in C(A), such that

the diagram

HomC(F)(cosocP, S)
∨ ⊗̂F Proj(S)

��
��

//P

��
��

HomC(F)(cosocP, S)
∨ ⊗̂F S

∼=
//cosocP



PATCHING AND THE p-ADIC LANGLANDS PROGRAM FOR GL2(Qp) 23

commutes. If we forget the A-action then we obtain a map in C(F) between pro-
jective objects, which induces an isomorphism on their cosocles. Hence the map is
an isomorphism in C(F), and hence also an isomorphism in C(A). �

4.19. Proposition. Let A be a complete local noetherian O-algebra with residue
field F, that is O-flat. Let P in C(A) be such that P is projective in C(O) and the
map P ։ cosocC(O) P is essential. Assume that all the irreducible subquotients of
cosocC(O) P are isomorphic to S, and EndC(O)(S) = F. If HomC(O)(P, S)

∨ is a free
A/̟A-module of rank 1 then there is an isomorphism in C(A):

A ⊗̂O Proj(S) ∼= P,

where Proj(S) ։ S is a projective envelope of S in C(O).

Proof. A special case of Lemma 4.17 implies that the reductions of A ⊗̂O Proj(S)
and P modulo ̟ are isomorphic in C(F). Arguing as in (4.18) we deduce that
A ⊗̂O Proj(S) is projective in C(A). Thus there is a map in C(A),

A ⊗̂O Proj(S)→ P,

which is an isomorphism modulo ̟. If V is a cokernel of this map then V/̟V = 0,
and Nakayama’s lemma for compact O-modules implies that V = 0. Since P is
projective this surjection must split. Since the map is an isomorphism modulo ̟,
if U is the kernel of this map then the decomposition A ⊗̂O Proj(S) ∼= U⊕P implies
that U/̟U = 0, and so U = 0, as required. �

4.20.Corollary. Let A, P , and S be as in Proposition 4.19. Then for any O-algebra
homomorphism x : A→ O, P ⊗̂A,xO is a projective envelope of S in C(O).

Proof. It follows from Proposition 4.19 that

P ⊗̂A,xO ∼= (Proj(S) ⊗̂O A) ⊗̂A,xO ∼= Proj(S). �

4.21.Remark. If we replace the assumption in Proposition 4.19 that HomC(O)(P, S)
∨

is a free A/̟A-module of rank 1 with the assumption that it is free of rank n, then
we have an isomorphism A⊕n ⊗̂O Proj(S) ∼= P in C(A).

Indeed, a generalization of Lemma 4.17 to the rank n case gives an isomor-
phism in C(F) of A⊕n ⊗̂O Proj(S) and P modulo ̟. (In fact, the statement
of Lemma 4.17 can be strengthened as follows: if HomC(F)(P, S)

∨ is a projec-
tive object in the category of compact A-modules, then we have an isomorphism
HomC(F)(P, S)

∨ ⊗̂F ProjS ≃ P . The key is again the projectivity of the completed

tensor product HomC(F)(P, S)
∨ ⊗̂F ProjS, which follows from our assumption and

from (4.18).) We then upgrade the isomorphism modulo ̟ to an isomorphism in
C(A) as in the proof of Proposition 4.19, again relying on (4.18).

We now apply the results above in the special case of P =M∞ andG = GL2(Qp).

4.22. Proposition. Let A = O[[x1, . . . , xd]] and choose a homomorphism of local
O-algebras A→ R∞, that induces an isomorphism Rp ⊗̂O A ∼= R∞. Then there is
an isomorphism in C(A):

M∞
∼= P̃ ⊗̂O A,

where P̃ ։ π∨ is a projective envelope of π∨ in C(O).
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Proof. Theorem 4.15 implies thatM∞ is projective in C(O). As we already noted in
the proof of that theorem, sinceM∨

∞ is locally admissible, it follows from Lemma 4.6
that socGM

∨
∞ →֒M∨

∞ is essential, and hence thatM∞ ։ cosocC(O)M∞ is essential.
Proposition 4.2 (3) implies that all the irreducible subquotients of cosocC(O)M∞

are isomorphic to π∨. It is therefore enough to show that

M∞(π) := HomC(O)(M∞, π
∨)∨ ∼= HomG(π,M

∨
∞)∨

is a free A/̟-module of rank 1, since the assertion then follows from Proposi-
tion 4.19.

As in the proof of Proposition 4.2, we have

M∞(π) ∼= F⊗H(σ) M∞(σ) ∼= F⊗H(σ◦) M∞(σ◦).

It follows from Proposition 4.2 (1) that M∞(π) is a free F ⊗H(σ◦) R∞(σ)-module

of rank 1. Since R∞(σ) ∼= Rp(σ) ⊗̂O A and the map H(σ) → R∞(σ)/̟ factors
through Rp(σ)/̟ by Proposition 4.2 (2), we conclude that the map A → R∞

induces an isomorphism

A/̟ ∼= F⊗H(σ◦) R∞(σ).

(Recall that F ⊗H(σ◦) Rp(σ)/̟ = F, by Lemma 2.15 (4).) Thus M∞(π) is a free
A/̟-module of rank 1, as required. �

4.23. Corollary. Let A → R∞ be as in Proposition 4.22 and let x : A → O be a
homomorphism of local O-algebras. Then M∞ ⊗̂A,xO is a projective envelope of
π∨ in C(O) with a continuous Rp ∼= R∞ ⊗A,x O-action, which commutes with the
action of G.

Proof. This follows from Corollary 4.20. �

4.24. Uniqueness of arithmetic actions. As in the statement of Proposition 4.22,

we let P̃ ։ π∨ be a projective envelope of π∨ in C(O).

4.25.Proposition. P̃ can be endowed with an arithmetic action of Rp (in the sense
of Section 3.1 when d = 0).

Proof. Making any choice of morphism x : A→ O in Corollary 4.23, we obtain an

action of Rp on M∞ ⊗̂A,xO ∼= P̃ . Since the action of R∞ on M∞ is an arithmetic
action, it follows immediately from the definitions that this induced action of Rp
on P̃ is also an arithmetic action. �

4.26. Recapping capture. We now very briefly recall the theory of capture from [CDP14,
§2.4], specialised to the case of interest to us. We note that analogues of these re-
sults are valid for general choices of G, and in particular do not use either Colmez’s
functor nor p-adic Langlands correspondence for GL2(Qp).

Let M be a compact linear-topological O[[K]]-module, and let {Vi}i∈I be a set
of continuous K-representations on finite-dimensional E-vector spaces.

4.27. Definition. We say that {Vi}i∈I captures M if for any proper quotientM ։

Q, we have Homcont
O[[K]](M,V ∗

i ) 6= Homcont
O[[K]](Q, V

∗
i ) for some i ∈ I.

This definition is used only in the proof of the following result.

4.28. Proposition. Suppose that φ ∈ EndcontO[[K]](P̃ ) kills each Homcont
O[[K]](P̃ , σ

∗
a,b)

for a ∈ Z and b ∈ Z≥0. Then φ = 0.
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Proof. Since P̃ is projective in C(O), it follows from [CDP14, Prop. 2.12] that the

set {σa,b} captures P̃ . The result follows from [CDP14, Lem. 2.9] (that is, from an
application of the definition of capture to the cokernel of φ). �

Set M(σ◦) :=
(
Homcont

O[[K]](P̃ , (σ
◦)d)

)d
.

4.29. Lemma. Let σ = σa,b with a ∈ Z and b ∈ Z≥0 and let my be a maximal ideal
of H(σ). Then κ(y)⊗H(σ) M(σ◦)[1/p] 6= 0 if and only if mx := η(my)Rp(σ)[1/p] is
a maximal ideal of Rp(σ)[1/p] in the support of M(σ◦)[1/p] for some (equivalently,

any) arithmetic action of Rp on P̃ .

Proof. Since M(σ◦) is a finitely generated Rp(σ)-module and the action of H(σ)
on M(σ◦)[1/p] factors through the action of Rp(σ)[1/p] via η, we deduce that
κ(y) ⊗H(σ) M(σ◦)[1/p] is a finitely generated κ(y) ⊗H(σ) Rp(σ)[1/p]-module. If
κ(y)⊗H(σ)M(σ◦)[1/p] 6= 0 then we deduce from Lemma 2.12 that mx is a maximal
ideal of Rp(σ)[1/p] in the support ofM(σ◦). Conversely, if y is the image of x then
using Lemma 2.12 we obtain κ(x) = κ(y)⊗H(σ) Rp(σ)[1/p] and hence:

κ(x)⊗Rp(σ)[1/p] M(σ◦)[1/p] ∼= κ(y)⊗H(σ) M(σ◦)[1/p],

which implies that κ(y)⊗H(σ) M(σ◦)[1/p] is non-zero. �

4.30. Theorem. There is a unique arithmetic action of Rp on P̃ .

Proof. The existence of such an action follows from Proposition 4.25.
Let σ = σa,b with a ∈ Z and b ∈ Z≥0. Let y ∈ m-SpecH(σ), such that κ(y)⊗H(σ)

M(σ◦)[1/p] 6= 0. Lemma 4.29 implies that y is the image of x ∈ m-SpecRp(σ)[1/p],
which lies in the support of M(σ◦). Proposition 2.13 implies that

̂M(σ◦)[1/p]
my

= ̂M(σ◦)[1/p]
mx
,

as ̂Rp(σ)[1/p]mx-modules. Moreover, the action of ̂Rp(σ)[1/p]mx on ̂M(σ◦)[1/p]
my

does not depend on a given arithmetic action of Rp on P̃ , as it acts via the isomor-
phism in Proposition 2.13. If M is a finitely generated module over a noetherian
ring R then we have injections:

M →֒
∏

m

Mm →֒
∏

m

M̂m,

where the product is taken over all the maximal ideals in R. In fact it is enough
to take the product over finitely many maximal ideals: if p1, . . . , pn are minimal
associated primes of M , just pick any maximal ideals m1 ∈ V (p1), . . . ,mn ∈ V (pn).
(The second injection follows from [Mat89, Thm. 8.9].) This observation applied
to R = Rp(σ)[1/p] and M = M(σ◦)[1/p] together with Lemma 4.29 implies that
we have an injection of Rp(σ)[1/p]-modules:

M(σ◦)[1/p] →֒
∏

y∈m-SpecH(σ)

̂M(σ◦)[1/p]
my
.

