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We use the patching method of Taylor–Wiles and Kisin to con-
struct a candidate for the p-adic local Langlands correspondence
for GLn(F ), F a finite extension of Qp. We use our construction
to prove many new cases of the Breuil–Schneider conjecture.
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1. Introduction

Our goal in this paper is to use global methods (specifically, the Taylor–
Wiles–Kisin patching method) to construct a candidate for the p-adic local
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Langlands correspondence for GLn(F ), where F is an arbitrary finite exten-

sion of Qp, and p - 2n. At present, the existence of such a correspondence is

only known for GL1(F ) (where it is given by local class field theory), and

for GL2(Qp) (cf. [Col10; Paš13]). We do not prove that our construction

gives a purely local correspondence (and it would perhaps be premature to

conjecture that it should), but we are able to say enough about our con-

struction to prove many new cases of the Breuil–Schneider conjecture, and

to reduce the general case of the Breuil–Schneider conjecture (under some

mild technical hypotheses) to standard conjectures related to automorphy

lifting theorems.

The idea that global methods could be used to construct the corre-

spondence is a natural one; the only proofs at present of the classical local

Langlands correspondence [HT01; Hen00; Sch13] are by global means, and

indeed the first proofs of local class field theory were global. The basic idea

is to embed a local situation into a global one, apply a global correspondence

(for example, the association of Galois representations to certain automor-

phic forms), and then to prove that the construction is independent of the

choice of global situation. In this paper, we carry out the first half of this

idea (although, in contrast to the constructions of [HT01], the direction of

the correspondence we construct is from representations of the local Galois

group GF to representations of GLn(F )). We intend to return to the sec-

ond half (investigating the question of independence of the global situation)

in subsequent work. (See Section 6 for a discussion of the relationship of

our construction to conjectural extensions of the existing p-adic Langlands

correspondence for GL2(Qp).)

1.1. A candidate for p-adic local Langlands

Let p - 2n be prime, and let F be the residue field of the ring of integers

O in some fixed field of coefficients E, a finite extension of Qp. The main

construction of the paper associates to any representation r̄ : GF → GLn(F)

a compact, torsion free O-module M∞ equipped with commuting actions of

GLn(F ) and of a local O-algebra R∞, which is a formal power series ring

over the universal lifting O-algebra R�
r̄ .

If r : GF → GLn(E) is a continuous lifting of r̄ (with respect to some

suitable integral structure on r), and y : R∞ → O is a homomorphism com-

patible with the homomorphism x : R�
r̄ → E arising from (an appropriate

choice of integral structure on) r, then we define V (r) := (M∞⊗R∞,yO)d[1/p]

(where d denotes the Schikhof dual); this is a continuous, unitary E-Banach
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space representation of GLn(F ), which we show is furthermore admissible
(Proposition 2.13 below).1

This construction is the key point of this paper, and the most optimistic
of us expect that r 7→ V (r) will realize the p-adic Langlands correspondence
for GLn(F ). At the moment we do not have enough control over the rep-
resentations V (r) for an arbitrary Galois representation r to say anything
definitive in this direction in general. (Indeed, a priori, V (r) depends not just
on r, but on the choices of x and of y; furthermore, it is not evidently non-
zero.) However, if r satisfies the assumptions of Theorem B below, namely
is potentially crystalline and generic with regular Hodge–Tate weights, then
we can show (Theorem 4.35) that the subspace of locally algebraic vectors
in V (r) is isomorphic to the locally algebraic representation BS(r) associ-
ated to r by Breuil and Schneider [BS07]. This result is very much in the
spirit of a Langlands correspondence, as BS(r) is a tensor product of an
algebraic representation, which encodes the information about the Hodge–
Tate weights of r, and a smooth representation, which corresponds to the
Weil–Deligne representation of r by the classical Langlands correspondence.

1.2. The Breuil–Schneider conjecture

Before giving more details of our construction, we discuss an application of
it to the Breuil–Schneider conjecture [BS07]; this conjecture predicts that
locally algebraic representations of GLn(F ) admit invariant norms (and thus
nonzero completions to unitary Banach representations) if and only if they
arise from regular de Rham Galois representations by applying (a generic
version of) the classical local Langlands correspondence to the corresponding
Weil–Deligne representations. (This conjecture is motivated by the case of
GL2(Qp), where it is an immediate consequence of known properties of the
p-adic local Langlands correspondence.) In one direction, Hu [Hu09] showed
that if such a norm exists, the locally algebraic representation necessarily
comes from a regular de Rham representation.

The converse direction is largely open. We recall the conjecture in more
detail in Section 5 below, to which the reader should refer for any unfamiliar
notation or terminology. As we remarked above, given a de Rham represen-
tation r : GF → GLn(Qp) of regular weight, in [BS07] there is associated to

r a locally algebraic Qp-representation BS(r) of GLn(F ). The following is
[BS07, Conjecture 4.3] (in the open direction).

1In the definition of V (r) given there, certain additional restrictions are placed
on the choice of extension of x to y; we suppress this technical point in the present
discussion.
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A Conjecture. If r : GF → GLn(Qp) is de Rham and has regular weight,
then BS(r) admits a nonzero unitary Banach completion.

In fact, the known properties of the p-adic local Langlands correspon-
dence for GL2(Qp) suggest that there should even be a nonzero admissible
completion. Conjecture A was proved in the case that πsm(r) is supercus-
pidal in [BS07, Theorem 5.2], and in the more general case that WD(r) is
indecomposable in [Sor13]. (The notation is defined in §1.8). The argument
of [Sor13] is global. It makes use of a strategy of one of us (M.E.) who ob-
served that if r arises as the local Galois representation coming from an
automorphic representation, then one can obtain an admissible completion
from the completed cohomology of [Eme06b], cf. Proposition 4.6 of [Eme05]
(and also [Sor15]). However, as there are only countably many automorphic
representations, it is not possible to say anything about most principal series
representations in this way; indeed, as was already remarked in [BS07] (see
the discussion before Remark 5.7), the principal series case seems to be the
deepest case of the conjecture.

Other than for GL2(Qp), the only previous results in the general princi-
pal series case that we are aware of are those of [AKS13; Ies12; KS12; Vig08],
which prove the conjecture for certain principal series cases for GL2(F ), un-
der additional restrictions on the Hodge filtration of r. The methods of these
papers do not seem to shed any light on the stronger question of the exis-
tence of admissible completions. Under the assumption that p - 2n, which
we make from now on, we have associated an admissible unitary Banach
representation V (r) to any continuous representation r : GF → GLn(Qp).
In order to prove Conjecture A, it would be enough to establish that V (r)
contains a copy of BS(r) when r is de Rham of regular weight. We expect
this to be true in general, and we are able to show that it is equivalent to
proving a certain automorphy lifting theorem. The following is our main
result in this direction. (See sections 2 and 5 for any unfamiliar terminol-
ogy; note in particular that the hypothesis that r lies on an automorphic
component does not imply that r arises from the Galois representation as-
sociated to an automorphic representation, but is rather the much weaker
condition that it lies on the same component of a local deformation ring as
some such representation. It is a folklore conjecture (closely related to the
problem of deducing the Fontaine–Mazur conjecture from generalisations
of Serre’s conjecture via automorphy lifting theorems) that every de Rham
representation of regular weight satisfies this condition. Note also that we
call a potentially crystalline representation r : GF → GLn(Qp) generic if
the smooth representation of GLn(F ) corresponding via the classical local
Langlands correspondence to the Weil–Deligne representation underlying r
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is generic, i.e. admits a Whittaker model; see Section 2.3 of [Kud94] for more
details on this notion.)

B Theorem (Theorem 5.3 and Remark 4.20). Suppose that p - 2n, that
r : GF → GLn(Qp) is potentially crystalline of regular weight, and that r
is generic. Suppose further that r lies on an automorphic component of the
corresponding potentially crystalline deformation ring. Then BS(r) admits
a nonzero unitary admissible Banach completion.

By taking known automorphy lifting theorems, in particular those proved
in [BLGGT14], we are able to deduce new cases of Conjecture A. In partic-
ular, we deduce the following result (Corollary 5.5).

C Theorem. Suppose that p > 2, that r : GF → GLn(Qp) is de Rham of
regular weight, and that r is generic. Suppose further that either

1. n = 2, and r is potentially Barsotti–Tate, or
2. F/Qp is unramified and r is crystalline with Hodge–Tate weights in

the extended Fontaine–Laffaille range, and n 6= p.

Then BS(r) admits a nonzero unitary admissible Banach completion.

Actually, we prove a more general result (Corollary 5.4) which establishes
the conjecture for potentially diagonalisable representations; conjecturally,
every potentially crystalline representation is potentially diagonalisable. We
remark that while we expect these results to extend to potentially semistable
(rather than just potentially crystalline) representations, and to non-generic
representations, we have restricted to the potentially crystalline case for two
reasons: we can use the main theorems of [BLGGT14] without modification,
and we do not have to consider issues related to the possible reducibility of
BS(r).

1.3. The patching construction

In the proof of the classical local Langlands correspondence [HT01; Hen00],
the globalisation argument uses a reduction to the supercuspidal case (via
the classification of irreducible smooth representations of GLn(F ) given
in [BZ77; Zel80]), and then uses trace formula methods to realise super-
cuspidal representations as the local components of cuspidal automorphic
representations. No such argument is possible in our setting; there are only
countably many automorphic representations, but already for GL2(Qp) there
are uncountably many irreducible p-adic Galois representations (even up to
twist).
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It is natural to hope that in the p-adic setting, one could carry out an

analogous globalisation using “p-adic automorphic representations”, such as

those arising from the completed cohomology of [Eme06b]. However, since

the locally algebraic vectors in completed cohomology are computed by clas-

sical automorphic representations, one cannot expect to see any regular de

Rham Galois representations in completed cohomology other than those

arising from classical automorphic representations.

The globalisation argument in the proof of classical local Langlands is

effectively a result showing the Zariski-density of automorphic points in

the Bernstein spectrum; the analogous result for p-adic local Langlands

(or rather, for the part of it pertaining to regular de Rham representa-

tions) would be a Zariski-density result for automorphic points in the corre-

sponding local Galois deformation rings. This is not known in general, but

strong results in this direction follow from the Taylor–Wiles–Kisin patching

method, which provides a Zariski-density result for a non-empty collection

of components of a local deformation ring (and in general shows that each

component either contains no automorphic points, or a Zariski-dense set of

points; as mentioned above, the problem of showing that each component

contains an automorphic point is closely related to the problem of deducing

the Fontaine–Mazur conjecture from generalisations of Serre’s conjecture,

cf. Remark 5.5.3 of [EG14]).

The Taylor–Wiles–Kisin method patches together spaces of automorphic

forms with varying tame level. Traditionally, the weight and the p-part of the

level of these forms is fixed, and one obtains a patched module for a certain

universal local deformation ring corresponding to de Rham representations

of fixed Hodge–Tate weights, and a fixed inertial type. In the present paper,

we instead vary over all weights and levels at p, obtaining a module M∞ over

the unrestricted local deformation ring (with some power series variables

adjoined). By construction, M∞ naturally has an action of GLn(OF ); by

keeping track of the action of the Hecke operators at p, we are able to

promote this to an action of GLn(F ). Dualising the fibre of this patched

module at the point corresponding to a particular Galois representation r,

and inverting p, gives the unitary admissible Banach representation V (r)

that we seek. The condition that p - 2n is needed to employ the Taylor–

Wiles–Kisin method (for example, this condition is necessary in order to be

able to appeal to various results from [BLGGT14]), but we suspect that it

is not ultimately needed to carry out variants of these constructions.

We do not know whether it is reasonable to expect that our construction

is purely local, and thus defines a p-adic local Langlands correspondence; this
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amounts to the problem of showing that the patched modules that we con-
struct are purely local objects. For some weak evidence in this direction,
see [EGS15], which proves a related result for lattices corresponding to cer-
tain 2-dimensional tamely potentially Barsotti–Tate representations. It can
also be shown that our construction recovers the known correspondence for
GL2(Qp), without needing to use the full strength of the p-adic local Lang-
lands correspondence. We are currently writing a paper which will explain
this and for which the main steps are: showing that our module M∞ is pro-
jective as a GL2(Qp)-representation, computing its cosocle via the weight
part of Serre’s conjecture, and exploiting the density of crystabelline points
in local deformation rings. Finally, we refer to Section 6 below for a slightly
more detailed discussion of how the construction of this paper might relate
to a hypothetical p-adic local Langlands correspondence in the general case
of GLn(F ).

1.4. Inertial local Langlands, the Bernstein centre, and
local-global compatibility

In Sections 3 and 4 we relate the theory of the Bernstein centre and the so-
called inertial local Langlands correspondence to the theory of potentiallly
crystalline deformation rings, and the Taylor–Wiles–Kisin patched modules
which lie over them.

More precisely, in Section 3 we synthesise and expand on results of Bern-
stein and Bernstein–Zelevinsky, Bushnell–Kutzko, Schneider–Zink, and Dat,
to draw the following conclusions: for any inertial type τ (i.e. a representation
τ : IF → GLn(Qp) with open kernel which extends to the Weil group of F ),

there is an associated smooth type σ(τ), which is a smooth Qp-representation
of GLn(OF ), with the following properties:

(i) The Hecke algebra H
(
σ(τ)

)
:= End

(
c-Ind

GLn(F )
GLn(OF )σ(τ)

)
is commuta-

tive.
(ii) σ(τ) appears as a GLn(OF )-subrepresentation of an irreducible smooth

GLn(F )-representation π if and only if the Weil–Deligne representation
attached to π via the local Langlands correspondence is isomorphic to
τ when restricted to IF , and in addition satisfies N = 0. Furthermore,
for such π, the representation σ(τ) appears in π with multiplicity one.

Suppose that π is an irreducible smooth GLn(F )-representation whose
associated Weil–Deligne representation is isomorphic to τ when restricted
to IF , and in addition satisfies N = 0, so that σ(τ) appears with multi-
plicity one in π, by (ii) above. By Frobenius reciprocity, the Hecke algebra
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H
(
σ(τ)

)
then acts on the associated one-dimensional multiplicity space via

a character χπ : H
(
σ(τ)

)
→ Qp, and hence there is an induced surjection

c-Ind
GLn(F )
GLn(OF )σ(τ)⊗H(σ(τ)),χπ Qp → π. In this context, we establish one fur-

ther result.

(iii) If π is generic then the preceding surjection is an isomorphism.

From these results, we deduce that the connected components of the
Spec of the Bernstein centre for GLn(F ) are identified with the various
SpecH

(
σ(τ)

)
, as τ ranges over all (isomorphism classes of) inertial types.

Over any such component we have the universal GLn(F )-representation

c-Ind
GLn(F )
GLn(OF )σ(τ), whose fibre over the point χπ arising from a generic π

whose associated Weil–Deligne representation satisfies N = 0 is isomorphic
to the representation π.

For both the comparison with Galois deformation rings that we make in
Section 4, and for the connections that we draw with the theory of Banach
space representations of GLn(F ), it is technically important to work over a
finite extension of Qp rather than over Qp, so we also explain how to descend

the preceding results from Qp to such finite extensions.
In Section 4, we consider so-called locally algebraic types, which are rep-

resentations of GLn(OF ), defined over some finite extension E of Qp, of the
form σsm ⊗ σalg, where σsm is the smooth type attached to some inertial
type τ , and σalg is an irreducible algebraic representation of ResF/Qp GLn.

Attached to σ we have a Hecke algebra H(σ) := End(c-Ind
GLn(F )
GLn(OF )σ); it

is isomorphic to H(σsm). Attached to σ and any continuous representation
r̄ : GF → GLn(F) as above, there is a universal lifting ring R�

r̄ (σ), pa-
rameterising potentially crystalline lifts of r̄ whose associated inertial type
coincides with τ , and whose Hodge–Tate weights match with the highest
weight of σalg after applying the usual ρ-shift.

One of the main results of Section 4, which may be of independent
interest, is the existence of a homomorphism η : H(σ)→ Rr̄(σ)�[1/p] which
interpolates the local Langlands correspondence. (This gives an algebraic
extension of an analogous rigid-analytic result proved in [Che09]). Namely,
if x : Rr̄(σ)�[1/p] → Qp corresponds to a crystalline lift rx of r̄, if π is the
irreducible smooth representation of GLn(F ) associated to the Weil–Deligne
representation underlying rx via the local Langlands correspondence, and if
χπ : H(σ) ∼= H(σsm) → Qp is the character of H(σ) associated to π, then
we have the equality χπ = x ◦ η.

The second main result of this section is a key reciprocity law related to
the Hecke action on locally algebraic vectors in M∞, which we refer to as
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local-global compatibility (in analogy with the classical local-global compat-
ibility results for cohomology of Shimura varieties [Car14]). Given a locally
algebraic type σ, we may form the R∞-module

M∞(σ) := Homcont
GLn(OF )(M∞, σ

∗)∗,

where ∗ denotes continuous dual. We show that theR�
r̄ -action on this module

factors through R�
r̄ (σ). It is thus equipped with two natural H(σ)-actions:

one via its very definition together with Frobenius reciprocity (and so re-
lated to the structure of M∞ as a GLn(F )-representation), and one via the
homomorphism η (and so related to the structure of M∞ as an R�

r̄ -module);
local-global compatibility is the statement that these two actions coincide.

This reciprocity law is crucial to our analysis of the locally algebraic
vectors in the representations V (r), and to our study of the Breuil–Schneider
conjecture.

1.5. The relationship with [Sch15]

We briefly discuss how our work relates to some other recent progress in
the field. In [Sch15], Scholze provides more evidence for the existence of a
purely local p-adic local Langlands correspondence for GLn(F ), by studying
the cohomology of the Lubin–Tate tower. In the classical case [HT01], when
l 6= p, it is known that the Lubin–Tate tower simultaneously realizes the
local Langlands correspondence and the Jacquet-Langlands correspondence,
between representations of GLn(F ) and representations of D×, where D/F
is the central division algebra of invariant 1/n. Scholze uses the Lubin–Tate
tower to construct a purely local functor

π 7→ F (π)

from admissible, smooth Fp-representations of GLn(F ) to admissible repre-
sentations of D× equipped with an action of GF . This functor goes in the
opposite direction from our construction.

However, when n = 2, Scholze proves that it is compatible with our
patching construction (Corollary 9.3 of [Sch15]), in the following sense. As
in the case of unitary groups and GLn(F ), one can patch the cohomology
of locally symmetric spaces coming from a quaternion algebra (which is
split at p and ramified at all infinite places) to obtain a representation π∞
of GL2(F ). One can also patch the cohomology of certain Shimura curves
(corresponding to a quaternion algebra which is ramified at p, but split at



p-adic local Langlands correspondence 11

one infinite place) to get a representation ρ∞ of D× × GF . Then Scholze
shows that

F (π∞) = ρ∞.

(In fact, Scholze employs a variant of the patching construction used in this
paper, making use of ultrafilters to reduce the amount of bookkeeping needed
to obtain the action of Hecke operators at p.) We remark that it should be
possible to adapt his strategy to p-adic representations and to general n
(using Shimura varieties of Harris–Taylor type for the latter step). It seems
reasonable to expect that this will lead to a proof that one can recover the
GF -representation r from the Banach space V (r) that we associate to it (at
least in cases where it can be shown that V (r) is nonzero; for example, this
will be the case for the representations considered in Theorems B and C,
where we even prove that the locally algebraic vectors in V (r) are nonzero.)

1.6. Outline of the paper

In Section 2, we carry out our patching construction. Section 3 contains
an introduction to the results of Bernstein–Zelevinsky, Bushnell–Kutzko,
Schneider–Zink and Dat on types and the local Langlands correspondence
for GLn. We then refine some of these results, as described above, and ex-
plain how to descend them from algebraically closed coefficient fields to finite
extensions of Qp. In Section 4 we begin by establishing our interpolation of
the classical local Langlands correspondence over a (potentially crystalline)
local deformation ring, and then apply this to establish local-global com-
patibility for our patched modules. Finally, in Section 5 we combine our
local-global compatibility result with automorphy lifting theorems to prove
our results on the Breuil–Schneider conjecture.
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1.8. Notation

We fix a prime p, and an algebraic closure Qp of Qp. Throughout the paper

we work with a finite extension E/Qp in Qp, which will be our coefficient
field. We write O = OE for the ring of integers in E, $ = $E for a uni-
formiser, and F := O/$ for the residue field. At any particular moment
E is fixed, but we allow ourselves to modify E (typically via an extension
of scalars) during the course of our arguments. Furthermore, we will often
assume without further comment that E and F are sufficiently large, and in
particular that if we are working with representations of the absolute Galois
group of a p-adic field F , then the images of all embeddings F ↪→ Qp are
contained in E.

If F is a field, we let GF denote its absolute Galois group. Let ε denote
the p-adic cyclotomic character, and ε the mod p cyclotomic character. If F
is a finite extension of Qp for some p, we write IF for the inertia subgroup

of GF , and $F for a uniformiser of the ring of integers OF of F . If F̃ is a
number field and v is a finite place of F̃ then we let Frobv denote a geometric
Frobenius element of GF̃v .

If F is a p-adic field, W is a de Rham representation of GF over E,
and κ : F ↪→ E, then we will write HTκ(W ) for the multiset of Hodge–Tate
weights of W with respect to κ. By definition, the multiset HTκ(W ) contains

i with multiplicity dimE(W⊗κ,F F̂ (i))GF . Thus for example HTκ(ε) = {−1}.
We say that W has regular Hodge–Tate weights if for each κ, the el-

ements of HTκ(W ) are pairwise distinct. Let Zn+ denote the set of tuples
(ξ1, . . . , ξn) of integers with ξ1 ≥ ξ2 ≥ · · · ≥ ξn. Then if W has regular
Hodge–Tate weights, there is a ξ = (ξκ,i) ∈ (Zn+)HomQp (F,E) such that for
each κ : F ↪→ E,

HTκ(W ) = {ξκ,1 + n− 1, ξκ,2 + n− 2, . . . , ξκ,n},

and we say that W is regular of weight ξ. For any ξ ∈ Zn+, view ξ as a
dominant weight (with respect to the upper triangular Borel subgroup) of
the algebraic group GLn in the usual way, and let M ′ξ be the algebraic OF -
representation of GLn given by

M ′ξ := IndGLn
Bn

(w0ξ)/OF
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where Bn is the Borel subgroup of upper-triangular matrices of GLn, and
w0 is the longest element of the Weyl group (see [Jan03] for more details
of these notions, and note that M ′ξ has highest weight ξ). Write Mξ for
the OF -representation of GLn(OF ) obtained by evaluating M ′ξ on OF . For

any ξ ∈ (Zn+)HomQp (F,E) we write Lξ for the O-representation of GLn(OF )
defined by

Lξ := ⊗κ:F ↪→EMξκ ⊗OF ,κ O.

If F is a p-adic field, then an inertial type is a representation τ : IF →
GLn(Qp) with open kernel which extends to the Weil group WF .

Then we say that a de Rham representation ρ : GF → GLn(E) has
inertial type τ if the restriction to IF of the Weil–Deligne representation
WD(ρ) associated to ρ is equivalent to τ . Given an inertial type τ , there is
a finite-dimensional smooth irreducible Qp-representation σ(τ) of GLn(OF )
associated to τ by the “inertial local Langlands correspondence”; see The-
orem 3.7 below. (Note that by the results of Section 3.13 below, we will be
able to replace σ(τ) by a model defined over a finite extension of E in our
main arguments.)

Let F be a finite extension of Qp, and let rec denote the local Langlands
correspondence from isomorphism classes of irreducible smooth representa-
tions of GLn(F ) over C to isomorphism classes of n-dimensional Frobenius
semisimple Weil–Deligne representations of WF as in the introduction to
[HT01]. Fix once and for all an isomorphism ı : Qp

∼−→ C. We define the lo-

cal Langlands correspondence recp over Qp by ı◦ recp = rec◦ ı. This depends

only on ı−1(
√
p), and if we define rp(π) := recp(π ⊗ | det |(1−n)/2), then rp is

independent of the choice of ı. Furthermore, if V is a Frobenius semisimple
Weil–Deligne representation of WF over E, then r−1

p (V ) is also defined over
E by [Clo90, Prop 3.2] and the fact that rp commutes with automorphisms
of C. (The claims about the dependence of recp and rp on the choice of ı
follow from the main theorem of [Hen93], together with a study of the be-
haviour of ε-factors under automorphisms of C. In the case n = 2, this is
explained in [BH06, §35], and the same argument goes through in general,
with the required input on ε-factors being provided by [BH00, Thm. 3.2].2)

Recall that a linear-topological O-module is a topological O-module
(that is, it has a topology for which both addition and the action of O are
continuous) which also has a fundamental system of open neighborhoods of

2Alternatively, perhaps more conceptually, the claims are also implied by the
geometric realisation of rp (up to dualising π) for supercuspidal representations in
the cohomology of the Lubin-Tate tower. See Lemma VII.1.6 and the definition of
recl on page 237 of [HT01].
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the identity which are O-submodules. If A is a linear-topological O-module,
we write A∨ for its Pontrjagin dual Homcont

O (A,E/O), where E/O has the
discrete topology, and we give A∨ the compact open topology.

By the proof of Theorem 1.2 of [ST02], the functor given by A 7→ Ad :=
Homcont

O (A,O) induces an anti-equivalence of categories between the cat-
egory of compact, O-torsion-free linear-topological O-modules A and the
category of $-adically complete and separated O-torsion-free O-modules.
A quasi-inverse is given by B 7→ Bd := HomO(B,O), where the target is
given the weak topology of pointwise convergence. We refer to this duality
as Schikhof duality. Note that if A is an O-torsion free profinite linear-
topological O-module, then Ad is the unit ball in the E-Banach space
HomO(A,E).

