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1 Tautological conjectures
Let Fh be a connected component of the moduli space of pairs of h-quasi-
polarised hyperkähler manifolds1 of dimension 2n and with second Betti number
b2 = b+ 3. Let FΣ,h be (possibly disconnected) moduli space of h-quasi-ample
Σ-polarised hyperkähler manifolds; see Olivier’s notes.

As in Daniel’s talk, we pretend that all the moduli space are smooth and fine.
This is indeed true up to a cover; see [2, §3.4]. Hence, let πh : Uh → Fh and
πΣ : UΣ,h → FΣ,h be the universal families, and let

BΣ = {L1, . . . ,Lr} ⊂ Pic(UΣ,h)

be a collection of line bundles whose image in Pic(UΣ,h/FΣ,h) forms a basis.

We define the following subalgebras in CH∗(Fh):

• NL∗(Fh) is the subalgebra generated by the cycle of the connected com-
ponents of the image of the maps

iΣ : FΣ,h → Fh;

• the tautological ring R∗(Fh) is the subalgebra generated by κ-cycles

(iΣ ◦ πΣ)∗
( r∏
i=1

c1(Li)
ai

2n∏
j=1

cj(TπΣ
)bj
)
;

• the special tautological ring DR∗(Fh) is the subalgebra generated by spe-
cial κ-cycles

(iΣ ◦ πΣ)∗
( r∏
i=1

c1(Li)
ai
)
;

1Often we may replace quasi-polarised hyperkähler manifolds with polarised hyperkähler
manifolds, since the restriction mapH∗(FΣ,h)→ H∗(FΣ,h-pol) is surjective onto the non-zero
lowest weight part, containing the image of the cycle map.
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We have natural inclusions

NL∗(Fh) ⊆ DR∗(Fh) ⊆ R∗(Fh).

Conjecture 1.1 (Generalised Tautological Conjecture).

NL∗(Fh) = R∗(Fh).

We add the subscript hom to denote the image of the corresponding ring in
H∗(Fh,Q) via the cycle class map.

Conjecture 1.2 (Cohomological Tautological Conjecture).

NL∗hom(Fh) = R∗hom(Fh). (1)

Theorem 1.3. [2, Thm. 4.3.1] If b2 ≥ 6, then

NL∗hom(Fh) = DR∗hom(Fh). (2)

If b2 > 8n (e.g. K3[n] for n ≤ 2), then

NL∗hom(Fh) = R∗hom(Fh).

If b2 ≥ 6 and the very general fiber of πh admits a multiplicative Chow–Künneth
decomposition and the Beauville–Voisin conjecture holds for it, then up to shrink-
ing to an open subset of Fh, we still have equality (1).

Consider the local systems Hj := Rjπh,∗QUh
. The degeneration of the Leray

spectral sequence for πh gives the morphism of mixed Hodge structures

Hd(Uh,Q) '
⊕
i+j=d

Hi(Fh,Hj). (3)

Using this decomposition the push-forward πh,∗ in cohomology just becomes the
projection onto the factor Hi(Fh,H4n).

One can consider Noether–Lefschetz cycles with coefficients in a local system E.
Indeed, given an irreducible Noether–Lefschetz cycle Z ⊂ FΣ,h of codimension
k there is a Gysin map

H0(Z,E|Z)→ H2k(FΣ,h,E),

which is the analogue of the Gysin map for cohomology with coefficients in a
local system; see [9, Thm. B.36]. The subspace NL∗hom(FΣ,h,E) ⊆ H∗(FΣ,h,E)
is then defined to be the subalgebra generated by the images of all such maps.

The proof of Theorem 1.3 then relies on the following properties of the coho-
mology of FΣ,h with coefficients in Hj (which are of independent interest!).
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Theorem 1.4 (Cohomology of FΣ,h). The following facts hold.

1. (Purity) The mixed Hodge structure of H<b−1(FΣ,h,E) is pure.