Since the map and the action of Rp(σ)[1/p] on the right hand side are independent

of the arithmetic action of Rp on P̃ , we deduce that the action of Rp(σ)[1/p] on

M(σ◦)[1/p] is also independent of the arithmetic action of Rp on P̃ .
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If θ : Rp → EndC(O)(P̃ ) and θ′ : Rp → EndC(O)(P̃ ) are two arithmetic actions
and r ∈ Rp then it follows from the above that θ(r)− θ′(r) will annihilate M(σ◦

a,b)

for all a ∈ Z and b ∈ Z≥0. Proposition 4.28 implies that θ(r) = θ′(r). �

4.31. Remark. A different proof of the Theorem could be given using [CDP14, Prop.
2.19].

4.32. Theorem. If P̃ ։ π∨ is a projective envelope of π∨ in C(O) equipped with
an arithmetic action of Rp, then there is an isomorphism in C(R∞)

P̃ ⊗̂Rp R∞
∼=M∞.

Proof. Let A = O[[x1, . . . , xd]], and choose a homomorphism of local O-algebras
A→ R∞ which induces an isomorphism Rp ⊗̂O A ∼= R∞. Proposition 4.22 implies

that there is an isomorphism P̃ ⊗̂O A ∼=M∞ in C(A); it is therefore enough to show
that this isomorphism is Rp-linear. Any O-algebra homomorphism x : A → O

induces an isomorphism (P̃ ⊗̂O A) ⊗̂A,xO ∼= M∞ ⊗̂A,xO in C(O). We get two

actions of Rp on M∞ ⊗̂A,xO: one of them coming from the action of Rp on M∞,
the other transported by the isomorphism. Both actions are arithmetic: the first
one by Proposition 4.25, the second one by assumption. Theorem 4.30 implies that

the two actions coincide; thus the isomorphism (P̃ ⊗̂O A) ⊗̂A,xO ∼= M∞ ⊗̂A,xO is
Rp-linear.

We have a commutative diagram in C(A):

P̃ ⊗̂O A

��

∼=
//M∞

��∏
x:A→O

(P̃ ⊗̂O A) ⊗̂A,xO
∼=

//
∏

x:A→O

M∞ ⊗̂A,xO

where the product is taken over all O-algebra homomorphisms x : A → O. We
know that both vertical and the lower horizontal arrows are Rp-linear. The map

A→
∏

x:A→O

O is injective (see for example [Paš13, Lem. 9.22]). Since P̃ is O-torsion

free the functor P̃ ⊗̂O − is exact, hence the first vertical arrow is injective, which
implies that the top horizontal arrow is Rp-linear. �

4.33. Remark. The preceding result shows that, in particular, the construction of
M∞ in [CEG+16] is independent of the choices made in the case of GL2(Qp). More
precisely, the isomorphism

P̃ ⊗̂Rp R∞
∼=M∞

exhibits M∞ as the extension of scalars of P̃ , and this latter object, with its arith-
metic Rp-action, is independent of all choices by Theorem 4.30. Thus, the only
ambiguity in the construction of M∞ is in the number of power series variables
in R∞, and in their precise action. As one is free to choose as many Taylor–Wiles
primes as one wishes in the patching construction, and as the presentations of
global deformation rings as quotients of power series rings over local deformation
rings are non-canonical, it is evident that this is the exact degree of ambiguity that
the construction of M∞ is forced to permit.
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5. Unitary completions of principal series representations

In this section, we record some arguments related to the paper [BB10], which
proves using (ϕ,Γ)-module techniques that the locally algebraic representations as-
sociated to crystabelline Galois representations admit a unique unitary completion.
We will use the machinery developed in the previous sections, namely the projective

envelope P̃ and the purely local map Rp → EndC(O)(P̃ ), to independently deduce
(without using (ϕ,Γ)-module techniques) that the locally algebraic representations
corresponding to crystalline types of regular weight admit at most one unitary
completion satisfying certain properties, and that such a completion comes from

some P̃ .
We will use this result in Section 7 below to show, assuming the existence results

of [BB10], that certain of these representations occur in completed cohomology.
This gives an alternative approach to proving modularity results in the crystalline
case.

As in Section 2, we write σ = σa,b = deta⊗SymbE2. Let θ : H(σ) → E be

a homomorphism, and set Ψ := (c-IndGK σ) ⊗H(σ),θ E; so Ψ is a locally algebraic
principal series representation of G.

5.1. Theorem. If Ψ is irreducible, then Ψ admits at most one non-zero admissible

unitary completion Ψ̂ with the following property: for an open bounded G-invariant

lattice Θ in Ψ̂, (Θ/̟)⊗FFp contains no subquotient of the form (IndGB χ⊗χω
−1)sm,

for any character χ : Q×
p → F

×

p , and no special series or characters.
If a completion satisfying this property exists, then it is absolutely irreducible.

Proof. Let Π be a non-zero admissible unitary completion of Ψ that satisfies the
property in the statement of the theorem. We will first show that Π is absolutely
irreducible (and, indeed, most of the work of the proof will be in showing this). We
note that in the course of the proof we are allowed to replace E by a finite field
extension E′, since if Π⊗E E

′ is an absolutely irreducible E′-Banach space repre-
sentation of G then Π is an absolutely irreducible E-Banach space representation
of G.

Since Π is admissible, it will contain an irreducible closed sub-Banach space
representation Π1. If we let Π′ denote the quotient Π/Π1, then we must show
that Π′ is zero. For the moment, we note simply that if Π′ is non-zero, then since
the composite Ψ → Π → Π′ has dense image, we see that Π′ is another non-zero
admissible unitary completion of Ψ.

Let Θ be an open bounded G-invariant lattice in Π, and let Θ1 := Π1 ∩Θ. Since
Π1 is also admissible, Θ1/̟ will contain an irreducible subquotient π. Since we are

allowed to enlarge E, we may assume that π is absolutely irreducible. Let P̃ ։ π∨

be a projective envelope of π∨ in C(O). By the assumption on the subquotients of
Θ/̟, there is a Galois representation r̄ satisfying Assumption 2.2 that corresponds

to π via Lemma 2.15 (5). We equip P̃ with the arithmetic action of Rp provided
by Theorem 4.30.

We let (for any admissible unitary E-Banach space representation Π of G)

M(Π) := HomC(O)(P̃ ,Θ
d)d[1/p] ∼= Homcont

G (Π,Homcont
O (P̃ , E))d.

The projectivity of P̃ implies that Π 7→M(Π) is an exact covariant functor from the
category of admissible unitary E-Banach space representations of G to the category
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of Rp[1/p]-modules. In particular, we have an injection M(Π1) →֒ M(Π). Since P̃
is projective and π is a subquotient of Θ1/̟, we have M(Π1) 6= 0 by [Paš13, Lem.
4.13], and hence M(Π) 6= 0.

Similarly, we let

M(Ψ) := HomG(Ψ,Hom
cont
O (P̃ , E))d ∼=M(σ◦)[1/p]⊗H(σ),θ E.

Recall that H(σ) acts on M(σ◦)[1/p] through the composite of the Rp[1/p]-

action on M(σ◦)[1/p] and the homomorphism H(σ)
η
−→ Rp(σ)[1/p], and that, by

Lemma 4.29, either M(σ◦)[1/p] ⊗H(σ),θ E vanishes, or else θ extends to a homo-

morphism θ̂ : Rp(σ)[1/p] → E (so that then θ = θ̂ ◦ η), in which case there is a
natural isomorphism

M(σ◦)[1/p]⊗H(σ),θ E
∼
−→M(σ◦)[1/p]⊗Rp(σ)[1/p],θ̂ E

of E-vector spaces of dimension at most 1.
The map Ψ→ Π induces a continuous homomorphism

Homcont
G (Π,Homcont

O (P̃ , E))→ HomG(Ψ,Hom
cont
O (P̃ , E)).

Since the image of Ψ in Π is dense this map is injective, and by taking duals we
obtain a surjection of Rp[1/p]-modules

M(Ψ) ։M(Π).

Since the target is non-zero, and the source is an E-vector space of dimension at
most 1, this must be an isomorphism. SinceM(Π1) is a non-zero subspace ofM(Π),

we therefore have induced isomorphisms M(Π1)
∼
−→ M(Π)

∼
−→ M(Ψ). Since, as

was noted above, M is an exact functor, we find that M(Π′) = 0.
We digress for a moment in order to establish that Π1 is in fact absolutely irre-

ducible. Since it is irreducible and admissible, its endomorphism ring is a division
algebra over E. On the other hand, since M is a functor, and since M(Π1) is
one-dimensional over E, we see that this division algebra admits a homomorphism
to E. Thus this division algebra is in fact equal to E, and this implies that Π1 is
absolutely irreducible by [Paš13, Lem. 4.2].

Suppose now that Π′ 6= 0. We may then apply the above argument with Π′ in
place of Π, and find an absolutely irreducible subrepresentation Π2 of Π′, a GQp -
representation r̄′, an associated irreducible GL2(Qp)-representation π′, for which

the projective envelope P̃2 of (π′)∨ gives rise to an exact functor M ′ such that
M ′(Ψ) =M ′(Π′) =M ′(Π2), with all three being one-dimensional.