If r : GF → GLn(E) is de Rham of regular weight a, then we write
πalg(r) := Lda ⊗O E, and πsm(r) := r−1

p (WD(r)F−ss), both of which are E-

representations of GLn(F ). (The GLn(OF )-action on Lda extends linearly to
a GLn(F )-action on πalg(r).) As the names suggest, πalg(r) is an algebraic
representation, and πsm(r) is a smooth representation. Note that πalg(r) =
Lξ ⊗O E for ξκ,i := −aκ,n+1−i.

We let ArtF : F×
∼−→ W ab

F be the isomorphism provided by local class
field theory, which we normalise so that uniformisers correspond to geometric
Frobenius elements.

We write all matrix transposes on the left; so tg is the transpose of g. We
let Gn denote the group scheme over Z defined to be the semidirect product
of GLn×GL1 by the group {1, j}, which acts on GLn×GL1 by

j(g, µ)j−1 = (µ · tg−1, µ).

We have a homomorphism ν : Gn → GL1, sending (g, µ) to µ and j to −1.
Further notation is introduced in the course of our arguments; we men-

tion just some of it here, for the reader’s convenience.
From Subsection 2.8 on, we will have fixed a particular finite extension

F of Qp, with ring of integers OF and uniformiser $F . To ease notation
we will typically write G := GLn(F ), K := GLn(OF ), and Z := Z(G). For
each m ≥ 0, we write Γm = GLn(OF /$m

F ) and Km := ker
(

GLn(OF ) →
GLn(OF /$m

F )
)
, so that K/Km

∼−→ Γm.
Furthermore, throughout Section 2, a large amount of notation is intro-

duced related to automorphic forms on a definite unitary group, and Taylor–
Wiles–Kisin patching. Here we merely signal that the main construction of
this section, and our major object of study in the paper, is a patched G-
representation that we denote by M∞. Beginning in Section 4, we will also
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write

M∞(σ◦) :=
(

Homcont
O[[K]](M∞, (σ

◦)d)
)d
,

when σ◦ is a K-invariant OE-lattice in a K-representation σ of finite dimen-
sion over E.

We use Ind to denote induction, and c-Ind to denote induction with
compact supports. In Sections 3 and 4, we use iGP to denote normalised
parabolic induction.

If σ is a representation of K, then we will write H(σ) := EndG(c-IndGKσ)
to denote the Hecke algebra of G with respect to σ. Sometimes, when it is
helpful to emphasise the role of G, we will write H(G, σ) instead. We also
use obvious variants with G and K replaced by another p-adic group and
compact open subgroup.

2. The patching argument

In this section we will carry out our patching argument on definite unitary
groups. The key difference between the construction presented here and pre-
vious patching constructions is that the object we end up with is not simply
a module over a certain Galois deformation ring, but rather a GLn(F )-
representation over that ring; we refer to the discussion at the beginning of
Subsection 2.8 below for a more detailed account of this difference.

Our construction uses the same general framework as that used in section
5 of [EG14] (which in turn is based on the approach of [CHT08], [BLGG11]
and [Tho12]); we recall the key elements of this framework in the first sev-
eral subsections that follow. We follow the notation of [EG14] as closely as
possible, and we indicate explicitly where we deviate from it.

The construction itself is the subject of Subsection 2.8, and the key fact
that it actually produces a GLn(F )-representation is verified in Proposi-
tion 2.10. In Subsection 2.12 we explain how our patched representation of
GLn(F ) gives rise to admissible unitary Banach representations attached to
local Galois representations.

2.1. Globalisation

Let F/Qp be a finite extension, and fix a continuous representation r̄ : GF →
GLn(F). Our goal in this subsection is to give a criterion for r̄ to be obtained
as the restriction of a global Galois representation that is automorphic, in a
suitable sense (and satisfies some additional convenient properties).

We will assume that the following hypotheses are satisfied:
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• p - 2n, and
• r̄ admits a potentially crystalline lift of regular weight, which is po-

tentially diagonalisable.3

Conjecturally, the second hypothesis is always satisfied; this is Conjecture
A.3 of [EG14]. In this direction, we note the following result.

2.2 Lemma. After possibly making a finite extension of scalars, the second
hypothesis is satisfied if either n = 2 or r̄ is semisimple.

Proof. If n = 2, this is Remark A.4 of [EG14]. If r̄ is semisimple, then after
extending scalars, we may write it as a sum of inductions of characters, and
it is easy to see that by lifting these characters to crystalline characters, we
can find a potentially crystalline lift which has regular weight, and is a sum
of inductions of characters. Such a lift is obviously potentially diagonalisable
(indeed, after restriction to some finite extension, it is a sum of crystalline
characters).

Having assumed these hypotheses, Corollary A.7 of [EG14] (with K our
F , and F our F̃ ) provides us with an imaginary CM field F̃ with maximal
totally real subfield F̃+, and a continuous irreducible representation ρ :
GF̃+ → Gn(F) such that ρ is a suitable globalisation of r̄ in the sense of
Section 5.1 of [EG14]. Here we say that ρ is irreducible if ρ|GF̃ , which is
regarded as a representation valued in GLn(F), is irreducible. We recall the
properties that (F̃ , F̃+, ρ) need to satisfy for this definition:

• each place v | p of F̃+ splits in F̃ , and has F̃+
v
∼= F ; we fix a choice of

such isomorphisms.

and

• ρ is automorphic (see, for example, Definition 5.3.1 of [EG14]) and
unramified at primes v - p.
• the inverse image of GLn(F)×GL1(F) under ρ is GF̃ .
• ρ(GF̃ (ζp)) is adequate in the sense of Definition 2.3 of [Tho12].4

3Recall that, as in [BLGGT14], a potentially crystalline representation r of GF

is potentially diagonalisable if there exists a finite extension F ′/F such that r|GF ′ is
crystalline and lies on the same irreducible component of the universal crystalline
lifting ring of r̄|GF ′ (with fixed Hodge–Tate weights) as a sum of characters lifting
r̄|GF ′ .

4We will not need the precise definition of an adequate subgroup of GLn(F̄p); we
will only need to know that this property is satisfied in order to apply the machinery
developed in [Tho12]. See Section 2.6 for more details.
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• For each place v | p of F̃+, there is a place ṽ of F̃ lying over v with

ρ|GF̃ṽ isomorphic to r̄.

• F̃
ker ad ρ|G

F̃ does not contain F̃ (ζp).

Corollary A.7 of [EG14] guarantees that all these properties can be satisfied

simultaneously. (The only difference is that the last property is replaced by

the fact that F̃
ker ρ

does not contain F̃ (ζp), which is stronger, since ker ρ ⊂
GF̃ by the second property above.) In order to arrange that our patched

modules have a certain multiplicity one property, we will also demand that:

• ρ(GF̃ ) = GLn(F′) for some subfield F′ ⊆ F with #F′ > 3n.

To see that we can arrange this, note that the proof of Proposition A.2

of [EG14] (which is the main input to Corollary A.7 of op. cit., together

with the potential automorphy results of [BLGGT14]) allows us to arrange

that ρ(GF̃ ) = GLn(Fpm) for any sufficiently large m.

Finally, after making a solvable base change, we can and do assume that

F̃ /F̃+ is unramified at all finite places.

2.3. Unitary groups

We now use the globalisation ρ of our local Galois representation r̄ to carry

out the Taylor–Wiles–Kisin patching argument as in Section 5 of [EG14].

The definitions of Hecke algebras, the choices of auxiliary primes and so on

are essentially identical to the arguments made in [EG14], and rather than

repeating them verbatim, we often refer the reader to [EG14] for the details

of these definitions, indicating only the differences in our construction.

As in Sections 5.2 and 5.3 of [EG14], we fix a certain definite unitary

group G̃/F̃+ together with a model (which we will also denote by G̃) over

OF̃+ . (The group G̃ is denoted G in [EG14], but we will later use G to denote

GLn(F ).) This model has the property that for each place v of F̃+ which

splits as wwc in F̃ , there is an isomorphism ιw : G̃(OF̃+
v

)
∼−→ GLn(OF̃w); we

fix a choice of such isomorphisms. We also choose a finite place v1 of F̃+

which is prime to p, with the properties that

• v1 splits in F̃ , say as v1 = ṽ1ṽ
c
1,

• v1 does not split completely in F̃ (ζp), and

• ρ(FrobF̃ṽ1
) has distinct F-rational eigenvalues, no two of which have

ratio (Nv1)±1.
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(It is possible to find such a place v1 by the Cebotarev density theorem, and

our assumptions that ρ(GF̃ ) = GLn(F′) with #F′ > 3n, and that F̃
ker ad ρ|G

F̃

does not contain F̃ (ζp). Indeed, choosing a conjugacy class in Gal(F̃ (ζp)/F̃ ),
we have a positive density set of places v1 satisfying the first two conditions,
and with Nv1 taking a fixed value λ modulo p; if we then choose a diagonal
matrix in GLn(F′) with distinct diagonal entries, none of whose ratios are
λ±1, then another application of the Cebotarev density theorem produces
the required place v1.

Note that this differs slightly from the choice of place v1 in the first
paragraph of Section 5.3 of [EG14], where the third condition is replaced by
the requirement that ad ρ|(FrobF̃ṽ1

) = 1. However, it is still the case that

any deformation of ρ|GF̃ṽ1
is unramified (see Lemma 2.5 below). We have

made this choice in order to be able to arrange that our patched modules
satisfy multiplicity one.

Let Sp denote the set of primes of F̃+ dividing p. We now fix a place p | p
of F̃+, and for each integer m ≥ 0 we consider the compact open subgroup
Um =

∏
v Um,v of G̃(A∞

F̃+
), where

• Um,v = G̃(OF̃+
v

) for all v which split in F̃ other than v1 and p;
• Um,v1

is the preimage of the upper triangular matrices under

G̃(OF̃+
v1

)→ G̃(kv1
)
∼−→̄
ιṽ1

GLn(kv1
)

• Um,p is the kernel of the map G̃
(
OF̃+

p
)→ G̃(OF̃+

p
/$m

F̃+
p

)
;

• Um,v is a hyperspecial maximal compact subgroup of G̃(F̃+
v ) if v is

inert in F̃ .

By the choice of v1 and Um,v1
we see that Um is sufficiently small (in the

sense of Section 5.2 of [EG14]). Write U := U0. In order to make the patching
argument, we will need to consider certain compact open subgroups of the
Um corresponding to choices of sets of auxiliary primes QN that will be
introduced in Section 2.6. Specifically, for each integer N ≥ 1, we will have a
finite set of primes QN of F̃+ disjoint from Sp∪{v1} as well as open compact

subgroups Ui(QN )v of G̃(OF̃+
v

) for each v ∈ QN and i = 0, 1. We then
define subgroups Ui(QN )m =

∏
v Ui(QN )m,v ⊂ Um, for i = 0, 1 by setting

U0(QN )m,v = U1(QN )m,v = Um,v for v 6∈ QN , and Ui(QN )m,v = Ui(QN )v
for v ∈ QN .

By assumption, r̄ has a potentially diagonalisable lift of regular weight,
say rpot.diag : GF → GLn(O). Suppose that rpot.diag has weight ξ and inertial
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type τ (in the sense of Section 1.8). Extending E if necessary, we may assume
that the GLn(OF )-representation σ(τ) is defined over E. Then we have
two representations Lξ and Lτ∨ of GLn(OF ) on finite free O-modules in
the following way: the representation Lξ is the one defined in the notation
section, and Lτ∨ is a choice of GLn(OF )-stable lattice in σ(τ)∨. Set Lξ,τ :=
Lτ∨ ⊗O Lξ, a finite free O-module with an action of GLn(OF ).

Returning to our global situation, let Wξ,τ denote the finite free O-
module with an action of

∏
v∈Sp\{p} Um,v given by Wξ,τ = ⊗v∈Sp\{p},OLξ,τ

where Um,v acts on the factor corresponding to v via Um,v = G̃(OF̃+
v

)
∼−→
ιṽ

GLn(OF̃ṽ)
∼−→ GLn(OF ). In order to avoid duplication of definition, we allow

QN = ∅ in the definitions we now make. For any finite O-module V with
a continuous action of Um,p, we have spaces of algebraic modular forms
Sξ,τ (Ui(QN )m, V ); these are just the functions

f : G̃(F̃+)\G̃(A∞
F̃+

)→Wξ,τ ⊗O V

with the property that if g ∈ G̃(A∞
F̃+

) and u ∈ Ui(QN )m then f(gu) =

u−1f(g), where Ui(QN )m acts on Wξ,τ ⊗O V via projection to
∏
v∈Sp Um,v.

(For example: when V = O is the trivial representation, then after extending
scalars from O to C via O ⊂ Qp

∼−→
ı

C, this space corresponds to classical

automorphic forms of fixed type σ(τ) at the places in Sp \ {p}, full level pm

at p, and whose weight (via our fixed isomorphism ı : Qp → C) is 0 at places
above p, and given by ξ at each of the places in Sp \ {p}.)

We let TSp∪QN ,univ be the commutative O-polynomial algebra generated

by formal variables T
(j)
w for all 1 ≤ j ≤ n, w a place of F̃ lying over a place

v of F̃+ which splits in F̃ and is not contained in Sp ∪QN ∪ {v1}, together

with formal variables T
(j)
ṽ1

for 1 ≤ j ≤ n. The algebra TSp∪QN ,univ acts on
Sξ,τ (Ui(QN )m, V ) via the Hecke operators

T (j)
w :=

[
Um,w ι−1

w

(
$w1j 0

0 1n−j

)
Um,w

]
where $w is a fixed uniformiser in OF̃w .

Choose an ordering δ1, . . . , δn of the (distinct) eigenvalues of ρ(Frobṽ1
).

Since ρ is a suitable globalisation of r̄, it is in particular automorphic in the
sense of Definition 5.3.1 of [EG14], and we let mQN be the maximal ideal of
TSp∪QN ,univ corresponding to ρ, and containing each of the elements(

T
(j)
ṽ1
− (Nv1)j(1−j)/2(δ1 · · · δj)

)
,
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for 1 ≤ j ≤ n. We will write m for m∅.

2.4. Galois deformations

Let S be a set of places of F̃+ which split in F̃ , with Sp ⊆ S. As in [CHT08],

we will write F̃ (S) for the maximal extension of F̃ unramified outside S, and
from now on we will write GF̃+,S for Gal(F̃ (S)/F̃+). We will freely make use

of the terminology (of liftings, framed liftings etc.) of Section 2 of [CHT08].

Let T = Sp ∪ {v1}. For each v ∈ Sp, we let ṽ be a choice of a place of

F̃ lying over v, with the property that ρ|GF̃ṽ
∼= r̄. (Such a choice is possible

by our assumption that ρ is a suitable globalisation of r̄.) We let T̃ denote
the set of places ṽ, v ∈ T . For each v ∈ T , we let R�

ṽ denote the maximal
reduced and p-torsion free quotient of the universal O-lifting ring of ρ|GF̃ṽ .

For each v ∈ Sp \ {p}, we write R�,ξ,τ
ṽ for the reduced and p-torsion free

quotient of R�
ṽ corresponding to potentially crystalline lifts of weight ξ and

inertial type τ . (Such a quotient of R�
ṽ exists by Corollary 2.7.7 of [Kis08]. It

has the property that for any E-algebra A, an E-algebra map R�
ṽ [1/p]→ A

factors through R�,ξ,τ
ṽ if and only if the pullback of the universal lifting

along this map is potentially crystalline of weight ξ and inertial type τ .)

Consider (in the terminology of [CHT08]) the deformation problem

S :=
(
F̃ /F̃+, T, T̃ ,O, ρ, ε1−nδn

F̃/F̃+
, {R�

ṽ1
} ∪ {R�

p̃ } ∪ {R
�,ξ,τ
ṽ }v∈Sp\{p}

)
.

There is a corresponding universal deformation ρuniv
S : GF̃+,T → Gn(Runiv

S )

of ρ. In addition, there is a universal T -framed deformation ring R�T

S in the
sense of Proposition 2.2.9 of [CHT08], which parameterises deformations of
ρ of type S together with particular local liftings for each ṽ ∈ T̃ .

2.5 Lemma. R�
ṽ1

is formally smooth over O, and all of the corresponding
Galois representations are unramified.

Proof. By our assumptions on v1, this is immediate from Lemma 2.4.9 and
Corollary 2.4.21 of [CHT08].

2.6. Auxiliary primes

Recall that the globalisation ρ constructed in Section 2.1 satisfies the prop-
erty that ρ(GF̃ (ζp)) is adequate. This property is needed in order to apply

the version of the Taylor–Wiles patching argument given in [Tho12] (see also
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Section 5.5 of [EG14]). More precisely, Proposition 4.4 of [Tho12] allows us
to choose an integer q ≥ [F̃+ : Q]n(n − 1)/2 and for each N ≥ 1 sets of
primes QN , Q̃N with the following properties (as well as a crucial property
about the generation of global Galois deformation rings over local ones that
we will recall below):

• QN is a finite set of finite places of F̃+ of cardinality q which is disjoint
from T and consists of places which split in F̃ ;
• Q̃N consists of a single place ṽ of F̃ above each place v of QN ;
• Nv ≡ 1 mod pN for v ∈ QN ;
• for each v ∈ QN , ρ|GF̃ṽ

∼= s̄ṽ ⊕ ψṽ where ψṽ is an eigenspace of Frobe-

nius on which Frobenius acts semisimply.

We remark that, for each v, any (generalized) eigenspace ψṽ of Frobenius
on which the action is in fact semisimple can be chosen. Part of the content
of Proposition 4.4 of [Tho12] is that the adequacy of ρ(GF̃ (ζp)) implies the

existence of such an eigenspace for appropriately chosen primes v.
For each N , v ∈ QN and i = 0, 1, we let Ui(QN )v ⊂ G̃(OF̃+

v
) denote

the parahoric open compact subgroups defined in Section 5.5 of [EG14],
following [Tho12]. (We briefly recall their definition here: they are the inverse
images under ιṽ of certain parahoric subgroups pṽN , p

ṽ
N,1 of GLn(OF̃ṽ). These

parahoric subgroups correspond to the partition n = (n− dṽN ) + dṽN , where
dṽN is the dimension of the eigenspace ψṽ: p

ṽ
N is the standard parahoric and

pṽN,1 is the kernel of the map

pṽN → GLdṽN (kṽ)→ k×ṽ → k×ṽ (p).

The first map in the sequence is given by projection to the dṽN -block and
reduction to kṽ, the second map is taking the determinant and the last one is
projection onto the maximal p-power order quotient of k×ṽ . These parahoric
subgroups are roughly supposed to be analogous to levels Γ0(ṽ),Γ1(ṽ) in the
case of modular curves and modular forms.)

For each v ∈ QN , a quotient R
ψṽ
ṽ of R�

ṽ is defined in Section 5.5 of [EG14]
(following [Tho12]). We let SQN denote the deformation problem

SQN :=
(
F̃ /F̃+, T ∪QN , T̃ ∪ Q̃N , O, ρ, ε1−nδn

F̃/F̃+
,

{R�
ṽ1
} ∪ {R�

p̃ } ∪ {R
�,ξ,τ
ṽ }v∈Sp\{p} ∪ {R

ψṽ
ṽ }v∈QN

)
.

We let Runiv
SQN

denote the corresponding universal deformation ring, and we

let R�T

SQN
denote the corresponding universal T -framed deformation ring. We
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define

Rloc := R�
p̃ ⊗̂

(
⊗̂v∈Sp\{p}R

�,ξ,τ
ṽ

)
⊗̂R�

ṽ1

where all completed tensor products are taken over O. By the choice of the
sets of primes QN , we also know that

• the ring R�T

SQN
can be topologically generated over Rloc by

q − [F̃+ : Q]n(n− 1)/2 elements.

For each v ∈ QN we choose a uniformiser $ṽ ∈ OF̃ṽ , so that we have
the projection operator pr$ṽ ∈ EndO(Sξ,τ (Ui(QN )m,O/$r)mQN

) defined
as in Proposition 5.9 of [Tho12]. We briefly recall that, at level U0(QN )v,
pr$ṽ is defined as (the pullback along ιṽ of) a polynomial in the Hecke
operators corresponding to the block GLdṽN inside the parahoric subgroup

pṽN ⊂ GLn(OF̃ṽ). The same formula also gives rise to an element of the Hecke

algebra for pṽN,1 ⊂ GLn(OF̃ṽ). This gives a compatible projection operator at
level U1(QN )v, which we will also call pr$ṽ by abuse of notation. In the case
of level U0(QN )v, pr$ṽ is the projection onto a one-dimensional subspace,
which is identified with the spherical vector, according to Proposition 5.9 of
op. cit. At level U1(QN )v, pr$ṽ is best understood in terms of the associated
Galois representation: it only allows tamely ramified deformations of the
subrepresentation of ρ corresponding to ψṽ. See Proposition 5.12 of op. cit.
for more details.

We define pr to be the composite of the projections pr$ṽ . (These projec-
tions commute among themselves, and so it doesn’t matter in which order
we compose them. Whenever we use pr it will be clear from the context
what the underlying set QN is.) Then, as in Section 5.5 of [EG14]:

1. The map

pr : Sξ,τ (Um,O/$r)m → pr
(
Sξ,τ (U0(QN )m,O/$r)mQN

)
is an isomorphism. Moreover, since pr is defined using Hecke operators
at places in QN , it commutes with the action of G̃(F̃+

p ) on the spaces

of algebraic automorphic forms. More precisely, if g ∈ G̃(F̃+
p ) satisfies

g−1Um′,pg ⊆ Um,p for some positive integers m ≤ m′, then we have a
commutative diagram

Sξ,τ (Um,O/$r)m
pr−−−−→ pr

(
Sξ,τ (U0(QN )m,O/$r)mQN

)yg yg
Sξ,τ (Um′ ,O/$r)m

pr−−−−→ pr
(
Sξ,τ (U0(QN )m′ ,O/$r)mQN

)
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where both vertical arrows are induced by the action of g ∈ G̃(F̃+
p )

(namely: (gf)(g′) = f(g′g)).

2. Let

Γm = GLn(OF /$m
F ) ∼= U/Um

and

∆QN =
∏
v∈QN

U0(QN )v/U1(QN )v.

Then U0(QN )0 acts on Sξ,τ (U1(QN )m,O/$r) via (gf)(g′) = gpf(g′g),

and this action factors through ∆QN × Γm. With respect to this ac-

tion, pr
(
Sξ,τ (U1(QN )m,O/$r)mQN

)
is a projective (O/$r)[∆QN ][Γm]-

module, and there is a natural Γm-equivariant isomorphism

pr
(
Sξ,τ (U1(QN )m,O/$r)mQN

)∆QN
∼−→ Sξ,τ (Um,O/$r)m.

(The projectivity follows from the proof of Lemma 3.3.1 of [CHT08].

The fact that there is a Γm-equivariant isomorphism follows immedi-

ately from point (1) and the definitions. We shall not need the anal-

ogous statement about coinvariants which is recalled in [EG14] and

proved in [Tho12]; see Remark 2.9 below for an indication as to why

not. We remark that, by the explicit construction of Ui(QN )v above,

∆QN is a finite abelian group of p-power order.)

3. Let TSp∪QNξ,τ (Ui(QN )m,O/$r) be the image of TSp∪QN ,univ in the ring

EndO (pr (Sξ,τ (Ui(QN )m,O/$r))). As in Proposition 5.3.2 of [EG14],

there exists a deformation

GF̃+,T∪QN → Gn
(
TSp∪QNξ,τ (U1(QN )m,O/$r)mQN

)
of ρ which is of type SQN . In particular, pr

(
Sξ,τ (Ui(QN )m,O/$r)mQN

)
is a finite Runiv

SQN
-module.

2.7 Remark. The construction of the above deformation of ρ follows the

outline of the proof of Proposition 3.4.4 of [CHT08], but one can appeal to

Corollaire 5.3 of [Lab11] for the necessary base change results and to the

main results of [Car12; Car14] for local-global compatibility in the conjugate-

self-dual case, which will show that the deformation is of type SQN . (For

the places in Sp \ {p}, the argument is similar to the one in the proof of

Lemma 4.17 (1), which works at the place p. In particular, the argument

relies on Theorem 3.7.)
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As in Section 5.5 of [EG14], there is a homomorphism ∆QN → (Runiv
SQN

)×

obtained by identifying ∆QN with the product of the inertia subgroups in
the maximal abelian p-power order quotient of

∏
v∈QN GF̃ṽ , and thus a ho-

momorphism O[∆QN ] → Runiv
SQN

. The Runiv
SQN

-module structure coming from

the existence of Galois representations thus induces an action of O[∆QN ] on
pr
(
Sξ,τ (U1(QN )m,O/$r)mQN

)
, which agrees with the one in (2) above.

2.8. Patching

We now make our patching construction, by applying the Taylor–Wiles–
Kisin method. Before doing so, we provide a brief comparison and contrast
with the patching constructions in some previous papers, such as [EG14]
and [EGS15]. In the latter paper, we employ Taylor–Wiles–Kisin patching
to construct what we call patching functors, which are (essentially) certain
exact functors from the category of continuous GLn(OF )-representations
on finitely generated O-modules to the category of coherent sheaves on
an appropriate deformation space of local Galois representations (perhaps
with some auxiliary patching variables added). Although this is not dis-
cussed in [EGS15], such a functor can be (pro-)represented by an object
M∞, which is a continuous GLn(OF )-representation over the local deforma-
tion ring (again, perhaps with patching variables added). More precisely, in
terms of such a GLn(OF )-representation M∞, the patching functor can be
defined as Homcont

O[[GLn(OF )]](M∞, V
∨)∨, if V is a continuous representation

of GLn(OF ) on a finitely generated O-module. The exactness of the patch-
ing functor can be encoded in the requirement that M∞ be a projective
O[[GLn(OF )]]-module.