2. (Vanishing of low odd cohomology) If 2d+ 1 < b/2, H2d+1(FΣ,h,E) = 0.

3. (Algebraicity of the low and high cohomology)

Hd,d(FΣ,h,E) = NLdhom(FΣ,h,E) for d <
b+ 1

3
,

(W2dH
2d(FΣ,h,E))d,d = NLdhom(FΣ,h,E) for d >

2b− 1

3
.

4. (Hodge–Tate low cohomology)

H2d(FΣ,h,E) = Hd,d(FΣ,h,E) for d <
b

4
.

5. (Vanishing of top algebraic cohomology) If b > 3, H≥2b−2
alg (FΣ,h,E) = 0.

Question 1.5. Is the mixed Hodge structure on H∗(Fh,Q) pure?

Corollary 1.6 (Cohomological Franchetta Conjecture). A cycle α ∈ H<b/2
alg (Uh,Q)

whose restriction to the very general fibre is homologous to zero is supported over
proper Noether–Lefschetz loci in Fh.

Proof. By Theorem 1.4.(3)-(4) we have

α ∈ H<b/2
alg (Uh) ⊆

⊕
i+j<b/4,i6=0

H2i(Fh,H2j) =
⊕

i+j<b/4,i6=0

NLihom(Fh,H2j).

Proof of Theorem 1.3 assuming Theorem 1.4. The proof can be divided in sev-
eral steps.

Step 1. In order to prove (1), it is enough to show that

r∏
i=1

c1(Li)
ai

2n∏
j=1

cj(Tπh
)bj ∈ NLhom(H) :=

2n⊕
i=0

NL2i
hom(Fh,H4n−2i), (4)

since its pushforward lies in NL∗hom(Fh).

Step 2. It is enough to show that (4) holds for c1(Li) and for cj(Tπh
) if j < b/8

(or equivalently b2 > 8n). Indeed, given αl ∈ H<b/4
alg (Uh), with l = 1, . . . , L, we

have that α1 ∧ . . . ∧ αL ∈ H∗(Uh) lies in NLhom(H).

To see this, note that the cup product on the LHS of (3) induces a cup product
on the Leray spectral sequence, and so a cup product on the RHS of (3); see
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[10, Lemme 16.13]. The isomorphism (3) however may not preserve the ring
structure; see for instance [11, Prop. 0.4 or Prop. 0.6]. Now Funke–Kudla–
Millson describe a special subring ΦH∗ of the RHS of (4) closed by definition
under RHS cup products and such that

NL
<(b+1)/3
hom (Fh,Hj) ⊆ ΦH∗ ⊆ NL∗hom(Fh,Hj);

see Proposition 6.1.

Claim 1.7 (Theorem 8.2.1). Let αl ∈ H<b/4
alg (Uh), with l = 1, . . . , L. Then

α1 ∧LHS . . . ∧LHS αL − α1 ∧RHS . . . ∧RHS αL

is supported over Noether–Lefschetz loci of Fh.

Proof. The last four lines of the proof of Theorem 8.2.1 are not clear to us. We
have emailed Bergeron in this regard.

Step 3. c1(Li) and cj(Tπh
) lie in NLhom(H) if j < b/4. This follows from

Theorem 1.4.(3).

Step 4. Eq. (2) actually holds for the sharper bound b > 2. Indeed, if b > 2,
then H1(Fh,H1) = 0 by Theorem 1.4.(2), and so we have

c1(Li) ∈ H0(Fh,H2)⊕H1,1(Fh,Q) = H0(Fh,H2)⊕NLhom(Fh,Q)

due to Theorem 1.4.(3). Up to subtracting the pull-back of a Noether–Lefschetz
divisor, we can suppose c1(Li) ∈ H0(Fh,H2). Therefore, up to a Noether–
Lefschetz cycle (cf. Claim 1.7), we have

r∏
i=1

c1(Li)
ai ∈ H0(Fh,H

∑r
i=1 2ai) = NL0

hom(Fh,H
∑r

i=1 2ai)

by Theorem 1.4.(3). This yields Eq. (2).

