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Abstract

We compute the image of any choice of complex conjugation on the Galois represen-
tations associated to regular algebraic cuspidal automorphic representations and to
torsion classes in the cohomology of locally symmetric spaces for GLn over a totally
real field F .

1. Introduction

The goal of this note is to describe the image of any choice of complex conjugation on the
Galois representations associated to regular algebraic cuspidal automorphic representations and
to (mod p) torsion classes in the cohomology of locally symmetric spaces for GLn over a totally
real field F . Since any choice of complex conjugation has eigenvalues ±1, the key computation
is to determine how many +1’s and how many −1’s occur; we do this by showing that their
numbers differ by at most 1. Our results are conditional on Arthur’s work [Art13].

In the case of regular algebraic cuspidal automorphic representations of GLn(AF ) which
are essentially self-dual this is known in almost all cases, due to Taylor [Tay12] (when n is
odd and under the assumption that the corresponding Galois representation is irreducible) and
Taibi [Tai12] (all cases when n is odd and most cases when n is even). We note that in the
essentially self-dual case when n is odd, the corresponding Galois representation occurs in the
étale cohomology of a certain Shimura variety. Taylor makes use of a geometric realization of
complex conjugation and studies its action on the Hodge filtration of the Betti cohomology of
this Shimura variety. Taibi uses p-adic interpolation techniques (eigenvarieties) to extend Taylor’s
result to almost all essentially self-dual cases.

Recently, Harris, Lan, Taylor and Thorne used more geometric p-adic interpolation tech-
niques in [HLTT13] to construct Galois representations associated to regular algebraic cuspidal
automorphic representations of GLn(AF ) which do not need to be essentially self-dual. Later,
Scholze gave a different construction in [Sch], still via p-adic interpolation, which also applies to
torsion classes in the cohomology of the corresponding locally symmetric space.

In this paper, we extend the result concerning the image of complex conjugation beyond the
essentially self-dual case using the very techniques which led to the construction of the Galois
representations we are interested in. We follow Scholze’s approach rather than that of [HLTT13].
Just as the construction of Galois representations for torsion classes in the case when F is totally
real, our result makes use of the transfer of a cusp form on Sp2n to GL2n+1 and is therefore
dependent on [Art13], which is still conditional on the stabilization of the twisted trace formula.
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In addition, we rely on Taibi’s main result [Tai12], which is conditional on the analogue of
Arthur’s results for inner forms of quasi split classical groups.

Let F be a totally real field and let π be a cuspidal automorphic representation of GLn(AF )
such that π∞ is regular L-algebraic. Let S be a finite set of places of F , which contains all the
places where π is ramified, and let GF,S denote the Galois group of the maximal extension of F
unramified outside S. Then there exists a Galois representation

σπ : GF,S → GLn(Q̄p)

which satisfies local-global compatibility at all finite places v 6∈ S. More precisely, for every finite
place v 6∈ S, the Satake parameters of πv are the same as the eigenvalues of σπ(Frobv) (see, for
example, Corollary V.4.2 of [Sch]). We prove the following:

Theorem 1.1. Let π be a regular L-algebraic, cuspidal automorphic representation of GLn(AF ),
with associated (p-adic) Galois representation σπ. Let c ∈ Gal(F̄ /F ) be a choice of complex
conjugation. Then tr(σπ)(c) = 0 if n is even and tr(σπ)(c) = ±1 if n is odd.

Let

TF,S :=
⊗
v 6∈S

Tv,Tv = Zp[GLn(Fv)//GLn(OFv)]

be the abstract Hecke algebra. For a sufficiently small level K ⊂ GLn(AF,f ), define the locally
symmetric space

XK := GLn(F )\ (GLn(AF,f )/K ×GLn(F ⊗Q R)/R>0K∞) ,

where K∞ ⊂ GLn(F ⊗Q R) is a maximal compact subgroup. The representation p′ determines a
homomorphism ψ : TF,S → Z̄p (a system of Hecke eigenvalues), which factors through some

Im(TF,S → EndZ̄p(H
i(XK ,Mξ,K))).

(To be precise, we may need to twist π by some quadratic character, as in the proof of Corollary
V.4.2 of [Sch], to get a cuspidal automorphic representation π′ which contributes toH i(XK ,Mξ,K).
This is because we are working with the connected locally symmetric space, but twisting by a
quadratic character is harmless for our purposes. Moreover, π′ a priori determines a homomor-
phism of the Hecke algebra into Q̄p, but local-global compatibility at places v 6∈ S guarantees
that this actually lands inside Z̄p).

Let ψ̄ : TF,S → F̄p be obtained from ψ by composing with the natural map Z̄p → F̄p. Since
π occurs in H i(XK ,Mξ,K)⊗Z̄p Q̄p, we see by Proposition 1.2.3 of [AS86] that

H i(XK ,Mξ,K ⊗Z̄p F̄p)[ψ̄] 6= 0.

An argument using the Hochschild-Serre spectral sequence (see, for example, the proof of Theo-
rem V.4.1 of [Sch]) tell us that

H i(XK , F̄p)[ψ̄] 6= 0,

where we have possibly replaced K by a smaller compact open subgroup. Thus, the reduction
mod p of the system of Hecke eigenvalues corresponding to π occurs in the mod p cohomology
of XK . There is also a mod pn version of the above picture.