In this paper our approach is to construct the representing object M∞ di-
rectly, and (most importantly) to promote it from being merely a GLn(OF )-
representation to being a representation of the full p-adic group GLn(F ). (In
terms of patching functors, one can somewhat loosely think of this as extend-
ing the patching functor from the category of GLn(OF )-representations to a
category that we might call the Hecke category, whose objects are the same,
but in which the morphisms between any two GLn(OF )-representations U

and V are defined to be HomGLn(F )

(
c-Ind

GLn(F )
GLn(OF )U, c-Ind

GLn(F )
GLn(OF )V

)
.)

Obtaining this additional structure on M∞ requires us to keep track of
additional data (“partial actions” of the non-compact directions in G) in the
course of the patching process. Before presenting the details of our construc-
tion, we remark that Scholze has simplified this aspect of our construction
by a reinterpretation of patching in terms of ultraproducts [Sch15, §§8, 9],
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which obviates the need for keeping track of this extra data. We have chosen
to keep the original form of our argument here, however.

From now on, to ease notation we write K = GLn(OF̃p̃
) = GLn(OF ),

G = GLn(F̃p̃) = GLn(F ), and Z = Z(G). For each integer N ≥ 0, we

set KN := ker
(
GLn(OF ) → GLn(OF /$N

F )
)
, so that K/KN

∼−→ ΓN . We
have the Cartan decomposition G = KAK, where A is the set of diagonal
matrices whose diagonal entries are powers of the uniformiser $F , and we
let AN be the subset of A consisting of matrices with the property that the
ratio of any two diagonal entries is of the form $r

F with |r| ≤ N , and set
GN = KANK. Note that GN is not a subgroup of G unless N = 0, but that
each K\GN/KZ is finite, and G = ∪N≥0GN .

If (σ,W ) is a representation of KZ, then we write IndGNKZ σ for the
space of functions f : GN → W with f(kg) = σ(k)f(g) for all g ∈ GN ,
k ∈ KZ; this is naturally a KZ-representation via (kf)(g) := f(gk). We
define IndGKZ σ in the same way; then IndGKZ σ is a representation of G via
(gf)(g′) := f(g′g).

For each N , we set

Mi,QN := pr
(
Sξ,τ (Ui(QN )2N ,O/$N )mQN

)∨
.

Note that Mi,QN depends on the integer N as well as on the set of primes
QN (it could happen that QM = QN for M 6= N), but we will only include
QN in the notation for the sake of simplicity. Note also that we could have
equivalently defined

Mi,QN := pr∨
(
Sξ,τ (Ui(QN )2N ,O/$N )∨mQN

)
,

since pr is an endomorphism of Sξ,τ (Ui(QN )2N ,O/$N )mQN
and Pontrjagin

duality is an exact contravariant functor.

Let ∆QN be as above; it is of p-power order by the definitions of the
Ui(QN )2N . It follows from point (2) in the previous section that M1,QN is a
finite projective (O/$N )[∆QN ][Γ2N ]-module. Since Z centralises U1(QN )2N ,
there is also a natural action of Z on M1,QN .

2.9 Remark. The reason for including a Pontrjagin dual in the definition of
Mi,QN is that Sξ,τ (Ui(QN )2N ,O/$N ) is a space of automorphic forms, and
so is most naturally thought of as being contravariant in the level, while
patching is a process that involves passing to a projective limit over the
level (rather than a direct limit). Now since Sξ,τ (Ui(QN )2N ,O/$N ) is a

space of automorphic forms on the definite unitary group G̃, it is a space of
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functions on a finite set, and so has a natural self-duality. Thus, by exploiting
this self-duality to convert its contravariant functoriality into a covariant
functoriality, we could omit the Pontrjagin dual in the preceding definition,
and indeed it is traditionally omitted (see e.g. [CHT08], [BLGG11], [Tho12],
and [EG14]). However, we have found it conceptually clearer to include this
duality in our definitions and constructions.

We now define a KZ-equivariant map

αN : M1,QN → IndGNKZ ((M1,QN )KN )

(where (M1,QN )KN denotes the KN -coinvariants in M1,QN ) in the following
way. Note firstly that there is a natural identification

(M1,QN )KN = pr∨
(
Sξ,τ (U1(QN )N ,O/$N )∨mQN

)
,

so it suffices to define a KZ-equivariant map

αN : Sξ,τ (U1(QN )2N ,O/$N )∨ → IndGNKZ Sξ,τ (U1(QN )N ,O/$N )∨.

Now, given g ∈ GN , we have g−1K2Ng ⊆ KN , so that there is a natural map

g∗ : Sξ,τ (U1(QN )N ,O/$N )→ Sξ,τ (U1(QN )2N ,O/$N )

given by (g∗ · f)(x) := f(xg), and a map

g∗ :=
(
(g−1)∗

)∨
: Sξ,τ (U1(QN )2N ,O/$N )∨ → Sξ,τ (U1(QN )N ,O/$N )∨.

(The latter is well defined since GN is stable under taking inverses. We
note that g∗ (resp. g∗) may be interpreted as the natural pullback (resp.
pushforward) map on cohomology (resp. homology) under the natural right
(resp. left) action of G̃(A∞) on the tower of arithmetic quotients of G̃.) We
have (gh)∗ = g∗ ◦h∗ and hence (gh)∗ = g∗ ◦h∗, whenever all are defined. We
also remark that we have the relation

αN (pr∨(f))(g) = pr∨(αN (f)(g)),

which follows from the fact that pr and pr∨ are defined using Hecke operators
away from p and hence commute with g∗ and, respectively, g∗. Then we define
αN by (

αN (x)
)
(g) := g∗(x).
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In order to check that this is KZ-equivariant, we must check that for all
k ∈ KZ we have

(
αN (kx)

)
(g) = (kαN (x))(g); this is equivalent to checking

that g∗(kx) = (gk)∗(x), which is immediate from the definition.

Set M�
1,QN

:= M1,QN ⊗Runiv
SQN

R�T

SQN
. We have an induced KZ-equivariant

map αN : M�
1,QN

→ IndGNKZ(M�
1,QN

)KN . Define

R∞ := Rloc[[x1, . . . , xq−[F̃+:Q]n(n−1)/2]],

S∞ := O[[z1, . . . , zn2#T , y1, . . . , yq]],

for formal variables x1, . . . , xq−[F̃+:Q]n(n−1)/2, y1, . . . , yq and z1, . . . , zn2#T .

For each N , we fix a surjection R∞ � R�T

SQN
of Rloc-algebras (which, as

recalled in Section 2.6, is possible by the choice of the sets QN ). These
choices allow us to regard each M�

1,QN
as an R∞-module. Also, we fix choices

of lifts representing the universal deformations over Runiv
S and each Runiv

SQN
such that our chosen lift over each Runiv

SQN
reduces to our chosen lift over Runiv

S .

These choices give rise to isomorphisms R�T

SQN
∼−→ Runiv

SQN
⊗̂OO[[z1, . . . , zn2#T ]]

compatible with a fixed isomorphism R�T

S
∼−→ Runiv

S ⊗̂OO[[z1, . . . , zn2#T ]];
they also allow us to regard each M�

1,QN
as an O[[z1, . . . , zn2#T ]]-module.

Finally, for each N , choose a surjectionO[[y1, . . . , yq]] � O[∆QN ] with kernel
contained in the ideal generated by (1 +yi)

pN −1 for i = 1, . . . , q. This gives
each M�

1,QN
the structure of an S∞-module and hence the structure of an

S∞[[K]]-module (where the action of K factors through Γ2N ). We note that
the action of S∞ on M�

1,QN
factors through that of R�T

SQN
.

We now apply the Taylor–Wiles method in the usual way to pass to a
subsequence, and patch the modules M�

1,QN
together with the maps αN :

M�
1,QN

→ IndGNKZ(M�
1,QN

)KN . More precisely, for each N ≥ 1, let bN denote

the ideal of S∞ generated by $N , zNi and (1 + yi)
pN − 1. Let a denote the

ideal of S∞ generated by the zi and the yi. Fix a sequence (dN )N≥1 of open
ideals of Runiv

S such that

• $NRuniv
S ⊂ dN ⊂ AnnRuniv

S
(Sξ,τ (U2N ,O/$N )∨m);

• dN ⊃ dN+1 for all N ;
• ∩N≥1dN = (0).

(For example, we may take dN = mN
Runiv
S
∩AnnRuniv

S
(Sξ,τ (U2N ,O/$N )∨m).)

At level N , we consider tuples consisting of

• a surjective homomorphism of Rloc-algebras φ : R∞ � Runiv
S /dN ;
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• a finite projective (S∞/bN )[Γ2N ]-module M� which carries a commut-
ing action of R∞ ⊗O O[Z] such that the action of S∞ can be factored
through that of R∞;
• the action of Z ∩K should factor through that of Z2N := (Z ∩K)/Z ∩
K2N and be compatible with the action of Γ2N ;
• an isomorphism ψ : (M�/aM�)

∼−→ Sξ,τ (U2N ,O/$N )∨m that is both
Γ2N - and Z-equivariant, and is compatible with φ;
• a KZ-equivariant and R∞ ⊗O S∞-linear map

α : M� → IndGNKZ [(M�)KN ],

whose reduction modulo a is compatible with the map

Sξ,τ (U2N ,O/$N )∨m → IndGNKZ [Sξ,τ (UN ,O/$N )∨m]

induced by the action of GN on the spaces of algebraic modular forms.

We consider two such tuples (φ,M�, ψ, α) and (φ′,M�′ , ψ′, α′) to be equiv-
alent if φ = φ′ and if there is an isomorphism of (S∞/bN )[Γ2N ]⊗O R∞ ⊗O
O[Z]-modules M� ∼−→ M�′ which identifies ψ with ψ′ and α with α′. Note
that there are at most finitely many equivalence classes of such tuples. (Even
though the algebra O[Z] is not of finite type over O, the compatibility be-
tween the Z-action and the Γ2N -action gives only finitely many possibilities
for the O[Z]-action. Also, for a given M� there are only finitely many KZ-
equivariant homomorphisms α : M� → IndGNKZ [(M�)KN ], because M� and
K\GN/KZ are finite.) Note also that a tuple (φ,M�, ψ, α) of level N gives
rise to a tuple (φ′,M�′ , ψ′, α′) of level (N−1) by setting φ′ := φ mod dN−1,
M�′ := (M�/bN−1)K2(N−1)

and ψ′ := ψ mod $N−1. The map α′ is defined

by the formula α′(m)(g) = α(m)(g). Here m denotes the image of m ∈M�

in M�′ and α(m)(g) denotes the image of α(m)(g) in (M�′)KN−1
. Note that

for any m ∈M�, γ ∈ K2(N−1) and g ∈ GN−1, we have

α
(
(γ − 1)m

)
(g) = α(m)

(
g(γ − 1)

)
= α(m)

(
(gγg−1 − 1)g

)
= (gγg−1 − 1)α(m)(g),

by the K-equivariance of α. Using the fact that gγg−1 ∈ KN−1 it is straight-
forward to see that α′ is well-defined.

For each pair of integers N ′ ≥ N ≥ 1, we define a tuple (φ,M�, ψ, α)
of level N as follows: we set φ equal to R∞ � R�T

SQ
N′

� Runiv
S /dN and

we set M� = (M�
1,QN′

⊗S∞ S∞/bN )K2N
. The map ψ comes from points (1)
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and (2) in the previous section. The map α comes from αN ′ defined above
(in the same way that α′ is defined in terms of α in the previous paragraph)
and the compatibility it is required to satisfy comes from the commutative
diagram in point (1) of the previous section. Since there are only finitely
many isomorphism classes of tuples at each level N , but N ′ is allowed to be
arbitrarily large, we can apply a diagonal argument to find a subsequence
of pairs (N ′(N), N)N≥1 indexed by N such that for each N ≥ 2, the tuple
indexed by N reduced to level (N − 1) is isomorphic to the tuple indexed
by (N − 1). For each N ≥ 2, we fix a choice of such an isomorphism.

We now define

M∞ := lim←−
N

(M�
1,QN′(N)

⊗S∞ S∞/bN )K2N
,

where the transition maps are induced by the isomorphisms fixed in the
previous paragraph. (We drop the square from the notation here in order
to avoid notational overload in later sections.) Each of the terms in the
projective limit is a (literally) finite O-module, endowed with commuting
actions of S∞[[K]] and R∞ ⊗O O[Z], and by construction the transition
maps in the projective limit respect these actions. Thus M∞ is naturally
a profinite topological S∞[[K]]-module which carries a commuting action
of R∞ ⊗O O[Z], the topology on M∞ being the projective limit topology
(where each of the terms in the projective limit is endowed with the discrete
topology). Moreover, the action of S∞ on M∞ can be factored through
some map S∞ → R∞. This follows from the fact that the image of S∞ in
EndS∞(M∞) is closed and the analogous statement holds at each finite level
N . (Recall that the action of S∞ on M�

1,QN
factors through that of R�T

SQN
.)

We remark that M∞ and its extra structures depend on the many choices
we have made, in particular on the subsequence of pairs (N ′(N), N) and on
the choice of isomorphisms between different levels for N ≥ 2.

The module M∞ is the key construction of the paper; the remainder of
this section is devoted to recording some additional properties that it enjoys.
Firstly, since the transition maps in the projective limit are given simply by
reducing from level N to level N − 1, it is easily verified that the natural
map induces an isomorphism

(M∞/bN )K2N

∼−→ (M�
1,QN′(N)

/bN )K2N
.

Next, from this, it follows from the topological form of Nakayama’s lemma
that M∞ is in fact a finite S∞[[K]]-module. It follows that the topology
on M∞ coincides with the quotient topology obtained by writing it as a
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quotient of S∞[[K]]r, where S∞[[K]] is endowed with its natural profinite
topology. Crucially, there is a KZ-equivariant and R∞-linear map

α∞ : M∞ → IndGKZM∞

by taking the projective limit of the maps

(M�
1,QN′(N)

⊗S∞ S∞/bN )K2N
→ IndGNKZ

(
(M�

1,QN′(N)
⊗S∞ S∞/bN )KN

)
.

induced by αN ′(N) : M1,QN′(N)
→ Ind

GN′(N)

KZ

(
(M1,QN′(N)

)KN′(N)

)
. We denote

this induced map by αN ′(N).
The following proposition establishes the additional key properties of

the patched module M∞ that we will need.

2.10 Proposition. M∞ is finitely generated and projective over S∞[[K]],
and consequently is finitely generated over R∞[[K]]. Furthermore, α∞ is
injective, and its image is G-stable, so that α∞ induces an action of G on
M∞.

Proof. As we already noted above, M∞ is finitely generated over S∞[[K]];
in particular we may choose a surjection S∞[[K]]r � M∞ for some r ≥ 1.
In order to check that M∞ is a projective S∞[[K]]-module, it is enough to
check that this surjection splits.

Since each M1,QN is a projective (O/$N )[∆QN ][Γ2N ]-module, we see
that

(M∞/bN )K2N
∼= (M�

1,QN′(N)
/bN )K2N

is a projective S∞/bN [Γ2N ]-module, so we have a cofinal system of ideals
(namely, the ideals generated by bN + ker(O[[K]] → O[Γ2N ])) defining the
topology of S∞[[K]] modulo which the surjection splits. The sets of possible
splittings at these finite levels then give us a projective system of non-empty
finite sets, and an element of the projective limit of this projective system
gives the required splitting.

Since, as observed above, the S∞-action on M∞ factors through the
R∞-action, we see that M∞ is also finitely generated over R∞[[K]].

We now check that α∞ is injective. Note that by definition, for each
αN : M1,QN → IndGNKZ

(
(M1,QN )KN

)
we have

(
αN (m)

)
(1) = 1∗(m) = m,

where m denotes the image of m in (M1,QN )KN . From this (with N replaced
by N ′(N)) we deduce that

(
αN ′(N))(m)

)
(1) = m where m is the image

of m ∈ (M�
1,QN′(N)

/bN )K2N
in (M�

1,QN′(N)
/bN )KN . This then implies that(

α∞(m)
)
(1) = m for each m ∈M∞, and α∞ is certainly injective.
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In order to show that the image of α∞ is G-stable, we will show that for

all g ∈ G, m ∈M∞ we have

g
(
α∞(m)

)
= α∞

((
α∞(m)

)
(g)
)
.

In other words, we will show that for all g, h ∈ G and m ∈M∞, we have(
α∞(m)

)
(hg) =

(
α∞
(
(α∞(m))(g)

))
(h).

Let m be an element of M∞ and let N be any integer large enough

so that g, h, gh ∈ GN . This certainly means that g, h, gh ∈ G2N as well.

Since N can be arbitrarily large, it is enough to show that both sides of

the equation above become equal in (M∞/bN )KN and we do this by explicit

computation.

We let πN : M∞ → (M∞/bN )K2N
and σN : M∞ → (M∞/bN )KN denote

the projection maps. Then by definition, we have

σN
(
α∞(m)(hg)

)
= αN ′(N)

(
πN (m)

)
(hg)

and

σN
(
α∞(α∞(m)(g))(h)

)
= αN ′(N)

(
πN (α∞(m)(g))

)
(h)

= αN ′(N)

(
σ2N (α∞(m)(g)) mod bN

)
(h)

= αN ′(N)

(
αN ′(2N)(π2N (m))(g) mod bN

)
(h).

Now, for integers N, Ñ,N ′′ ≥ 1 with Ñ ≤ N ′(N), we let U1(QN ′(N), Ñ)N ′′ be

the open compact subgroup lying between U1(QN ′(N))N ′′ and U0(QN ′(N))N ′′

for which U0(QN ′(N))N ′′/U1(QN ′(N), Ñ)N ′′ ∼= (Z/pÑZ)q. Then we have a

commutative diagram

Sξ,τ
(
U1(QN ′(2N), 2N)4N ,O/$2N

)∨ g∗−−−−→ Sξ,τ
(
U1(QN ′(2N), 2N)2N ,O/$2N

)∨∥∥∥ ynat

Sξ,τ
(
U1(QN ′(2N), 2N)4N ,O/$2N

)∨
Sξ,τ

(
U1(QN ′(2N), N)2N ,O/$N

)∨ynat

yh∗
Sξ,τ

(
U1(QN ′(2N), N)2N ,O/$N

)∨ (hg)∗−−−−→ Sξ,τ
(
U1(QN ′(2N), N)N ,O/$N

)∨
.
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First localising at mQN′(2N)
, then applying the projector pr∨, then ten-

soring over Runiv
SQ

N′(N)

with R�T

SQ
N′(N)

, and finally reducing modulo b2N or bN

as appropriate, we obtain a commutative diagram:

(M∞/b2N )K4N

g∗−−−−→ (M∞/b2N )K2N∥∥∥ ynat

(M∞/b2N )K4N
(M∞/bN )K2Nynat

yh∗
(M∞/bN )K2N

(hg)∗−−−−→ (M∞/bN )KN .

Now, on the one hand, the element π2N (m) lies in the space in the upper
left corner of this diagram. By definition, we have

αN ′(N)

(
αN ′(2N)(π2N (m))(g) mod bN

)
(h) = h∗ ◦ nat ◦ g∗

(
π2N (m)

)
On the other hand, πN (m) lies in the space in the lower left corner of the
diagram, and we have

αN ′(N)

(
πN (m)

)
(hg) = (hg)∗

(
πN (m)

)
= (hg)∗ ◦ nat

(
π2N (m)

)
.

The desired equality now follows from the commutativity of the above dia-
grams.

Note that for each positive integer m, the compact open subgroups Um
have the same level away from p. Let Up ⊂ G̃(A∞,p

F̃+
) denote that common

level. Define the $-adically completed cohomology space

S̃ξ,τ (Up,O)m := lim←−
s

(
lim−→
m

Sξ,τ (Um,O/$s)m
)
.

The space S̃ξ,τ (Up,O)m is equipped with a natural G-action, induced from
the action of G on algebraic automorphic forms. Moreover, S̃ξ,τ (Up,O)m is
equipped with a natural action of the Hecke algebra

TSpξ,τ (Up,O)m := lim←−
m

TSpξ,τ (Um,O)m.

By taking the inverse limit of the TSpξ,τ (Um,O)m-valued deformations of ρ̄

of type S we obtain a map Runiv
S → TSpξ,τ (Up,O)m. Therefore, S̃ξ,τ (Up,O)m
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is also equipped with an action of the local deformation ring R�
p̃

via the

composition R�
p̃
→ Runiv

S → TSpξ,τ (Up,O)m.

2.11 Corollary. There is a G-equivariant isomorphism

(M∞/aM∞)
∼−→ S̃ξ,τ (Up,O)dm,

which is compatible with the R�
p̃

-action on both sides.

Proof. We have a KZ-equivariant isomorphism

ψ∞ : (M∞/aM∞)
∼−→ S̃ξ,τ (Up,O)dm

obtained by taking the projective limit of the Γ2N - and Z-equivariant iso-
morphisms ψ at level N .

We first show that ψ∞ is compatible with the R�
p̃

-action on both sides.

The R�
p̃

-action on the left hand side is via the map R�
p̃
→ R∞ and each

ψ at level N is compatible with φ : R∞ � Runiv
S /dN . On the other hand,

the action of R�
p̃

on the right hand side is via the map R�
p̃
→ Runiv

S and

∩N≥1dN = (0). The desired compatibility follows.

Moreover, ψ∞ fits into a commutative diagram(
M∞/aM∞

) ψ∞−−−−→ S̃ξ,τ (Up,O)dmyg yg
IndGKZ

(
M∞/aM∞

) ψ∞−−−−→ IndGKZ
(
S̃ξ,τ (Up,O)dm

)
where both vertical maps are induced by the action of g ∈ G. (The fact
that the right vertical map has G-stable image follows from the analogue of
Proposition 2.10 for the completed cohomology space S̃ξ,τ (Up,O)dm. Since
M∞ can be thought of as a patched version of completed cohomology, the
arguments for S̃ξ,τ (Up,O)dm are analogous, but easier.) The G-equivariance
of ψ∞ now follows from Proposition 2.10.

2.12. Admissible unitary Banach representations

An E-Banach space representation V of G is an E-Banach space V together
with a G-action by continuous linear automorphisms such that the corre-
sponding map G× V → V is continuous. A Banach space representation V
is called unitary if there exists a G-invariant norm defining the topology on
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V . The existence of such a norm is equivalent to the existence of an open,
bounded G-invariant O-lattice Θ ⊂ V . A unitary L-Banach space represen-
tation is admissible if Θ ⊗O F is an admissible (smooth) representation of
G. (This means that the space of invariants (Θ⊗O F)H is finite-dimensional
for every open subgroup H ⊂ G.) This definition of admissibility is equiv-
alent to that of [ST06] by Proposition 6.5.7 of [Eme]. (The latter definition
requires Θd to be a finitely generated module over O[[H]].)

Fix a lifting r : GF → GLn(O) of r̄. We now explain how M∞ allows
us to associate to r an admissible unitary Banach representation V (r) of
GLn(F ).

As above, we identify F with F̃p̃. By definition, r comes from a homo-

morphism of O-algebras x : R�
p̃
→ O. We extend this to a homomorphism

of O-algebras

x′ : R�
p̃ ⊗̂

(
⊗̂v∈Sp\{p}R

�,ξ,τ
ṽ

)
→ O

by using the homomorphisms R�,ξ,τ
ṽ → O corresponding to our given po-

tentially diagonalisable representation rpot.diag, and then extend x′ arbi-
trarily to a homomorphism of O-algebras y : R∞ → O. We set V (r) :=
(M∞ ⊗R∞,y O)d[1/p].

2.13 Proposition. The representation V (r) is an admissible unitary Ba-
nach representation of GLn(F ).

2.14 Remark. Note that we do not know if V (r) is independent of either the
global setting or the choice of y. We also do not know that V (r) is necessarily
nonzero, although we will prove that V (r) 6= 0 for many regular de Rham
representations r in Section 5 below, as a consequence of the stronger result
that (for the particular choice of r under consideration) the subspace of
locally algebraic vectors in V (r) is nonzero.

Proof of Proposition 2.13. The image of (M∞ ⊗R∞,y O)d in V (r) is a unit
ball stable under GLn(F ), and so V (r) is a unitary representation.

In order to see that V (r) is admissible, we must show that for each N ≥
0, the F-vector space

(
(M∞⊗R∞,yO)d⊗F

)KN is finite-dimensional. Writing

y for the composite R∞
y→ O → F, we must check that (M∞ ⊗R∞,y F)KN is

finite-dimensional. Since M∞ is a finite S∞[[K]]-module, and ker y induces
an open ideal of S∞, this is immediate.

2.15 Remark. While we have assumed throughout this section that r̄ has
a potentially diagonalisable lift with regular Hodge–Tate weights, this hy-
pothesis is not needed for our main results, which concern representations
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r : GF → GLn(E). Indeed, possibly after making a ramified extension of
E, it is easy to see that any such representation can be conjugated to a
representation r′ which factors through GLn(O) and whose reduction r̄′ is
semisimple, so that r̄′ has a lift of the required kind (possibly after further
extending E) by Lemma 2.2.

3. Hecke algebras and types

In the following two sections we will use the local Langlands correspondence
and the theory of types to establish local-global compatibility results for our
patched modules. In particular, we will make use of the results of [BK99] and
[SZ99] in order to study spaces of automorphic forms which correspond to
fixed inertial types. As explained in the introduction, in some of our results
we will for simplicity restrict ourselves to the case of Weil–Deligne represen-
tations with N = 0; this means that we will limit ourselves to considering
potentially crystalline Galois representations. However, some of our results
are more naturally expressed in the more general context of representations
with arbitrary monodromy, so we will make it clear when we impose this
restriction. We begin by collecting and explaining various results from the
literature that we will need.