Since both M(Ψ) and M ′(Ψ) are non-zero, we find that each of r̄ and r̄′ admits
a lift that is a lattice in a crystalline representation V of Hodge–Tate weights (1−

a,−(a+ b)) determined (via Lemma 2.6) by the homomorphism θ̂ : Rp[1/p] → E.
(Strictly speaking, for this to make sense we need to know that V is indecomposable;
but this is automatic, since each of r̄ and r̄′ is indecomposable and has non-scalar
semisimplification.)

We note that V is reducible if and only if Ψ may be identified with the locally
algebraic subrepresentation of a continuous induction (IndGB χ)cont, for some unitary
character χ : T → E×, where T denotes the diagonal torus contained in the upper
triangular Borel subgroup B of G. In this case it is well-known that this continuous
induction is the universal unitary completion of Ψ, see [BE10, Prop. 2.2.1], and the
theorem is true in this case. Thus, for the remainder of the argument, we suppose
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that V is irreducible, or, equivalently, that Ψ does not admit an embedding into
the continuous parabolic induction of a unitary character.

We now consider separately two cases, according to whether or not r̄ and r̄′

are themselves isomorphic. If they are, then M and M ′ are isomorphic functors,
and we obtain a contradiction from the fact that M(Π′) = 0 while M ′(Π′) is one-
dimensional, implying that in fact Π′ = 0, as required.

If r̄ and r̄′ are not isomorphic, but have isomorphic semi-simplifications, then
they must each consist of an extension of the same two characters, but in opposite
directions. In this case π ∼= (IndGB ωχ1 ⊗ χ2)sm, π

′ ∼= (IndGB ωχ2 ⊗ χ1)sm, for some
smooth characters χ1, χ2 : Qp

× → F×. In the terminology of [Col10b], π and π′

are the two constituents of an atome automorphe, which by definition is the unique
(up to isomorphism) non-split extension between π and π′.

We first show that Π2 = Π′. To this end, set Π′′ := Π′/Π2. If Π′′ 6= 0, then,
running through the above argument another time, we find r̄′′, etc., such that
(r̄′′)ss ∼= (r̄′)ss ∼= r̄ss, and such that M ′′(Π′′) 6= 0. But either r̄′′ ∼= r̄ or r̄′′ ∼= r̄′.
Thus the functor M ′′ is isomorphic to either M ′ or to M . On the other hand,
M ′(Π′′) = 0, and also M(Π′′) = 0 (since Π′′ is a quotient of Π′ and M(Π′) =
0). This contradiction shows that Π′′ = 0, and thus that Π′ = Π2 is absolutely
irreducible.

SinceM(Π′) = 0, we see that Θ′/̟ does not contain a copy of π as a subquotient
(here Θ′ denotes some choice of G-invariant lattice in Π′). Since (as we have just
shown) Π′ is absolutely irreducible, it follows from [Paš13, Cor. 8.9] that Π′ ∼=
(IndGB χ)cont for some unitary character χ : T → E×, where T denotes the diagonal
torus contained in the upper triangular Borel subgroup B of G. (The proof of this

result uses various Ext computations in Modl.adm
G (O), but does not use either of

Colmez’s functors. The basic idea is that the extension of π′ by π given by the

atome automorphe induces an embedding P̃ →֒ P̃ ′ whose cokernel is dual to the
induction from B to G of a character; since M(Π′) = 0, we see that Θ′ embeds into
this induction, and so is itself such an induction.) Thus Ψ admits an embedding
into the continuous parabolic induction of a unitary character, contradicting our
hypothesis that V is irreducible. Thus we conclude that in fact Π′ = 0, as required.

If Ψ were to admit two non-isomorphic admissible irreducible unitary comple-
tions Π1 and Π2 satisfying the assumptions of the theorem, the image of the diagonal
map Ψ→ Π1⊕Π2 would be dense in Π1 ⊕Π2. This yields a contradiction to what
we have already proved, as Π1 ⊕Π2 is not irreducible. �

5.2. Remark. It follows from the proof of Theorem 5.1 that if a completion Ψ̂ of
the kind considered there exists, then there is a Galois representation r̄ satisfying

Assumption 2.2 such that θ extends to a homomorphism θ̂ : Rp(σ)[1/p] → E.
Furthermore, for any M∞ as in Section 3, we have M∞(σ◦)[1/p]⊗H(σ),θ E 6= 0.

Conversely, if there is an r̄ satisfying Assumption 2.2 such that θ extends to a

homomorphism θ̂ : Rp(σ)[1/p]→ E, then the existence of a completion Ψ̂ is imme-
diate from the main theorem of [BB10] (which shows that some completion exists)
together with the main theorem of [Ber10] (which implies the required property of
the subquotients).

5.3. Remark. As is true throughout this paper, the results of this section are equally
valid for crystabelline representations, but for simplicity of notation we have re-
stricted ourselves to the crystalline case.
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6. Comparison to the local approach

We now examine the compatibility of our constructions with those of [Paš13],
which work with fixed central characters. The arguments of [Paš13] make use
of Colmez’s functor, and the results of this section therefore also depend on this
functor. In Section 6.24 we briefly discuss how to prove some of the more elementary
statements in [Paš13] using the results of the previous section (and in particular
not using Colmez’s functor). We assume throughout this section that p ≥ 5, as this
assumption is made in various of the results of [Paš13] that we cite.

There are two approaches that we could take to this comparison. One would be
to note that the axioms of Section 3.1 and arguments of Section 4 admit obvious
analogues in the setting of a fixed central character, and thus show that if we pass
to a quotient of M∞ with fixed central character, we obtain a uniquely determined
p-adic Langlands correspondence. These axioms are satisfied by the purely local
object constructed in [Paš13] (which is a projective envelope of π∨ in a category of
representations with fixed central character), and this completes the comparison.

While this route would be shorter, we have preferred to take the second approach,
and go in the opposite direction: we promote the projective envelope from [Paš13]
to a representation with non-constant central character by tensoring with the uni-
versal deformation of the trivial 1-dimensional representation (which has a natural
Galois action by local class field theory), and show that this satisfies the axioms of
Section 3.1. This requires us to make a careful study of various twisting construc-
tions; the payoff is that we prove a stronger result than that which would follow
from the first approach.

6.1. Deformation rings and twisting. Let Λ be the universal deformation ring
of the trivial 1-dimensional representation of GQp and let 1univ be the universal

deformation. Then 1univ is a free Λ-module of rank 1 with a continuous GQp -action.

We let G act on 1univ via the inverse determinant (composed with the Artin map).
We let Λur be the quotient of Λ unramified deformations. We note that Λ and Λur

are formally smooth over O of relative dimensions 2 and 1, respectively, and in
particular are O-torsion free.

Let ψ : GQp → O
× be a continuous character such that ψε−1 is congruent to

det r̄ modulo ̟. (By Remark 2.17, this implies that ψ modulo ̟ considered as a
character of Q×

p coincides with the central character of π.) We let Rψp denote the

quotient of Rp parameterising deformations with determinant ψε−1. Let runiv,ψ be

the tautological deformation of r̄ to Rψp . Then r
univ,ψ ⊗̂O 1univ is a deformation of

r̄ to Rψp ⊗̂O Λ. Since p > 2, this induces an isomorphism of local O-algebras

(6.2) Rp → Rψp ⊗̂O Λ.

Let Rψp (σ) denote the quotient of Rp(σ) corresponding to deformations of deter-

minant ψε−1; note that Rψp (σ) = 0 unless ψ|
Z
×

p
is equal to the central character of σ.

If ψ|
Z
×

p
is equal to the central character of σ, then the isomorphismRp

∼=
−→ Rψp ⊗̂O Λ

induces an isomorphism

(6.3) Rp(σ)
∼=
−→ Rψp (σ) ⊗̂O Λur.
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Let δ : GQp → O
× be a character that is trivial modulo ̟. Twisting by δ induces

isomorphisms of O-algebras

twδ : Rp
∼
−→ Rp, twδ : R

ψδ2

p
∼
−→ Rψp .

(In terms of the deformation functorDr̄ pro-represented by Rp, and the deformation

functors Dψ
r̄ and Dψδ2

r̄ pro-represented by Rψp and Rψδ
2

p , these isomorphisms are
induced by the natural bijections

Dr̄(A)
∼
−→ Dr̄(A), Dψ

r̄ (A)
∼
−→ Dψδ2

r̄ (A)

defined by rA 7→ rA ⊗ δ.) Similarly we obtain isomorphisms

twδ : Λ
∼
−→ Λ, twδ : Λ(δ)

ur ∼
−→ Λur,

and we have a commutative diagram

(6.4) Rp

id

��

∼=

(6.2)
//Rψδ

2

p ⊗̂O Λ

twδ ⊗̂ tw
δ−1

��

Rp
∼=

(6.2)
//Rψp ⊗̂O Λ

6.5. Unfixing the central character. Let Modl.adm,ψG (O) be the full subcategory

of Modl.admG (O), consisting of those representations, where Z acts by the central

character ψ. Let Cψ(O) be the Pontryagin dual of Modl.adm,ψG (O), so that we can
identify Cψ(O) with a full subcategory of C(O) consisting of those objects on which
Z acts by ψ−1.

Let P̃ψ ։ π∨ be a projective envelope of π∨ in Cψ(O). By [Paš13, Prop. 6.3,
Cor. 8.7, Thm. 10.71] there is a natural isomorphism

(6.6) Rψp
∼
−→ EndC(O)(P̃

ψ).

In Corollary 6.23 below we will prove a version of the isomorphism (6.6) for Rp.

6.7. Lemma. Let δ : GQp → O
× be a character that is trivial modulo ̟. There is

an isomorphism in C(O):

ϕ : P̃ψδ
2 ∼
−→ P̃ψ ⊗ δ−1 ◦ det .