Theorem 1.2. Let p be an odd prime. Let ψ be a system of Hecke eigenvalues occurring in
H i(XK , F̄p) and let σψ be the corresponding Galois representation. Let c ∈ Gal(F̄ /F ) be a
choice of complex conjugation. Then σπ(c) has +1 as an eigenvalue with multiplicity dn−1

2 e and
−1 as an eigenvalue with multiplicity bn+1

2 c.
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The Galois representation σψ is obtained by specializing an n-dimensional continuous deter-
minant, which is extracted from a 2n+1-dimensional determinant which in turn interpolates the
Galois representations associated to regular algebraic automorphic representations of Sp2n/F .
This essentially shows that 1 ⊕ σψ ⊕ σ̌ψ is congruent to a Galois representation associated to
(the transfer to GL2n+1 of) a cuspidal automorphic representation of Sp2n. We then compute the
characteristic polynomial of any choice of complex conjugation on the latter Galois representa-
tion (using Taibi’s main theorem) and therefore determine the characteristic polynomial of any
complex conjugation on the former. This gives Theorem 1.2. Adapting this for mod pn systems
of Hecke eigenvalues then gives us Theorem 1.1.

Remark 1.3. Theorem 1.1 applies in particular to the essentially self-dual representations not
covered by Taibi’s theorem. However, our proof does not give a new proof of his results, as it
was one of the inputs of our argument.

In practice, some technical complications arise. Theorem V.4.1 of [Sch] guarantees that there
is a determinant valued in the quotient of TF,S which acts faithfully on H i(XK , F̄p), glued out
of determinants valued in similar quotients acting on the interior cohomology H i

! (XK , F̄p) and
on the cohomology of the boundary of the Borel-Serre compactification of XK , H i+1(XBS

K , F̄p).
The determinant valued in the Hecke algebra acting on H i

! (XK , F̄p) is constructed by show-
ing that the interior cohomology above contributes to the cohomology of the boundary of the
Borel-Serre compactification of the locally symmetric space for G0 := ResF/QSp2n. The torsion
cohomology of the locally symmetric space for G0 is then related to classical cusp forms. Only
this part is directly related to cuspidal automorphic forms on G0. We review the construction of
this determinant in Section 2.

On the other hand, the determinant valued in the Hecke algebra acting on H i+1(XBS
K , F̄p) is

glued together out of the determinant for interior cohomology and determinants for locally sym-
metric spaces for GL′n with n′ < n, whose cohomology contributes to the boundary cohomology
of the Borel-Serre compactification of XK . This allows an induction argument. We review the
geometry of the boundary of the Borel-Serre compactification and explain the construction of the
determinant in Section 3. In section 4, we put all of this together to compute the characteristic
polynomial of complex conjugation.

1.4 Acknowledgements

We thank Frank Calegari for several remarks leading up to the material in Section 2 and for
comments on an earlier draft of this paper. We thank Toby Gee for raising the question of
studying the image of complex conjugation to one of us and for comments on an earlier draft
of this paper. We thank Sophie Morel for explaining the basics of compactifications of locally
symmetric spaces. We thank the anonymous referee for catching a few places where the paper
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2. Determinants and completed cohomology

In this section, we recall the construction due to Scholze of determinants (and, therefore, Galois
representations) associated to systems of Hecke eigenvalues occurring in the completed cohomol-
ogy of Shimura varieties for symplectic groups.

Recall that G0 := ResF/QSp2n. In this section, all Shimura varieties and Hecke algebras will
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be with respect to G0. For Kp ⊂ G0(A∞,p) a sufficiently small compact open subgroup, let

TKp := Zp[G(Apf//K
p)]

be the abstract Hecke algebra over Zp of Kp-biinvariant compactly-supported functions on
G(Af). For Kp ⊂ G0(Qp) compact open, let XKpKp be the Shimura variety for G0 of level
KpKp and let X∗KpKp

be its minimal compactification. Let O be the ring of integers in a finite
extension of Qp, which we will use as our coefficients, and let π be a uniformizer.

Let d be the dimension of XKpKp and let T̃Kp(m) be the inverse limit of the images TKpKp(m)
of TKp acting on ⊕2d

i=0H
i
c(XKpKp ,O/πm) as Kp becomes arbitrarily small. It is an inverse limit

of finite discrete rings, and hence the inverse limit topology makes it a compact topological
ring. Let H̃ i

c,Kp(O/πm) = lim−→Kp
H i
c(XKpKp ,O/πm) denote the completed compactly supported

cohomology with O/πm-coefficients. Then T̃Kp(m) is the image of TKp in

EndO/πm
(
⊕2d
i=0(H̃ i

c,Kp(O/πm))
)
,

where the ring of endomorphisms is endowed with the weakest topology which makes the action
continuous for the discrete topology on H̃ i

c,Kp(O/πm).