Let F/Qp be a finite extension. Recall that we write K = GLn(OF ),
G = GLn(F ), and that WF is the Weil group of F . Although several of
our references work over C, we work consistently over Qp (except in Subsec-
tion 3.13, where we fix a single Bernstein component, and work over a finite
extension of Qp). The various results over C are transferred to our context

over Qp via our fixed choice of ı : Qp
∼→ C.

As recalled in Section 1.8, the local Langlands correspondence recp gives
a bijection between the isomorphism classes of irreducible smooth represen-
tations of G over Qp, and the n-dimensional Frobenius semisimple Weil–
Deligne representations of WF , independently of the choice of ı; thus none
of our results below depend on the choice of ı.

3.1. Bernstein–Zelevinsky theory

We now recall some details of the local Langlands correspondence and its
relationship to Bernstein–Zelevinsky theory, following [Rod82].

Given a partition n = n1 + · · · + nr, let P = MN be the correspond-
ing standard parabolic subgroup of G with Levi subgroup M and unipotent
radical N (standard with respect to the Borel subgroup of upper triangular
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matrices), so that M ∼= GLn1
(F ) × · · · × GLnr(F ). For any smooth repre-

sentations πi of GLni(F ), the tensor product π1 ⊗ · · · ⊗ πr is naturally a

representation of M and thus of P , and we denote by π1 × · · · × πr the nor-

malised induction iGP (π1⊗· · ·⊗πr). If π1, . . . , πr are irreducible supercuspidal

representations then π1 × · · · × πr has finite length by [Rod82, Proposition

4].

Any smooth irreducible representation π of G is necessarily a subrep-

resentation of some π1 × · · · × πr for some P and some irreducible super-

cuspidal representations π1, . . . , πr. By [Rod82, Proposition 5], π determines

the multiset {π1, . . . , πr} (and thus the corresponding partition of n, up to

reordering) uniquely, and we refer to it as the cuspidal support of π. For any

representation πi of GLni(F ), and any integer s, we write πi(s) := πi⊗|det |s.
Then by [Rod82, Théorème 1] (and the remark which follows it), π1×· · ·×πr
is reducible if and only if there are some i, j with ni = nj and πj ∼= πi(1).

We define a segment to be a set of isomorphism classes of irreducible

cuspidal representations GLni(F ) of the form ∆ = {πi, πi(1), . . . , πi(r − 1)}
for some r ≥ 1, and we write ∆ = [πi, πi(r − 1)]. We say that two segments

∆1,∆2 are linked if neither contains the other, and ∆1∪∆2 is also a segment.

If ∆1 = [πi, π
′
i] and ∆2 = [π′′i , π

′′′
i ] are linked, we say that ∆1 precedes ∆2 if

π′′i = πi(r) for some r ≥ 0.

If ∆ = [πi, πi(r− 1)] is a segment, then πi× · · · × πi(r− 1) has a unique

irreducible subrepresentation Z(∆) and a unique irreducible quotient L(∆).

By [Rod82, Théorème 2], if ∆1, . . . ,∆r are segments such that if i < j, then

∆i does not precede ∆j , then the representation Z(∆1) × · · · × Z(∆r) has

a unique irreducible subrepresentation, which we denote Z(∆1 × · · · ×∆r).

Every irreducible smooth representation of G is of the form Z(∆1 × · · · ×
∆r) for some segments ∆1, . . . ,∆r, which are uniquely determined up to

reordering. By [Rod82, Théorème 3], the analogous statement also holds for

the L(∆i). By [Rod82, Théorème 5], Z(∆1, . . . ,∆r) occurs with multiplicity

one as a subquotient of Z(∆1)× · · · × Z(∆r).

The link with the local Langlands correspondence is as follows [Rod82,

§4.4]. The representation recp(π) is irreducible if and only if π is supercuspi-

dal. For each integer r ≥ 1 there is an explicitly defined r-dimensional Weil–

Deligne representation Sp(r) whose restriction to the Weil group is unrami-

fied and whose monodromy operator has rank r−1 (see page 213 of [Rod82]).

Then if ∆ = [πi, πi(r − 1)] is a segment, we have recp
(
L(∆)

)
= recp(πi) ⊗

Sp(r), and more generally we have recp
(
L(∆1, . . . ,∆r)

)
= ⊕ri=1recp

(
L(∆i)

)
.
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3.2. The Bernstein Centre

We now briefly recall some of the results of [Ber84] (in the special case
that the reductive group under consideration there is GLn) in a fashion
adapted to our needs. The Bernstein spectrum is the set of G-orbits of pairs
(M,ω), where M is a Levi subgroup of G, ω is an irreducible supercuspidal
representation of M , and the action of G is via conjugation; note that up to
conjugacy, (M,ω) is of the form (GLn1

(F )×· · ·×GLnr(F ), π1⊗· · ·⊗πr), as
in the preceding section. As we will explain below, the Bernstein spectrum
naturally has the structure of an algebraic variety over Qp (with infinitely
many connected components), the Bernstein variety. Given an irreducible
smooth G-representation π, we obtain a point of the Bernstein spectrum
by passing to the cuspidal support of π. This map is surjective; any point
(M,ω) of the Bernstein spectrum is equal to the cuspidal support of π for
any Jordan–Hölder factor π of iGP ω (and indeed these are precisely the π
for which (M,ω) arises as the cuspidal support; here P is any parabolic
subgroup of G admitting M as a Levi quotient — the collection of Jordan–
Hölder factors of iGP ω is independent of the choice of P ).

The connected components of the Bernstein variety are as follows. Fix a
pair (M,ω) as above; then the component of the Bernstein variety containing
(M,ω) is the union of the G-orbits of the pairs (M,αω), where α is an
unramified quasicharacter of M . We say that two pairs (M,ω) and (M ′, ω′)
are inertially equivalent if they are in the same Bernstein component, and
write [M,ω] for the equivalence class. Fixing one such pair (M,ω), it is easy
to see that there is a natural algebraic structure on the inertial equivalence
class, because the set of unramified quasicharacters of M has a natural
algebraic structure, and thus so does any quotient of it by a finite group; this
gives the structure of the Bernstein variety. Given an irreducible smooth G-
representation π, we will refer to the inertial equivalence class of its cuspidal
support as the inertial support of π.

For any connected component Ω of the Bernstein variety, we have a cor-
responding full subcategory of the category of smooth G-representations,
whose objects are the smooth representations all of whose irreducible sub-
quotients have cuspidal support in Ω. Such a subcategory is called a Bern-
stein component of the category of smooth G-representations, and in fact the
category of smooth G-representations is a direct product of the Bernstein
components. Given a Bernstein component Ω, the centre ZΩ of Ω is the cen-
tre of the corresponding Bernstein component (that is, the endomorphism
ring of the identity functor), so that ZΩ acts naturally on each irreducible
smooth representation π ∈ Ω. Since π is irreducible, each element of ZΩ will
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act on π through a scalar. In fact this scalar depends only on the cuspi-
dal support of π, and in this way ZΩ is identified with the ring of regular
functions on the connected component Ω of the Bernstein variety.

The above notions extend in an obvious way to products of groups
GLni(F ), and we will make use of this extension below without further
comment (in order to compare representations of G with representations of
a Levi subgroup).

Finally, we note that from the link between the local Langlands corre-
spondence and Bernstein–Zelevinsky theory explained in Section 3.1, it is
immediate that two irreducible smooth representations π, π′ of G lie in the
same Bernstein component if and only if recp(π)|IF ∼= recp(π

′)|IF (where we
ignore the monodromy operators).

3.3. Bushnell–Kutzko theory

Fix a Bernstein component Ω. In [BK99], there is the definition of a semisim-
ple Bushnell–Kutzko type (J, λ) for Ω, where J ⊆ K is a compact open sub-
group, and λ is a smooth irreducible Qp-representation of J . The pair (J, λ)
has the property that if π is an irreducible smooth representation of G, then
HomJ(λ, π) 6= 0 if and only if π ∈ Ω, and in fact the functor HomJ(λ, ∗)
induces an equivalence of categories between Ω and the category of left mod-
ules of the Hecke algebraH(G,λ) := H(G, J ;λ) := EndG(c-IndGJ λ), with the
inverse functor being given by c-IndGJ λ⊗H(G,λ) (∗).

Let π be an irreducible representation in Ω, and let (M,ω) be a rep-
resentative for the inertial support of π. We can and do suppose that M
is a standard Levi subgroup

∏r
i=1

∏di
j=1 GLei(F ), and that ω = ⊗ri=1π

⊗di
i ,

where πi and πi′ are not inertially equivalent (that is, do not differ by a
twist by an unramified quasicharacter) if i 6= i′. Then by the construc-
tion of (J, λ) in [BK99], there is a pair (J ∩M,λM ) which is a semisimple
Bushnell–Kutzko type for the Bernstein component ΩM of M determined
by ω, in the sense that if πM is an irreducible smooth representation of
M , then HomJ∩M (λM , πM ) 6= 0 if and only if πM ∈ ΩM , and the functor
HomJ∩M (λM , ∗) induces an equivalence of categories between ΩM and the
category of left modules of H(M,λM ) in the same way as above.

Let P be a parabolic subgroup of G with Levi factor M . Then the
normalised induction iGP restricts to a functor from ΩM to Ω, and there
is a unique injective algebra homomorphism tP : H(M,λM ) → H(G,λ)
(which is denoted jQ on page 55 of [BK99]) such that under the equivalences
of categories explained above, iGP corresponds to the pushforward along tP
(given by HomH(M,λM )(H(G,λ), ∗)).
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It will be useful to us to have a somewhat more explicit description of the
pair (J ∩M,λM ). Recall that we may write M =

∏r
i=1

∏di
j=1 GLei(F ), and

that ω = ⊗ri=1π
⊗di
i . Then as is explained in [BK99, §1.4-5] (see also the para-

graph after Lemma 7.6.3 of [BK93]), we may write J ∩M =
∏r
i=1

∏di
j=1 Ji,

λM =
⊗r

i=1 λ
⊗di
i , where (Ji, λi) is a maximal simple type occurring in πi

in the sense of [BK98]. There is a corresponding isomorphism H(M,λM ) ∼=
⊗ri=1H

(
GLei(F ), λi

)⊗di , and each H
(
GLei(F ), λi

)
is commutative, so that

H(M,λM ) is commutative. The following somewhat technical lemma will be
useful to us in Section 4. We remind the reader that the algebra H(M,λM )
is naturally isomorphic to the convolution algebra of compactly supported
functions f : M → EndQp(λM ) such that f(jmj′) = j ◦ f(m) ◦ j′ for all

m ∈M, j, j′ ∈ J ∩M (see [BL94, §2.2]).

3.4 Lemma. There is an integer e ≥ 1 and a Qp-basis for H(M,λM ) with
the property that if ν is an element of this basis, then the e-fold convolution
of ν with itself is supported on tν(J ∩M) for some tν ∈ Z(M).

Proof. By the above remarks, we need only prove the corresponding result
for the Hecke algebra of a maximal simple type H

(
GLei(F ), λi

)
. In this case,

the proof of Theorem 7.6.1 of [BK93] shows that we can take a basis given by
Hecke operators supported on cosets of the form tJi where t ∈D(B) in the
notation of [BK93]. By Lemma 7.6.3 of [BK93], it suffices to show that there
is a positive integer e such that if t ∈D(B) then the e-fold composition of a
Hecke operator ψt supported on tJi with itself is supported on sJi, where s is
a scalar matrix. But D(B) is a cyclic group, generated by a uniformiser $E

of some finite extension of fields E/F inside GLei(F ), so we can just take e
to be the ramification degree e(E : F ). In that case, the e-fold composition
of a Hecke operator supported on $EJi with itself is supported on $FJi, as
remarked on the bottom of page 201 of [BK93].

3.5 Remark. If λi is a maximal simple type for GLni(F ), then the ramifica-
tion degree e(E : F ) is equal to ni/fi, where fi is the number of unramified
characters of F× which preserve a supercuspidal GLni(F )-representation
containing λi. This follows from Lemma 6.2.5 of [BK93]. Therefore, the ele-
ment det($E) of F× has valuation fi.

3.6. Results of Schneider–Zink and Dat

We will need a slight refinement of the Bernstein centre and of the theory
of Bushnell–Kutzko, which is constructed in the paper [SZ99]. Note that
there is not quite a bijection between irreducible smooth representations of
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G and characters of the Bernstein centre; as explained in Section 3.2, any
two Jordan–Hölder constituents of a parabolic induction from an irreducible
cuspidal representation correspond to the same character of the centre, so
that for example the trivial representation and the Steinberg representation
correspond to the same character. Furthermore, as recalled in Section 3.2,
two irreducible representations lie in the same Bernstein component if and
only if the corresponding Weil–Deligne representations agree on inertia, but
have possibly differing monodromy operators, and it can be useful to have
a finer decomposition. In particular, we wish to be able to consider only the
representations with N = 0.

Let Ω be a Bernstein component, with (J, λ) being the corresponding
semisimple Bushnell–Kutzko type. Let Irr(Ω)0 denote the irreducible ele-
ments π of Ω with the property that N = 0 on recp(π). In [SZ99, §2], the
material recalled in Section 3.1 above is recast in terms of certain partition
valued functions, which depend on the inertial support Ω. In [SZ99, §3], a
partial ordering is defined on these functions, and there is a unique max-
imal element for this ordering, which we will denote by P from now on.
In [SZ99, §6] an irreducible direct summand σP(λ) of IndKJ λ is constructed,
with the property that if π is an irreducible smooth G-representation, then
HomK(σP(λ), π) 6= 0 if and only if π ∈ Irr(Ω)0, in which case σP(λ) occurs
in π|K with multiplicity one. (This follows immediately from Proposition 6.2
of [SZ99], using the relationship between the partial ordering on partition
valued functions in [SZ99] and the monodromy operators, which is explained
in the proof of Proposition 6.5.3 of [BC09].)

If τ is the inertial type corresponding to Ω, then we write σ(τ) for σP(λ).
As remarked on page 201 of [SZ99], since P is maximal, σ(τ) coincides with
the representation ρs = eK IndKJ λ constructed in Theorem 4.1 of [Dat99].
Here eK is a certain idempotent in H(G,λ) which is constructed in [Dat99,
§4.2].

Let ZΩ be the centre of Ω. By Theorem 4.1 of [Dat99], the action of ZΩ

on c-IndGKσ(τ) induces an isomorphism

ZΩ
∼= EndG

(
c-IndGKσ(τ)

)
=: H

(
G, σ(τ)

)
,

so in particular H
(
G, σ(τ)

)
is commutative.

Let W[M,ω] := NG([M,ω])/M be the relative normaliser of the inertial
equivalence class of (M,ω), with (M,ω) as in Section 3.2. Then by Propo-
sition 2.1 of [Dat99], the natural algebra homomorphism tP : H(M,λM )→
H(G,λ) induces an isomorphism tP : H(M,λM )W[M,ω]

∼−→ Z
(
H(G,λ)

)
. It

follows from [Dat99, Theorem 4.1] that there is an algebra homomorphism
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sP : H(G,λ) → H
(
G, σ(τ)

)
, which makes H

(
G, σ(τ)

)
a direct summand of

H(G,λ), and the composite sP ◦ tP induces an isomorphism

H(M,λM )W[M,ω]
∼−→ H

(
G, σ(τ)

)
.

(The map sP is just given by h 7→ eK ∗ h ∗ eK , where eK is the idempotent
mentioned above.)

We summarise much of the preceding discussion as the following theo-
rem.

3.7 Theorem. If τ is an inertial type, then there is a finite-dimensional
smooth irreducible Qp-representation σ(τ) of K such that if π is any ir-

reducible smooth Qp-representation of G, then the restriction of π to K
contains (an isomorphic copy of) σ(τ) as a subrepresentation if and only
if recp(π)|IF ∼ τ and N = 0 on recp(π). Furthermore, in this case the re-
striction of π to K contains a unique copy of σ(τ). The ring H

(
G, σ(τ)

)
:=

EndG
(
c-IndGKσ(τ)

)
is commutative.

3.8 Remark. We may think of this result as an inertial local Langlands cor-
respondence for GLn, in the potentially crystalline case. For GL2 /F , the
correspondence between τ and σ(τ) matches the inertial local Langlands
correspondence of Henniart (see the appendix to [BM02]), restricted to the
potentially crystalline case.

3.9 Proposition. Let πi be an irreducible supercuspidal representation of
GLni(F ) for 1 ≤ i ≤ r, and n = n1 + · · ·+ nr. If πj 6∼= πi(1) (the condition
being empty if ni 6= nj) for every i < j then the G-socle and the G-cosocle
of π1 × · · · × πr are irreducible. Moreover, the socle occurs as a subquotient
with multiplicity one and is the only generic subquotient of π1 × · · · × πr.

Proof. This is an exercise in Bernstein–Zelevinsky theory [BZ77; Zel80]. We
will make use of the material recalled from [Rod82] at the beginning of this
section. If we let ∆1 = {π1}, . . . ,∆r = {πr}, then by assumption the ∆i are
segments such that ∆i does not precede ∆j for i < j. Since the segments are
of length one, we have L(∆i) ∼= Z(∆i) ∼= πi by definition, so that as recalled
above π1×· · ·×πr has a unique irreducible subrepresentation Z(∆1, . . . ,∆r)
and a unique irreducible quotient L(∆1, . . . ,∆r). In addition, Z(∆1, . . . ,∆r)
occurs as a subquotient with multiplicity one, so we only need to show that
it is the unique generic subquotient.

Let Un ⊂ GLn(F ) be the subgroup of unipotent upper-triangular matri-

ces, and let θn : Un → Qp
×

be the character (uij) 7→ ψ(
∑n−1

i=1 ui,i+1), where

ψ : F → Q×p is a fixed smooth non-trivial character. If π is a representation
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of G, we let πθn be the largest quotient of π on which Un acts by θn. If π is an
irreducible representation of G then the dimension of πθn is at most one, and
is equal to one if and only if π is generic. Since Un is equal to the union of
its compact open subgroups, the functor π 7→ πθn is exact. Thus it is enough
to show that (π1 × · · · × πr)θn is one dimensional and Z(∆1, . . . ,∆r)θn is
non-zero.

In [BZ77; Zel80] the authors define a family of exact functors π 7→ π(i)

for 0 ≤ i ≤ n from the category of smooth representations of GLn(F ) to the
category of smooth representations of GLn−i(F ). The representation π(i) is
called the i-th derivative of π. We have π(0) = π and π(n) = πθn . If π is
irreducible and supercuspidal then π(i) = 0 for 0 < i < n and π(n) is one
dimensional, by [BZ77, Theorem 4.4]. By [BZ77, Corollary 4.6] we have that
(π1 × · · · × πr)(n) ∼= (π1)(n1) ⊗ · · · ⊗ (πr)

(nr), which is one dimensional, since
the πi are supercuspidal representations of GLni(F ). It follows from [Zel80,
Theorem 6.2] that Z(∆1, . . . ,∆r)

(n) 6= 0, as required.

If π in Ω is irreducible, then the action of ZΩ on π defines a Qp-algebra

morphism χπ : ZΩ → EndG(π) ∼= Qp. The following is a strengthening of
Theorem 4.1 of [Dat99].

3.10 Proposition. Let π be an irreducible smooth Qp-representation of G,
such that recp(π)|IF ∼ τ and N = 0 on recp(π). Then

c-IndGKσ(τ)⊗ZΩ,χπ Qp
∼= π1 × · · · × πr,

where πi is a supercuspidal representation of GLni(F ), such that if i < j
then πj 6∼= πi(1) (the condition being empty if ni 6= nj), and recp(π) ∼=
⊕ri=1recp(πi). Moreover, the representation π is the unique irreducible quo-
tient of c-IndGKσ(τ)⊗ZΩ,χπ Qp.

Proof. Since N = 0 on recp(π), we may write it as a direct sum of irreducible
representations of the Weil group WF , and there is a partition n = n1 + · · ·+
nr and supercuspidal representations πi of GLni(F ) such that recp(π) ∼=
⊕ri=1recp(πi). After reordering we may assume that if i < j then πj 6∼= πi(1).
It follows from Proposition 3.9 that π1 × · · · × πr has a unique irreducible
quotient π′.

Then recp(π
′) ∼= ⊕ri=1recp(πi) as representations of WF , and N = 0 on

recp(π
′) since all the segments have length one, as in the proof of Proposition

3.9. Thus recp(π
′) ∼= recp(π), which implies that π ∼= π′. Since the socle of

π1 × · · · × πr is irreducible and occurs as a subquotient with multiplicity
one, the action of ZΩ on π1 × · · · × πr factors through an algebra morphism
χ : ZΩ → Qp. Since the cosocle is isomorphic to π, we deduce that χ = χπ.
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Theorem 3.7 implies that π is a quotient of c-IndGKσ(τ). Since c-IndGKσ(τ)
is projective there exists a G-equivariant map ϕ : c-IndGKσ(τ)→ π1×· · ·×πr
such that the composition with π1×· · ·×πr � π is surjective. The G-cosocle
of the cokernel of ϕ is zero. Since π1 × · · · × πr is of finite length, so is the
cokernel of ϕ, and we deduce that ϕ is surjective. Since ZΩ acts naturally on
everything, ϕ induces a surjection ϕ̄ : c-IndGKσ(τ)⊗ZΩ,χπ Qp � π1×· · ·×πr.

Furthermore, [Dat99, Theorem 4.1] implies that the semisimplification
of c-IndGKσ(τ)⊗ZΩ

χπ is isomorphic to the semisimplification of π′1×· · ·×π′s,
where π′i are supercuspidal representations of GLn′i(F ) for some integers n′i,
such that n = n′1 + · · · + n′s. Since π is an irreducible subquotient of both
π′1× . . .×π′s and π1×· · ·×πr, [BZ77, Theorem 2.9] implies that π′1×· · ·×π′s
and π1×· · ·×πr have the same semisimplification. Thus c-IndGKσ(τ)⊗ZΩ,χπQp

and π1 × · · · × πr have the same semisimplification, which implies that ϕ̄ is
an isomorphism, as required.

3.11 Corollary. Let Ω be a Bernstein component corresponding to an in-
ertial type τ and let ZΩ be the centre of Ω. Let χ : ZΩ → Qp be a Qp-

algebra morphism. Then the G-socle of c-IndGKσ(τ) ⊗ZΩ,χ Qp is irreducible
and generic, and all the other irreducible subquotients are not generic.

Conversely, if an irreducible representation π in Ω is generic then π is
isomorphic to the G-socle of c-IndGKσ(τ)⊗ZΩ,χπ Qp.

Proof. The first part follows from Propositions 3.9 and 3.10. The converse
may be seen as follows. There exist supercuspidal representations πi of
GLni(F ) such that n = n1 + · · ·+nr and π is a subquotient of π1× · · ·×πr.
If w is a permutation of {1, . . . , r} then π1× · · · × πr and πw(1)× · · · × πw(r)

have the same semisimplification by [BZ77, Theorem 2.9], so we may as-
sume that the πi satisfy the conditions of Proposition 3.9. Since the socle
of π1 × · · · × πr is irreducible and occurs as a subquotient with multiplicity
one, the action of ZΩ on π1×· · ·×πr factors through a maximal ideal, which
is equal to χπ, as π occurs as a subquotient. If we let π′ be the G-cosocle
of π1 × · · · × πr then π′ satisfies the conditions of Proposition 3.10, and we
have χπ′ = χπ. The assertion follows from Propositions 3.9 and 3.10.

3.12 Corollary. Let π be an irreducible smooth generic Qp-representation
of G, such that recp(π)|IF ∼ τ and N = 0 on recp(π). Then we have a
natural isomorphism c-IndGKσ(τ)⊗ZΩ,χπ Qp

∼= π.

Proof. By Corollary 3.11, we see that the G-socle of c-IndGKσ(τ)⊗ZΩ,χπQp is
isomorphic to π and occurs with multiplicity one as a subquotient. Theorem
3.7 implies that π is a quotient of c-IndGKσ(τ) ⊗ZΩ,χπ Qp. This implies the
assertion.
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3.13. Rationality

As a preparation for the next section we explain in this subsection how the
results above remain true with a finite extension E of Qp as coefficient field,
as long as E is sufficiently large (depending on the Bernstein component Ω).
We do this by following various parts of the construction of the Bernstein
centre in [Ren10], working over E rather than over Qp, and we then deduce

the results from those over Qp by faithfully flat descent. Let (M,ω) be the
supercuspidal support of some irreducible representation in Ω, let X (M) be

the group of unramified characters χ : M → Q×p , and let

X (M)(ω) := {χ ∈ X (M) : ω ∼= ω ⊗ χ}.

Let M0 be the intersection of the kernels of the characters χ ∈ X (M), and
let T be the intersection of the kernels of the χ ∈ X (M)(ω). The restriction
of ω to M0 is a finite direct sum of irreducible representations, see [Ren10,
p. VI.3.2]. We fix one irreducible summand ρ. It follows from Lemme VI.4.4
of [Ren10] and its proof that ρ extends to a representation ρT of T , such that
IndMT ρT is isomorphic to a finite direct sum of copies of ω. Thus χ ∈ X (M)
lies in X (M)(ω) if and only if the restriction of χ to T is trivial. Thus the
restriction to T induces a bijection

(3.14) X (M)/X (M)(ω)
∼=→ X (T ),

where X (T ) is the group of characters from T to Q×p , which are trivial on
M0.

Let D be the Bernstein component (for M) containing ω, let ZD be the
centre of D and let Π(D) := c-IndMM0ρ. It is shown in [Ren10, p. VI.4.1]
that Π(D) is a projective generator for D. Thus we may identify ZD with
the centre of the ring EndM

(
Π(D)

)
. Since ρ is irreducible, Π(D) is a finitely

generated Qp[M ]-module.

Let ZΩ be the Bernstein centre of Ω and let Π(Ω) := iGP Π(D), where
P is any parabolic subgroup with Levi subgroup M . It is shown in [Ren10,
Thm.VI.10.1] that Π(Ω) is a projective generator of Ω, which is a finitely
generated Qp[G]-module. Thus we may identify ZΩ with the centre of the
ring EndG

(
Π(Ω)

)
.