Step 5. We show that Eq. (1) holds modulo the existence of a multiplicative
Chow–Künneth decomposition and the Beauville–Voisin conjecture. Let X be
the very general fiber of πh : Uh → Fh of dimension 2n. The existence of a
multiplicative Chow–Künneth decomposition implies that the diagonal ∆X ∈
CH2n(X ×X) admits a decomposition

∆X = Π0 + · · ·+ Π4n ∈ CH2n(X ×X),

where Πi are orthogonal projectors, i.e. Πi ◦Πi = Πi and Πj ◦Πi = 0 for i 6= j.
This yields a bigrading of the Chow ring CHi(X)s := Π2i−s CHi(X). Here, the
projectors act via the calculus of correspondences. The intersection product
respects the bigrading.
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Moreover, the decomposition should conjecturally give a splitting of the con-
jectural Bloch–Beilinson filtration of the Chow groups (if, strictly speaking,
one furthermore assumes that CHi(X)s = 0 for s < 0 and the subalgebra
CHi(X)s = 0 for s > 0 is exactly the kernel of the cycle class map).

The Beauville–Voisin conjecture asserts that the first Chern class of line bundles
c1(L ) and the Chern classes of the tangent bundle cj(TX) are contained in the
subring CH∗(X)0. This means that the projector Π2k acts as the identity on∏r
i=1 c1(Li)

ai
∏2n
j=1 cj(TX)bj , with

∑
i ai+

∑
j jbj = k, and all other projectors

Πi act trivially.

By spreading out, there exists a (non-surjective) étale chart of F ′h → Fh with
open image such that π′h : U ′h := Uh×F ′h

Fh → F ′h has a multiplicative Chow–
Künneth decomposition of the diagonal ∆U ′h

=
∑

Π′i. The relative projec-
tors Π′j viewed in cohomology induce a splitting as in (3) [11, Lem. 2.1]. The
Beauville–Voisin conjecture now implies that up to further shrinking the chart
F ′h one has that the Chern classes cj(Tπ′h) lie in H0(F ′h,H2j). Theorem 1.4.(3)
then gives that all Chern classes cj(Tπ′h) are Noether–Lefschetz. Since cj(Tπ′h)
is the preimage of cj(Tπh

), the same holds for the Chern classes cj(Tπh
).

Remark 1.8 (Limit of the approach of Bergeron–Li). It seems unclear how the
methods of Bergeron–Li can show that the (i)-component of cj(Tπh

) in the RHS
of (3) is in NLhom(H) when b

2 ≤ i ≤ min{2k, 2b− b
2}.

Open problem. Show that πh,∗cj(Tπh
) lies in NL∗hom(Fh) for j ≥ b/4.

2 Period domain
The main idea of Bergeron–Li is to translate CTC in a statement about special
cycles of Shimura varieties, and to exploit the modularity of generating functions
whose coefficients are intersection numbers of special cycles.

We briefly recall the notion of period domain; see also Olivier’s notes.

• Λ is a lattice with signature (2, b);

• SO(ΛR) ' SO(2, b) is the special orthogonal group of a quadratic form
with signature (2, b);

• SO+(2, b) is the connected component of the identity of SO(2, b).

• The period domain is

D̂ := {[ω] ∈ P(ΛC) | ω2 = 0, ω · ω̄ > 0}
' {positive oriented 2-planes in ΛR}
' SO(2, b)/SO(2)× SO(b).

• A connected component of the period domain

D := SO+(2, b)/SO(2)× SO(b)
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is a contractible Hermitian symmetric domain of complex dimension b.

• Any torsion-free arithmetic subgroup Γ ⊂ SO+(Λ) acts properly discon-
tinuously on D with quasi-projective quotient Γ\D.