Moreover, the following diagram commutes:

Rψδ
2

p

(6.6) ∼=

��

twδ
∼=

//Rψp

(6.6)∼=

��

EndC(O)(P̃
ψδ2)

∼=
//EndC(O)(P̃

ψ)

where the lower horizontal arrow is given by α 7→ ϕ ◦ α ◦ ϕ−1.

Proof. The claimed isomorphism follows from the fact that twisting by δ−1 ◦det in-

duces an equivalence of categories between Cψ(O) and Cψδ
2

(O), so that the twist of

a projective envelope of π∨ in Cψ(O) is a projective envelope of π∨ in Cψδ
2

(O). The
commutativity of the diagram follows from the compatibility of the constructions
of [Paš13], and in particular of the isomorphism (6.6), with twisting. (This comes
down to the compatibility of the functor V̌, discussed below, with twisting.) �
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Let δ : GQp → O
× be a character that is trivial modulo ̟. There is an evident

isomorphism of pseudocompact O[[GQp ]]-modules:

θ : 1univ ⊗ δ
∼
−→ 1univ,

and a commutative diagram

(6.8) Λ

∼=

��

twδ−1

∼=
//Λ

∼=

��

EndcontGQp
(1univ)

∼=
//EndcontGQp

(1univ)

where the lower horizontal arrow is given by α 7→ θ ◦ α ◦ θ−1. (In terms of the
deformation functor D1 pro-represented by Λ, the isomorphism twδ−1 is induced
by the bijection D1(A)

∼
−→ D1(A) defined by χ 7→ χδ−1.)

6.9. Lemma. Let δ : Q×
p → O

× be a character that is trivial modulo ̟. Then there
is an isomorphism

P̃ψδ
2

⊗̂O 1univ ∼
−→ P̃ψ ⊗̂O 1univ

in the category C(Rp), where Rp acts on both sides by the isomorphism of (6.2).

Proof. Using Lemma 6.7 and (6.8) we obtain isomorphisms in C(O):

P̃ψδ
2

⊗̂O 1univ ϕ ⊗̂ id
−→ (P̃ψ ⊗ δ−1 ◦ det) ⊗̂O 1univ ∼

−→

∼
−→ P̃ψ ⊗̂O(1

univ ⊗ δ ◦ det)
id ⊗̂ θ
−→ P̃ψ ⊗̂O 1univ.

The composition of these isomorphisms is equal to φ ⊗̂ θ : P̃ψδ
2

⊗̂O 1univ ∼
−→

P̃ψ ⊗̂O 1univ, which is an isomorphism in C(O). It follows from Lemma 6.7 and
(6.8) that the following diagram commutes:

Rψδ
2

p ⊗̂O Λ

��

twδ ⊗̂ tw
δ−1

∼=
//Rψp ⊗̂O Λ

��

EndC(O)(P̃
ψδ2 ⊗̂O 1univ)

∼=
//EndC(O)(P̃

ψ ⊗̂O 1univ)

where the lower horizontal arrow is given by α 7→ (ϕ ⊗̂ θ) ◦α ◦ (ϕ ⊗̂ θ)−1. It follows
from the above diagram and (6.4) that ϕ ⊗̂ θ is an isomorphism in C(Rp). �

6.10. Proposition. P̃ψ ⊗̂O 1univ is projective in the category of pseudocompact
O[[K]]-modules.

Proof. Let I1 := {g ∈ K : g ≡
(
1 ∗
0 1

)
(mod ̟)}. Then I1 is a pro-p Sylow sub-

group of K and it is enough to show that P̃ψ ⊗̂O 1univ is projective in the category
of pseudocompact O[[I1]]-modules. Since I1 is a pro-p group there is only one
indecomposable projective object in the category, namely O[[I1]], and thus a pseu-
docompact O[[I1]]-module is projective if and only if it is pro-free, which means
that it is isomorphic to

∏
j∈J O[[I1]] for some indexing set J .

Let Γ := 1 + pZp. We identify Γ with the image in Gab
Qp

of the wild inertia

subgroup of GQp . We may identify Λ with the completed group algebra of the pro-

p completion of Gab
Qp

, which is isomorphic to Γ × Zp. There is an isomorphism of
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O-algebras Λ ∼= O[[Γ]][[x]], and in particular 1univ is a pro-free and hence projective
O[[Γ]]-module.

The restriction of P̃ψ toK is projective in the category of pseudocompactO[[K]]-
modules on which Z ∩K acts by the central character ψ−1, [Paš15, Corollary 5.3].

By restricting further to I1, we deduce that P̃ψ is projective in the category of
pseudocompact O[[I1]]-modules, where Z1 := I1 ∩ Z acts by the central character
ψ−1.

Since p > 2 there is a character δ : Γ → O×, such that δ2 = ψ. Twisting by
characters preserves projectivity, so that 1univ ⊗ δ is a projective in the category

of pseudocompact O[[Γ]]-modules and P̃ψ ⊗ (δ ◦ det) is projective in the category
of pseudocompact O[[I1]]-modules on which Z1 acts trivially. We may identify this
last category with the category of pseudocompact O[[I1/Z1]]-modules.

We have an isomorphism of I1-representations

P̃ψ ⊗̂O 1univ ∼= (P̃ψ ⊗ δ ◦ det) ⊗̂O(1
univ ⊗O δ),

where I1 acts on 1univ ⊗O δ via the homomorphism I1 → Γ, g 7→ (det g)−1. We

may therefore assume that ψ|Z1 is trivial, so that P̃ψ is projective in the category
of pseudocompact O[[I1/Z1]]-modules. Thus there are indexing sets J1 and J2 such
that

P̃ψ|I1
∼=

∏

j1∈J

O[[I1/Z1]], 1univ ∼=
∏

j2∈J2

O[[Γ]]

where the first isomorphism is an isomorphism of pseudocompact O[[I1]]-modules,
and the second isomorphism is an isomorphism of pseudocompact O[[Γ]]-modules.
Since completed tensor products commute with products, we obtain an isomorphism
of pseudocompact O[[I1]]-modules:

(P̃ψ ⊗̂O 1univ) ∼=
∏

j1∈J1

∏

j2∈J2

O[[I1/Z1]] ⊗̂OO[[Γ]].

Since p > 2, the determinant induces an isomorphism between Z1 and Γ. Thus
the map I1 → I1/Z1 × Γ, g 7→ (gZ1, (det g)

−1) is an isomorphism of groups.
The isomorphism induces a natural isomorphism of O[[I1]]-modules, O[[I1]] ∼=

O[[I1/Z1]] ⊗̂O O[[Γ]]. We conclude that P̃ψ ⊗̂O 1univ is a pro-free and hence a pro-
jective O[[I1]]-module. �

6.11. Remark. We will see in Theorem 6.18 below that in fact P̃ψ ⊗̂O 1univ is a
projective object of C(O). It is not so difficult to prove this directly, but we have
found it more convenient to deduce it as part of the general formalism of arithmetic
actions.

6.12. Proposition. Let σ = σa,b, and let δ : Q×
p → O

× be a character that is trivial

modulo ̟, chosen so that ψδ2|
Z
×

p
is the central character of σ◦. Then there is a

natural isomorphism of Rp-modules

Homcont
O[[K]](P̃

ψ ⊗̂O 1univ, (σ◦)d)d
∼=
−→ Homcont

O[[K]](P̃
ψδ2 , (σ◦)d)d ⊗̂O Λur,

where Rp acts on the left hand side via the isomorphism Rp ∼= Rψp ⊗̂O Λ and on the

right hand side via the isomorphism Rp ∼= Rψδ
2

p ⊗̂O Λ.

Proof. Using Lemma 6.9 we may assume that ψ|K∩Z is the central character of σ.
We note that 1univ ⊗Λ Λur is the largest quotient of 1univ on which K ∩ Z acts
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trivially. Since the central character of (σ◦)d is ψ−1|
Z
×

p
, and the central character

of P̃ψ is ψ−1, we have a natural isomorphism

Homcont
O[[K]](P̃

ψ ⊗̂O 1univ, (σ◦)d)d
∼=
−→ Homcont

O[[K]](P̃
ψ ⊗̂O(1

univ ⊗Λ Λur), (σ◦)d)d.

Since K acts trivially on 1univ ⊗Λ Λur, we have an isomorphism:

Homcont
O[[K]](P̃

ψ ⊗̂O(1
univ ⊗Λ Λur), (σ◦)d)d ∼= Homcont

O[[K]](P̃
ψ ⊗̂O Λur, (σ◦)d)d,

where Λur carries a trivialK-action and Rp acts by the isomorphismRp ∼= Rψp ⊗̂O Λ.

To finish the proof we need to construct a natural isomorphism ofRψp ⊗̂O Λ-modules:

(6.13) Homcont
O[[K]](P̃

ψ ⊗̂O Λur, (σ◦)d)d ∼= Homcont
O[[K]](P̃

ψ , (σ◦)d)d ⊗̂O Λur.

Both sides of (6.13) are finitely generatedRψp ⊗̂O Λur-modules. The m-adic topology

on Rψp ⊗̂O Λur induces a topology on them, and makes them into pseudo-compact,
O-torsion freeO-modules. It is therefore enough to construct a natural isomorphism
between the Schikhof duals of both sides of (6.13). To ease the notation we let

A = P̃ψ, B = Λur, C = (σ◦)d. Since for a pseudo-compact O-module D, we have
Dd = Homcont

O (D,O) ∼= lim
←−n

Homcont
O (D,O/̟n), using the adjointness between

⊗̂O and Homcont
O (see [Bru66, Lem. 2.4]), we obtain natural isomorphisms

(Homcont
O (A,C)d ⊗̂O B)d ∼= Homcont

O (B, (Homcont
O (A,C)d)d)

∼= Homcont
O (B,Homcont

O (A,C)) ∼= Homcont
O (A ⊗̂O B,C),

and hence a natural isomorphism

Homcont
O (A ⊗̂O B,C)

d ∼= Homcont
O (A,C)d ⊗̂O B.