It follows from Bushnell–Kutzko theory that ω ∼= c-IndMJ Λ, and ρ ∼=
c-IndM

0

J λ, where J is an open compact-mod-centre subgroup of M , J is an
open compact subgroup of M , and Λ, λ are (necessarily) finite-dimensional
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irreducible representations. We may realise both Λ and λ over a finite ex-
tension E of Qp. By compactly inducing these realisations, we deduce that
both ω and ρ can be realised over E. We denote these representations by ωE
and ρE , respectively. It is shown in [Ren10, Lemme V.2.7] that X (M)(ω)
is a finite group. Let W (D) be the subgroup of NG(M)/M stabilising D.
For each w ∈ W (D) there are precisely |X (M)(ω)| unramified characters
ξ such that ωw ∼= ω ⊗ ξ. Since the group M/M0 is finitely generated, by
replacing E with a finite extension, we may assume that all the characters
ξ are E-valued. By further enlarging E we may assume that

√
q, where q is

the number of elements in the residue field of F , is contained in E. Then
the modulus character of P is defined over E.

Let Π(D)E := c-IndMM0ρE , and let ZD,E denote the centre of its endomor-
phism ring EndM

(
Π(D)E

)
. Since ρE ⊗E Qp

∼= ρ, we have Π(D)E ⊗E Qp
∼=

Π(D). We may express the generators of Π(D) (as a Qp[M ]-module) as a

finite Qp-linear combination of elements of Π(D)E . The E[M ]-submodule
of Π(D)E generated by these elements has to equal Π(D)E , as the quotient
is zero once we extend the scalars to Qp. In particular, Π(D)E is a finitely
generated E[M ]-module.

Let Π(Ω)E := iGP Π(D)E and let ZΩ,E be the centre of EndG(Π(Ω)E).
The smooth parabolic induction commutes with ⊗EQp, as the set P\G/H
is finite for every open subgroup H of G and tensor products commute with
inductive limits, so Π(Ω)E⊗EQp

∼= Π(Ω). Since Π(Ω) is a finitely generated

Qp[G]-module, arguing as in the previous paragraph we deduce that Π(Ω)E
is a finitely generated E[G]-module.

The following observation (see for example Lemma 5.1 of [Paš13]) is very
useful. If π and π′ are representations of some group G on E-vector spaces,
such that π is a finitely generated E[G]-module, then

(3.15) HomE[G](π, π
′)⊗E Qp

∼= HomQp[G](π ⊗E Qp, π
′ ⊗E Qp).

It follows from (3.15) that

(3.16) EndM (Π(D)E)⊗E Qp
∼= EndM

(
Π(D)

)
,

(3.17) EndG(Π(Ω)E)⊗E Qp
∼= EndG

(
Π(Ω)

)
.

Let DE be the full subcategory of smooth representation ω′ of M on
E-vector spaces, such that ω′ ⊗E Qp is in D. It follows from (3.15) that

HomM (Π(D)E , ω
′) ⊗E Qp

∼= HomM (Π(D), ω′ ⊗E Qp). Since Π(D) is a pro-
jective generator of D, we deduce that Π(D)E is a projective generator of
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DE . (This follows from the fact that Qp is faithfully flat over E; we will re-
peatedly use this fact below without further comment.) In particular, ZD,E
is naturally isomorphic to the centre of the category DE .

Similarly we let ΩE be the full subcategory of smooth representations π′

of G on E-vector spaces, such that π′⊗E Qp is in Ω. The same argument as
above gives that Π(Ω)E is a projective generator of ΩE and ZΩ,E is naturally
isomorphic to the centre of ΩE .

3.18 Lemma. Let A be an E-algebra and let Z be an E-subalgebra of A.
If Z ⊗E Qp is the centre of A⊗E Qp then Z is the centre of A.

Proof. For each z ∈ Z, we define an E-linear map φz : A → A, a 7→ az−za.
Since z⊗1 is central in A⊗E Qp by assumption, we deduce that (Imφz)⊗E
Qp = 0, which implies that Imφz = 0. We deduce that Z is contained in
Z(A), the centre of A. If z ∈ Z(A) then z ⊗ 1 is contained in the centre of
A⊗E Qp and thus in Z ⊗E Qp by assumption. Hence (Z(A)/Z)⊗E Qp = 0,
which implies that Z = Z(A).

3.19 Lemma. The isomorphism (3.16) induces an isomorphism ZD,E ⊗E
Qp
∼= ZD.

Proof. Since Π(D) ∼= IndMT (c-IndTM0ρ) and induction is a functor, we have
an inclusion EndT (c-IndTM0ρ) ⊂ EndM

(
Π(D)

)
. Now [Ren10, Thm.VI.4.4]

implies that this inclusion identifies EndT (c-IndTM0ρ) with the centre of
EndM

(
Π(D)

)
. The assertion follows from Lemma 3.18 applied to Z =

EndT (c-IndTM0ρE) and A = EndM
(
Π(D)E

)
.

Let Irr(D) be the set of irreducible representations in D. Every such
irreducible representation is of the form ω⊗χ for some χ ∈ X (M). We thus

have a bijection X (M)/X (M)(ω)
∼=→ Irr(D), χ 7→ ω ⊗ χ. Composing this

bijection with (3.14) we obtain a bijection

(3.20) Irr(D)
∼=→ X (T ).

Now X (T ) is naturally isomorphic to the set of homomorphisms of Qp-

algebras from Qp[T/M
0] to Qp. It is explained in [Ren10, p. VI.4.4] that we

have identifications

ZD ∼= EndT (IndTM0 ρ) ∼= Qp[T/M
0];

see Théorème VI.4.4 for the first isomorphism and Proposition VI.4.4 for
the second, so that (3.20) induces a natural bijection between Irr(D) and
MaxSpecZD.
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The group W (D) acts on Irr(D) by conjugation. For each w ∈ W (D)
let ξ ∈ X (M) be any character such that ωw ∼= ω ⊗ ξ, and let ξw be the
restriction of ξ to T . If ξ1 and ξ2 are two such characters then ω⊗ξ1

∼= ωw ∼=
ω⊗ ξ2, and hence ξ1ξ

−1
2 lies in X (M)(ω). It follows from the definition of T

that the restriction of ξ1ξ
−1
2 to T is trivial. Thus ξw depends only on w and

not on the choice of ξ. If χ ∈ X (M) then (ω⊗χ)w ∼= ω⊗χwξ. Thus the action
of W (D) on X (T ) via (3.20) is given by w.χ = χwξw. If we identify X (T )
with the maximal spectrum of Qp[T/M

0] then this action is induced by the

action of W (D) on Qp[T/M
0] by Qp-linear automorphisms given on the basis

elements by w.(tM0) = ξ−1
w (t)twM0: if χ : Qp[T/M

0] → Qp is a morphism

of Qp-algebras then (w.χ)(tM0) = χ(w−1.(tM0)) = χ(ξ−1
w−1(t)w−1twM0) =

ξw(t)χw(tM0).

3.21 Lemma. The action of W (D) on ZD preserves ZD,E.

Proof. Since ω and ρ can both be defined over E, so can the representation
ρH defined at the beginning of [Ren10, p. VI.4.4], and in particular so can
ρT , its restriction to T . Hence, if we identify ZD with Qp[T/M

0] as in [Ren10,
Prop.VI.4.4] then ZD,E is identified with E[T/M0]. Since the characters ξw
are E-valued by the choice of E, we get the assertion.

3.22 Lemma. ZΩ,E = Z
W (D)
D,E .

Proof. Since Π(Ω) = iGP Π(D) and parabolic induction is a functor, we have
an inclusion ZD ⊂ EndG

(
Π(Ω)

)
. It follows from the discussion immediately

preceding the proof of Theorem VI.10.4 of [Ren10] that this inclusion iden-

tifies Z
W (D)
D with the centre of EndG

(
Π(Ω)

)
. The assertion follows from

Lemma 3.18 applied to Z = Z
W (D)
D,E and A = EndG

(
Π(Ω)E

)
.

3.23 Proposition. The isomorphism (3.17) induces an isomorphism

ZΩ,E ⊗E Qp
∼= ZΩ.

Proof. Using Lemmas 3.19 and 3.22 we obtain

ZΩ,E ⊗E Qp
∼= Z

W (D)
D,E ⊗E Qp

∼= (ZD,E ⊗E Qp)
W (D) ∼= Z

W (D)
D

∼= ZΩ,

where the last isomorphism follows from [Ren10, p. VI.10.4], as in the proof
of Lemma 3.22.

3.24 Lemma. ZΩ,E coincides with the ring E[B] constructed in [Che09,
Prop. 3.11].
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Proof. Let ∆ be the subgroup of X (M) oW (D) consisting of pairs (ξ, w),

such that ωw ∼= ω⊗ ξ. This subgroup acts naturally on E[M/M0]. The map

ξ 7→ (ξ, 1) identifies X (M)(ω) with a normal subgroup of ∆ and the quotient

is isomorphic to W (D). We have

Qp[M/M0]∆ ∼= (Qp[M/M0]X (M)(ω))W (D) ∼= Qp[T/M
0]W (D) ∼= Z

W (D)
D ,

see [Ren10, Rem.VI.4.4] for the second isomorphism. Chenevier defines E[B]

to be E[M/M0]∆. This subring gets identified with E[T/M0]W (D) inside

Qp[T/M
0]W (D), and with Z

W (D)
D,E inside Z

W (D)
D , see the proof of Lemma 3.21.

The assertion follows from Lemma 3.22.

Let σ(τ) be the representation of K given by Theorem 3.7. After replac-

ing E by a finite extension we may assume that there exists a representation

σ(τ)E of K on an E-vector space, such that σ(τ)E ⊗E Qp
∼= σ(τ). Then

c-IndGKσ(τ)E is an object in ΩE . Since ZΩ,E is the centre of ΩE it acts on

c-IndGKσ(τ)E , thus inducing a homomorphism ZΩ,E → EndG
(
c-IndGKσ(τ)E

)
.

3.25 Lemma. The map ZΩ,E → EndG
(
c-IndGKσ(τ)E

)
is an isomorphism.

Proof. It follows from Theorem 4.1 of [Dat99] and Proposition 3.23 above

that the map is an isomorphism once we extend scalars to Qp. This implies

the assertion.

Let R := EndG
(
Π(Ω)

)
. Since Π(Ω) is a projective generator the functors

M 7→ M ⊗R Π(Ω) and π 7→ HomG(Π(Ω), π) induce an equivalence of cate-

gories between the category of right R-modules and Ω. If π is irreducible,

then the action of ZΩ on π factors through χπ : ZΩ → Qp. It follows from

[Ren10, Lem.VI.10.4] that R is a finitely generated ZΩ-module , which im-

plies that the module corresponding to π is a finite dimensional Qp-vector

space. Since ZΩ,E is a finitely generated algebra over E, E(χπ) := χπ(ZΩ,E)

is a finite extension of E.

In the above E was only required to be sufficiently large. Thus if E′ is a

subfield of Qp containing E, then we let ΩE′ , Π(Ω)E′ be the corresponding

objects defined over E′ instead of E. Then Π(Ω)E′ is a projective generator

of ΩE′ and the functors M 7→M⊗RE′Π(Ω)E′ and π 7→ HomG(Π(Ω)E′ , π) in-

duce an equivalence of categories between the category of right RE′-modules

and ΩE′ , where RE′ := EndG(Π(Ω)E′).

3.26 Lemma. Every irreducible generic π ∈ Ω can be realised over E(χπ).
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Proof. In order to ease the notation, we write E′ := E(χπ) and π′ :=

c-IndGKσ(τ)E ⊗ZΩ,E
E′. Then

π′ ⊗E′ Qp
∼= c-IndGKσ(τ)⊗ZΩ,χπ Qp

∼= π1 × . . .× πr,

where the last isomorphism is given by Proposition 3.10. Hence, π′ ⊗E′ Qp

is of finite length, which implies that HomG(Π(Ω), π′ ⊗E′ Qp) is a finite

dimensional Qp-vector space, which implies that M ′ := HomG(Π(Ω)E , π
′) is

a finite dimensional E′-vector space.

If π′′ is an irreducible E′-subrepresentation of π′, and if we define M ′′ :=

HomG(Π(Ω)E′ , π
′′), then M ′′ is an irreducible RE′-module which is finite

dimensional over E′. It follows from [BouAlg, Cor.12.7.1a)] that M ′′⊗E′Qp is

a semi-simpleR-module. Hence, π′′⊗E′Qp is a semi-simple G-representation.

Proposition 3.9 implies that the G-socle of π′′ ⊗E′ Qp is irreducible and is

isomorphic to π. Thus π′′ ⊗E′ Qp
∼= π.

Henceforth for each Bernstein component Ω we will fix a sufficiently

large E as above and work with it. Agreeing on this, we will omit E from

the notation when there is no danger of confusion. For instance we will write

ZΩ, σ(τ), and so on, in place of ZΩ,E , σ(τ)E and so on. Note that we fixed

a choice of E in Section 2; however, it is harmless to replace our patched

module M∞ with its base extension to the ring of integers in any larger

choice of E, and we will do so without further comment.

4. Local-global compatibility

The goal of this section is to prove that the patched module M∞ satisfies

local-global compatibility, in the following sense: the G-action on M∞ (ob-

tained by patching global objects) will induce a tautological Hecke action

on certain patched modules for particular K-types. On the other hand, we

will define a second Hecke action via an interpolation of the classical local

Langlands correspondence. We will then prove that these two Hecke actions

coincide. The details are made explicit below.

Note that it is plausible that M∞ should satisfy local-global compatibil-

ity, since it is patched together from spaces of algebraic modular forms; the

difficulty in proving this is that the modules at finite level are all p-power tor-

sion, while local-global compatibility is usually defined after inverting p, so

that we need to establish some integral control over the compatibility. Some

of our arguments were inspired by the treatment of the two-dimensional
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crystalline case in [Kis07, §3.6], and somewhat related considerations in the

arguments of [Kis09b].

Let σ be a locally algebraic type for G = GLn(F ) defined over E. Then

by definition σ is an absolutely irreducible representation of K = GLn(OF )

over E of the form σsm ⊗ σalg, where σsm is a smooth type for K (i.e.

σsm = σ(τ) for some inertial type τ) and σalg is the restriction to K of

an irreducible algebraic representation of ResF/Qp GLn; we will sometimes

also write σalg for the corresponding G-representation. (So, all of our locally

algebraic types are “potentially crystalline”, in the sense that they detect

representations for which N = 0.) Set H(σ) := EndG(c-IndGKσ).

We say that a continuous representation r : GF → GLn(E) has Hodge–

Tate weights prescribed by σalg if r is regular of weight ξ and σalg is dual

to (the restriction to K of) the representation with highest weight vector

ξ. (Given such an r, the representation σalg is the restriction to K of the

representation πalg defined in Section 1.8). We will say that r is potentially

crystalline of type σ if it is potentially crystalline with inertial type τ and

Hodge–Tate weights prescribed by σalg. We also say that a global represen-

tation has type σ if it restricts to such an r. Let R�
p̃

(σ) be the local universal

lifting ring of type σ at p̃ (i.e. the unique reduced and p-torsion free quotient

of R�
p̃

corresponding to potentially crystalline lifts of type σ).

Let X = Spf R�
p̃

(σ), with ideal of definition taken to be the maximal

ideal, and let X rig denote its rigid generic fibre (as constructed in [Jon95,

§7]). Note that X rig = ∪jUj is an increasing union of affinoids, and in

fact is a quasi-Stein rigid space, since it is a closed subspace of an open

polydisc, which is an increasing union of closed polydiscs. By a standard

abuse of notation, we will write OX rig for the ring of rigid-analytic functions

on X rig. Then OX rig = lim←−j Γ(Uj ,OUj ) and we equip it with the inverse

limit topology. We note that by [Jon95, Lemma 7.1.9], there is a bijec-

tion between the points of X rig and the closed points of SpecR�
p̃

(σ)[1/p].

The universal lift over R�
p̃

(σ) gives rise to a continuous family of rep-

resentations ρrig : GF → GLn(OX rig). (The continuity of ρrig is equiva-

lent to that of each of the representations GF → GLn
(
Γ(Uj ,OUj )

)
ob-

tained by restricting elements of GLn(OX rig) to Uj .) If x is a point of

X rig with residue field Ex, we denote by ρx : GF → GLn(Ex) the spe-

cialisation of ρrig at x. We define the locally algebraic G-representation

πl.alg,x := πsm(ρx) ⊗E σalg = πsm(ρx) ⊗Ex πalg(ρx). (Recall the notation

πsm(ρx) and πalg(ρx) from §1.8; in particular, πsm(ρx) = r−1
p (WD(ρx)F−ss).)

Note that H(σ) acts via a character on the space HomK(σ, πl.alg,x), the
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latter being one-dimensional (by Theorem 3.7 together with the argument
of [ST06, Lemma 1.4]).

The following theorem, which may be of independent interest, gives our
interpolation of the local Langlands correspondence. Its proof will occupy
much of this section.

4.1 Theorem. There is an E-algebra homomorphism

η : H(σ)→ R�
p̃ (σ)[1/p]

which interpolates the local Langlands correspondence rp. More precisely, for
any closed point x of SpecR�

p̃
(σ)[1/p], the H(σ)-action on HomK(σ, πl.alg,x)

factors as η composed with the evaluation map R�
p̃

(σ)[1/p]→ Ex.

We begin by proving the following weaker result, showing the existence
of a rigid analytic local Langlands map.

4.2 Proposition. There is an E-algebra homomorphism η : H(σ)→ OX rig

which interpolates the local Langlands correspondence rp. More precisely,
for any point x ∈ X rig, the action of H(σ) on HomK(σ, πl.alg,x) factors as η
composed with the evaluation map OX rig → Ex.

Recall that X rig = ∪jUj can be written as an increasing union of rigid
spaces associated to reduced affinoid algebras. Théorème C of [BC08] as-
sociates a family of Weil-Deligne representations to a family of Galois rep-
resentations over the rigid space associated to a reduced affinoid algebra.
Applying it to each Uj and to ρrig|Uj , we obtain a compatible family of

Weil–Deligne representations ρrig
WD : WF → GLn(Γ(Uj ,OUj )) and thus a

Weil–Deligne representation ρrig
WD : WF → GLn(OX rig). Note that ρrig

WD has
N = 0.

For a point x of X rig, we denote by ρWD,x the specialisation of ρrig
WD at x.

Then ρWD,x|IF ' τ for all points x of X rig. Recall that ZΩ is the Bernstein
centre for the Bernstein component Ω corresponding to σ(τ).

4.3 Proposition. There exists a unique E-algebra map I : ZΩ → OX rig

such that for any point x of X rig with residue field Ex, the smooth G-
representation πx corresponding to ρWD,x via the local Langlands correspon-
dence recp determines via specialisation the map x ◦ I : ZΩ → Ex.

Proof. Consider the following map, obtained by specialisation:

γG : ZΩ →
∏

x∈X rig

E′x,
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where γG is defined on the factor corresponding to x by evaluating ZΩ at the
closed point in the Bernstein component Ω determined via local Langlands
by x, and E′x/Ex is a sufficiently large finite extension.

Consider as well the following map, also obtained by specialisation:

γWD : OX rig →
∏

x∈X rig

E′x.

This is an injection since X rig is reduced and since each Γ(Uj ,OUj ) is Jacob-
son. (The Jacobson property is true of any affinoid algebra. To see that X rig

is reduced, it is enough to check it on completed local rings at closed points,
but these are the same as the completed local rings of R�

p̃ (σ) [1/p] by [Jon95,

Lemma 7.1.9]. The latter is reduced (being a localisation of R�
p̃ (σ), which

is reduced by definition) and excellent, since R�
p̃ (σ) is a complete, local,

noetherian ring (and thus excellent by [EGAIV2, Scholie 7.8.3(iii)]). The re-
ducedness of the completed local rings now follows from [EGAIV2, Scholie
7.8.3(v)].)

In order to define our map I, it suffices to show that the image of ZΩ

under γG is contained in the image of γWD. Let T : WF → ZΩ be the
pseudo-representation constructed in Proposition 3.11 of [Che09]. (Note that
Chenevier’s E[B] is our ZΩ by Lemma 3.24.) By the construction of T , we
have γG ◦ T = γWD ◦ tr(ρrig

WD). Therefore the proof of the proposition is
reduced to Lemma 4.5 below.

Write v : WF � Z for the valuation map assigning 1 to any lift of the
geometric Frobenius. Let φ ∈WF be an element of valuation 1. For w ∈WF

and any IF -representation r0, let rw0 be the twist rw0 (γ) := r0(w−1γw).

4.4 Lemma. Let r be an irreducible continuous representation of WF over
Qp.

1. The restriction r|IF decomposes as a direct sum of non-isomorphic

irreducible IF -representations ⊕fi=1r
φi

1 for some integer f ≥ 1. If t ∈ Z
then r(φt) respects the decomposition (i.e. r(φt) sends rφ

i

1 into itself
for 1 ≤ i ≤ f) exactly when f | t.

2. We have tr
(
r(w)

)
6= 0 for some w ∈ WF of valuation t if and only if

f | t.
3. The unramified characters χ of WF satisfying r ⊗ χ ' r are exactly

the characters of order dividing f .

Proof. (1) The representation r|IF factors through a finite quotient IF /H,

so it decomposes as a direct sum of irreducible IF -representations ⊕fi=1ri,



p-adic local Langlands correspondence 53

for some integer f ≥ 1. The fact that r is irreducible as a WF -representation
implies that r(φ) acts transitively on (the representation spaces of) the ri.
Up to reordering the ri, we may assume that it sends ri to ri+1, where

rf+1 := r1. Moreover, we also deduce that ri+1 ' rφi and that r1 ' rφ
f

1 .
Finally, all the representations ri are non-isomorphic, since if there was an
isomorphism between them, we could define a proper WF -subrepresentation
of r and thus contradict the irreducibility of r. (More precisely, if we had
an isomorphism r1 ' r1+s for some 1 ≤ s < f , then we could assume that
f = sf ′ for some integer f ′ and get IF -isomorphisms

αsk : r1 ⊕ · · · ⊕ rs
∼−→ r1+sk ⊕ · · · ⊕ rs(1+k)

for each 1 ≤ k < f ′. In that case, we could take the IF -subrepresentation
of r generated by v + αs(v) + · · · + αs(f ′−1)(v) with v ∈ r1 ⊕ · · · ⊕ rs; it
is easy to check that this space is also stable under φ if we choose the αsk
appropriately.) The fact that r(φ) induces a cyclic permutation of the f
irreducible constituents implies the statement about r(φt).

(2) Since r(w) is not supported on the diagonal unless f | t we get
the only if part. For the if part, assume that f | t. By part 1, the matrix
r(φt) has the same block decomposition as r|IF . Note that the group algebra

of IF /H surjects onto ⊕fi=1EndQp(ri), since the ri are non-isomorphic irre-

ducible representations of the finite group IF /H. Therefore, there is some
linear combination of matrices

∑
h∈IF ch · r(h) which has non-zero trace

against the non-zero matrix r(φt). This implies that tr
(
r(h · φt)

)
6= 0 for

some h ∈ IF .

(3) Observe that r⊗χ ' r if and only if χ(w)tr r(w) = tr r(w), ∀w ∈W .
The latter condition is equivalent via part 2 to the condition that χ(w) = 1
for all w ∈WF such that f |v(w), or equivalently that χf = 1. Hence part 3
is verified.

4.5 Lemma. The image of T generates ZΩ as an E-algebra.

Proof. It suffices (by the faithful flatness of the extension Qp/E) to prove

the result after replacing E with Qp. Since the inertial type τ factors through
a finite quotient IF /H, it decomposes as a direct sum ⊕ri=1(τi)

di , where the
τi are non-isomorphic inertial types such that σ(τi) is cuspidal. As in the
proof of Proposition 3.11 of [Che09], the Bernstein component Ω decomposes
as Ω1 × · · · × Ωr and ZΩ = ⊗ri=1ZΩi , where each Ωi corresponds to the
simple type σ((τi)

di). If we let Ti : WF → ZΩi be the pseudo-representation
associated to Ωi by Proposition 3.11 of [Che09], then by definition T (g) :=
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∑r
i=1 Ti(g). It suffices to show that the image of T in ZΩ generates each

ZΩ-subalgebra ZΩi for i = 1, . . . , r.
Let ri be an irreducible WF -representation such that ri|IF ' τi, and let

fi be the integer associated to ri by Lemma 4.4. By choosing rec−1
p (ri)

⊗di as
a base point, each closed point of SpecZΩi may be represented by an unram-
ified character χi = (χi,1, . . . , χi,di) (or more precisely by ⊗dij=1(rec−1

p (ri) ⊗
χi,j) up to a permutation of factors), where the χi,j are unramified characters
of F×. Then each Ti(g) is defined by

Ti(g)(χi) := tr(ri)(g)

di∑
j=1

χi,j
(
ArtF (g)

)
.

Consider elements g ∈ WF of the form h · φti , with h ∈ IF and ti ∈ fiZ.
By Lemma 4.4(1), the matrix ri(φ

ti) is non-zero and consists of fi blocks
which match the block decomposition of τi. Because the constituents of τi
are non-isomorphic for different i’s, we may choose the ch such that∑

h∈IF /H

ch · tr
(
ri(h) · ri(φti)

)
6= 0

and
∑

h∈IF /H ch · ri′(h) = 0 for i′ 6= i. In particular, this means that∑
h∈IF /H ch · T (hφti) ∈ ZΩi .