Each TKpKp(m) is a finite ring, and hence is the product of finitely many local rings, which
are in bijection with its maximal ideals. A maximal ideal is the same data as a homomorphism
TKpKp(m) → Fp (i.e. an F̄p-system of Hecke eigenvalues), up to an automorphism of Fp. Each
such system of eigenvalues is valued in a finite field. If m is a maximal ideal of TKpKp(m), then
⊕2d
i=0H

i
c(XKpKp , F̄p)m 6= 0, and (equivalently) ⊕2d

i=0H
i(XKpKp , F̄p)[m] 6= 0. If H i(XKpKp , F̄p)[m] 6=

0, we say that the system of Hecke eigenvalues corresponding to m occurs in H i
c(XKpKp , F̄p). A

non-zero cohomology class in this space is an eigenvector for TKp , with the given system of
Hecke eigenvalues, justifying the terminology. Observe that the maximal ideals of TKpKp(m) and
TKpKp(1) are naturally in bijection with each other.

The following result is well-known to experts and essentially due to [AS86], but we could not
find a reference for it in this form. It is not strictly necessary for our purposes, but it clarifies
the structure of the Hecke algebras T̃Kp(m).

Proposition 2.1. There are finitely many systems of Hecke eigenvalues for TKpKp(1) as Kp

varies.

Proof. Define K(m) := {g ∈ G0(Zp)|g ≡ 1 (mod pm)}. It suffices to see that every system of
Hecke eigenvalues occurring in H i(XKpK(m+1), F̄p) also occurs in some H i′(XKpK(m), F̄p) with
i′ 6 i, whenever m > 1. For this, we use the Hochschild-Serre spectral sequence:

Eij2 = H i(K(m)/K(m+ 1), Hj(XKpK(m+1), F̄p))⇒ H i+j(XKpK(m), F̄p),

which is TKp-equivariant. First, note that K(m+1)/K(m) is an abelian p-group, so any element
of K(m + 1)/K(m) has 1 as its only eigenvalue. Second, note that TKp [K(m + 1)/K(m)] is
commutative. Therefore, every system of TKp-eigenvalues that occurs in Hj(XKpK(m+1), F̄p)
also occurs in H0(K(m+ 1)/K(m), Hj(XKpK(m+1), F̄p)).

If the eigenvector survives in the E∞ page of the Hochschild-Serre spectral sequence, we are
done. Otherwise, a diagram chase and Proposition 1.2.2 of [AS86] tell us that the system of
Hecke eigenvalues has to occur in some H i′(K(m + 1)/K(m), Hj′(XKpK(m+1), F̄p)) with j′ <
j. But then Lemma 2.2 and the argument above tells us it must also occur in H0(K(m +
1)/K(m), Hj′(XKpK(m+1), F̄p)). We then proceed as above until we possibly reach j′ = 0, in
which case the system of Hecke eigenvalues occurs in H0(XKpK(m), F̄p).
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Lemma 2.2. Every system of TKp-eigenvalues occurring in

H i(K(m+ 1)/K(m), Hj(XKpK(m+1), F̄p))

also occurs in Hj(XKpK(m+1), F̄p).

Proof. Define

T1 := Im
(
TKp → EndF̄p

(
Hj(XKpK(m+1), F̄p)

))
and

T2 := Im
(
TKp → EndF̄p

(
H i(K(m+ 1)/K(m), Hj(XKpK(m+1), F̄p))

))
.

Then T2 is a quotient of T1, so any system of Hecke eigenvalues occurring in H i(K(m +
1)/K(m), Hj(XKpK(m+1), F̄p)) determines a maximal ideal of T1. Now, it suffices to notice that,
since Hj(XKpK(m+1), F̄p) is a finite-dimensional F̄p-vector space, every maximal ideal of T1 is in
the support of Hj(XKpK(m+1), F̄p). Using Nakayama’s lemma and Proposition 1.2.2 of [AS86],
we see that every maximal ideal of T1 determines a system of Hecke eigenvalues occurring in
Hj(XKpK(m+1), F̄p).

Corollary 2.3. The ring T̃Kp(m) is a product of finitely many complete profinite local rings,
each with finite residue field.

Proof. T̃Kp(m) = lim←−Kp TKpKp(m), and by the previous proposition, the transition maps are

eventually surjective maps between products of local Artinian rings which the same number of
factors. This gives the factorization of T̃Kp(m) into a product of projective limits of local finite
rings.

Fix once and for all an isomorphism ι : C ∼→ Q̄p and let C be the completion of Q̄p. Let
TKp,cl = TKp,cl,m denote TKp endowed with the weakest topology for which all the maps

TKp → EndC(H0(X∗KpKp , ω
⊗m0k
KpKp

⊗ I)⊗C,ι C)

are continuous, for varying k > 1 and Kp ⊂ G0(Qp). Here, ωKpKp is the ample line bundle
on X∗KpKp

defined in Section 3 of [Sch] and I is the ideal sheaf of the boundary. The space

H0(X∗KpKp
, ω⊗m0k

KpKp
⊗ I) is the space of classical cups forms of level KpKp and parallel weight

m0k. We want our Hecke algebras to have p-adic coefficients, so we base change from C to C. The
right hand side is then a finite-dimensional C-vector space, endowed with the p-adic topology.

The following follows from Theorem IV.3.1 of [Sch], which implies that the map TKp,cl →
T̃Kp(m) is continuous, from Corollary V.1.11 of loc. cit. for large enough m0 (where we can take
TKpKp(m) for varying Kp to be the discrete quotients) and from the construction of 2n + 1-
dimensional determinants valued in

TKpKp,k := Im
(
TKp → EndC(H0(X∗KpKp , ω

⊗m0k ⊗ I)⊗C,ι C)
)
.