Since the isomorphism is natural and K acts trivially on B we obtain a natural
isomorphism

Homcont
O[[K]](A ⊗̂O B,C)

d ∼= Homcont
O[[K]](A,C)

d ⊗̂O B.

Since the action of Rψp commutes with the action of K and the isomorphism is
natural, we deduce that (6.13) holds. �

6.14. Proposition. For any σ, the action of Rp ∼= Rψp ⊗̂O Λ on

M ′(σ◦) := Homcont
O[[K]](P̃

ψ ⊗̂O 1univ, (σ◦)d)d

factors through Rp(σ). Moreover, M ′(σ◦) is a maximal Cohen–Macaulay Rp(σ)-
module and M ′(σ◦)[1/p] is a locally free Rp(σ)[1/p]-module of rank 1.

6.15. Remark. Recall that M(σ◦) was defined in the last section. Soon we will see

from Theorem 6.18 below that P̃
∼
−→ P̃ψ⊗̂O1

univ, thus also thatM(σ◦) ≃M ′(σ◦).

Proof. If the central character of σ is not congruent to ψ|
Z
×

p
modulo ̟, then both

Rp(σ) and M
′(σ◦) are zero. Otherwise, there is a character δ : Qp

× → O× trivial
modulo ̟ such that (ψδ2)|

Z
×

p
is equal to the central character of σ. Proposition

6.12 gives us an isomorphism of Rp-modules

(6.16) M ′(σ◦) ∼=Mψδ2(σ◦) ⊗̂O Λur,
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where Mψδ2(σ◦) := Homcont
O[[K]](P̃

ψδ2 , (σ◦)d)d, and the action of Rp on the right

hand side is given by Rp ∼= Rψδ
2

p ⊗̂O Λ. The action of Rψδ
2

p on Mψδ2(σ◦) fac-

tors through the action of Rψδ
2

p (σ) and makes it into a maximal Cohen–Macaulay

Rψδ
2

p (σ)-module [Paš15, Cor. 6.4, 6.5]. Since Λur ∼= O[[x]], we conclude that

Mψδ2(σ◦) ⊗̂O Λur is a maximal Cohen–MacaulayRψδ
2

p (σ) ⊗̂O Λur-module. Using (6.3)
we see thatM ′(σ◦) is a maximal Cohen–Macaulay Rp(σ)-module. Since Rp(σ)[1/p]
is a regular ring a standard argument using the Auslander–Buchsbaum theorem
shows that M ′(σ◦)[1/p] is a locally free Rp(σ)[1/p]-module. It follows from [Paš15,
Prop. 4.14, 2.22] that

dimκ(x)M
ψδ2(σ◦)⊗

Rψδ
2

p
κ(x) = 1, ∀x ∈ m-SpecRψδ

2

p (σ)[1/p].

This together with (6.16) gives us

dimκ(x)M
′(σ◦)⊗Rp κ(x) = 1, ∀x ∈ m-SpecRp(σ)[1/p].

Hence, M ′(σ◦)[1/p] is a locally free Rp(σ)[1/p]-module of rank 1. �

The natural action of H(σ◦) on M ′(σ◦) commutes with the action of Rp(σ),
and hence induces an action of H(σ) on M ′(σ◦)[1/p]. Since M ′(σ◦)[1/p] is locally
free of rank 1 over Rp(σ)[1/p] by Proposition 6.14, we obtain a homomorphism of
E-algebras:

α : H(σ)→ EndRp(σ)[1/p](M
′(σ◦)[1/p]) ∼= Rp(σ)[1/p].

6.17. Proposition. The map α : H(σ) → Rp(σ)[1/p] coincides with the map η :
H(σ)→ Rp(σ)[1/p] constructed in [CEG+16, Thm. 4.1].

Proof. It is enough to show that the specialisations of α and η at x coincide for x
in a Zariski dense subset of m-SpecRp(σ)[1/p]. The isomorphism Rp ∼= Rψp ⊗̂O Λ

maps x to a pair (y, z), where y ∈ m-SpecRψp [1/p] and z ∈ m-SpecΛ[1/p], so that

if runivx , runiv,ψy and 1univ
z are Galois representations corresponding to x, y and z

respectively then
runivx

∼= runiv,ψy ⊗ 1univ
z .

Let
Πx := Homcont

O ((P̃ψ ⊗̂O 1univ) ⊗̂Rp Oκ(x), E),

Πy := Homcont
O (P̃ψ ⊗̂Rψp Oκ(y), E).

Then both are unitary G-Banach space representations and we have

Πx ∼= Πy ⊗ (1univ
z ◦ det).

It follows from [Paš15, Prop. 2.22] that HomK(σ,Πx) is a one-dimensional κ(x)-
vector space, and the action of H(σ) on it coincides with the specialisation of α at
x, which can be written as the composite

H(σ)→ Endκ(x)(M
′(σ◦)⊗Rp κ(x))

∼= κ(x).

Since σ is an algebraic representation of K, we have

HomK(σ,Πx) ∼= HomK(σ,Πl.alg
x ),

where Πl.alg
x is the subspace of locally algebraic vectors in Πx.

It follows from the main result of [Paš13] that the specialisation Πx of P̃ψ co-
incides with the Banach space representation attached to runivx via the p-adic local
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Langlands correspondence. It is then a consequence of the construction of the
appropriate cases of the p-adic local Langlands correspondence (that is, the con-
struction of Πx) that there is an embedding

πsm(r
univ
x )⊗ πalg(r

univ
x ) →֒ (Πx)l.alg,

where πsm(r
univ
x ) = r−1

p (WD(runivx )F−ss) is the smooth representation of G cor-

responding to the Weil–Deligne representation associated to runivx by the classical
Langlands correspondence rp (normalised as in Section 1.13), and πalg(r

univ
x ) is the

algebraic representation of G whose restriction to K is equal to σ. Indeed, if the
representation runivx is irreducible, then (for a Zariski dense set of x) Πx is a comple-
tion of πsm(runivx )⊗πalg(r

univ
x ) by the main result of [BB10] (see in particular [BB10,

Thm. 4.3.1]), while in the case that runivx is reducible, the result follows from the
explicit description of Πx in [BE10].

Since we have already noted that HomK(σ,Πx) is one-dimensional, we find that
in fact

HomK(σ,Πx) ∼= HomK

(
σ, πsm(runivx )⊗ πalg(r

univ
x )

)
∼= πsm(r

univ
x )K ,

and the right-hand side of this isomorphism is indeed a one-dimensional vector
space on which H(σ) acts via the specialisation of η. �

Let Rp act on P̃ψ ⊗̂O 1univ via the isomorphism Rp ∼= Rψp ⊗̂O Λ, where (as

throughout this section) the action of Rψp on P̃ψ is via the isomorphism Rψp
∼=

EndCψ(O)(P̃
ψ) constructed in [Paš13].

6.18.Theorem. P̃ψ ⊗̂O 1univ is a projective envelope of π∨ in C(O), and the action

of Rp on P̃ψ ⊗̂O 1univ is arithmetic.

Proof. We will show that the action of Rp on P̃ψ ⊗̂O 1univ satisfies the axioms
(AA1) – (AA4) with d = 0; then the action is arithmetic by definition, and

P̃ψ ⊗̂O 1univ is a projective envelope of π∨ in C(O) by Theorem 4.32 (applied with

d = 0 and with M∞ taken to be P̃ψ⊗̂O1
univ).

It is shown in [Paš15, Propositition 6.1] that F ⊗̂Rψp P̃
ψ is a finitely generated

O[[K]]-module, so the topological version of Nakayama’s lemma implies that P̃ψ

is a finitely generated Rψp [[K]]-module. Since 1univ is a free Λ-module of rank 1,

P̃ψ ⊗̂O 1univ is a finitely generated (Rψp ⊗̂O Λ)[[K]]-module, and so (AA1) holds.
Proposition 6.10 implies that (AA2) holds. Proposition 6.14 implies that (AA3)
holds (indeed, it shows that the support ofM ′(σ◦) is all of Rp(σ)[1/p]). Proposition
6.17 implies that (AA4) holds. �

Recall that for each fixed central character ψ : Z → O×, there is an exact functor
V̌ from Cψ(O) to the category of continuous GQp -representations on compact O-
modules. This is a modification of the functor introduced by Colmez in [Col10b],
see [Paš13, §5.7] for details (we additionally have to twist the functor in [Paš13] by
the inverse of the cyclotomic character to get the desired relationship between the
determinant of the Galois representations and the central character of GL2(Qp)-
representations.) If Π is an admissible unitary E-Banach space representation of G
with central character ψ, and Θ is an open bounded G-invariant lattice in Π then
the Schikhof dual of Θ is an object of Cψ(O) and V̌(Π) := V̌(Θd)[1/p] does not
depend on the choice of Θ.



PATCHING AND THE p-ADIC LANGLANDS PROGRAM FOR GL2(Qp) 37

The representation P̃ψ satisfies the conditions (N0), (N1), (N2) of [Paš15, §4] by

[Paš15, Prop. 6.1]. In particular, we have V̌(P̃ψ) ∼= runiv,ψ as Rψp [[GQp ]]-modules.
Let R∞ = Rp[[x1, . . . , xd]] and let M∞ be an R∞[G]-module satisfying the ax-

ioms (AA1)–(AA4). To x ∈ m-SpecR∞[1/p] we associate a unitary κ(x)-Banach
space representation of G, Π∞,x := Homcont

O (M∞ ⊗̂R∞
Oκ(x), E). The map Rp →

R∞ induces a map Rp → κ(x) and we let runivx := runiv ⊗Rp κ(x).

6.19. Corollary. We have an isomorphism of Galois representations V̌(Π∞,x) ∼=
runivx . In particular, Π∞,x 6= 0 for all x ∈ m-SpecR∞[1/p].