We will now compute
∑

h∈IF /H ch · T (hφti), as an element of ZΩi . Since

the terms for i′ 6= i vanish, we can identify this with
∑

h∈IF /H ch · Ti(hφ
ti)

and work inside the Bernstein centre ZΩi for the simple type σ((τi)
di). If

we factor out the non-zero scalar
∑

h∈IF /H ch · tr
(
ri(h) · ri(φti)

)
, we are left

with
∑di

j=1 χi,j
(
ArtF (φti)

)
. We wish to identify this as a regular function

on the Bernstein component ZΩi . Notice that ArtF (φti) ∈ F× has valuation
ti, which by Lemma 4.4(3) and Remark 3.5 coincides with the valuation of
det(πEi)

ti/fi , where Ei/F is the extension in Lemma 3.4 for the cuspidal
type σ(τi).

By the proof of Lemma 3.4, the Hecke algebra H(σ(τi)) is generated by
the Hecke operator (well-defined up to a non-zero scalar) supported on πEi .
By the isomorphism between H(σ(τi)) and the Bernstein centre ZΩ(σ(τi)) for
the type σ(τi), the latter is generated by the regular function on unramified
characters

χ 7→ χ(det(πEi)).

Now, the Bernstein centre ZΩi can be identified with the elements in the
product

∏di
j=1 ZΩ(σ(τi)) which are invariant under the action of the symmetric
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group Sdi (see the proof of Proposition 3.11 of [Che09] or use the Satake
isomorphism on the level of Hecke algebras). For j = 1, . . . , di, let Xij ∈∏di
j=1 ZΩ(σ(τi)) corespond to the regular function defined above in the jth

component. From the observation on the valuation of ArtF (φti), we see that
the function

(χi,1, . . . , χi,di) 7→
di∑
j=1

χi,j
(
ArtF (φti)

)
matches

∑di
j=1X

ti/fi
ij ∈ ZΩi up to a non-zero scalar.

Note that we can ensure that ti/fi is any integer. Therefore, we can
generate all elements in ZΩi of the form

∑di
j=1X

k
ij for any k ∈ Z. Since ZΩi is

obtained by taking invariants under Sdi in Q̄p[X
±1
i1 , . . . , X

±1
idi

], it is generated

as a Qp-algebra by the elementary symmetric polynomials in Xij together

with
∏di
j=1X

−1
ij . Over Qp, which is a field of characteristic 0, we may take the

sums of powers of di variables as generators for the elementary symmetric
polynomials in those variables. We may also generate the product of the
inverses of the variables from sums of powers with negative exponents.

4.6 Remark. While the proof of Lemma 4.5 is slightly technical, the lemma
itself is rather natural; it expresses the idea that local Langlands should
make sense in families, and hence that the family of G-representations pa-
rameterised by ZΩ — and thus the parameter ring ZΩ itself — should be
completely determined by the corresponding family of Weil group represen-
tations, which are encoded by the ZΩ-valued pseudo-representation T .

If we let AΩ denote the E-subalgebra of ZΩ generated by the image of
T , then this is a finite type E-algebra, and we have a morphism SpecZΩ →
SpecAΩ. It is not hard to see (e.g. by applying local Langlands over the
fraction field of AΩ) that this is a birational map, which is in fact a bijection
on points (as one sees by applying local Langlands at the closed points). Un-
fortunately, we were unable to find a completely conceptual proof in general
that this morphism is an isomorphism of varieties over E.

In the case when ZΩ parameterises supercuspidal representations, one
can see this as follows: it suffices to check that one obtains an isomorphism
after passing to the formal completion at each closed point x ∈ SpecZΩ.
Let πx be the supercuspidal G-representation corresponding to x, and let
Tx : WF → Ex the specialisation of T to the image of x in SpecAΩ. Let Rx
be the universal formal deformation ring of Tx, so that we have morphisms

Spf ẐΩx → Spf ÂΩ → Spf Rx,
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the second being induced by T . Let rx : WF → GLn(E′x) denote the (abso-
lutely) irreducible representation attached to πx via local Langlands, where
E′x/Ex is a finite extension, and let T ′x denote the composite Tx : WF →
Ex → E′x. Then T ′x is the pseudo-representation attached to rx. Since rx
is irreducible, the universal formal deformation rings of rx and T ′x coincide
([Nys96, Théorème 3], [Rou96, Corollaire 6.2]), and are thus both given by
Rx⊗Ex E′x. A direct analysis, using that the source and target are both ob-
tained simply by forming unramified twists, and that local Langlands gives
a bijection on isomorphism classes that is compatible with twisting, shows
that the composite of the base change to E′x of the above morphisms is an
isomorphism. Since the first of them is dominant, it is also an isomorphism.
Thus the morphism SpecZΩ → SpecAΩ is a bijection on closed points and
induces isomorphisms after completing at each closed point. From the latter,
we see that it is étale and radiciel, hence an open immersion by [EGAIV4,
Théorème 17.9.1] and, since it is also surjective, we see that it is in fact an
isomorphism.

One could use a variant of the argument in first paragraph of the proof
of Lemma 4.5 to reduce the general case of the lemma to the case when ZΩ

parameterises a family of supercuspidal representations, where the preceding
argument then applies. In this way, one could give a slightly more conceptual
proof of the Lemma.

Proof of Proposition 4.2. We adopt the notation of §3.13. In particular M
is the Levi subgroup in the supercuspidal support of some (thus any) irre-
ducible representation in Ω, and X (M) is the group of unramified charac-
ters of M(F ). The group automorphism X (M)

∼−→ X (M) given by χM 7→
χM |det |

1−n
2 gives rise to an E-isomorphism SpecZD

∼−→ SpecZD. The latter
map is invariant under the W (D)-action (the point is that |det | is invari-
ant under G-conjugation) so it descends to an E-isomorphism SpecZΩ

∼−→
SpecZΩ in view of Lemma 3.22. Let tw : ZΩ → ZΩ denote the induced
isomorphism.

We have a natural isomorphism ισ : H(σsm)
∼→ H(σ); viewing Hecke

algebras as endomorphism-valued functions onG, this is given by ψ 7→ ψ·σalg

. (This is a priori only an injection, but in fact is an isomorphism by the proof
of Lemma 1.4 of [ST06].) Now we construct η as the following composite map

H(σ)
ι−1
σ' H(σsm) ' ZΩ

tw→ ZΩ
I→ OX rig ,

where the second map comes from Lemma 3.25. Note that η is already
defined over E. To verify the desired interpolation property of η, we let



p-adic local Langlands correspondence 57

x : OX rig → Ex be an E-algebra map. Then x ◦ I ◦ tw : ZΩ → Ex gives the

supercuspidal support of πsm(ρx) = r−1
p (WD(ρx)F−ss) by Proposition 4.3;

indeed, since I interpolates recp by that proposition, I ◦ tw interpolates rp.

In order to complete the proof, we can and do base change to Qp. Then

Proposition 3.10 shows us that ZΩ acts on HomK

(
σsm, πsm(ρx)

)
through

x ◦ I ◦ tw.

To conclude, it is enough to observe that the action of H(σsm) on the

space HomK

(
σsm, πsm(ρx)

)
is compatible with the ZΩ-action on the same

space via the isomorphism H(σsm) ' ZΩ, and also with the H(σ)-action on

HomK(σ, πl.alg,x) via the canonical isomorphisms between the algebras (via

ισ) and the modules. These are readily checked.

In order to deduce Theorem 4.1 from Proposition 4.2, we will now use the

results of [Hu09] to show that the image of η is bounded, in the sense that

for any h ∈ H(σ), the valuation of η(h) at each point of X rig is uniformly

bounded.

Recall that σ = σalg ⊗ σsm, where σsm = σ(τ) for some inertial type

τ : IF → GLn(E). Let x : R�
p̃ (σ)[1/p] → Ex be a closed point, so that Ex

is a finite extension field of E. Then x defines a local Galois representation

ρx : GF → GLn(Ex) which is potentially crystalline, and has Hodge–Tate

weights determined by the highest weight ξ of σalg. Set πx := πsm(ρx). Re-

call that πl.alg,x is the locally algebraic representation defined over Ex corre-

sponding to ρx (see §1.8), whose smooth part is πx and which determines the

character χπx ◦ι−1
σ : H(σ)→ Ex (via the action ofH(σ) on HomK(σ, πl.alg,x).

Let P = MN be a parabolic subgroup of G, with Levi M and unipotent

radical N . Let Z(M) be the centre of M , let N0 ⊂ N be a compact open

subgroup and define Z(M)+ := {t ∈ Z(M)|tN0t
−1 ⊂ N0}. When P is a

standard (upper) parabolic, the subgroup Z(M)+ of Z(M) consists of ele-

ments with non-decreasing p-adic valuations on the diagonal. Then [Eme06a]

defines a Jacquet module functor JP on locally analytic representations of

G.

We will consider the following condition on a locally analytic represen-

tation V of G.

4.7 Condition. For every parabolic subgroup P = MN as above, with modu-

lus character δP , every χ : Z(M)→ E× such that HomZ(M)

(
χ, JP (V )

)
6= 0,

and every t ∈ Z(M)+, we have |χ(t)δP (t)−1|p ≤ 1.

As above, we write τ = ⊕ri=1(τi)
di , where the τi are pairwise non-

isomorphic IF -representations corresponding via Theorem 3.7 (the inertial

local Langlands correspondence) to cuspidal types σ(τi) of GLei(OF ). Let
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M =
∏r
i=1 GLei(F )di be a standard Levi of G, with corresponding standard

parabolic P = MN .
From now on until the end of this section, we will replace πx (as well

as χπx , σsm, and so on) by its base extension to Qp. Then as recalled in
Section 3.1, πx is the unique irreducible quotient of a normalised parabolic
induction π̃x := iGP πx,M , where πx,M = ⊗ri=1(⊗dij=1πx,i,j) such that each πx,i,j
is a supercuspidal representation of GLei(F ) containing the type σ(τi) and
where for each i, we have πx,i,j 6' πx,i,j′(1) for 1 ≤ j′ < j ≤ di.

Proposition 3.10 gives a G-equivariant homomorphism ϕ : c-IndGKσsm →
π̃x, which identifies π̃x with c-IndGKσsm⊗H(σsm),χπx

Qp. We identify W[M,πx,M ]

with
∏r
i=1 Sdi in the obvious way, where Sdi is the symmetric group on

{1, . . . , di}. Note that W[M,πx,M ] and the identification are independent of x.

4.8 Lemma. Let χ(πx,i,j) denote the central character of πx,i,j. For an

element w = {wi}ri=1 ∈ W[M,πx,M ], define characters χx,w : Z(M) → Q×p by

χx,w =
⊗r

i=1

⊗di
j=1 χ(πx,i,wi(j)).

For every t ∈ Z(M)+, there exists a constant Ct such that |χx,w(t)|p ≤ Ct
for all points x of X rig.

Proof. We know that σalg ⊗ π̃x, after twisting by a unitary character (this
twist is discussed at the beginning of §5 below), corresponds to the poten-
tially crystalline Galois representation ρx with Hodge–Tate weights deter-
mined by σalg, in the sense that π̃x|det |1−n ↔WD(ρx)F−ss via the modified
local Langlands correspondence as in Section 4 of [BS07]. Moreover, note
that by Lemma 4.2 of Section 4 of [BS07], σalg ⊗ π̃x actually has a model
over a sufficiently large finite extension of Qp, so the characters χx,w then
take values in some sufficiently large finite extension E′x/Qp.

The equivalence between parts (ii) and (iv) of [Hu09, Thm. 1.2] (where
our coefficient field is taken to be E′x) shows that σalg(det)1−n⊗ π̃x|det |1−n
has a unitary central character and satisfies Condition 4.7 [Eme06a]. There-
fore so does σalg ⊗ π̃x.

Note that by Proposition 4.3.6 of [Eme06a] we have JP (σalg ⊗ π̃x)
∼→

σNalg ⊗ rGP (π̃x)δ
1/2
P , where rGP is the normalised Jacquet functor for smooth

representations. Putting this formula together with Condition 4.7, we see
that then we have |χ(t)|p ≤ |σNalg(t) · δP (t)−1/2|−1 for every χ occurring in

rGP (π̃x).
Now, Proposition 3.2(2) of [Hu09] computes rGP (π̃x) (observe that in the

notation of loc. cit., all bi are 1 in our case) and shows that the characters
χx,w =

⊗r
i=1

⊗di
j=1 χ(πx,i,wi(j)) of Z(M) for all sets w of permutations wi of

{1, . . . , di} occur in rGP (π̃x). The result follows.
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Let Z(M)++ ⊂ Z(M) be the subgroup generated by elements with the
property that the p-adic valuations are non-decreasing on the diagonal of
each block GLdiei . Clearly, Z(M)+ ⊂ Z(M)++.

4.9 Corollary. The conclusion of Lemma 4.8 holds for all t ∈ Z(M)++.

Proof. There is a permutation of {1, . . . , r} which induces a permutation on
the factors GLdiei of M such that the image of t under that permutation has
non-decreasing p-adic valuations. Let M ′ be the Levi subgroup of G with
the permuted blocks as factors. Abstractly, M ′ 'M and by Proposition 6.4
of [Zel80], we know that the induction iGP πM is independent of the ordering
of the τi. We conclude by applying Lemma 4.8 to the Levi M ′ instead of
M .

As discussed in Sections 3.3 and 3.6, we have a semisimple Bushnell–
Kutzko type (J, λ) such that σsm is a direct summand of IndKJ (λ), and the
natural map sP : H(G,λ)→ H(σsm) induces an isomorphism

Z
(
H(G,λ)

) ∼−→ H(σsm).

In particular, this means that π̃x|J contains λ. Then in the notation of
Section 3.3, πx,M contains the type (J ∩M,λM ). Let χπx,M be the character
by which H(M,λM ) acts on HomJ∩M (λM , πM ).

4.10 Corollary. Let t ∈ Z(M) and let νt ∈ H(M,λM ) be an intertwiner
supported on t(J ∩M). Then there exists a constant Ct such that for all
points x of X rig we have |χπx,M (νt)|p ≤ Ct.

Proof. Assume νt 6= 0. Note that since t ∈ Z(M), νt(t) commutes with
the action of J ∩ M on λM and since λM is irreducible we deduce that
νt(t) is a nonzero scalar. Rescaling, we may assume that νt(t) := idλM . Let
s ∈ Z(M)++ be such that s = wt for some w ∈ W[M,πx,M ]. It follows from
the definitions that χπx,M (νt) = χx,w(s), and the corollary then follows from
Corollary 4.9.

4.11 Corollary. Let ν ∈ H(M,λM ). Then there exists a constant Cν such
that |χπx,M (ν)|p ≤ Cν for all points x of X rig.

Proof. Since ν has compact support and we only need some bounded con-
stant Cν , it suffices to prove the claim in the case that ν is an element of
the basis of H(M,λM ) given by Lemma 3.4. Let ν ′ be the e-fold convolu-
tion of ν with itself, where e is as in the statement of Lemma 3.4; then
from Corollary 4.10 applied to ν ′, we see that there is some constant Cν
such that |χπx,M (ν ′)|p ≤ Ceν for all x. This implies that |χπx,M (ν)|p ≤ Cν , as
required.
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4.12 Proposition. For any ν ∈ H(σ), there is a constant Cν such that

|χπx
(
ι−1
σ (ν)

)
|p ≤ Cν

for all points x of X rig.

Proof. Recall from Section 3.6 that we have an isomorphism

(sP ◦ tP ) : H(M,λM )W[M,πx,M ] → H(σsm).

Set νt := (sP ◦ tP )−1
(
ι−1
σ (ν)

)
. Corollary 4.11 implies that there is a constant

Cν such that |χπx,M (νt)|p ≤ Cν for all x.

Now, in order to conclude, we just need to relate χπx,M (νM ) to χπx
(
(sP ◦

tP )(νM )
)

for any νM ∈ H(M,λM )W[M,πx,M ] . As recalled in Section 3.3,

iGP corresponds on the level of Hecke modules to pushforward along the
map tP . More precisely, if we let M := HomJ∩M (λM , πx,M ) and N :=
HomJ(λ, πx), then N ' HomH(M,λM )(H(G,λ),M). Here we view H(G,λ)
as a left H(M,λM )-module via tP and the action of H(G,λ) on the space
of homomorphisms is via right translation. For z ∈ Z

(
H(G,λ)

)
, we note

that the right action is also a left action, so the eigenvalue of z on N
is the same as the eigenvalue of (tP )−1(z) on M. On the other hand,
HomK(σ, πx) ' eKN for the idempotent eK in H(G,λ) which defines σ.
Therefore, any eigenvalue of eK ∗ z on eKN is an eigenvalue of z on N . We
deduce that χπx,M (νM )=χπx

(
(sP ◦ tP )(νM )

)
.

Proof of Theorem 4.1. By [Kis08, Thm 3.3.8] we know that R�
p̃

(σ)[1/p] is

a regular ring. Proposition 7.3.6 of [Jon95] (which is applicable because
R�

p̃
(σ)[1/p] is in particular normal) then implies that the ring of rigid an-

alytic functions on X rig whose absolute value is bounded by 1 coincides
precisely with the normalisation of R�

p̃
(σ) in R�

p̃
(σ)[1/p], and so the ring of

bounded rigid analytic functions on X rig is equal to R�
p̃

(σ)[1/p].

The result then follows immediately from Proposition 4.12 and the defin-
ing property of η.

4.13 Remark. In order to deduce Theorem 4.1 from Proposition 4.2 in the
crystalline case (that is, the case that σsm is the trivial representation), one
could appeal directly to the inequalities in Proposition 3.2 of [BS07] (see
also [ST06]). In this case, one can obtain a precise bound in terms of the
Hodge–Tate weights (so in terms of σ = σalg) on the power of p by which
we need to scale the usual generators of the spherical Hecke algebra H(σ).
Therefore, in the crystalline case, one can prove that the integral Hecke
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algebra H(σ◦) (with σ◦ the algebraic representation of K over O satisfying

σ◦ ⊗O E ' σalg) maps to the normalisation of the local deformation ring of

type σ. We expect a statement like this should hold true in the general case

as well, see Remark 4.21 for more details.

We now return to the global setting. Let the notation be as in Section 2.

Fix a K-stable O-lattice σ◦ in σ. Set

M∞(σ◦) :=
(

Homcont
O[[K]](M∞, (σ

◦)d)
)d
,

where we are considering homomorphisms that are continuous for the profi-

nite topology on M∞ and the p-adic topology on (σ◦)d, and where we equip

Homcont
O[[K]](M∞, (σ

◦)d) with the p-adic topology. Note that M∞(σ◦) is an

O-torsion free, profinite, linear-topological O-module.

4.14 Lemma. There is a natural isomorphism of topological O-modules

M∞(σ◦) ∼= lim←−
n

(
Homcont

O[[K]](M∞, (σ
◦/$n)∨)

)∨
.

Proof. Let H := Homcont
O[[K]](M∞, (σ

◦)d), so that M∞(σ◦) = Hd. Then Hd ∼=
lim←−n HomO(H,O/$n) ∼= lim←−n HomO(H/$n,O/$n) ∼= lim←−n(H/$n)∨. Since

M∞ is a projective O[[K]]-module, the short exact sequence

0→ (σ◦)d
$n·→ (σ◦)d → (σ◦)d/$n → 0

yields an isomorphism H/$n ∼= Homcont
O[[K]](M∞, (σ

◦)d/$n). Finally,

(σ◦)d/$n ∼= HomO(σ◦/$n,O/$n) ∼= (σ◦/$n)∨.

4.15 Remark. One may modify the proof of Lemma 4.14 to show that

M∞(σ◦) is naturally isomorphic to
(

Homcont
O[[K]](M∞, (σ

◦)∨)
)∨

.

4.16 Remark. M∞(σ◦) is essentially the patched module constructed in Sec-

tion 5.5 of [EG14], although as the conventions and constructions of the

current paper differ slightly from those of [EG14] (see e.g. the difference

in the choices of v1, noted in the discussion of Subsection 2.3, as well as

Remark 2.9) we will not make this precise.
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Let H(σ◦) := EndG(c-IndGKσ
◦); this is an OE-subalgebra of H(σ). Note

that since σ◦ is a free O-module of finite rank, it follows from the proof of
Theorem 1.2 of [ST02] that Schikhof duality induces an isomorphism

Homcont
O[[K]](M∞, (σ

◦)d) ∼= HomK(σ◦, (M∞)d).

Frobenius reciprocity gives HomK(σ◦, (M∞)d) ∼= HomG(c-IndGKσ
◦, (M∞)d).

Thus M∞(σ◦) is equipped with a tautological Hecke action of H(σ◦), which
commutes with the action of R∞.

Let R∞(σ) be the quotient of R∞ which acts faithfully on M∞(σ◦). (It
follows from Lemma 2.16 of [Paš15] that this is independent of the choice of
lattice σ◦ ⊂ σ.)

Set R∞(σ)′ := R∞ ⊗R�
p̃
R�

p̃
(σ).

4.17 Lemma. 1. R∞(σ) is a reduced O-torsion free quotient of R∞(σ)′.
2. If h ∈ H(σ◦) is such that η(h) ∈ R�

p̃ (σ), then the action of h on

M∞(σ◦) agrees with the action of η(h) via the natural map R�
p̃ (σ)→

R∞(σ)′.

Proof. (1) That R∞(σ) is O-torsion free follows immediately from the fact
that by definition it acts faithfully on the O-torsion free module M∞(σ◦).
The fact that it is actually a quotient of R∞(σ)′ is then essentially an imme-
diate consequence of classical local-global compatibility at p̃, but to see this
will require a little unraveling of the definitions. Note that if N is sufficiently
large, then KN acts trivially on (σ◦)d/$N . Recall that ΓN is defined to be
GLn(OF /$N

F OF ). Using Lemma 4.14, we see that

M∞(σ◦) = lim←−
N

HomO[Γ2N ]

(
(M∞/bN )K2N

, (σ◦)d/$N
)∨

= lim←−
N

HomO[Γ2N ]

(
(M�

1,QN′(N)
/bN )K2N

, (σ◦)d/$N
)∨

,

so it suffices to show that if N � 0 then the action of R∞ on

Homcont
O[[K]]

(
M�

1,QN′(N)
, (σ◦)d/$N

)
factors through R∞(σ)′. Now, by definition we have

M�
1,QN′(N)

=

pr∨
(
Sξ,τ (U1(QN ′(N))2N ′(N),O/$N ′(N))∨mQ

N′(N)

)
⊗Runiv

SQ
N′(N)

R�T

SQ
N′(N)

,
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so it suffices to prove the same result for

Homcont
O[[K]]

(
Sξ,τ

(
U1(QN ′(N))2N ′(N),O/$N ′(N)

)∨
mQ

N′(N)

⊗Runiv
SQ

N′(N)

R�T

SQ
N′(N)

,

(σ◦)d/$N
)
,

which is equal to

Homcont
O[[K]]

(
Sξ,τ

(
U1(QN ′(N))2N ′(N),O/$N ′(N)

)∨
mQ

N′(N)

,

(σ◦)d/$N
)
⊗Runiv

SQ
N′(N)

(
R�T

SQ
N′(N)

)∨
,

which in turn equals

Sξ,τ
(
U1(QN ′(N))0, (σ

◦)d/$N
)
mQ

N′(N)

⊗Runiv
SQ

N′(N)

(
R�T

SQ
N′(N)

)∨
.

Therefore it would suffice to prove the same result for

Sξ,τ
(
U1(QN ′(N))0, (σ

◦)d
)
mQ

N′(N)

⊗Runiv
SQ

N′(N)

(
R�T

SQ
N′(N)

)∨
.

If T denotes the image of TSp∪QN′(N),univ in the endomorphism ring

EndO

(
Sξ,τ

(
U1(QN ′(N))0, (σ

◦)d
)
mQ

N′(N)

)
,

then the action of Runiv
SQ

N′(N)

on Sξ,τ
(
U1(QN ′(N))0, (σ

◦)d
)
mQ

N′(N)

is given by

an O-algebra homomorphism Runiv
SQ

N′(N)

→ T. Since the space of automor-

phic forms Sξ,τ
(
U1(QN ′(N))0, (σ

◦)d
)
mQ

N′(N)

is O-torsion free (by the choice

of Um,v1
in Section 2.3) and the algebra T is reduced (by the usual compar-

ison between algebraic modular forms and classical automorphic forms, and
the semisimplicity of the space of cuspidal automorphic forms; cf. [CHT08,
Corollary 3.3.3 and §3.4]), then by the definition of R�

p̃
(σ), we need to show

that if T → Qp is a closed point, then the restriction to GFp̃
of the corre-

sponding Galois representation GF̃+,T∪QN′(N)
→ Gn(Qp) is potentially crys-

talline of type σ; but this is immediate from classical local-global compati-
bility (see e.g. Theorem 1.1 of [Car14]).

Finally, to see that R∞(σ) is reduced, we note that by part (2) of
Lemma 4.18 below, the ring R∞(σ)[1/p] is a direct factor of the regular
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(by [Kis08, Thm 3.3.8]) ring R∞(σ)′[1/p]. Thus R∞(σ)[1/p] is regular, and
in particular reduced, and hence so is its subring R∞(σ). (The reader can
easily check that this reducedness is not used in the proof of Lemma 4.18,
and hence no circularity is involved in this argument.)

(2) Again, this is essentially an immediate consequence of classical local-
global compatibility at p̃, but a little explanation is needed in order to make
this plain.