The latter step interpolates the determinants coming from Galois representations associated to
classical cusp forms for G0 of high enough parallel weight.

Theorem 2.4. There is a continuous (2n + 1)-dimensional determinant D̃ of GF,S with values
in T̃Kp(m), such that

D̃(1−X · Frobv) = 1− T1,vX + T2,vX
2 − · · ·+ (−1)2n+1Tn,vX

2n+1.

As promised, we can now also describe the structure of the Hecke algebras T̃Kp(m).
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Corollary 2.5. T̃Kp(m) is a product of finitely many complete local Noetherian rings.

Proof. After localizing at each of the finitely many maximal ideals mi of T̃Kp(m), Theorem 2.4
implies that T̃Kp,mi(m) receives a surjection from a Galois pseudo-deformation ring, and hence
it is complete local Noetherian.

3. The boundary of the Borel-Serre compactification

In this section, we go back to studying the locally symmetric spaces for general linear groups.
Assume that the level K ⊂ GLn(AF,f ) is neat, which can be achieved by increasing the level at p,
as in the introduction. Let XBS

K be the Borel-Serre compactification of the locally symmetric space
XK defined in the introduction. This is a real manifold with corners, which is a compactification
of XK such that the inclusion XK ↪→ XBS

K is a homotopy equivalence. We have the excision long
exact sequence for compactly supported cohomology:

· · · → H i
c(XK , F̄p)→ H i(XK , F̄p)→ H i(XBS

K \XK , F̄p)→ . . .

Theorem 2.4 allows us to understand Galois representations associated to systems of Hecke eigen-
values which contribute to the interior cohomology H i

! (XK , F̄p). To extend this to all systems of
Hecke eigenvalues in H i(XK , F̄p), we also need to account for those systems of Hecke eigenvalues
occurring in H i(XBS

K \XK , F̄p). In this subsection, we recall the geometry of the Borel-Serre and
reductive Borel-Serre compactifications and use induction to construct a determinant valued in
(a quotient of) the Hecke algebra acting on H i(XBS

K \XK , F̄p). We follow the original construction
in [BS73] as well as the exposition in [GHM94].

Note that the group ResF/QGLn has a non-trivial Q-split torus in its center. Let H be the
group

(0(ResF/QGLn))0 :=
⋂
χ

kerχ,

where χ runs over all rationally defined characters of ResF/QGLn. The locally symmetric spaces
XK can be identified with finitely many disjoint copies of generalized locally symmetric spaces
for the algebraic group H in the sense of [GHM94]. This identification follows from the definition
in [BS73] and Paragraph 3.4 of [GHM94]. The boundary of the Borel-Serre compactification of
each connected component of XK has a stratification which runs over finitely many conjugacy
classes of rational parabolic subgroups PH ⊆ H.

We make the indexing set for the strata more precise (see Section 6 of [GHM94] for more
details). Borel and Serre construct a partial compactification D̃ of the symmetric domain D :=
H(R)/KH

∞ corresponding to H by attaching strata indexed by rationally-defined parabolic sub-
groups of H. The group H(Q) acts as a group of automorphisms on this partial compactification.
For a discrete subgroup Γ ⊂ H(Q) (obtained, in our situation, by intersecting some conjugate
of the compact open subgroup K ∩ H(Af ) with H(Q)), the quotient Γ\D̃ is a compact mani-
fold with corners. The corners, which are the Borel-Serre boundary strata, are now indexed by
Γ-conjugacy classes of rational parabolic subgroups PH ⊂ H. (Taking a quotient by Γ identifies
the Γ-conjugate components of the boundary of D̃ and, in addition, makes certain identifications
within each component.) An analogous stratification is induced from the components of the
partial compactification D̃ on adelic double quotients for H. The conjugacy classes of rational
parabolics will now depend on the level K ∩H(Af ).

Fix a representative PH for each conjugacy class; we now describe the stratum corresponding
to PH . The parabolic subgroup PH has a decomposition PH = LHUH , where LH is the Levi

6
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quotient and UH is the unipotent radical. Let

MH =0 (LH) :=
⋂
χ

kerχ2,

where χ runs over all rationally defined characters of LH . The group of real points of every rational
parabolic subgroup PH ⊆ H has a Langlands decomposition PH(R) = MH(R)AH(R)UH(R). The
stratum corresponding to a parabolic subgroup PH can be identified with the locally symmetric
space:

XPH := PH(Q)\
(
PH(Af )/KPH

f × PH(R)/AH(R)KPH
∞

)
where KPH

f := K ∩ PH(Af ) ⊂ PH(Af ) is a compact open subgroup and KPH∞ ⊂ MH(R) is a
maximal compact subgroup. (See Section 7 of [GHM94] for the formula in the case of quotients of
D̃ by discrete subgroups of H(Q). To compute the contribution of PH in our situation, compare
the adelic picture with the definition via quotients of D̃ by discrete subgroups of H(Q), and use
weak approximation and the Iwasawa decomposition for H at non-archimedean places.)