Proof. Theorem 4.32 allows us to assume that R∞ = Rp and M∞ = P̃ is a

projective envelope of π∨ in C(O). Since an arithmetic action of Rp on P̃ is

unique by Theorem 4.30, using Theorem 6.18 we may assume that R∞ = Rψp ⊗̂O Λ

and M∞ = P̃ψ ⊗̂O 1univ. Then, with the notation introduced in the course of
the proof of Proposition 6.17, x corresponds to a pair (y, z), Π∞,x = Πx ∼=
Πy ⊗ (1univ

z ◦ det) as in the proof of Proposition 6.17. It follows from [Paš15,

Lem. 4.3] that V̌(Πy) ∼= runiv,ψy . Since V̌ is compatible with twisting by characters

we have V̌(Πx) ∼= V̌(Πy)⊗ 1univ
z
∼= runivx , as required. �

6.20. Corollary. R∞ acts faithfully on M∞.

Proof. It follows from Corollary 6.19 that M∞ ⊗R∞
κ(x) is non-zero for all x ∈

m-SpecR∞[1/p]. Since Rp and hence R∞ are reduced we deduce that the action is
faithful. �

We now use the results of [Paš13] to describe F ⊗̂Rp P̃ . We will use this result
in Corollary 7.5 below to describe the m-torsion in the completed cohomology of a
modular curve, where m is a maximal ideal in a Hecke algebra.

6.21. Proposition. The representation π∨ occurs as a subquotient of F ⊗̂Rp P̃ with

multiplicity one. More precisely, if we let κ(r̄) := (F ⊗̂Rp P̃ )
∨ then the G-socle

filtration of κ(r̄) is described as follows:

(1) If r̄ is irreducible then κ(r̄) ∼= π.
(2) If r̄ is a generic non-split extension of characters (so the ratio of the two

characters is not 1, ω±1), the G-socle filtration of κ(r̄) has length two, with
graded pieces consisting of π and of the other principal series representation
in the block of π.

(3) If r̄ ∼=
(
1 ∗
0 ω

)
⊗χ then the G-socle filtration of κ(r̄) has length three and the

graded pieces are π, the twist by χ◦det of the Steinberg representation, and
two copies of the one-dimensional representation χ ◦ det.

Proof. We choose any continuous character ψ such that ψε−1 lifts det r̄. It follows

from Theorem 6.18 that F ⊗̂Rp P̃ ∼= F ⊗̂Rψp P̃
ψ. Since we can identify the endomor-

phism ring of P̃ψ with Rψp , see (6.6), it follows from Lemma 3.7 in [Paš13] applied

with S = π∨ that any Q in Cψ(O) satisfying the hypotheses (H1)–(H4) of [Paš13,

§3] is isomorphic to F ⊗̂Rψp P̃
ψ, so that κ(r̄) ∼= Q∨. (We leave the reader to check

that (H5) is not used to prove this part of Lemma 3.7 in [Paš13].) In all the cases Q
has been constructed explicitly in [Paš13] and it is immediate from the construction
of Q that the assertions about the socle filtration hold, see [Paš13, Propositions 6.1,
8.3, Remark 10.33]. �
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6.22. Remark. In the first two cases of Proposition 6.21, κ(r̄) coincides with what
Colmez calls the atome automorphe in [Col10b, §VII.4]. In the last case, κ(r̄) has
an extra copy of χ ◦det. This has to do with the fact that Colmez requires that his
atome automorphe lift to irreducible unitary Banach space representations of G.

6.23. Corollary. There is a natural isomorphism Rp
∼
−→ EndC(O)(P̃ ).

Proof. Theorems 4.30 and 6.18 yield an isomorphism P̃
∼
−→ P̃ψ⊗̂O1

univ as Rp[G]-

modules via the isomorphismRp
∼
−→ Rψp ⊗̂OΛ given by (6.2). Now EndcontG (1univ) =

Λ, while (6.6) gives a natural isomorphismRψp
∼
−→ EndC(O)(P̃

ψ). Thus the corollary
amounts to proving that the natural homomorphism

EndC(O)(P̃
ψ)⊗̂OEnd

cont
G (1univ)→ EndC(O)(P̃

ψ⊗̂O1
univ)

is an isomorphism. The map is an injection of pseudo-compact O-algebras. This

makes EndC(O)(P̃ ) into a compactRp-module. By the topological version of Nakayama’s
lemma, in order to show that the map is surjective it is enough to show that

F ⊗̂Rp EndC(O)(P̃ ) is a one dimensional F-vector space. Since P̃ is projective, we
have an isomorphism:

F ⊗̂Rp EndC(O)(P̃ ) ∼= HomC(O)(P̃ ,F ⊗̂Rp P̃ ).

By Proposition 6.21, π∨ occurs as a subquotient of F ⊗̂Rp P̃ with multiplicity

one. Since P̃ is a projective envelope of π∨ and EndC(O)(π
∨) = F, this implies that

HomC(O)(P̃ ,F ⊗̂Rp P̃ ) is a one dimensional F-vector space, as required. �

6.24. Endomorphism rings and deformation rings. We maintain the nota-

tion of the previous sections; in particular, P̃ denotes a projective envelope of π∨

in C(O). If we write R̃ := EndC(O)(P̃ ), then the arithmetic action of Rp on P̃ pro-

vided by Theorem 4.30 gives a morphism Rp → R̃, which Corollary 6.23 shows is
an isomorphism. The proof of that Corollary uses the analogous statement proved
in [Paš13] (when the central character is fixed), a key input to the proof of which is
Colmez’s functor from GL2(Qp)-representation to Galois representations. It is nat-
ural to ask (especially in light of possible generalizations) whether this isomorphism
can be proved using just the methods of the present paper, without appealing to
Colmez’s results. In this subsection we address this question, to the extent that we
can.

We begin by noting that since P̃ is a projective envelope of the absolutely irre-

ducible representation π∨, the ring R̃ is a local ring. We will furthermore give a
proof that it is commutative, from the perspective of this paper. As already noted,
this result is not new. Indeed, in addition to being a consequence of Corollary 6.23
(and thus, essentially, of the results of [Paš13]), another proof is given in [CDP14]
(see Cor. 2.22 of that paper). This latter proof uses the capturing techniques that
we are also employing in the present paper, and (since it is easy to do so) we present
a slightly rephrased version of the argument here, in order to illustrate how it fits
naturally into our present perspective.

6.25. Proposition. The ring R̃ is commutative.

Proof. We first prove that the image of Rp in R̃ lies in the centre of R̃. To see

this, suppose that φ ∈ R̃. By Proposition 4.28, to show that φ commutes with the
action of Rp, it suffices to show that φ commutes with the action of Rp(σ)[1/p] on



PATCHING AND THE p-ADIC LANGLANDS PROGRAM FOR GL2(Qp) 39

M(σ◦)[1/p] for each σ. Since the action of H(σ) on M(σ◦)[1/p] depends only on

the G-action on P̃ , we see that φ commutes with the H(σ)-action on M(σ◦)[1/p].
The desired result then follows from Proposition 2.13.

To see that R̃ is commutative, we again apply Proposition 4.28, by which it

suffices to show that R̃ acts on each M(σ◦)[1/p] through a commutative quotient.
This follows from the fact that each M(σ◦)[1/p] is locally free of rank one over
its support in SpecRp(σ)[1/p], and the fact that (by the result of the previous

paragraph) the R̃-action commutes with the Rp-action. �

6.26. Remark. As for proving the stronger result that the canonical map Rp → R̃ is
an isomorphism, in the forthcoming paper [EP] two of us (ME and VP) will establish

the injectivity of the morphism Rp → R̃. (In fact we will prove a result in the
more general context of [CEG+16]; in particular, our arguments won’t rely on any
special aspects of the GL2(Qp) situation, such as the existence of Colmez’s functors.)
However, proving the surjectivity of this morphism seems to be more difficult, and
we currently don’t know a proof of this surjectivity that avoids appealing to the
theory of Colmez’s functor from GL2(Qp)-representations to GQp -representations.

6.27. Speculations in the residually scalar semi-simplification case. Sup-
pose for the rest of this section that r̄ ∼=

( χ ∗
0 χ

)
for some χ; so in particular r̄ does

not satisfy Assumption 2.2. It is natural to ask what the modules M∞ constructed
in [CEG+16] look like in this case; we give a speculative answer below. By twisting

we may assume that χ is the trivial character. Let π = (IndGB ω⊗1)sm, and let P̃ be

a projective envelope of π∨. We first give a conjectural description of EndC(O)(P̃ ),
under the assumption p > 2.

LetDps be a functor from the category A of complete local noetherianO-algebras
with residue field F to the category of sets, that assigns to A ∈ A the set of pairs
of functions (t, d) : GQp → A, where:

• d : GQp → A× is a continuous group homomorphism, congruent to det r̄
modulo mA,
• t : GQp → A is a continuous function with t(1) = 2, and,
• for all g, h ∈ GQp , we have:

(1) t(g) ≡ tr r̄(g) (mod mA);
(2) t(gh) = t(hg);
(3) d(g)t(g−1h)− t(g)t(h) + t(gh) = 0.