Note first that the natural action of H(σ◦) on M∞(σ◦) is induced via
Frobenius reciprocity from the G-action on M∞, which is patched from the
partial G-actions defined by

αN ′(N) : (M∞/bN )K2N
→ c-IndGNKZ

(
(M∞/bN )KN

)
and these in turn, after taking homomorphisms into (σ◦)d/$N , induce par-
tial H(σ◦)-actions on spaces of algebraic modular forms of weight (σ◦)d.
(More precisely, the G-action on $-adically completed cohomology

S̃ξ,τ
(
Up

1 (QN ′(N)),O
)

:= lim←−
s

(
lim−→
m

Sξ,τ
(
U1(QN ′(N))m,O/$s

))
gives rise, via Frobenius reciprocity and the identification

Sξ,τ
(
Up

1 (QN ′(N))0, (σ
◦)d
)
' HomK

(
σ◦, S̃ξ,τ

(
Up

1 (QN ′(N)),O
))
,

to a natural action of H(σ◦) on Sξ,τ
(
U1(QN ′(N))0, (σ

◦)d
)
.) We see therefore,

as in part (1), that it is enough to consider the natural action of each h ∈
H(σ◦) on the spaces

Sξ,τ
(
U1(QN ′(N))0, (σ

◦)d
)
mQ

N′(N)

⊗Runiv
SQ

N′(N)

(
R�T

SQ
N′(N)

)∨
for N � 0. In addition to the natural action of H(σ◦), this is equipped with
an action of R�

p̃
(σ) via the composite R�

p̃
→ Rloc → R�T

SQ
N′(N)

, which factors

through R�
p̃

(σ) by part (1). By classical local-global compatibility and the
defining property of the morphism η of Theorem 4.1, we see that, after
inverting p, the action of h on this space agrees with the action of η(h). The
desired result now follows from the fact that Sξ,τ

(
U1(QN ′(N))0, (σ

◦)d
)
mQ

N′(N)

is O-torsion free.

We now use the usual commutative algebra arguments underlying the
Taylor–Wiles–Kisin method to study the support of M∞(σ◦).
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4.18 Lemma. 1. The module M∞(σ◦) is finitely generated over R∞(σ)
and Cohen–Macaulay, and moreover M∞(σ◦)[1/p] is locally free of
rank one over R∞(σ)[1/p]. The topology on M∞(σ◦) coincides with
its m-adic topology, where m denotes the maximal ideal of R∞(σ).

2. The support of M∞(σ◦) in SpecR∞(σ)′ is a union of irreducible com-
ponents of R∞(σ)′.

3. Let R∞(σ) be the normalisation of R∞(σ) inside R∞(σ)[1/p]. Then the
action of H(σ◦) on M∞(σ◦) induces an O-algebra map α : H(σ◦) →
R∞(σ).

Proof. Since M∞ is a finite projective S∞[[K]]-module, the module M∞(σ◦)
is finite and projective (equivalently, free) over S∞. Indeed, we may write
M∞ as a direct summand of S∞[[K]]r for some r ≥ 0, and so the space

Homcont
O[[K]]

(
M∞, (σ

◦)d
)d

is a direct summand of

Homcont
O[[K]]

(
S∞[[K]]r, (σ◦)d

)d ∼= (Homcont
O[[K]]

(
S∞[[K]], (σ◦)d

)d)r
.

Thus it suffices to note that since S∞[[K]] ∼= S∞⊗̂OO[[K]] as an O[[K]]-
module, there is a natural isomorphism

Homcont
O[[K]]

(
S∞[[K]], (σ◦)d

)d ∼= Homcont
O[[K]]

(
O[[K]],Homcont

O (S∞, (σ
◦)d)

)d
∼= Homcont

O (S∞ ⊗O σ◦,O)d ∼= S∞ ⊗O σ◦.

Since M∞(σ◦) is free of finite rank over the formal power series ring S∞,
it is Cohen–Macaulay. Since the S∞-action on M∞(σ◦) factors through the
action of R∞, which in turn factors through R∞(σ) by definition, we also
conclude that M∞(σ◦) is finitely generated over R∞(σ).

Since the identification of M∞ as a direct summand of S∞[[K]] is com-
patible with the natural topologies on each of M∞ and S∞[[K]], one easily
verifies that the topology on M∞(σ◦) coincides with its n-adic topology,
where n denotes the maximal ideal of S∞. Furthermore, since by definition
R∞(σ) embeds into EndS∞

(
M∞(σ◦)

)
, we find that R∞(σ) is finite as an

S∞-algebra, and so in particular the n-adic topology and m-adic topology
on M∞(σ◦) coincide (where, as in the statement of the lemma, m denotes
the maximal ideal of R∞(σ)). Thus the topology on M∞(σ◦) coincides with
its m-adic topology.

By Lemma 3.3 of [BLGHT11], Lemma 2.4.19 of [CHT08], and Theorem
3.3.8 of [Kis08], we see that the ring R∞(σ)′ is equidimensional of the same
Krull dimension as S∞. Since M∞(σ◦) is free of finite rank over S∞, and the
image of R∞(σ)′ in End(M∞(σ◦)) is an S∞-algebra, we see that the depth of
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M∞(σ◦) as an R∞(σ)′-module is at least the Krull dimension of S∞. Since
this is equal to the Krull dimension of R∞(σ)′, it follows immediately from
Lemma 2.3 of [Tay08] that the support of M∞(σ◦) is a union of irreducible
components of R∞(σ)′. (Of course, conjecturally R∞(σ) is actually equal to
R∞(σ)′.)

ThatM∞(σ◦)[1/p] is locally free overR∞(σ)[1/p] follows by an argument
of Diamond (cf. [Dia97]). More precisely, R�

p̃
(σ)[1/p] and each of the rings

Rσ,ξ,τṽ [1/p] for places v | p, v 6= p are regular by Theorem 3.3.8 of [Kis08], and
R�
ṽ1

is formally smooth by Lemma 2.5, so R∞(σ)′[1/p] is regular by Corol-
lary A.2. Therefore R∞(σ)[1/p] is also regular, so M∞(σ◦)[1/p] is locally
free over R∞(σ)[1/p] by Lemma 3.3.4 of [Kis09a] (or rather by its proof,
which goes over unchanged to our setting, where we do not assume that
R∞(σ)[1/p] is a domain).

That it is actually locally free of rank one can be checked at finite level,
where it follows from the multiplicity one assertion in Theorem 3.7, the
choice of v1 (and the fact that we have fixed the action mod p of the Hecke
operators at ṽ1), and the irreducibility of ρ, together with [Lab11, Thms.
5.4 and 5.9].

This completes the proof of parts (1) and (2), and so we turn to prov-
ing (3). To this end, let A be the R∞-subalgebra of the endomorphism
algebra of M∞(σ◦) generated by H(σ◦). Since M∞(σ◦) is a finite type
R∞(σ)-module, we see that A is a finite R∞(σ)-algebra. Since M∞(σ◦)[1/p]
is in fact locally free of rank one over R∞(σ)[1/p] we have the equality
EndR∞(σ)[1/p]

(
M∞(σ◦)[1/p]

)
= R∞(σ)[1/p], so that A[1/p] = R∞(σ)[1/p].

So the natural map H(σ◦)→ A lands inside R∞(σ).

The morphism α of Lemma 4.18 induces an E-algebra morphism α :
H(σ)→ R∞(σ)[1/p].

4.19 Theorem. The map α coincides with the composition

H(σ)
η→ R�

p̃ (σ)[1/p]→ R∞(σ)[1/p].

Proof. Note firstly that if h ∈ H(σ◦) is such that η(h) ∈ R�
p̃ (σ), then the

two maps agree on h by Lemma 4.17 (2). Since R∞(σ) is p-torsion free by
Lemma 4.17 (1), it is therefore enough to show that H(σ) is spanned over
E by such elements.

Now, H(σ◦) certainly spans H(σ) over E, so it is enough to show that
for any element h′ ∈ H(σ◦), we have η(pCh′) ∈ R�

p̃ (σ) for some C ≥ 0; but
this is obvious.
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4.20 Remark. It follows from Lemma 4.18 (2) that the locus of closed points
of SpecR�

p̃
(σ)[1/p] which come from closed points of SpecR∞(σ)[1/p] is

a union of irreducible components, which we call the set of automorphic
components of SpecR�

p̃
(σ)[1/p]. (Note that we do not know a priori that this

notion is independent of the choice of global setting, although of course we
expect that in fact every component of SpecR�

p̃
(σ)[1/p] is an automorphic

component.)

4.21 Remark. We expect that η(H(σ◦)) is contained in the normalisation of
R�

p̃
(σ) in R�

p̃
(σ)[1/p]; it may well be possible to prove this via our methods,

but as we do not need this result, we have not pursued it. It is easy to see
that the analogous result holds for the quotient of R�

p̃
(σ) corresponding to

the automorphic components in the sense of Remark 4.20.

4.22. The action of the centre of G

We next prove a structural result (Proposition 4.23 below) which describes
the action of the centre Z of G on M∞.

As usual, we identify Z with F×, by associating to each element of
F× the corresponding scalar matrix. Local class field theory then gives an

embedding Z ∼= F×
ArtF−→ GabF , which we again denote by ArtF .

If runiv : GF → GLn(R�
p̃

) denotes the universal lift of r̄, then its de-

terminant is a character det runiv : Gab
F → (R�

p̃
)×, which, when composed

with ArtF , induces a character det runiv ◦ ArtF : Z → (R�
p̃

)×. If we let ΛZ
denote the completion of the group algebra O[Z] at the maximal ideal gen-
erated by $ and the elements z − (εn(n−1)/2 det runiv) ◦ ArtF (z), then this
character induces a homomorphism ΛZ → R�

p̃
; the corresponding morphism

of schemes SpecR�
p̃
→ Spec ΛZ simply associates to each deformation r of r̄

the character (εn(n−1)/2 det runiv) ◦ArtF of Z; in this optic, the complete lo-
cal ring ΛZ is identified with the universal deformation ring of the character
εn(n−1)/2 det r̄.

By local-global compatibility, Z acts on Sξ,τ (Ui(QN )2N ,F)[mQN ] via the
character (εn(n−1)/2 det r̄) ◦ArtF . This implies the elements of the form z −
(εn(n−1)/2 det runiv) ◦ArtF (z) act nilpotently on M∨∞[mn

∞], for all n ≥ 1 and
for all z ∈ Z. Hence the action of of O[Z] on M∨∞ extends to a continuous
action of ΛZ . Pontryagin duality induces an isomorphism Endcont

O (M∨∞) ∼=
(Endcont

O (M∞))op, which makes M∞ into a continuous Λop
Z -module. Since

ΛZ is commutative, Λop
Z = ΛZ .

Let $F be a choice of uniformiser of F and let z = diag($F , . . . , $F ) ∈
Z, so that Z = (Z ∩ K)zZ. Write S = z − [µ] ∈ O[Z], where we set µ =
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(εn(n−1)/2 det r̄)◦ArtF ($F ). Let Λ be the closure in ΛZ of the subring O[S].
Since S lies in the maximal ideal of ΛZ , we see that Λ is isomorphic to
O[[S]]. We now make use of the category of pseudo-compact Λ[[K]]-modules;
see [Gab62, §IV.3], [Bru66] for the definition and properties of this category.

4.23 Proposition. M∞ is projective in the category of pseudo-compact
Λ[[K]]-modules.

Proof. Let P be a pro-p Sylow subgroup of K. Since the index (K : P ) is
finite and is not divisible by p, it is enough to show that M∞ is projective in
the category of pseudo-compact Λ[[P ]]-modules. We will in fact show that
M∞ is a pro-free Λ[[P ]]-module, i.e. it is isomorphic to a product of copies
of Λ[[P ]].

Since P is a pro-p group, Λ[[P ]] is a local ring with residue field F. It
follows from the topological Nakayama’s lemma for pseudo-compact Λ[[P ]]-
modules, that it is enough to show that the first right derived functor of
−⊗̂Λ[[P ]] F vanishes, see [Bru66, Proposition 3.1]. We denote this derived

functor by T̂or
Λ[[P ]]

1 (F,M∞).

Note that the functor −⊗̂Λ[[P ]] F is the composite of the two func-

tors −⊗̂O[[P ] F and −⊗̂Λ/$ F. Considering the corresponding spectral se-

quence, we see that it is enough to show that both T̂or
O[[P ]]

1 (F,M∞) and

T̂or
Λ/$

1 (F,M∞ ⊗̂O[[P ]] F) vanish.

We know by Proposition 2.10 that M∞ is a finitely generated projective
S∞[[K]]-module, thus a free, finitely generated S∞[[P ]]-module, and thus
projective in the category of pseudo-compact O[[P ]]-modules. This implies

that T̂or
O[[P ]]

1 (F,M∞) vanishes.

Since Λ/$ ∼= F[[S]] is a DVR, to show that T̂or
Λ/$

1 (F,M∞ ⊗̂O[[P ]] F)

vanishes it suffices to show that M∞ ⊗̂O[[P ]] F is S-torsion free. Since M∞
is a free finitely generated S∞[[P ]]-module, M∞ ⊗̂O[[P ]] F is a free finitely
generated S∞/$-module. Since S∞/$ is a domain, it is enough to show
that there is a polynomial q ∈ F[X] with zero constant term, such that the
action of q(S) on M∞ ⊗̂O[[P ]] F is given by a non-zero element of S∞/$.

We will now construct such a polynomial q, thus finishing the proof.
Let Z̃ denote the centre of G̃, so that in particular Z̃(A∞

F̃+
) contains Z;

since the group Z̃(A∞
F̃+

)/
(
Z̃(A∞

F̃+
)∩U0

)
Z̃(F̃+) is finite, we can choose some

a > 0 for which we can write za = uγ, with u ∈ Z̃(A∞
F̃+

)∩U0 and γ ∈ Z̃(F̃+).

We may write u = upu
p with up ∈ Z ∩K, up ∈ Up

0 ∩ Z̃(A∞
F̃+

). By replacing
a by a multiple we may assume that up ∈ Z ∩ P .
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We claim that q(X) = (X+µ)a−µa does the job, and note that q(S) =
za − µa = γupup − µa. Since γ acts trivially on each M1,QN , it acts trivially
on M∞, and hence the action of z on M∞ coincides with the action of upu

p.
Since up ∈ Z∩P , the action of q(S) onM∞ ⊗̂O[[P ]] F coincides with the action
of up − µa. The action of up on each M1,QN factors through that of ∆QN .
(Indeed, for each v ∈ QN , the component of up at v lies in U0(QN )v; since
U1(Qn)v acts trivially on M1,QN , the claim is immediate from the definition
of ∆QN .) Thus the action of q(S) on M∞ ⊗̂O[[P ]] F coincides with the action
of an element of S∞/$, and this action is zero if and only if up acts trivially
on M∞ and µa = 1. In this case, za would act trivially on M∞/IM∞, where
I is the maximal ideal of O[[Z ∩ P ]].

Suppose for the sake of contradiction that this happens. We choose a
locally algebraic type σ such that M∞(σ◦) 6= 0. It follows from [Paš15,
Lemma 2.14] and the fact that Z ∩ P acts trivially on σ◦/$ that

M∞(σ◦)/$M∞(σ◦) ∼= Homcont
O[[K]](M∞/$M∞, (σ

◦/$)∨)∨

∼= Homcont
O[[K]](M∞/IM∞, (σ

◦/$)∨)∨.

Thus to see that (za − µa) does not act by zero on M∞/IM∞, it is enough
to show that it does not act by zero on M∞(σ◦)/$M∞(σ◦).

Theorem 4.19 implies that the action of z on M∞(σ◦) is the same as the
action of z under the map H(σ◦)→ R�

p̃
(σ)→ R∞(σ), which can be checked

to be compatible with the map ΛZ → R�
p̃
→ R∞. Explicitly, if Frobp is

the element of Gab
F corresponding to $F by local class field theory, then the

action of z on M∞(σ◦) matches the determinant of Frobp. Then by Theo-
rem 4.19, M∞(σ◦)/$EM∞(σ◦) would be supported on a quotient of R�

p̃
(σ)

corresponding to representations where the determinant of Frobap is fixed;
that is to say (again by local-global compatibility), for any representation
r : GF → GLn(Qp) arising from a Qp-valued point of SpecR(σ)[1/p], the
value of det r on Frobap would be determined modulo $.

However, we know that SpecR(σ) is a union of irreducible components
of SpecR(σ)′ := SpecR∞ ⊗R�

p̃
R�

p̃
(σ), and hence any twist of r by an un-

ramified character which is trivial modulo mZp also arises from a Qp-valued
point of SpecR(σ). Making an unramified twist by an appropriate charac-
ter (e.g. by a character which takes Frobp to 1 + $E′ , for some sufficiently
ramified extension E′ of E), shows that det r(Frobap) is not constant mod
$E , as required.

4.24 Remark. Since Pontrjagin duality induces an anti-equivalence between
pseudo-compact and discrete Λ[[K]]-modules [Bru66, Prop. 2.3], Proposition
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4.23 may be reformulated as the statement that M∨∞ is injective in the
category of discrete Λ[[K]]-modules.

4.25 Remark. Following [Eme10, Definition 2.3.1], we say that a smooth
representation V of ZK is locally Z-finite, if for every v ∈ V the O[Z]-
submodule generated by v is finitely generated as an O-module. Such repre-
sentations form a full subcategory ModZ−fin

ZK (O) of the category Modsm
ZK(O)

of smooth representations of ZK on O-torsion modules. The category of
discrete Λ[[K]]-modules coincides with the full subcategory of ModZ−fin

ZK (O)
consisting of representations V , such that every v ∈ V is annihilated by a
power of the maximal ideal of Λ.

It follows from the Chinese remainder theorem that the category of
discrete Λ[[K]]-modules is a direct summand of ModZ−fin

ZK (O), so by Re-

mark 4.24, M∨∞ is injective in ModZ−fin
ZK (O). Since K is compact, every

smooth representation of K is locally admissible. Combining this obser-
vation with [Eme10, Lemma 2.3.4] we deduce that ModZ−fin

ZK (O) coincides
with the category of locally admissible representation of ZK on O-torsion
modules, Modl.adm

ZK (O). Thus M∨∞ is injective in Modl.adm
ZK (O).

In some situations it can be useful to consider quotients of M∞ having a
fixed central character. (This corresponds, on the Galois side, to considering
deformations of r̄ having a fixed determinant.) To this end, we state and
prove Corollary 4.26 below.

Let x : ΛZ → O be an O-algebra homomorphism. Let ξ be the composi-
tion Z → Λ×Z

x→ O×. Let Modsm,ξ
ZK (O) be the full subcategory of Modsm

ZK(O)
consisting of those representations on which Z acts by the character ξ−1. Let
Modpro.aug

ZK (O) be the category of profinite augmented representations of ZK
over O, as defined in [Eme10, Definition 2.1.6]. Pontrjagin duality induces
an anti-equivalence of categories between Modsm

ZK(O) and Modpro.aug
ZK (O),

[Eme10, (2.2.8)]. Let C(O) be the full subcategory of Modpro.aug
ZK (O) con-

sisting of those representations on which Z acts by the character ξ, so that
C(O) is anti-equivalent to Modsm,ξ

ZK (O) via Pontrjagin duality.

4.26 Corollary. M∞ ⊗̂ΛZ ,xO is a non-zero, projective object in C(O).

Proof. Note that C(O) is naturally a full subcategory of the category of
pseudo-compact Λ[[K]]-modules. The projectivity of M∞ ⊗̂ΛZ ,xO follows
from the fact that the functor HomC(O)(M∞ ⊗̂ΛZ ,xO,−) coincides with the
restriction of the functor Homcont

Λ[[K]](M∞,−) to C(O); the exactness of the

latter follows from Proposition 4.23. The reduction of M∞ ⊗̂ΛZ ,xO modulo
$ is isomorphic toM∞ ⊗̂ΛZ F, which is non-zero, as otherwise the topological
Nakayama’s lemma for pseudo-compact ΛZ-modules would imply that M∞
is zero.
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4.27 Remark. The same argument as in Remark 4.24 shows that the dual
(M∞ ⊗̂ΛZ ,xO)∨ is injective in Modsm,ξ

ZK (O).

4.28. Locally algebraic vectors

We conclude this section by computing the locally algebraic vectors in V (r),
in the case when r is a generic, potentially crystalline point of some R∞(σ).
(In other words, we identify the locally algebraic vectors at such points on
automorphic components of type σ.)

Let Ω be a Bernstein component corresponding to the inertial type τ and
let (J, λ(τ)) be a type for this component, as in §3.3. The representation σ(τ)
in Theorem 3.7 is a quotient of IndKJ λ(τ).

4.29 Remark. To orientate the reader not familiar with types, the example
to keep in mind is the following: if τ is a direct sum of copies of the trivial
representation, then J is the Iwahori subgroup, λ(τ) is the trivial repre-
sentation of J , and σ(τ) is the trivial representation of K. The Steinberg
representation St lies in Ω, but HomK(σ(τ), St) = 0. If we worked only with
σ(τ), we would not be able to control copies of St tensored with an algebraic
representation inside the locally algebraic vectors of our patched modules.
This explains the need to work with λ(τ) instead of σ(τ).

We will redo some of the lemmas in §4 with λ instead of σ. We denote
by λalg the representation denoted by σalg in §4. We let λ := λ(τ)⊗λalg and
fix a J-stable O-lattice λ◦ in λ. Set

M∞(λ◦) :=
(

Homcont
O[[J ]](M∞, (λ

◦)d)
)d
.

4.30 Lemma. M∞(λ◦) is a free S∞-module of finite rank.

Proof. This follows from the fact, proved in Proposition 2.10, that M∞ is
projective as an S∞[[K]]-module; see the proof of Lemma 4.18.

Let R∞(λ) be the quotient of R∞ which acts faithfully on M∞(λ◦), and
set R∞(λ)′ := R∞ ⊗R�

p̃
R�

p̃
(λ), where R�

p̃
(λ) is the unique reduced and p-

torsion free quotient of R�
p̃

corresponding to potentially semi-stable lifts of
weight λalg and inertial type τ .

4.31 Lemma. R∞(λ) is a p-torsion free quotient of R∞(λ)′.

Proof. The proof is the same as the proof of part (1) of Lemma 4.17.

4.32 Lemma. The support of M∞(λ◦) in SpecR∞(λ)′ is a union of irre-
ducible components of R∞(λ)′. In particular, R∞(λ) is reduced.
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Proof. The first assertion follows from Lemma 4.30 and the fact that S∞ and

R∞(λ)′ have the same Krull dimension. Since R∞(λ)′ is reduced, any non-

reduced quotient of the same dimension will have an associated prime, which

is not minimal. It follows from Lemma 4.30 that M∞(λ◦) is a faithful Cohen–

Macaulay module over R∞(λ), thus this cannot happen, and so R∞(λ) is

reduced.

4.33 Proposition. Let x be a closed E-valued point of SpecR∞(λ)[1/p], let

rx be the corresponding Galois representation and let V (rx) be the unitary

Banach space representation defined in §2.12, and let V (rx)l.alg be the sub-

space of locally algebraic vectors in V (rx). Then V (rx)l.alg ∼= π ⊗ πalg(rx),

where π is a smooth admissible representation which lies in Ω.

Proof. Let Πl.alg be any locally algebraic representation of G. Let W be an

irreducible algebraic representation of G. We assume that E is large enough,

so that any such W is absolutely irreducible. Then W is also an absolutely

irreducible representation of the Lie algebra of G and this category is semi-

simple, as E has characteristic 0. This induces an isomorphism

Πl.alg ∼=
⊕
W

HomE(W,Πl.alg)sm ⊗E W,

where the sum is taken over all irreducible algebraic representations W of

G and HomE(W,Πl.alg)sm denotes the smooth vectors for the conjugation

action of G on HomE(W,Πl.alg). The theory of the Bernstein centre asserts

that any smooth representation π of G decomposes as

π ∼=
⊕

Ω

π[Ω],

where the sum is taken over all the Bernstein components and π[Ω] is the

maximal subquotient of π lying in Ω. Thus

Πl.alg ∼=
⊕
W,Ω

HomE(W,Πl.alg)sm[Ω]⊗E W.

We claim that V (rx)l.alg ∼= π ⊗ πalg(rx) with π in Ω. If this was not the

case then by the above there would be λ′ = λsm(τ ′)⊗ λ′alg, such that either

τ 6∼= τ ′ or λ′alg 6∼= λalg and HomJ ′(λ
′, V (rx)l.alg) 6= 0. But Lemma 4.31 implies

that the inertial type of rx is τ ′ and the Hodge–Tate weights correspond to
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the highest weight of λ′alg. This is a contradiction. Since π lies in Ω, π is
admissible if and only if HomJ(λ(τ), π) is finite dimensional. We have

dimE HomJ(λ(τ), π) = dimE HomJ(λ, V (rx)) = dimEM∞(λ◦)⊗R∞,x E,

where the last equality follows from [Paš15, Prop. 2.20]. Since M∞(λ◦) is
a finitely generated R∞-module, we deduce that the above dimensions are
finite and hence π is admissible.

4.34 Proposition. Let x, y be closed, E-valued points of SpecR∞(λ)[1/p],
lying on the same irreducible component. If x is smooth then

dimE HomJ(λ, V (rx)l.alg) ≤ dimE HomJ(λ, V (ry)
l.alg).

Proof. Since λ is locally algebraic we have

HomJ(λ, V (ry)
l.alg) ∼= HomJ(λ, V (ry)).

It follows from Proposition 2.20 of [Paš15] that

dimE HomJ(λ, V (ry)) = dimEM∞(λ◦)⊗R∞,y E.

If x is a smooth closed point of SpecR∞(λ◦)[1/p] then the localisation
R∞(λ◦)mx

at x is a regular ring. SinceM∞(λ◦) is a Cohen–Macaulay module,
so is its localisation M∞(λ◦)mx

at x. Since R∞(λ◦)mx
is regular, the standard

argument using the Auslander–Buchsbaum theorem allows us to conclude
M∞(λ◦)mx

is a free R∞(λ◦)mx
-module of rank equal to dimEM∞(λ◦)⊗R∞,x

E. Let V (q) be the irreducible component of SpecR∞(λ◦) containing x. By
further localising M∞(λ◦)mx

at q we deduce that

dimEM∞(λ◦)⊗R∞,x E = dimκ(q)M∞(λ◦)⊗R∞ κ(q).

