Math. Vertiefung - Linearität in Algebra und Analysis Übungsblatt 8

Abgabe: 10./11. Dezember 2018 in den Übungsgruppen.

Aufgabe 1. Auf dem Gebiet $\mathcal{G} \subseteq \mathbb{R} \times \mathbb{R}^n$ mit Koordinaten (t,\mathfrak{x}) sei eine Funktion $\underline{f} \colon \mathcal{G} \to \mathbb{R}^n$ definiert, die stetig nach t und \mathfrak{x} differenzierbar ist. Zeige: \underline{f} ist lokal Lipschitz-stetig, d.h. für jeden Punkt von \mathcal{G} gibt es eine Umgebung $U \subseteq \mathcal{G}$ und eine Konstante $L \geq 0$, sodass für alle $(t,\mathfrak{x}), (t,\mathfrak{x}^*) \in U$ gilt:

$$|\underline{f}(t, \mathbf{x}) - \underline{f}(t, \mathbf{x}^*)| \le L \cdot |\mathbf{x} - \mathbf{x}^*|.$$

Aufgabe 2. Zeige, dass die beiden Differentialgleichungen

$$\ddot{x} - x = 0, \ x(0) = 0, \ \dot{x}(0) = 1$$
 (1)

und

$$\ddot{x} - x = 0, \ x(0) = 1, \ \dot{x}(0) = 0$$
 (2)

genau eine Lösung besitzen; diese nennen wir im Falle (1) den Sinus hyperbolicus $\sinh(t)$ und im Falle (2) den Kosinus hyperbolicus $\cosh(t)$. Beweise daraus die folgenden Eigenschaften:

- (i) Die Ableitungen sind $(\sinh)(t) = \cosh(t)$ und $(\cosh)(t) = \sinh(t)$.
- (ii) Es gilt $\cosh(t)^2 \sinh(t)^2 = 1$ für alle $t \in \mathbb{R}$.
- (iii) Es gelten die Additionstheoreme

$$\sinh(s+t) = \sinh(s)\cosh(t) + \cosh(s)\sinh(t)$$

und

$$\cosh(s+t) = \cosh(s)\cosh(t) + \sinh(s)\sinh(t).$$

Aufgabe 3. Skizziere die Phasenkurven der ungedämpften Schwingungsgleichung

$$\ddot{x} + \omega_0^2 x = 0.$$

Aufgabe 4. Es sei A eine $(n \times n)$ -Matrix und $\underline{b} \colon \mathbb{R} \to \mathbb{R}^n$ eine stetige Funktion. Löse das inhomogene System von Differentialgleichungen

$$\dot{\mathfrak{x}} = A\mathfrak{x} + b(t)$$

durch Variation der Konstanten.