This space is a nilmanifold bundle over the locally symmetric space associated to the Levi
quotient LH of PH

XLH := LH(Q)\
(
LH(Af )/KL

f × LH(R)/AH(R)KPH
∞
)

where KL
f ⊂ LH(Af ) is the image of KPH

f under the projection PH(Af ) → LH(Af ) and is
a compact open subgroup. The fibers of this nilmanifold bundle are isomorphic to (UH(Q) ∩
KPH
f )\UH(R), as in the proof of Lemma V.2.2 of [Sch]. We note that XL

KL
f

can be identified with

a locally symmetric space for the connected component of the identity in MH , in the sense of
(7.2.2) of [GHM94] (we can go to the connected component of the identity since KPH∞ ⊂MH(R)
is a maximal compact subgroup).

We now reinterpret XLH as a product of generalized locally symmetric spaces. Each parabolic
subgroup PH ⊂ H is the intersection with H of a parabolic subgroup P of ResF/QGLn. Assume
that P has Levi quotient isomorphic to L :=

∏
i ResF/QGLni , with

∑
i ni = n. From the definition

of the locally symmetric space XLH , we see that

XLH ' L(Q)\
(
L(Af )/KL

f × L(R)/AL(R)KL

)
,

where KL ⊂ L(R) is a maximal compact subgroup.

Moreover, the latter obviously decomposes as a product of locally symmetric spaces associ-
ated to the ResF/QGLni . Therefore, we can compute the compactly supported cohomology of
a stratum corresponding to P using the Leray-Serre spectral sequence of a fibration and the
Kunneth formula for compactly supported cohomology.

For ResF/QP running over our chosen rational maximal parabolic subgroups of ResF/QGLn
(corresponding to the representatives PH), denote the corresponding stratum by XP

KP
f

. The level

is defined as KP
f := K ∩ P (Af ). We have an open immersion XP

KP
f
↪→ XBS

K \XK , which leads to

the long exact sequence for cohomology with compact support

· · · → H i
c(X

P
KP
f
, F̄p)→ H i(XBS

K \XK , F̄p)→ H i(XBS
K \ (XK ∩XP

KP
f

), F̄p)→ . . . .

Thus H i(XBS
K \XK , F̄p) is an extension between subquotients of H i

c(X
P
KP
f
, F̄p) and H i(XBS

K \(XK∩

XP
KP
f

), F̄p). After removing the strata corresponding to all maximal parabolic subgroups this way,

we can continue this process for smaller parabolic subgroups. The corresponding stratum will
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be open in what is left of the boundary and we can iterate the process above. We see that
H i(XBS

K \XK , F̄p) has a filtration whose graded pieces are subquotients of H i
c(X

P
KP
f
, F̄p) where

P runs through the chosen rational parabolic subgroups ResF/QP of ResF/QGLn. Furthermore,
the length of the filtration depends only on G and not on K.

Let π : XP
KP
f
→ XL

KL
f

be the projection map, with KL
f ⊂ L(Af ) the image of KP

f . The

projection map is proper. The Leray spectral sequence tells us that

Ei,j2 := H i
c(X

L
KL
f
, Rjπ∗F̄p) =⇒ H i+j

c (XP
KP
f
, F̄p).

Therefore,H i+j
c (XP

KP
f
, F̄p) has a filtration whose graded pieces are subquotients ofH i

c(X
L
KL
f
, Rjπ∗F̄p),

and whose length is bounded in terms of G.

Let S be a finite set of rational places, containing p,∞ and all the primes l, where the compact
open subgroup Kl ⊂ (ResF/QGLn)(Ql) is not a hyperspecial maximal compact subgroup. Since

KP
f = K ∩ P (Af ), and KL

f ⊂ L(Af ) is the image of KP under the projection P � L, KL,S ⊂
(ResF/QL)(AS) is a product of hyperspecial maximal compact subgroups. We define the auxiliary

Hecke algebras TPF,S := Zp[P (ASF )//KP,S ] and TLF,S := Zp[L(ASF )//KL,S ].

Remark 3.1. The sheaves Rjπ∗F̄p encode the cohomology of the nilmanifold

(UH(Q) ∩KP
f )\UH(R).

As in Lemma 1.9 of [HLTT13], we see that Rjπ∗F̄p can be identified with the local system
corresponding to the algebraic representation of ResF/QL given by

ρjL := ∧j
( ⊕
τ :F ↪→R

(⊕
k<l

Stdnk ⊗ Std−1
nl

))
,

where nk, nl correspond to blocks in the Levi subgroup L and Stdn is the standard representation
of GLn(OF ) on (F̄p)n. (The formula above comes from the fact that the action of ResF/QL on

UH(R) is the adjoint action.) Since the local system Rjπ∗F̄p on XL
KL
f

corresponds to the algebraic

representation ρjL, it will have an action of TLF,S compatible with the one on XL
KL
f

, which will

induce an action of TLF,S on the cohomology groups H i
c(X

L
KL
f
, Rjπ∗F̄p).

We have maps TF,S → TPF,S by restriction and TPF,S → TLF,S by integration along unipotent
fibres. Their composite

η : TF,S → TPF,S
is the unnormalized Satake transform. The following is an analogue of Lemma V.2.3 of [Sch].