Since the function p 7→ dimκ(p)M∞(λ◦)⊗R∞ κ(p) is upper semi-continuous
on SpecR∞, we conclude that for any E-valued point y ∈ V (q) we have

dimκ(q)M∞(λ◦)⊗R∞ κ(q) ≤ dimEM∞(λ◦)⊗R∞,y E.

4.35 Theorem. Let x be a closed E-valued point of SpecR∞(σ)[1/p], such
that πsm(rx) is generic. Then

V (rx)l.alg ∼= πsm(rx)⊗ πl.alg(rx).
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Proof. We claim that x is a smooth point of SpecR∞(λ). Lemma 4.32 implies
that it is enough to check that x is a smooth point of SpecR∞(λ)′. It follows

from [Kis08, Thm 3.3.8] that R�,ξ,τ
ṽ [1/p] is a regular ring for all v ∈ Sp \{p}.

Moreover, both R�
ṽ1

and O[[x1, . . . , xq−[F̃+:Q]n(n−1)/2]] are regular rings (the

former by Lemma 2.5). We let

B :=
(
⊗̂v∈Sp\{p}R

�,ξ,τ
ṽ

)
⊗̂R�

ṽ1
⊗̂O[[x1, . . . , xq−[F̃+:Q]n(n−1)/2]].

Corollary A.2 implies that B[1/p] is a regular ring. It follows from [All14,
Thm. D] that the restriction of rx to GF defines a smooth point xp̃ of

SpecR�
p̃

(λ)[1/p]. Since complete local noetherian rings are excellent and
the localisations of excellent rings are excellent, the smooth locus is open in
SpecR�

p̃
(λ)[1/p]. Thus there is f ∈ R�

p̃
(λ), such that SpecR�

p̃
(λ)[1/pf ] is

an open neighborhood of xp̃ contained in the smooth locus. It follows from

Corollary A.2 that (R�
p̃

(λ) ⊗̂O B)[1/pf ] is a regular ring. Since R∞(λ)′ =

R�
p̃

(λ) ⊗̂O B, this proves the claim.

Let y be any closed point in V (a) ∩ SpecR∞(σ)[1/p], where

a = (y1, . . . , yh) ⊂ S∞.

It follows from the Corollary 2.11 via Proposition 2.20 of [Paš15], that
V (ry) is identified with the closed subspace of the completed cohomology
S̃ξ,τ (Up,O)m ⊗O E, consisting of vectors annihilated by the maximal ideal
my corresponding to y. Thus

V (ry)
l.alg ∼= (S̃ξ,τ (Up,O)m ⊗O E)l.alg[my] ∼= πsm(ry)⊗ πalg(ry).

The last isomorphism follows from Prop. 3.2.4 of [Eme06b], which shows
that locally algebraic vectors of any given weight are precisely the algebraic
automorphic forms of that weight, together with classical local-global com-
patibility (Thm 1.1 of [Car14]). A priori, πsm(ry)⊗πalg(ry) may appear with
some multiplicity, but this multiplicity is seen to be 1 by our choice of Up

(and the fact that we have fixed the action mod p of the Hecke operators at
ṽ1), and the irreducibility of ρ, together with [Lab11, Thms. 5.4 and 5.9].

Proposition 4.33 implies that V (rx)l.alg ∼= π ⊗ πalg(rx), where π is a
smooth representation lying in Ω. Since x lies in the support of M∞(σ),
HomK(σ(τ), π) 6= 0. It follows from Theorems 4.1, 4.19 and Corollary 3.12
that πsm(rx) is a subrepresentation of π. Since λ(τ) is a type for Ω, it is
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enough to show that

dimE HomJ(λ(τ), π) ≤ dimE HomJ(λ(τ), πsm(rx)).

Since rx and ry have the same Hodge–Tate weights, πalg(ry) = πalg(rx), and
the restriction of these representations to J is equal to λalg. Since λalg is an
irreducible representation of the Lie algebra of G, we have isomorphisms

HomJ(λ(τ), π) ∼= HomJ(λ, V (rx)l.alg)

and

HomJ(λ(τ), πsm(ry)) ∼= HomJ(λ, V (ry)
l.alg).

Proposition 4.34 implies that

dimE HomJ(λ(τ), π) ≤ dimE HomJ(λ(τ), πsm(ry)).

Thus it is enough to show that

dimE HomJ(λ(τ), πsm(ry)) ≤ dimE HomJ(λ(τ), πsm(rx)).

Since both rx and ry are potentially crystalline Theorem 3.7 together with
Proposition 3.10 implies that there is a surjection

π′1 × . . .× π′r � πsm(ry).

Since πsm(rx) is assumed to be generic, the same argument together with
Corollary 3.12 gives an isomorphism

π1 × . . .× πr ∼= πsm(rx).

Moreover, in this case we have π1 × . . . × πr ∼= πα(1) × . . . × πα(r) for any
permutation α ∈ Sr. Since πsm(rx) and πsm(ry) lie in the same Bernstein
component, they have the same inertial support. Thus we may assume that
each π′i is a twist of πi by an unramified character. This implies that there is
a J-equivariant surjection πsm(rx)|J � πsm(ry)|J , which implies the desired
inequality.

4.36 Remark. When r is ordinary (more precisely when r satisfies the as-
sumptions on rw in Theorem 4.4.8 of [BH15]), it should be possible to prove
that V (r) contains the locally-defined representation Π(r)ord of [BH15]. This
should follow precisely the same strategy of proof as Theorem 4.4.8 of op.
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cit., which roughly shows that, when r is the restriction of a global auto-
morphic representation, the representation Π(r)ord occurs in completed co-
homology. The global ingredients used for this are the computation of locally
algebraic vectors in completed cohomology and the fact that the reduction
mod $ of completed cohomology is an injective object in the category of
smooth K-representations. In our case, V (r) is obtained by taking the fibre
of Md

∞[1/p] at a point corresponding to r, and Md
∞[1/p] can be thought of

as a patched version of completed cohomology. The analogous ingredients
are the computation of locally algebraic vectors in Theorem 4.35 and the
projectivity of M∞ in Proposition 2.10.

4.37 Remark. The computation of V (rx)l.alg, when x is a closed point of
R∞(λ)[1/p] for which the corresponding representation rx is not necessar-
ily potentially crystalline, and related questions connected to the Breuil–
Schneider conjecture, will be discussed in the forthcoming thesis of Alexan-
dre Pyvovarov.

5. The Breuil–Schneider conjecture

Continue to assume that p - 2n, and that F is a finite extension of Qp. If
r : GF → GLn(E) is a de Rham representation of regular weight then we
say that r is generic if πsm(r) is generic. In this case, we set

BS(r) := πalg(r)⊗ πsm(r).

(In fact, our BS(r) differs from the definition made in [BS07] in that πalg(r)
and πsm(r) are their analogues in [BS07] times the characters detn−1 and
| det |n−1, respectively. Since (det | det |)n−1 is a unitary character, this makes
no difference to the following conjecture. See also Section 2.4 of [Sor15] for
a discussion of the difference between these conventions.) The following is
[BS07, Conjecture 4.3] (in the open direction, in the generic case).

5.1 Conjecture. If r : GF → GLn(E) is de Rham and has regular weight,
then BS(r) admits a nonzero unitary Banach completion.

5.2 Remark. In fact, it seems reasonable (particularly in the light of Corol-
lary 5.4 below) to conjecture that there is even a nonzero admissible com-
pletion. (We recalled the definition of admissibility in Section 2.12.) Indeed,
completed cohomology always gives rise to admissible Banach space repre-
sentations, so this is a reasonable expectation from the point of view of the
global p-adic Langlands correspondence. Further motivation for focussing
on admissible completions is provided by the functor constructed in [Sch15],
which takes as input admissible F-representation of G.
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Fix a representation r : GF → GLn(E), and assume from now on that

r is potentially crystalline of regular weight, and that r is generic. By Re-

mark 2.15 (and possibly replacing E with a finite extension if necessary), we

may replace r with a conjugate representation so that r : GF → GLn(O),

and r̄ satisfies the hypotheses of Section 2. We can therefore carry out the

construction of Section 2, obtaining the patched module M∞. Recall that

r is induced from an O-algebra homomorphism x : R�
p̃
→ O, which we ex-

tended to an O-algebra homomorphism y : R∞ → O. Then V (r) is obtained

from the fibre of (M∞)d[1/p] above the closed point of R∞[1/p] determined

by y.

Write σsm(r) for σ(τ), σalg(r) for πalg(r)|K , and let σ := σalg(r) ⊗
σsm(r), keeping in mind the convention at the end of Section 3.13. (Also

enlarge E to another finite extension if necessary as explained in that sec-

tion.) As above, we write H(σ) for EndG(c-IndGKσ), which is isomorphic to

EndG
(
c-IndGKσ(τ)

)
via ισ, so that πsm(r) determines a character χπsm(r) :

H(σ) → E. Since r is generic, we see from Corollary 3.12 that πsm(r) ∼=(
c-IndGKσsm(r)

)
⊗H(σ),χπsm(r)

E. Tensoring with πalg(r), we have

BS(r) ∼= (c-IndGKσ)⊗H(σ),χπsm(r)
E.

Since our representations V (r) are unitary Banach representations, and

since BS(r) is irreducible by [ST01, Appendix], in order to prove Conjec-

ture 5.1 it would be enough to check that HomG(BS(r), V (r)) 6= 0. While we

cannot at present do this in general, we are able to reinterpret the problem

in terms of automorphy lifting theorems, and deduce new cases of Conjec-

ture 5.1. In particular, Corollary 5.5 below gives the first general results in

the principal series case.

5.3 Theorem. Suppose that p - 2n, and that r : GF → GLn(E) is a generic

potentially crystalline representation of regular weight. If r corresponds to

a closed point on an automorphic component of R�
p̃

(σ)[1/p] (in the sense

of Remark 4.20), then BS(r) admits a non-zero unitary admissible Banach

completion.

Proof of Theorem 5.3. As remarked above, since BS(r) is irreducible it suf-

fices to show that HomG

(
BS(r), V (r)

)
6= 0. This follows immediately from

Theorem 4.35. We also observe that it admits a simpler direct proof. Propo-

sition 2.20 of [Paš15] implies that

dimE HomK

(
σ, V (r)

)
= dimEM∞(σ◦)⊗R∞,y E.
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(More specifically, in the notation of that paper we take R = R∞, Θ = σ◦,
V = σ, N = M∞, and m◦ = O, regarded as an R∞-module via y. Note
that [Paš15] assumes that N is finitely generated as an R[[K]]-module, which
is satisfied in our case: M∞ is a finitely generated R∞[[K]]-module, since it
is finite over S∞[[K]] and the S∞-action on M∞ factors through a map
S∞ → R∞.)

Together with Frobenius reciprocity, this shows that

HomG

(
c-IndGKσ, V (r)

)
= HomK

(
σ, V (r)

)
6= 0,

as y is in the support of M∞(σ◦)[1/p] by assumption. Since BS(r) is iso-
morphic to (c-IndGKσ)⊗H(σ),χπsm(r)

E, we need only show that the action of
H(σ◦) on M∞(σ◦) ⊗R∞,y O factors through the character χπsm(r); but this
is immediate from Theorem 4.19.

5.4 Corollary. Suppose that p - 2n and that r : GF → GLn(E) is de Rham
of regular weight and potentially diagonalisable in the sense of [BLGGT14].
Suppose also that r is generic. Then BS(r) admits a nonzero unitary admis-
sible Banach completion.

Proof. By Theorem 5.3, we need only prove that r corresponds to a point on
an automorphic component of R�

p̃
(σ)[1/p]. Recalling that y was chosen to

correspond to the potentially diagonalisable representation rpot.diag at the
places v | p, v 6= p, this follows from Theorem A.4.1 of [BLGG13], which
constructs a global automorphic Galois representation corresponding to a
point on the same component of R�

p̃
(σ)[1/p] as r (cf. the proof of Corollary

4.4.3 of [GK14]).
Indeed, the existence of a global automorphic Galois representation cor-

responding to a point on R�
p̃

(σ)[1/p] shows that Sξ,τ (U0, (σ
◦)d)m[1/p] is

supported at this point. We have R�
p̃

(σ)[1/p]-equivariant isomorphisms

Sξ,τ (U0, (σ
◦)d)m[1/p] ' HomK

(
σ◦, S̃ξ,τ (Up,O)m

)
[1/p]

' Homcont
O[[K]]

(
M∞/aM∞, (σ

◦)d
)
[1/p],

where the former comes by identifying locally algebraic vectors in com-
pleted cohomology and the latter follows from Schikhof duality and Corol-

lary 2.11. These isomorphisms imply that
(
M∞(σ◦)/aM∞(σ◦)

)d
[1/p] is sup-

ported at the same point of R�
p̃

(σ)[1/p] coming from a global automorphic

Galois representation. Therefore, M∞(σ◦)d[1/p] is supported at a point of
R∞(σ)[1/p] on the same component as r. Finally, we conclude that the
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component of R�
p̃

(σ)[1/p] corresponding to r is automorphic in the sense of

Remark 4.20.

5.5 Corollary. Suppose that p > 2, that r : GF → GLn(E) is de Rham of

regular weight, and that r is generic. Suppose further that either

1. n = 2, and r is potentially Barsotti–Tate, or

2. F/Qp is unramified, r is crystalline, n 6= p and r has Hodge–Tate

weights in the extended Fontaine–Laffaille range; that is, for each κ :

F ↪→ E, any two elements of HTκ(r) differ by at most p− 1.

Then BS(r) admits a nonzero unitary admissible Banach completion.

Proof. Note that in case (2), the hypothesis on the Hodge–Tate weights

implies that p ≥ n, so as p > 2 and we are assuming that n 6= p, we certainly

have p - 2n. By Corollary 5.4, it is enough to check that our hypotheses

imply that r is potentially diagonalisable; in case (1), this is Lemma 4.4.1

of [GK14], and in case (2), it is the main result of [GL14].

5.6 Remark. The attentive reader will have noticed that since throughout

the paper we assumed that E is sufficiently large (and allowed it to be en-

larged in the course of making our argument), we have not proved cases

of Conjecture 5.1 as it is written, but rather an apparently weaker version,

which allows a finite extension of scalars. However, Conjecture 5.1 is an

immediate consequence of this version, in the following way: given an (ad-

missible) unitary Banach completion of BS(r)⊗E E′, where E′/E is a finite

extension, we may regard this completion as being a representation over E,

and then the closure of BS(r) inside it gives the required representation.

6. Relationship with a hypothetical p-adic local Langlands
correspondence

In this section we describe the relationship between our construction and a

hypothetical p-adic local Langlands correspondence.

6.1. A hypothetical formulation of the p-adic local Langlands

correspondence

Perhaps the strongest hypothesis one might make regarding a p-adic local

Langlands correspondence is the following: that given r̄ : GF → GLn(F)
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with trivial endomorphisms5 and with associated deformation ring Rr̄, there
exists a finitely generated Rr̄[[K]]-module L∞ which is O-torsion free, and
is equipped with an Rr̄-linear G-action which extends the K-action arising
from its Rr̄[[K]]-module structure.

6.2 Remark. In the case of GL2(Qp), let π̄ be the mod p representation
of GL2(Qp) attached to r̄ by the mod p local Langlands correspondence
of [Col10]. Then L∞ can be taken to be the projective envelope of π̄∨ in an
appropriate category C(O) of GL2(Qp)-representations. See the discussion
in Section 1.2 of [Paš13] for more details. As it follows from the discus-
sion on page 10 of op. cit., in the case when r̄, (and thus π̄), has trivial
endomorphisms, the local deformation ring Rr̄ can be identified with the
endomorphism ring of the projective envelope L∞ in C(O).

Given such an object L∞, then for any r : GF → GLn(E) arising from
an OE-valued point x of SpecRr̄, we may associate a unitary Banach space
representation B(r) := (L∞ ⊗Rr̄,x OE)d[1/p] of G, which should be “the”
representation of G associated to r via the p-adic local Langlands correspon-
dence.

One might conjecture that such a structure should exist and satisfy the
following properties:

6.2.1. Relationship with classical local Langlands. For any poten-
tially semistable lift r : GF → GLn(E) of r̄ with regular Hodge–Tate weights,
the locally algebraic vectors of B(r) are isomorphic to BS(r).

6.2.2. Local-global compatibility. Using the notation for completed
cohomology and the Hecke algebra that acts on it introduced in the discus-
sion preceding Corollary 2.11, there is an isomorphism of TSpξ,τ (Up,O)m[G]-
modules

S̃ξ,τ (Up,O)dm
∼=
(
TSpξ,τ (Up,O)m ⊗Rr̄ L∞

)⊕m(Up)

(here TSpξ,τ (Up,O)m is regarded as an Rr̄-algebra via the natural maps Rr̄ →
Runiv
S → TSpξ,τ (Up,O)m, where the first morphism corresponds to restrict-

ing global Galois representations to the decomposition group at p, and the
second morphism is induced by the universal automorphic deformation of

5We make this assumption in what follows for simplicity, since the discussion is
purely hypothetical in any case. If r̄ admits non-trivial endomorphisms, then we
would instead work with the lifting ring R�

r̄ in everything that follows, and the
representation L∞ would be endowed with a further equivariant structure for the
group GLn acting by “change of basis”.
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ρ), as well as analogous isomorphisms when we add the auxiliary QN -level
structure, as in the patching process.6

6.3. The relationship between L∞ and M∞.

If Condition 6.2.2 held, then we would find that our patched R∞[G]-module
M∞ is obtained by restricting R∞⊗Rr̄ L∞ to the smallest closed subscheme
of SpecR∞ which contains the support of all the modules (M1, Q

�
N ′(N)⊗S∞

S∞/bN )K2N
that arise in the patching process. Optimistic conjectures (of

“big R equals big T”-type) might suggest that this support is all of R∞,
and thus that M∞ is obtained from L∞ simply by pulling it back along the
natural map SpecR∞ → SpecRr̄. For this reason, we are hopeful that our
patched representation M∞ is a good candidate for (the pull-back to R∞
of) p-adic local Langlands. (We note that, in the case of GL2(Qp), we can
prove that L∞, constructed as in Remark 6.2, and M∞ have the desired
relationship.)

6.4. The relationship with the Fontaine–Mazur conjecture

Note that if both Conditions 6.2.1 and 6.2.2 held, together with an appro-
priate “big R equals big T” result, then we would find that if ρ is a de Rham
deformation of ρ corresponding to a point of Runiv

S , then it would contribute
to the locally algebraic vectors of completed cohomology. However, locally
algebraic vectors in the completed cohomology arise precisely from algebraic
automorphic forms (see Prop. 3.2.4 of [Eme06b]), and hence we would con-
clude that ρ would be an automorphic Galois representation. (This is an
abstraction of the strategy used to deduce the Fontaine–Mazur conjecture
for most odd two-dimensional representations of GQ in [Eme11].)

6.5. Concluding remarks

The preceding discussion shows that the question of whether one can in fact
relate M∞ to a purely local correspondence which satisfies the above two

6We remark that in the local-global compatibility isomorphism above there is a
multiplicity m(Up), which depends on the level away from p. However, it should
be possible to impose certain global conditions, as we do in Section 2.1, which
will ensure that this multiplicity can be taken to be 1. This multiplicity should
not increase when we add auxiliary QN -level, since we also apply the projection
operators defined in [Tho12] at primes in QN .
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conditions is closely related to the Fontaine–Mazur conjecture for deforma-

tions of ρ. Given this, we expect it to be a difficult question to precisely

determine the support of M∞ and the related modules M∞(σ◦) in general,

and we likewise expect it to be difficult to analyse the extent to which M∞
arises from a purely local construction over SpecRr̄.

Furthermore, it seems quite possible that our hypothetical formulation

of the p-adic local Langlands correspondence is too naive; even if a local

correspondence of some kind exists, it may be of a more subtle nature. In

this case, we would still expect it to have a strong relationship to our patched

modules M∞, but perhaps not as direct as the one considered in the above

discussion.

In any case, whatever the eventual truth might be, the preceding dis-

cussion suggests that the further investigation of the patched representation

M∞ is a problem of substantial interest, which we hope to return to in future

work.

Appendix A. Completed tensor product and Serre’s
conditions

Let L be a finite extension of Qp with the ring of integers O and residue

field k. Let C be the category of complete local noetherian O-algebras, which

are O-flat and have residue field k. If A and B are objects in C then the

completed tensor product over O is defined as

A ⊗̂O B := lim←−
n

A/mn
A ⊗O B/mn

B.

It is easy to see that A ⊗̂O B is again in C. For example, if A = O[[x1, . . . , xn]]

and B = O[[y1, . . . , ym]], then A ⊗̂O B ∼= O[[x1, . . . , xn, y1, . . . , ym]], and

every ring in C can be obtained as a quotient of such rings. The aim of this

note is the following Proposition.

A.1 Proposition. Let A,B be objects in C, let x ∈ A and let y ∈ B. If

A[1/px] and B[1/py] satisfy Serre’s condition (Ri) (resp. (Si)) then so does

(A ⊗̂O B)[1/pxy].

We note that the completed tensor product does not commute with

localisation. Indeed, A[1/p] is not even a local ring. A standard application

of Serre’s conditions (Ri) and (Si), see [Mat89, §23], yields the following

result.
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A.2 Corollary. Let P be one of the following properties: reduced, regu-
lar, Cohen–Macaulay, normal. If A[1/px] and B[1/py] have P then so does
(A ⊗̂O B)[1/pxy].

We will split the proof of Proposition A.1 into several steps.

A.3 Lemma. Let K be a field, A a noetherian K-algebra and K ′ a finite
separable field extension of K. If A satisfies (Ri) (resp. (Si)) then so does
K ′ ⊗K A.

Proof. Let B = K ′ ⊗K A, let P be a prime ideal of B and let p = A ∩P.
Then B is a free A-module of finite rank. This implies that BP is flat over
Ap. Since the conditions (Ri) and (Si) are local, Ap satisfies (Ri) (resp.
(Si)). It is enough to show that for every prime ideal q of Ap the fibre ring
BP ⊗Ap κ(q) satisfies (Ri) (resp. (Si)), [Mat89, Thm.23.9]. The fibre ring is
a localisation at P of B⊗A κ(q) ∼= K ′⊗K κ(q). Since K ′ is a finite separable
extension of K, this ring is isomorphic to a finite product of fields, and hence
is regular.

A.4 Lemma. Let A,B ∈ C be integral domains and let K(A) and K(B)
be the quotient fields of A and B, respectively. Then K(A)⊗A (A ⊗̂O B)⊗B
K(B) is a regular ring.

Proof. We first note

(1.4) K(A)⊗A (A ⊗̂O B)⊗B K(B) ∼= S−1
A (S−1

B (A ⊗̂O B)),

where SA and SB denote the multiplicative sets A\{0} and B \{0}, respec-
tively.

If both A and B are formally smooth, then A ⊗̂O B is formally smooth,
as explained above, and hence regular. Since a localisation of a regular ring
is again regular, [Mat89, Thm. 19.3], we deduce from (1.4) that the assertion
holds if both A and B are formally smooth.

In general, by Cohen’s structure theorem for complete local rings there
are subrings A′ ⊂ A, B′ ⊂ B, such that A′ and B′ are formally smooth
objects of C and A is a finite A′-module, B is a finite B′-module. The last
property implies that

A ⊗̂O B ∼= A⊗A′ (A′ ⊗̂O B′)⊗B′ B.

This induces an isomorphism between K(A)⊗A (A ⊗̂O B)⊗B K(B) and

K(A)⊗K(A′) (K(A′)⊗A′ (A′ ⊗̂O B′)⊗B′ K(B′))⊗K(B′) K(B).
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Since A′ and B′ are formally smooth, and K(A′), K(B′) are of characteristic
0, Lemma A.3 implies the assertion.

A.5 Lemma. Let A,B ∈ C with A an integral domain with quotient field
K(A) let y ∈ B. If B[1/py] satisfies (Ri) (resp. (Si)), then so does K(A)⊗A
(A ⊗̂O B)[1/y].

Proof. Since A is O-flat, A ⊗̂O B is B-flat. Moreover,

C := K(A)⊗A (A ⊗̂O B)[1/y]

is A ⊗̂O B-flat, since it is a localisation of A ⊗̂O B at SA and {1, y, y2, . . .}.
Thus C is B-flat. Let P be a prime ideal of C and let p = B ∩P. Then CP

is flat over Bp. We note that p, y 6∈ p. Since B[1/py] is assumed to satisfy
(Ri) (resp. (Si)) and these conditions are local, Bp satisfies (Ri) (resp. (Si)).
It follows from [Mat89, Thm. 23.9] that it is enough to show that for every
prime q of Bp the fibre ring CP⊗Bp κ(q) satisfies (Ri) (resp. (Si)). We claim
that CP ⊗Bp κ(q) is regular, so that these conditions are satisfied. Since it
is the localisation of C ⊗B κ(q) at P, it is enough to show that C ⊗B κ(q)
is regular. Since

C ⊗B κ(q) ∼= K(A)⊗A (A ⊗̂O B/q)⊗B/q K(B/q)

the assertion follows from Lemma A.4.

Proof of Proposition A.1. The idea is the same as in the proof of Lemma
A.5. Let C := A ⊗̂O B and let P be a prime ideal of C not containing p, x and
y. Let p := A∩P. Then Ap satisfies (Ri) (resp. (Si)) and CP is flat over Ap. It
is enough to show that for all prime ideals q of Ap the fibre ring CP⊗Ap κ(q)
satisfies (Ri) (resp. (Si)). The ring K(A/q) ⊗A/q (A/q ⊗̂O B)[1/y] satisfies
(Ri) (resp. (Si)) by Lemma A.5. Since the fibre ring is the localisation of
this ring at P, the assertion follows.
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