• Σprim ⊆ Λ is a negative-definite sub-lattice of rank r;

• DΣ is the subset of 2-planes orthogonal to Σprim in D;

• ΓΣ := {g ∈ Γ | g(σ) = σ for all σ ∈ Σprim}.

A special cycle is a connected cycle c(Σ,Γ) ∈ CHr(Γ\D), given by the image of
the morphism

ΓΣ\DΣ → Γ\D.

Definition 2.1. SCr(Γ\D) is the subgroup spanned by special cycles c(Σ,Γ) of
codimension r, and set

SC∗(Γ\D) ⊂ CH∗(Γ\D)

to be the subalgebra generated by special cycles of any codimension.

The following facts hold.

1. The subgroup spanned by special cycles coincides with the subalgebra
generated by them

SC∗(Γ\D) =
⊕
r

SCr(Γ\D).

Proof. Take two special cycles α ∈ SCl(Γ\D) and β ∈ SCk(Γ\D).

If l = 1, there are two cases. Firstly, the cycles α and β intersect prop-
erly, in which case the result is immediate. So let us assume that β is
contained in α and that α is irreducible. Generalising the discussion from
Daniel’s notes (page 10) to the hyperkähler setting, consider the short
exact sequence2

0→ TFh
→ R1πh,∗Tπ → R2πh,∗O → 0 (5)

and note that it also holds for πΣ : UΣ,h → FΣ,h. It follows from a
calculation analogous to the one Daniel performed (see also [2, Ex. 4.4])
that c1(TFΣ,h

) = −(b + 1 − rankΣ)λ, where λ := c1(R0πΣ,∗ΩUΣ,h/FΣ,h
)

is the Hodge bundle. If α corresponds to Σ, we conclude that the first
Chern class of the normal bundle of Σ is contained in 〈λ〉3. In particular,
α · β ∈ 〈λ · β〉.

2The first map is the relative Kodaira-Spencer map, the second map is the contraction by
the class h. See for instance [8, p.25].

3Alternatively, note that a special divisor is the image in Γ\D of the intersection of D with
a hyperplane H ⊂ P(ΛC). Up to multiples, OH∩D(1) descends to the normal bundle of a
Noether–Lefschetz divisor. On the other hand, the tautological bundle OD(−1) descends to
the Hodge bundle.
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The case l > 1 follows from a splitting principle-type argument for con-
nected cycles.

2. The period map4 Ph : Fh → Γ\D sends Noether–Lefschetz cycles to spe-
cial cycles

P∗
h(NL∗(Fh)) = SC∗(Γ\D).

For the rest of the talk we are going to hint at the proof and the ideas behind
Theorem 1.4. In view of the last remark, we can rephrase the theorem in terms
of special cycles. For simplicity, we will work mainly with the trivial local system
E = QΓ\D.

3 Zucker’s conjecture
In order to study the Hodge theory of open or singular varieties, intersection
cohomology of a compactification and L2-cohomology are often more indicate
than singular cohomology. Actually it is conjectured that they should be iso-
morphic in many cases; see for instance [7, p. 88]. One remarkable case where
the conjecture is known to hold is that of locally symmetric varieties like Γ\D.

Let Γ\D∗ be the Baily-Borel-Satake compactification of Γ\D. Recall that it is a
projective compactification whose boundary has dimension one. The following
conjecture have been proved by Looijenga, Saper and Stern.

Theorem 3.1 (Zucker’s conjecture). H∗(2)(Γ\D,Q) ' IH∗(Γ\D∗,Q).

1. IH∗(Γ\D∗,Q) carries a pure Hodge structure, since it is a mixed sub-
Hodge structure of the cohomology of the resolutions of singularities of
Γ\D∗.

2. H∗(2)(Γ\D,Q) carries a pure Hodge structure, since it is spanned by har-
monic forms as Γ\D is complete and H∗(2)(Γ\D,Q) is finite dimensional;
see also Chern’s theorem below.