Lemma 3.2. The Leray spectral sequence

Ei,j2 = H i
c(X

L
KL
f
, Rjπ∗F̄p) =⇒ H i+j

c (XP
KP
f
, F̄p)

is equivariant for the action of TF,S given by η composed with the action of TLF,S on the E2-page,

as described in Remark 3.1, and for the natural action (via restriction to TPF,S) on H i+j
c (XP

KP
f
, F̄p).

Proof. We first check that the action of a Hecke correspondence t ∈ TF,S on XP
KP
f

is compatible

with the action of η(t) on XL
KL
f

via the natural projection π : XP
KP
f
→ XL

KL
f

. This statement can
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be checked at the level of points. Let l /∈ S and t be the characteristic function of G(Zl)hG(Zl).
Put P (Zl)hP (Zl) =

∐
hiP (Zl), so that t acts as [g] 7→

∑
[ghi] on XP

KP
f

. Now if P (Zl)hP (Zl) =∐
uiU(Ql)P (Zl) =

∐
uiL(Zl)U(Ql), then π(hi) = π(hj) if and only if hi and hj belong to the

same right L(Zl)U(Ql) = U(Ql)P (Zl)-coset. Thus the number of coset representatives hi whose
projection to L are in the same right L(Zl)-coset is exactly given by integrating t along U(Ql).

We now study the action of TF,S on the sheaves Rjπ∗F̄p. Using the equivalence between local
systems on a connected component of XL

KL
f

and representations of its fundamental group, we see

that Rjπ∗F̄p is the F̄p-local system L
ρjL

corresponding to the algebraic representation ρjL defined

in Remark 3.1. The Hecke action of TLF,S is then twisted by ρjL. More precisely, for an element
λp ∈ L(Zp) there is an induced map l : l∗(L

ρjL
) → L

ρjL
, which corresponds to acting on the

representation space of ρLj by ρjL(λp). (See, for example, Section III.2 of [HT01] for all the details
worked out in the case of lisse l-adic sheaves on Shimura varieties; the case of Betti local systems
on locally symmetric spaces is analogous.) This means that the Hecke action of TLF,S on Rjπ∗F̄p
at some prime l 6∈ S of λl ∈ G(Zl)\G(Ql)/G(Zl) is via ρjL(λl)

−1.

We check that this is compatible with the action of TF,S on the fibers of the nilmanifold bundle
XP
KP
f

. Again, let t ∈ TF,S be the characteristic function of some double coset G(Zl)hG(Zl), which

acts as [g] 7→
∑

[ghi] on XP
KP
f

. It is enough to compute the action of each hi on some fiber above

a point of the base XL
KL
f

. We see that hi acts via conjugation by π(hi)
−1 ∈ L(Ql) on UH(Ql),

followed by a translation by the element hiπ(hi)
−1 ∈ UH(Ql). The translation has no effect on

the cohomology of the nilmanifold, since it is homotopic to the identity. The induced action of
each hi on the sheaves Rjπ∗F̄p is, therefore, the one coming from the adjoint representation of

L(Ql) on U(Ql), so it is precisely ρjL(π(hi))
−1. It is straightforward to check that this is the same

as the composition of η : TF,S → TLF,S followed by the action of TLF,S described in the paragraph
above.

If the level Kp at p is sufficiently small (depending only on P and L), the local system Rjπ∗F̄p
is trivial. If this is the case, the Kunneth formula for compactly supported cohomology (which
applies because the spaces we consider are manifolds) expresses the Ei,j2 terms in terms of tensor

products of Ha
c (X

GLnb
K , F̄p). In general, we can always find a normal subgroup K ′ of K which is

sufficiently small, and the Hochshild-Serre spectral sequence shows that H i
c(X

L
KL
f
, Rjπ∗F̄p) has

a filtration whose graded pieces are subquotients of (direct sums of) Ha(K/K ′, Hb
c (X

L
K′Lf

, F̄p)).
The length of the filtration is bounded in terms of G, and the spectral sequence is equivariant
with respect to TLF,S . The following summarizes the discussion in this section:

Proposition 3.3. H i(XBS
K \XK , F̄p) admits a filtration by TF,S-modules whose graded pieces are

modules for the quotients of TF,S acting on H i
c(X

L
KL
, F̄p), where TF,S acts via the unnormalized

Satake transform TF,S → TLF,S and L is a rational Levi subgroup. The length of this filtration is
bounded in terms of G only.

Remark 3.4. The Proposition continues to hold (with exactly the same argument) if we replace
cohomology with F̄p-coefficient by cohomology with O/πm-coefficients, where O is a sufficiently
large finite extension of Zp (for example, its fraction field containing all the images of embeddings
F ↪→ Q̄p is large enough).

9
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4. The image of complex conjugation

The group G0 = ResF/QSp2n contains the group ResF/QGLn as a maximal Levi, therefore the
interior cohomology of the locally symmetric space for G = ResF/QGLn contributes to the bound-
ary cohomology of the locally symmetric space for G0. Therefore, one can use Theorem 2.4 to
obtain a determinant valued in the Hecke algebra acting on the interior cohomology of the locally
symmetric space for G. This is not yet the determinant for Galois representations associated to
G, but rather involves a functorial transfer from G to G0.

