

The homology of Moduli Spaces of Riemann Surfaces

Boes, Felix Jonathan

Advisor : Prof. Dr. Carl-Friedrich Bödigheimer

Basics I

Introduction A motivating question would be the following: How can one classify all complex structures on a two dimensional manifold F? The first huge step towards a satisfactory answer, is the construction of the moduli space \mathfrak{M} . Its underlying points are in one-to-one correspondence with the set of equivalence classes of complex structures. The study of these moduli spaces relates topology, geometry, algebra and mathematical physics.

The moduli space $\mathfrak{M}_{q,n}^m$ Keep $g \ge 0$, $m \ge 0$ and $n \ge 1$ fixed. A surface with structure consists of

(1) a complex surface F of genus q;

(2) a set $\mathcal{P} = \{P_1, \ldots, P_m\} \subset F$ of *m* distinct points;

(3) an ordered set $\mathcal{Q} = (Q_1, \ldots, Q_n) \subset F$ of *n* distinct points disjoint from \mathcal{P} ;

(4) directions $\mathcal{X} = (X_1, \ldots, X_n)$ in the representation of \mathcal{X} and $\mathcal{X} = (X_1, \ldots, X_n)$

Two surfaces $[F, \mathcal{P}, \mathcal{Q}, \mathcal{X}]$ and $[F', \mathcal{P}', \mathcal{Q}', \mathcal{X}']$ are equivalent if and only if there is a map $\varphi \colon F \longrightarrow F'$ respecting the structure i.e.

(5) $\varphi \colon F \xrightarrow{\cong} F'$ as complex manifolds.

(6) $\varphi \colon \mathcal{P} \xrightarrow{\cong} \mathcal{P}' \text{ resp. } \varphi \colon \mathcal{Q} \xrightarrow{\cong} \mathcal{Q}' \text{ resp. } D\varphi \colon \mathcal{X} \xrightarrow{\cong} \mathcal{X}' \text{ as (un)ordered sets.}$

The set of equivalence classes embody the moduli space of Riemann surfaces $\mathfrak{M}_{q,n}^m$. The assertion $n \geq 1$ ensures that it is both a manifold of dimension 6g-6+2m+4n and a classifying space $B\Gamma_{a,n}^m$ for the mapping class group (because the action of $\Gamma_{g,n}^m$ on the Teichmüller space is well behaved).

The mapping class group $\Gamma_{g,n}^m$ Consider an oriented smooth surface F of genus g with \mathcal{P}, \mathcal{Q} and \mathcal{X} as above. Let

$$Diff^+ = Diff^+(F, \mathcal{P}, \mathcal{Q}, \mathcal{X}) = \{\varphi \colon F \xrightarrow{\cong} F \mid \text{smooth, orientation preserving, respecting (6)} \}.$$
 (7)

with the C^{∞} -Whitney topology and let $Diff_0^+ \subset Diff^+$ be the subspace of diffeomorphisms isotopic to the identity. The usual composition of maps turns $Diff^+$ into a topological group with $Diff_0^+$ a contractible subgroup. The mapping class group is

$$\Gamma_{g,n}^{m} = Diff^{+}(F, \mathcal{P}; \mathcal{Q}, \mathcal{X}) / Diff^{+}_{0}(F, \mathcal{P}; \mathcal{Q}, \mathcal{X}) = \pi_{0} Diff^{+}(F, \mathcal{P}; \mathcal{Q}, \mathcal{X}).$$
(8)

Instead of fixing directions \mathcal{X} at \mathcal{Q} , we remove an open small disc around every Q_i and obtain a compact surface F with n boundary circles which are required to be fixed in a small ε -neighbourhood.

This gives an isomorphic group

$$\Gamma^{m}_{g,n} = Diff^{+}(\hat{F}, \mathcal{P}; \partial \hat{F}) / Diff^{+}_{0}(\hat{F}, \mathcal{P}; \partial \hat{F}) = \pi_{0} Diff^{+}(\hat{F}, \mathcal{P}; \partial \hat{F}) .$$
(9)

Basics II & Questions

Observe that F - K consist of exactly *n* contractible components because every flow line starts near exactly one Q_i . The process of "straightening the remaining flow lines" defines a bihomolorphic map u + iv from F-K into the complex plane. The image is \mathbb{C} minus a finite number of horizontal half-rays running to the left.

We denote the space of such maps u + iv by $\mathcal{H}_{q,n}^m$. It is a bundle $\mathcal{H}_{q,n}^m \xrightarrow{\simeq} \mathfrak{M}_{q,n}^m$ and the choices we made constitute the fibre which is contractible. The space $\mathcal{H}_{a,n}^m$ is homeomorphic to the space of admissible slit configurations denoted by \mathfrak{Par}_{an}^m .

The E_2 -space structure The data of a slit picture $\mathfrak{L} \in \mathfrak{Par}_{a,1}^m$ consists of the endpoints of the half-rays and certain glueing information. Thus, \mathfrak{L} is inscribed in a square of finite area. Placing two slit pictures into disjoint squares in \mathbb{C} defines an H-space structure on $\mathfrak{Par} = \coprod_{a,1}^m \mathfrak{Par}_{a,1}^m$. Observe: this operation is induced by joining the two corresponding surfaces by a pair of pants.