3. A priori the isomorphism in Zucker’s conjecture is not a morphism of
Hodge structures, but the natural map

ξ : H∗(2)(Γ\D,Q) ' IH∗(Γ\D∗,Q)→ H∗(Γ\D,Q)

is a morphism of Hodge structures.

4.
SC∗hom(Γ\D) ⊆W∗H∗(Γ\D,Q) = ξ(H∗(2)(Γ\D

∗,Q)). (6)

5. Further, we have

H<b−1
(2) (Γ\D,Q) ' IH<b−1(Γ\D∗,Q) ' H<b−1(Γ\D,Q). (7)

4See Olivier’s notes for a definition.
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If Γ\D∗ was smooth, we would have had equality for < 2b− 1 by Thom’s
isomorphism. The bound in the singular case is smaller and depends on
the cohomology of the link of the singularities; see for instance from [6,
Lemma 1]. This gives the purity in Theorem 1.4.(1).

4 Relative Lie algebra cohomology
We recall some classical facts about the cohomology of Lie groups. We fix some
notation.

• G is a real Lie group with Lie algebra g = TeG;

• E is a G-representation with g-module structure ρ : g→ GL(E);

• K is a connected closed subgroup of G;

• the local system E := (G× E)/K is the suspension of E.

For g ∈ G, the left translation by g−1 provides a canonical identification of TgG
with g. The complex of smooth differential forms (A∗(G;E), d) with values in
E can be identified with (Hom(Λ∗g,C∞(G)⊗E), δ). Note that the differential

δω(X1, . . . , Xk) =
∑

(−1)iρ(Xi)(ω(X1, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk)

depends only on g and the g-module structure of V := C∞(G) ⊗ E. The
cohomology of this complex is called the cohomology of g with values5 in V ,
and it is denoted H∗(g;V ). Analogously, given π : G→ G/K, we have

(A∗(G/K;E), d) ' {ω ∈ A∗(G;E) | iXω = 0 if dπ(X) = 0; r∗kω = ω ∀k ∈ K}
= {ω ∈ Hom(Λ∗(g/k),C∞(G)⊗ E) | Ad(k)∗ω = ω ∀k ∈ K}
= {ω ∈ Hom(Λ∗(g/k),C∞(G)⊗ E) | ad(k)∗ω = 0 ∀k ∈ K}
=: Homk(Λ∗(g/k),C∞(G)⊗ E).

The cohomology of this complex is called the cohomology of g relative to K
with values in V , and it is denoted H∗(g, k;V ).

Remark 4.1. Assume G to be compact and connected, E to be finite di-
mensional and acted upon trivially by G. Then an averaging argument shows
that (A∗(G/K;E), d) is quasi-isomorphic to the complex of left G-invariant
(A∗(G/K;E)G, d), and so

H∗dR(G/K;E) ' H∗((A∗(G/K;E)G, d)) ' H∗(Homk(Λ∗(g/k), E), δ)) = H∗(g, k;E).

However, if G is not compact, then convergence issues in the average process
arise.

5In general, Lie algebra cohomology takes values in (g,K)- or (g, k)-modules; see [5, Ch. 0].
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Suppose now that Γ is a torsion-free arithmetic subgroup of G, and E descends
to a homonymous local system on Γ\G/K. Then we obtain

H∗(Γ\G/K;E) ' H∗(g, k; C∞(Γ\G)⊗ E)

H∗(2)(Γ\G/K;E) ' H∗(g, k;L2(Γ\G)⊗ E).

The advantage to work with L2-cohomology is that, according to Matsushima’s
formula, L2(Γ\G) decomposes into a Hilbert direct sum of irreducible represen-
tations of G with finite multiplicity, and it induces the splitting

H∗(2)(Γ\G/K;E) '
⊕
π

m(π)H∗(g, k;π ⊗ E), (8)

where π runs over over all the unitary representations of G with non-zero coho-
mology occurring in the discrete spectrum of L2(Γ\G) with multiplicity m(π),
already classified by Vogan and Zuckerman. Hence, the results in Section 1 can
be considered a manifestation of the constraints and the symmetries enjoyed by
these representations. In the next section we show how these representations
inform us about the Hodge theory of Γ\D.