(The “ps” is for “pseudocharacter”. By [Che14, Lem. 1.9], Dps(A) is the set
of pseudocharacters deforming the pseudocharacter (tr r̄, det r̄) associated to r̄.)
This functor is representable by a complete local noetherian O-algebra Rps. Let
(tuniv, duniv) : GQp → Rps be the universal object. We expect that there is a natural
isomorphism of O-algebras

(6.28) Ẽ := EndC(O)(P̃ ) ∼= (Rps[[GQp ]]/J)
op,

where J is the closed two sided ideal of Rps[[GQp ]] generated by all the elements of

the form g2 − tuniv(g)g + duniv(g) for all g ∈ GQp , and the superscript op indicates
the opposite algebra. We note that such an isomorphism has been established in
[Paš13, §9], when the central character is fixed, and we expect that one can deduce
(6.28) from this using the twisting techniques of the previous subsection.
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Let R�
p be the framed deformation ring of r̄ and let M∞ be the patched module

constructed in [CEG+16] (or the variant for the completed cohomology of modular
curves that we briefly discuss in Section 7 below) and let R∞ be the patched
ring. Then R∞ is an R�

p -algebra, and the map R�
p → R∞ gives rise to a Galois

representation r∞ : GQp → GL2(R∞) lifting r̄. The pair (tr r∞, det r∞) gives us a
point in Dps(R∞) and hence a map Rps → R∞. Hence we obtain a homomorphism
of Rps-algebras Rps[[GQp ]]→M2×2(R∞).

The Cayley–Hamilton theorem implies that this map is zero on J , so we obtain
a left action of Rps[[GQp ]]/J on the standard module R∞⊕R∞. If we admit (6.28)

then we get a right action of Ẽ on R∞⊕R∞. We expect that there are isomorphisms
in C(R∞)

(6.29) M∞
∼= (R∞ ⊕R∞) ⊗̂Ẽ P̃

∼= R∞ ⊗̂R�
p
(R�

p ⊕R
�
p ) ⊗̂Ẽ P̃ .

We note that the representation appearing on the right hand side of this equation
has been studied by Fabian Sander in his thesis [San], in the setting where the

central character is fixed. Motivated by [San, Thm. 2] we expect (R∞⊕R∞) ⊗̂Ẽ P̃
to be projective in the category of pseudocompact O[[K]]-modules. We do not

expect (R∞ ⊕ R∞) ⊗̂Ẽ P̃ to be projective in C(O), so the methods of Section 4
cannot directly be applied to this case. However, it might be possible to prove
(6.29) using Colmez’s functor. This would show that M∞ does not depend on the
choices made in the patching process.

7. Local-global compatibility

In this final section, we briefly explain how the results of this paper give a
simple new proof of the local-global compatibility theorem of [Eme11] (under the
hypotheses that we have imposed in this paper, which differ a little from those
of [Eme11]: locally at p, we have excluded the case of split r̄, and have allowed
a slightly different collection of indecomposable reducible r̄’s; and in the global
context we consider below, we exclude the possibility of so-called vexing primes).
Applying these considerations to the patched modules constructed in [CEG+16]
allows us to prove a local-global compatibility result for the completed cohomology
of a compact unitary group, but for ease of comparison to [Eme11], we instead
briefly discuss the output of Taylor–Wiles patching for modular curves.

Patching in this context goes back to [TW95], but the precise construction we
need is not in the literature. It is, however, essentially identical to that of [CEG+16]
(or the variant for Shimura curves presented in [Sch15]), so to keep this paper at a
reasonable length we simply recall the output of the construction here.

Let ρ : GQ → GL2(F) be an absolutely irreducible odd (so modular, by Serre’s
conjecture) representation, and assume that p ≥ 5 and that ρ|GQ(ζp)

is irreducible.

Write r̄ := ρ|GQp
, and assume that r̄ satisfies Assumption 2.2. Write runiv : GQp →

GL2(Rp) for the universal deformation of r̄. Let N(ρ) be the prime-to-p conductor
of ρ; that is, the level of ρ in the sense of [Ser87]. We assume that if q|N(ρ)
with q ≡ −1 (mod p) and ρ|GQq

is irreducible then ρ|IQq is also irreducible.

7.1. Remark. The last condition we have imposed excludes the so-called vexing
primes q. The assumption that there are no vexing primes means that the Galois
representations associated to modular forms of level N(ρ) are necessarily minimally
ramified. This assumption can be removed by considering inertial types at such
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primes as in [CDT99]. Since the arguments using types are standard and are
orthogonal to the main concerns of this paper, we restrict ourselves to this simple
case.

We caution the reader that while the use of types would also allow us to work at
certain non-minimal levels, the most naive analogues of Theorem 7.4 fail to hold at
arbitrary tame levels. It seems that to formulate a clean statement, one should pass
to infinite level at a finite set of primes, and formulate the compatibility statement
in terms of the local Langlands correspondence in families of [EH14], as is done
in [Eme11].

However, it does not seem to be easy to prove this full local-global compatibility
statement using only the methods of the present paper; indeed, the proof in [Eme11]
ultimately makes use of mod p multiplicity one theorems that rely on q-expansions,
whereas in our approach, we are only using multiplicity one theorems that result
from our patched modules being Cohen–Macaulay, and certain of our local defor-
mation rings being regular (namely the minimal deformation rings at places not
dividing p, and the deformation rings considered in Lemma 2.15). Note that in
general the (non-minimal) local deformation rings at places away from p need not
be regular (even after inverting p), so that carrying out the patching construction
below would result in a ring R∞ that was no longer formally smooth over Rp, so
that the results of Section 4 would not apply.

Let T be the usual Hecke algebra acting on (completed) homology and cohomol-
ogy of modular curves with (tame) level Γ1(N(ρ)) and O-coefficients; so T is an
O-algebra, generated by the operators Tl, Sl with l ∤ Np. Let m(ρ) be the maximal
ideal of T corresponding to ρ (so that Tl − tr ρ(Frobl) and lSl − det ρ(Frobl) are
both zero in T/m(ρ)). Let RQ,N(ρ) be the universal deformation ring for deforma-
tions of ρ that are minimally ramified at primes l 6= p, in the sense that they have
the same conductor as ρ|GQl

(and in particular are unramified if l ∤ N(ρ)). Let

ρuniv
Q,N(ρ) : GQ → GL2(RQ,N(ρ)) denote the corresponding universal deformation of ρ.

We now use the notation introduced in Section 3, so that in particular R∞ :=
Rp⊗̂OO[[x1, . . . , xd]] for some d ≥ 0. Patching the completed étale homology of the
modular curves Y1(N(ρ)) (and using an argument of Carayol [Car94], as in [Eme11,
§5.5] and [EGS15, §§6.2, 6.3], to factor out the Galois action on the completed co-
homology; see also [Sch15, §9] for the analogous patching construction for Shimura
curves), we obtain (for some d ≥ 0) an R∞[G]-module M∞ with an arithmetic
action, with the further property that there is an ideal a∞ of R∞, an isomorphism
of local O-algebras R∞/a∞

∼
−→ RQ,N(ρ), and an isomorphism of RQ,N(ρ)[G×GQ]-

modules

(7.2) (M∞/a∞)⊗RQ,N(ρ)
(ρunivQ,N(ρ))

∗ ∼
−→ H̃1,ét

(
Y1(N(ρ)),O

)
m(ρ)

.

Here H̃1,ét

(
Y1(N(ρ)),O

)
denotes completed étale homology, as described for exam-

ple in [CE12]. The action of GQ on the left hand side is via its action on (ρuniv
Q,N(ρ))

∗,

which as in (1.13.3) denotes the RQ,N(ρ)-linear dual of ρ
univ
Q,N(ρ).

7.3.Remark. Here we have used implicitly that the minimally ramified local (framed)
deformation rings are all smooth, which follows for example from [CHT08, Lem.
2.4.19]; this ensures that the ringR∞ occurring in the patching argument is formally
smooth over Rp.
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7.4. Theorem. Let p > 3 be prime, and let ρ : GQ → GL2(F) be an absolutely
irreducible odd representation, with the property that ρ|GQ(ζp)

is irreducible, N(ρ) is

not divisible by any vexing primes, and ρ|GQp
satisfies Assumption 2.2. Then there

is an isomorphism of RQ,N(ρ)[G×GQ]-modules

H̃1,ét

(
Y1(N(ρ)),O

)
m(ρ)

∼
−→ P̃ ⊗̂Rp (ρ

univ
Q,N(ρ))

∗,

where the completed tensor product on the right-hand side is computed by regarding
(ρuniv

Q,N(ρ))
∗ as a GQ-representation on an Rp-module via the natural morphism Rp →

RQ,N(ρ).

Proof. As noted before Remark 7.1, ρ is modular by Serre’s conjecture, so in partic-
ular M∞ is not zero. By Theorem 4.32 there is an isomorphism of R∞[G]-modules

M∞
∼= P̃ ⊗̂OO[[x1, . . . , xd]] ∼= P̃ ⊗̂Rp R∞.

Quotienting out by a∞ yields an isomorphism

M∞/a∞ ∼= P̃ ⊗̂Rp RQ,N(ρ).

The result now follows by tensoring both sides with (ρuniv
Q,N(ρ))

∗ and applying (7.2).

�

We now show how to compute the m(ρ)-torsion in the completed étale cohomol-

ogy of modular curves H̃1
ét

(
Y1(N(ρ)),O

)
as a GL2(Qp)-representation.

7.5. Corollary. Under the assumptions of Theorem 7.4, we have an isomorphism
of F[G×GQ]-modules

H̃1
ét

(
Y1(N(ρ)),F

)
[m(ρ)] ≃ κ(ρ|GQp

)⊗F ρ,

where κ(ρ|GQp
) is the representation defined in Proposition 6.21.

Proof. The Pontryagin dual of the left hand side is H̃1,ét

(
Y1(N(ρ)),O

)
⊗̂RQ,N(ρ)

F.
By Theorem 7.4, we have an isomorphism of F[G×GQ]-modules

H̃1,ét

(
Y1(N(ρ)),O

)
⊗̂RQ,N(ρ)

F ≃ (F ⊗̂Rp P̃ ) ⊗̂F ρ
∗ ∼= κ(ρ|GQp

)∨ ⊗̂F ρ
∗,

the last isomorphism following from the definition of κ(ρ|GQp
). Passing to Pontrya-

gin duals (and noting that since ρ is an F-representation, we have ρ∗ = ρ∨) gives
the result. �

7.6. Remark. Corollary 7.5 together with Proposition 6.21 gives a description of the

G-socle filtration of H̃1
ét

(
Y1(N(ρ)),F

)
[m(ρ)]. Even more is true.