More generally, the little 2-cubes operad $\tilde{C}(\mathbb{C}) = \prod_{k \ge 0} \{k \text{ disjoint, paraxial squares in } \mathbb{C} \}$ acts on \mathfrak{Par} . As a consequence, $H_*(\mathfrak{Par}) \cong H_*(\coprod_{q,m} \mathfrak{M}_{q,1}^m)$ is not only a commutative Pontryargin ring, but a Dyer-Lashof algebra.

Questions Denote $\mathfrak{M} = \coprod_{q,m} \mathfrak{M}_{q,1}^m$.

1. What are the homology modules $H_*(\mathfrak{M}^m_{q,n})$ for given parameters g, n and m?

2. What are generators of $H_*(\mathfrak{M}^m_{g,n})$ for given parameters g, n and m?

It is finitely presented by Dehn twists.

Hilbert uniformization A method providing a nice model for $\mathfrak{M}_{a,n}^m$ is introduced in [Böd1]. In order to ease the discussion of the uniformization process, we provide a pictorial example on the next page, where g=1, m=0 and n=1. Given a surface $[F] \in \mathfrak{M}_{a,n}^m$ we choose a map $u: F \longrightarrow \mathbb{R} \subset \mathbb{C}$ which is harmonic away from \mathcal{P} and \mathcal{Q} . Moreover, we assert a dipole at every $Q_i \in \mathcal{Q}$ in direction X_i and with a logarithmic sink at every $P_i \in \mathcal{P}$. The flow of steepest descent has finitely many critical points S_1, \ldots, S_k . The union of \mathcal{Q}, \mathcal{P} , all the S_l and the flow lines leaving the S_l constitute the critical graph K drawn in red

Partial Answers I

The stable range and the Madsen–Weiss Theorem The Harer stabilization theorem states, that the multiplication with the generator in $H_0(\Gamma_{1,1}^0)$ induces an isomorphism $H_*(\Gamma_{g,1}^0) \xrightarrow{\cong} H_*(\Gamma_{g+1,1}^0)$ if $* \leq \frac{2}{3}g-1$, compare [Wah]. Thus $\Gamma_{\infty,1} = \bigcup_g \Gamma_{g,1}$ is an approximation of every $\Gamma_{g,1}$ in this so called stable range. In [MW] Madsen and Weiss construct a certain spectrum $MT(d)^+$ detecting the homotopy type of a cobordism category. As a special case, a group completion theorem yields a homology isomorphism

$$\mathbb{Z} \times B\Gamma_{\infty,1} \xrightarrow{\simeq} \Omega^{\infty} MT(2)^+$$

This proves a conjecture by Mumford.

Theorem (Madsen–Weiss 2002). The rational cohomology of $\Gamma_{\infty,1}$ is

 $H^*(\Gamma_{\infty,1};\mathbb{Q})\cong\mathbb{Q}[\kappa_1,\kappa_2,\ldots]$

with κ_i the Mumford-Morita-Miller characteristic classes for surface bundles. In particular, $H_*(\Gamma^0_{g+1,1};\mathbb{Q})$ is known in the stable range $* \leq \frac{2}{3}g - 1$.

Homology calculations in the unstable range The space of parallel slit domains $\mathfrak{Par}_{a,n}^m$ is a combinatorial, relative manifold, i.e. $\mathfrak{Par}_{q,n}^m \cong \mathbb{P} - \mathbb{P}'$ with $(\mathbb{P}, \mathbb{P}')$ a pair of compact cell complexes. The homology of $\mathfrak{M}_{q,n}^m$ is therefore Poincaré dual to the cohomology of \mathbb{P}/\mathbb{P}' . Computations for 2g + m < 6 were done by Ehrenfried, Mehner and Wang using this model; and Godin using another model. Bödigheimer introduces a nice filtration on \mathbb{P} in [Böd2]. It descends to a certain homotopy retract of \mathbb{P}/\mathbb{P}' provided by Visy. This allows explicit calculations. We state some of our results for 2g + m = 6.

Theorem (Bödigheimer, B., Hermann 2014). The rational betti numbers of the moduli spaces are as follows.

	* = 0	* = 1	* = 2	* = 3	* = 4	* = 5	* = 6	* = 7	* = 8	* = 9
$\dim_{\mathbb{Q}} H_*(\mathfrak{M}^2_{2,1})$	1	0	1	3	0	2	2	0	0	0
$\dim_{\mathbb{Q}} H_*(\mathfrak{M}^0_{3,1})$	1	0	1	1	0	1	1	0	0	1

Bödigheimer and Mehner describe most of the generators of the known homology as embedded manifolds. For example, $H_3(\mathfrak{M}^0_{2,1};\mathbb{Z}) = \mathbb{Z}$ is generated by the fundamental class of the sphere bundle of the universal surface bundle over the moduli space $\mathfrak{M}^{0}_{2,0}$. Bödigheimer and the author provide a handful of relations between generators via generatlized Browder operations.