5 Refined Hodge decomposition
Theorem 5.1 (Chern’s generalization of Kähler geometry). LetM be a compact
Riemannian manifold of real dimension m, and let Hol◦(M) be the identity
component of the holonomy group. The space of harmonic forms on M

Hk(2)(M) '
⊕
W

HkW (M) (9)

splits in the direct sum of harmonic forms of type W , where W runs over the
irreducible Hol◦(M)-invariant subspaces of Λ∗Tp(M) for some p ∈M .

Note that if (M,ω) is a compact Kähler manifolds of dimension m = 2m′, then
Hol◦(M) ⊂ U(m′). The decomposition (9) is the Lefschetz decomposition.

We turn now to the caseM = Γ\D. Note that Hol◦(M) = K acts on Tp(Γ\D) ⊂
g via the adjoint representation. By Theorem 5.16 there exists a decomposition
of H∗(2)(M,C) whose direct summands corresponds to irreducible K-submodules
of p := Tp(Γ\D)⊗ C.

Hodge decomposition. K acts on p = ((C)2)∨ ⊗ Cb through the standard
representation of SO(2) on C2 and the standard representation of SO(b) on Cb.
SO(2) decomposes C2 into irreducibles

C2 = C+ ⊕ C− = C〈e1 + ie2〉 ⊕ C〈e1 − ie2〉.
6In [3, §2.5] and in [4, §1.2.2] the authors suggested that Chern’s result holds for non-

compact locally symmetric spaces too. See also [3, Eq. (4.3)].
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This induces the decompositions

p = p+ ⊕ p− (Tp(Γ\D)⊗ C = T (1,0)
p (Γ\D)⊕ T (0,1)

p (Γ\D))

Λdp =
⊕
r+s=d

Λrp+ ⊗ Λsp− (Hodge decomposition).

Lefschetz decomposition. The Euler form e2 is a generator of

[Λ2p]SL(2)×SO(b) = [Sym2Cb]SO(b) ⊗ Λ2(C2)∨ = [End(Cb)]SO(b) ⊗ Λ2(C2)∨ ' C

e2 :=
1

2i

∑
vα ⊗ (e1 + ie2) ∧ vα ⊗ (e1 − ie2) 7→ IdCb ⊗ e1 ∧ e2,

where vα is an orthonormal basis of Rb ⊂ Cb, which we can identify with a
positive defined vector space in ΛR. The left G-invariant 2-form dual to e2
descends (up to scalar) to the first Chern class of the Hodge bundle O(−1) (or
of the canonical bundle by Eq. (5)); see [3, §2.3] and [4, §13.2]. Hence, the
Lefschetz decomposition with respect to e2

Λrp+ ⊗ Λsp− =

min{r,s}⊕
k=0

τr−k,s−k.

isK-invariant, and in cohomology it corresponds to the Lefschetz decomposition
with respect to O(1).

Refined Hodge decomposition. The K-representations τr,s are not irre-
ducible in general. However, the following facts hold.

1. τr,s is irreducible for r + s < b
2 ;

2. (Hodge-Tate) Hr,s(g, k;π ⊗ E) = 0 for π as in (8), if r 6= s, r + s < b
2 ;

3. τr,r is irreducible for r < b;

4. the G-representations π in (8) such that Hr,r(g, k;π ⊗ E) 6= 0 for r < b
are classified and denoted Ar,r(E); see [4, §5.4].

Together with Eq. (6) and Eq. (8), these facts imply Theorem 1.4.(2) and 1.4.(4).