Since in Corollary 6.23 we have identified the endomorphism ring of P̃ with Rp
and κ(r̄) is by definition F ⊗̂Rp P̃ , a completely formal argument (see the proof
of Proposition 2.8 in [Paš16]) shows that κ(r̄) is up to isomorphism the unique

representation in Modl.admG (O) that is maximal with respect to the following two
properties:

(1) the socle of κ(r̄) is π;
(2) π occurs as a subquotient of κ(r̄) with multiplicity 1.

(It is maximal in the sense that it cannot be embedded into any other strictly larger

representation in Modl.admG (O) satisfying these two properties.)
Corollary 7.5 shows that (after factoring out the GQ-action) the same character-

isation carries over to H̃1
ét

(
Y1(N(ρ)),F

)
[m(ρ)]. However, we warn the reader that a



PATCHING AND THE p-ADIC LANGLANDS PROGRAM FOR GL2(Qp) 43

simple-minded application of this recipe will not work in general, and in particular
it fails if ρ|GQp

∼=
(
ω ∗
0 1

)
⊗ χ.

More precisely, if Assumption 2.2 is in force then r̄ is determined up to isomor-
phism by the data of its determinant and its unique irreducible subrepresentation.
This information can be recovered from π, which in turn determines κ(r̄). If on
the other hand r̄ ∼=

(
ω ∗
0 1

)
⊗ χ and EndGQp

(r̄) = F then the G-socle of the atome

automorphe associated by Colmez in [Col10b, §VII.4] to r̄, which we still call π, is
the Steinberg representation twisted by χ◦det. This representation still carries the
information about the irreducible subrepresentation of r̄ and the determinant of r̄
but it does not determine r̄ up to isomorphism, as it does not carry the informa-
tion about the extension class in Ext1GQp

(χ, χω) corresponding to r̄. The maximal

representation satisfying (1) and (2) above will contain the atome automorphe cor-
responding to r̄ as a subrepresentation, but it will be strictly bigger. In fact it
can be shown that it is the smallest representation that contains all the atomes
automorphes corresponding to different non-zero extensions in Ext1GQp

(χ, χω).

7.7. Remark. Theorem 7.4 and Corollary 7.5, when combined with Theorems 6.18

and 4.32 (which together show that P̃ realises the usual p-adic local Langlands cor-
respondence for GL2(Qp)), prove a local-global compatibility result for completed
cohomology. They are new in the case that ρ|GQp

∼=
(
1 ∗
0 ω

)
⊗ χ. In particular, they

answer a question raised in Remark 1.2.9 in [Eme11] by confirming the expectation
of Remark 6.1.23 of loc.cit.. In the other cases, Theorem 7.4 can be deduced from

Theorem 6.4.6 in [Eme11] with P̃ replaced by a deformation of κ(r̄)∨ to Rp, such

that one obtains the universal deformation of r̄ after applying Colmez’s functor V̌

to it. If ρ|GQp

∼=
(
1 ∗
0 ω

)
⊗ χ then it can be shown that P̃ is not flat over Rp, and

that is why the approach of [Eme11] does not work in this case.

7.8.Remark. Theorem 7.4 and Corollary 7.5 have analogues in more general settings
when the group at p is essentially GL2(Qp) (or a product of copies of GL2(Qp)).
For example, taking M∞ to be the patched module of Section 3.4 (as constructed
in [CEG+16] for n = 2), we obtain statements about the completed cohomology of
unitary groups that are compact at infinity.

Perhaps a case of greater interest is that of the completed cohomology of definite
quaternion algebras over totally real fields. (One reason for this case to be of interest
is its relationship to the cohomology of the Lubin-Tate tower as in [Sch15, Thm.
6.2].) We expect that our results can be extended to this setting, although there is
one wrinkle: in order to carry out Taylor–Wiles patching, we need to fix a central
character, and as a consequence, our patched module has a fixed central character,
and no longer satisfies the axioms of Section 3. One approach to this difficulty would
be to formulate analogues of those axioms with an arbitrary fixed central character,
making use of the twisting constructions of Section 6 and “capture” arguments of
[Paš16, §2.1], but this leads to ugly statements.

Instead, we content ourselves with considering the case that the fixed central
character is the trivial character. In this case we can think of our patched modules
as modules for PGL2(Qp), and natural analogues of our axioms can be formulated
in this setting; this is carried out in [GN16, §5], where an analogue of the results of
Section 4 is proved. In fact, the arguments there allow us to consider modules for
a product of copies of PGL2(Qp), which is convenient when there is more than one
place lying over p; accordingly, we work below with cohomology that is completed
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at all primes above p. (Of course, the case of cohomology that is completed at a
single prime above p can be deduced from this by returning to finite level via taking
appropriate locally algebraic vectors.)

As explained in Remark 7.1, one has to take some care with ramification at
places away from p, and we therefore content ourselves with considering quaternion
algebras that split at all finite places. The reader wishing to prove extensions of
these results to more general quaternion algebras is advised to examine the patching
arguments of [GK14, §4], which work in this setting. We further caution the reader
that we have not attempted to check every detail of the expected result explained
below.

Let F be a totally real field in which p ≥ 5 splits completely, and let D be a
quaternion algebra over F that is split at all finite places and definite at all infinite
places (note that in particular this requires [F : Q] to be even).

Let ρ : GF → GL2(F) be absolutely irreducible, and assume that ρ|GF (ζp)
is

irreducible, and that det ρ = ω−1. Suppose that ρ has no vexing primes; that is,
if v ∤ p is a finite place at which ρ is ramified and Nv ≡ −1 (mod p), and ρ|GFv is
irreducible, then ρ|IFv is also irreducible. Finally, suppose that for each place v|p,
ρ|GFv satisfies Assumption 2.2.

Since D splits at all finite places, we can consider the tame level subgroup
U1(N(ρ)) ⊂ PGL1(D ⊗ A∞,p

F ) ≃ PGL2(A
∞,p
F ) given by the image of those ma-

trices in GL2(A
∞,p
F ) that are unipotent and upper triangular modulo N(ρ). Let

H̃0(U1(N(ρ)),O) (resp. H̃0(U1(N(ρ)),O)) denote the completed homology (resp.
cohomology) of the tower of locally symmetric spaces associated to PGL1(D) with
tame level U1(N(ρ)). (Note that at finite level, the locally symmetric spaces are
just finite sets of points.)

We assume that ρ is modular, in the following sense: ρ determines a maximal
ideal m(ρ) in the spherical Hecke algebra (generated by Hecke operators at places

not dividing p at which ρ is unramified) acting on H̃0(U1(N(ρ)),O) and we assume

that H̃0(U1(N(ρ)),O)m(ρ) 6= 0.
Let Rρ be the universal deformation ring for deformations of ρ that are mini-

mally ramified at places not dividing p, and which have determinant ε−1. For each
place v|p, let Rv be the universal deformation ring for deformations of ρ|GFv with

determinant ε−1, and set Rp := ⊗̂v|pRv.
Set G =

∏
v|p PGL1(Dv), which we identify with

∏
v|p PGL2(Qp) via a fixed

isomorphism. By patching the completed homology H̃0(U1(N(ρ)),O)m(ρ) (with a

variation of the argument in [Sch15, §9]), we obtain3 a ring R∞ which is a power
series ring over Rp, and an R∞[G]-module M∞ with an arithmetic action in the
sense of [GN16, §5.2], together with an ideal a∞ ⊂ R∞ such that R∞/a∞ ∼= Rρ
as local O-algebras and M∞/a∞ ∼= H̃0(U1(N(ρ)),O)m(ρ) as Rρ[G]-modules. (Note
that we can ensure the smoothness of R∞ over Rp since we are assuming that D
splits at all finite places and that there are no vexing primes.)

Applying [GN16, Prop. 5.2.2] now gives a G-equivariant isomorphism

H̃0(U1(N(ρ)),O)m(ρ) ≃ (⊗̂v|p P̃
1(ρ|GFv )) ⊗̂Rp Rρ,

where P̃ 1(ρ|GFv ) denotes the projective envelope considered in Section 6 in the case
that r̄ = ρ|GFv and ψ = 1. Arguing as in the proof of Corollary 7.5, we obtain a

3We caution the reader that one should carefully check this claim and we have not done so.
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G-equivariant isomorphism

H̃0(U1(N(ρ)),F)[m(ρ)] ≃ ⊗̂v|p κ(ρ|GFv ),

where κ(ρ|GFv ) denotes the representation defined in Proposition 6.21.
One can obtain analogous results in the case where [F : Q] is odd and D is split

at one infinite place of F and ramified at all the others. In this case, one works with
a tower of Shimura curves. The main difference to the argument is to note that
ρ only contributes to completed homology (or cohomology) in degree 1 (since the
D×(A∞)-action factors through the reduced norm in degree 0), and the GF -action
can be factored out by the same argument as for modular curves.
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and Sug Woo Shin, Patching and the p-adic local Langlands correspondence, Cam-
bridge Journal of Mathematics 4 (2016), no. 2, 197–287.
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no. 330, 281–509.
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Tate representations, Forum Math. Pi 2 (2014), e1, 56.

[GN16] Toby Gee and James Newton, Patching and the completed homology of locally sym-
metric spaces.

[HT01] Michael Harris and Richard Taylor, The geometry and cohomology of some simple
Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University
Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich.

[Kis08] Mark Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21

(2008), no. 2, 513–546.
[Kis09] , The Fontaine-Mazur conjecture for GL2, J. Amer. Math. Soc. 22 (2009),

no. 3, 641–690.
[Kis10] , Deformations of GQp and GL2(Qp) representations, Astérisque (2010),
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