Braid groups The moduli space $\mathfrak{M}_{0,1}^m$ is the space of *m* undistinguishable particles in the plane. Thus, $\pi_1(\mathfrak{M}^m_{0,1}) = \Gamma^m_{0,1}$ is the braid group on m stands. Using the theory of iterated loop spaces, Cohen provides the *p*-torsion of the integral homology and its description as Dyer–Lashof algebra. The classical result by Arnold and Fuks is then obtained as corollary: The homology of the braid group is a truncated subring

$$H_* = H_*(\mathfrak{M}_{0,1}^m; \mathbb{F}_2) \le \mathbb{F}_2[x_1, x_2, x_3, \dots]$$

where $\deg(x_i) = 2^i - 1$ and $x = x_1^{l_1} \cdots x_k^{l_k} \in H_*$ for $\sum_i l_i 2^i \leq n$ and $x_{i+1} = Q_1(x_i)$ with Q_1 the first Dyer-Lashof operation.

- 3. How does the homology of the braid groups act on $H_*(\mathfrak{M})$?
- 4. How are the generators related by Browder operations, Dyer–Lashof operations and other homology operations?

Partial Answers II & References

The action of the homology of the Braid groups Forgetting the marked points defines a fibration $\mathfrak{M}_{a,1}^m \longrightarrow \mathfrak{M}_{a,1}^0$ with fibre $C^m(F_{a,1})$ the unordered configuration space on the surface without marked points. Adding a marked point near the boundary curve, defines a map α over $\mathfrak{M}^0_{a_1}$. The induced map in homology, is the multiplication with the generator in $H_0(\mathfrak{M}^1_{0,1})$.

Theorem (Bödigheimer, Tillmann 2001). Adding a marked point $\alpha \colon \mathfrak{M}_{g,1}^m \longrightarrow \mathfrak{M}_{g,1}^{m+1}$ admits a stable retract $\Omega^{\infty}\Sigma^{\infty}\mathfrak{M}^{m+1}_{a,1}\longrightarrow \Omega^{\infty}\Sigma^{\infty}\mathfrak{M}^{m}_{a,1}$. In particular, the restriction of the multiplication in one argument

$$H_0(\mathfrak{M}^1_{0,1};\mathbb{Z})\otimes H_*(\mathfrak{M}^m_{g,1};\mathbb{Z})\longrightarrow H_*(\mathfrak{M}^{m+1}_{g,1};\mathbb{Z})$$

admits a retraction.

Using this, we obtain a family of non-trivial homology operations.

Theorem (B. 2015). The following restriction of the multiplication is injective.

$$H_1(\mathfrak{M}^2_{0,1};\mathbb{Z}/2\mathbb{Z})\otimes H_*(\mathfrak{M}^m_{q,1};\mathbb{Z}/2\mathbb{Z})\longrightarrow H_{*+1}(\mathfrak{M}^{m+2}_{q,1};\mathbb{Z}/2\mathbb{Z})$$

References

- [ABE] Jochen Abhau, Carl-Friedrich Bödigheimer and Ralf Ehrenfried. "Homology of the mapping class group $\Gamma_{2,1}$ for surfaces of genus 2 with a boundary curve". The Zieschang Gedenkschrift Vol. 14, 2008, pp. 1–25.
- [Böd1] Carl-Friedrich Bödigheimer. "On the topology of moduli spaces of Riemann surfaces. Part I: Hilbert Uniformization". Mathematica Gottingensis 1990.
- [Böd2] Carl-Friedrich Bödigheimer. "Cluster spectral squence". (in preperation), 2014.
- [BT] Carl-Friedrich Bödigheimer and Ulrike Tillmann. "Stripping and splitting decorated mapping class groups". Cohomological Methods in Homotopy Theory Vol. 196, 2001, pp. 47–57.
- [BH] Felix Jonathan Boes and Anna Hermann. "Moduli Spaces of Riemann Surfaces Homology Computations and Homology Operations". Masters Thesis. Universität Bonn, 2014.
- [CLM] Frederick R. Cohen, Thomas J. Lada, and J. Peter May. "The homology of iterated loop spaces" Lecture Notes in Mathematics Vol. 533, 1976, pp. 207–351.
- [Meh] Stefan Mehner. "Homologieberechnungen von Modulräumen Riemannscher Flächen durch diskrete Morse-Theorie". Diploma Thesis. Universität Bonn, 2011.
- [MW] Madsen, Ib and Weiss, Michael. "The stable moduli space of Riemann surfaces: Mumford's conjecture". Annals of Mathematics. Second Series Vol. 165, 2007, pp. 843–941.
- [Wah] Nathalie Wahl. "Homological stability for mapping class groups of surfaces". Handbook of Moduli Vol. 3, 2012, pp. 547–583.

boes@math.uni-bonn.de

2015 Mathematisches Institut Bonn & MPIM Bonn