6 Modularity of generating functions
The algebricity results in Theorem 1.4 relies on the modularity7 of certain gen-
erating functions. Indeed, there exist modular forms of weight b/2 + 1

θ2r(ϕ) : Mp2r →W2rH
2r(Γ\D,C)

g′ 7→ [θ2r(g
′, ϕ)].

7The modularity has been used for enumerative purposes by Maulik and Pandharipande
(cf Emre’s talk), or recently to bound the irrationality degree of Fh for K3 surfaces in [1].
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For any η ∈ H2b−2r(Γ\D,C), the Fourier expansion of the Poincaré pairing is

〈θ2r(g
′, ϕ), η〉 =

∑
β∈Symr×r(Q)

〈Dβ,ϕ ∧ O(1)r−rankβ , η〉wβ(g′)

for certain explicit functions wβ(g′) and special cycles Dβ,ϕ generalising Heeg-
ner divisors; see Olivier and Emre’s notes, [3, §2.6, Proposition 8.3] and [4,
Proposition 10.1] for the generalization to arbitrary E.

The modular forms depends on a parameter ϕ, which is a K-invariant Schwartz
form. In Emre’s talk this choice correspond to a linear combination of char-
acteristic function in the discriminant lattice M∨/M . Funke–Kudla–Millson
restricted their choice of ϕ to a special ring Φ. Define the FKM-ring

ΦH∗ ⊆
⊕
i,j

Hi(Γ\D,Hj)

generated by [θ2r(g
′, ϕ)] ∈

⊕
i,j H

i(Γ\D,Hj) as g′ and ϕ varies in Mp2r and Φ.

Proposition 6.1. The following facts hold.

1. ΦH∗ is closed under the induced cup product on the RHS of (3);

2. Hi,i(g, k;Ar,r(Hj)) ⊆ ΦH∗ for 3r < b+ 1;

3. ΦH∗ ⊆ SChom(H).

Sketch of the proof of Proposition 6.1.(3). It is enough to prove SChom(H)⊥ ⊂
Φ⊥H∗ with respect to Poincaré duality. Let η ∈ SChom(H)⊥. Then 〈Dβ,ϕ ∧
O(1)r−rankβ , η〉 = 0 by hypothesis, and so 〈θ2r(g

′, ϕ), η〉 = 0. Hence, η ∈ Φ⊥H∗ .

In fact, one should prove that O(1) ∈ SC∗hom(Γ\D). Suppose it is not, then
there exists η ∈ H2b−2

c (Γ\D) such that 〈O(1), η〉 6= 0, but η vanishes against
any special cycles. We obtain that the modular form 〈θ2r(·, ϕ), η〉 of weight
b/2 + 1 is constant, equal to 〈O(1), η〉. This contradicts the modularity!

We obtain the following result concerning the algebraic cohomology of Γ\D.

Proof of Theorem 1.4.(3) and 1.4.(5). We have

Hd,d
(2) (Γ\D,E) =

⊕
r<b

m(π)Hd,d(g, k;Ar,r(E)⊗ E) ⊂ SChom(E),

where the first equality follows from Eq. (8) and Section 5, and the last inclusion
holds for 3r < b+1 by an analogue of Proposition 6.1 for cohomology with coef-
ficients in the local systems E. This gives the first statement of Theorem 1.4.(3).

Hard Lefschetz for intersection cohomology implies

Hd,d
(2) (Γ\D,E) = IHd,d(Γ\D,E)

∪O(1)b−2d

−−−−−−−→
'

IHb−d,b−d(Γ\D,E) (10)

11



� (W2(b−d)H
2(b−d)(Γ\D,E))d,d,

and it shows the second statement of Theorem 1.4.(3). In particular, since
O(1)b−2 · c(Σ,Γ) = 0 (see Daniel’s talk), the composition (10) is the zero map
for d = 1, thus we get Theorem 1.4.(5).

Acknowledgements. We thank Nicolas Bergeron for kindly answering our
questions about the paper.
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