More precisely, let TF,S(K, i,m) := Im(TGF,S → EndO/πm(H i
! (X

GLn
K ,O/πm))), where O is a

finite extension of Zp and π a uniformizer. Let

Pv(X) := 1− q(n+1)/2
v TGLn1,v X + · · ·+ (−1)nqn(n+1)/2

v TGLnn,v Xn

and P∨v (X) be the polynomial with constant coefficient 1 which is a scalar multiple of Pv(1/X).
The following is one of the main results in [Sch], proved in Corollary V.2.6 and Theorem V.3.1.

Theorem 4.1. There exists a nilpotent ideal I ⊂ TF,S(K, i,m) with nilpotency index bounded
only in terms of G as well as continuous 2n+ 1- and n-dimensional determinants D̃, D of GF,S
valued in TF,S(K, i,m)/I, such that

D̃(1−X · Frobv) = (1−X)Pv(X)P∨v (X)

D(1−X · Frobv) = Pv(X)

for all places v 6∈ S. The same statement holds for the Hecke algebras acting on H i
c(X

GLn
K ,O/πm)

and H i(XGLn
K ,O/πm)

Remark 4.2. Let TG0
K,k be the quotient of the Hecke algebra which acts on the spaceH0(XG0∗

K , ω⊗kK ⊗
I) of classical cuspforms for G0 (see the notation in Section 2, which match with those in [Sch]
section V.1). The determinant D̃ for interior cohomology is obtained by gluing determinants of
the type constructed in Theorem 2.4, which is glued from determinants valued in TG0

K,k. There-

fore, if all such determinants satisfy a certain identity, so will D̃. We will apply this observation
to compute the coefficient of X in D̃(1 −X · c) and hence in D(1 −X · c), where c ∈ GF,S is a
choice of complex conjugation.

We can compute the characteristic polynomial of any complex conjugation in the determinants
on TG0

K,k by the following:

Lemma 4.3. Let k > n, x ∈ SpecTG0
K,k(Q̄p), let σx : GF,S → GL2n+1(Q̄p) be the Galois represen-

tation whose Frobenius eigenvalues match the Satake parameters determined by x at places not
in S. Then for any complex conjugation c

tr(σx)(c) = ±1

Thus the characteristic polynomial of c is either (1−X)n(1 +X)n+1 or (1 +X)n(1−X)n+1.

Proof. By the proof of Corollary V.1.7 of [Sch], the cuspidal automorphic representation asso-
ciated to x determines cuspidal automorphic representations Πi of GLni for i = 1, . . . ,m and
integers l1, . . . , lm such that

– l1n1 + · · ·+ lmnm = 2n+ 1

– each Πi is self-dual

– each Πi| · |2n+1−li is regular L-algebraic

10
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– the infinitesimal characters associated to Πi|·|(li−1)/2, . . . ,Πi, . . . ,Π
(1−li)/2
i with i = 1, . . . ,m

form the multiset {k − 1, . . . , k − n, 0, n− k, . . . , 1− k}.
– the Galois representation associated to x satisfies

σx =
m⊕
i=1

(
σi ⊕ σiχ−1

p ⊕ · · · ⊕ σiχ⊗(1−li)
p

)
,

where σi is the Galois representation associated to the regular L-algebraic cuspidal auto-
morphic representation Πi| · |(1−li)/2 and χ−1

p is the p-adic cyclotomic character (and also
the Galois representation associated to the absolute value | · | by our normalization of class
field theory).

(This is where we make use of the results of [Art13].)

We note that if li is even, the trace of c on σi⊕· · ·⊕σiχ⊗(1−li)
p is equal to 0. If li is odd, then

Πi| · |(li−1)/2 is essentially self-dual, with even multiplier character, so by [Tai12], the trace of c

on σi is 0 if ni is even and ±1 if ni is odd. Therefore, the trace of c on σi ⊕ · · · ⊕ σiχ⊗(1−li)
p is 0

if ni is even and ±1 if ni is odd.

We now show that there is at most one i for which both ni and li are odd. Indeed, Πi is
self-dual, so the multiset of infinitesimal characters of Πi| · |(li−1)/2, . . . ,Πi, . . . ,Πi| · |(1−li)/2 is
symmetric about 0. If both ni and li are odd, this multiset contains an odd number of elements,
so it must contain 0. But from above, we see that 0 can appear only once, so nili is odd for
at most one Πi. Since 2n + 1 is odd, we see that nili is odd for exactly one Πi and, therefore,
tr(σx)(c) = ±1.

Proposition 4.4. Let p be an odd prime. Let ψ be a system of Hecke eigenvalues which occurs
in the interior cohomology H i

! (XK , F̄p), where XK is a locally symmetric space attached to G.
Let σψ be the Galois representation associated to the determinant D in Theorem 4.1 specialized
to ψ. Then σψ(c) has +1 as an eigenvalue with multiplicity dn−1

2 e and −1 as an eigenvalue with
multiplicity bn+1

2 c.

Proof. It suffices to consider the case p > 2, as the assertion is empty when p = 2. This follows
from Lemma 4.3 and the construction of the determinant with the additional observation that
the the determinant D̃ specialized at ψ gives rise to the Galois representation 1 ⊕ σψ ⊕ (σψ)∨.
This observation follows from the polynomial identity D̃(1−X · Frobv) = (1−X)Pv(X)P∨v (X)
appearing in Theorem 4.1 and from the fact that σψ is the Galois representation associated to
the specialization at ψ of a determinant which matches Pv(X) at almost all places.

Now Remark 4.2 and Lemma 4.3 tell us that, if 1 is an eigenvalue of σψ(c) with multiplicity
a and −1 is an eigenvalue of σψ(c) with multiplicity b, then

(1−X)2a+1(1 +X)2b = (1±X)n(1∓X)n+1.

Considering the cases n even and n odd separately gives the desired result.

Theorem 4.5. Let p be an odd prime. Let ψ be a system of Hecke eigenvalues which occurs
in H i

c(XK , F̄p). Let σψ be the Galois representation associated to ψ. Then σψ(c) has +1 as an
eigenvalue with multiplicity dn−1

2 e and −1 as an eigenvalue with multiplicity bn+1
2 c.

Proof. We prove this by induction on n. Note that the case n = 1 is obvious, since the locally
symmetric space in this case is compact so Proposition 4.4 applies. Assume that the theorem

11
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holds for all n′ < n. If ψ occurs in interior cohomology, we are done by Proposition 4.4. If not,
then ψ occurs in the cohomology of the boundary of the Borel-Serre compactification of XK .
By Proposition 3.3, it is enough to show that for any Levi subgroup L the determinant DL

associated to H i
c(X

L
KL
f
, F̄p) gives rise to Galois representations for which the trace of complex

conjugation satisfies the conditions of the theorem.

Assume that L =
∏k
i=1GLni(F ). Then DL is obtained by taking the direct product of the

determinants associated to the locally symmetric spaces for GLni(F ) (where we mean the con-
nected locally symmetric spaces), each of these appropriately twisted by powers of the cyclotomic
character. The reason for the twists is that the action of TF,S is compatible with the action of
TLF,S via the unnormalized Satake transform, as shown in Lemma 3.2. Explicitly, for a place v of
F not in S, the unnormalized Satake transform is the map

Zp[T±1
1 , . . . T±1

n ]Sn →
k∏
i=1

Zp[q1/2
v ][(Xi

1)±1, . . . (Xi
ni)
±1]Sni ,

where

Tj 7→ q
−(n1+···+ni−1)/2+(ni+1+···+nk)/2
v Xi

ji ,

with i and ji uniquely determined by 1 6 j 6 n. Since the normalized Satake transform is com-

patible with local Langlands up to q
(ni+1)/2
v , we get that DL =

∏k
i=1Di(χ

ni+1+···+nk
p ), where χp

is the p-adic cyclotomic character and Di is the determinant associated to the locally symmetric
space for GLni(F ). By the induction hypothesis, the characteristic polynomial of complex con-
jugation on each Di satisfies the conditions of the theorem. Noting that the cyclotomic character
is odd, we see that the sign of the contribution from the successive Di switches every time an
odd-dimensional determinant contributes to the sum. Therefore, DL also satisfies the conditions
of the theorem.

The above theorem determines the conjugacy class of complex conjugation in σψ for p odd.
To prove the analogous statement for characteristic 0 system of Hecke eigenvalues, we need to
have a version of the above theorem for cohomology with O/πm-coefficients.

Proposition 4.6. Let ψ : TF,S → O/πmO be a system of Hecke eigenvalue factoring through the
Hecke algebra quotient acting on H i

c(X
GLn
K ,O/πm). There exists an integer N0 depending only

on G such that the determinant D in Theorem 4.1 specializes to ψ̃ = ψ mod πbm/N0c−ordπ(4),
and Dψ̃(1−X · c) = 1− tr(c)X + · · · with trc = 0 if n is even and tr(c) = −1 if n is odd.

Proof. The existence of the specialization to ψ̃ mod πbm/N0c follows from the fact that the image
ψ(I) is nilpotent with nilpotency index bounded by that of the ideal I. Lemma 4.3 shows that
the identity

(2tr(σψ)(c) + 1)2 = 1

holds for the determinant on interior cohomology. By Proposition 3.3 and an induction on n as
in the proof of Theorem 4.5, the identity holds for the determinant on the Borel-Serre boundary
of XG

K , hence it holds for the determinant on H i
c(X

G
K ,O/πm). Specializing via ψ̃ gives the identity

4tr(c)(tr(c) + 1) = 0 in O/πbm/N0c. Since either tr(c) or tr(c) + 1 is a unit (which one depends
on the parity of n), we are done.

Corollary 4.7. Let ψ be the system of Hecke eigenvalues of a regular algebraic cusp forms on
GLn /F , with associated (p-adic) Galois representation σψ. Then trσψ(c) ∈ {0,±1}.
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Proof. It suffices to compute trσψ(c) in the case ψ occurs in H i
c(X

G
K ,Lξ), where we’ve chosen an

algebraic coefficient system Lξ defined over (possibly a finite extension of) O. Applying the above
Proposition to ψ mod πm gives trσψ(c) mod πbm/N0c−ordπ(4) ∈ {0,−1}. (Since we’re looking at
XG
K , we know that the trace lies in {0,−1} rather than {0,±1}.) Letting m → ∞ gives the

result.

Remark 4.8. The corollary completely determines the conjugacy class of σψ(c). In general, for
systems of Hecke eigenvalues mod πm, one can refine Proposition 4.6 to compute the entire
characteristic polynomial of c modulo a smaller power of π.
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