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Abstract. We mostly review work of Taelman [Tae19] on derived categories of hyper-Kähler

manifolds. We study the LLV algebra using polyvector �elds to prove that it is a derived

invariant. Applications to the action of derived equivalences on cohomology and to the study

of their Hodge structures are given.

1. Introduction

In this note we discuss the (bounded) derived category DbpXq :� DbpCohpXqq and its group

of auto-equivalences AutpDbpXqq for projective hyper-Kähler manifolds X. The situation in

dimension two, that is for K3 surfaces, is fairly well understood and we refer to [Huy06, Sec.

10] for an overview. Therefore, we will only concentrate on the higher-dimensional case. More

precisely, we mainly present the �rst part of Taelman's paper [Tae19].

These notes are, for the most part, light on derived categories and focus more on a di�erent

perspective of the Looijenga�Lunts�Verbitsky (LLV) Lie algebra gpXq [Ver96, LL97] which will

allow us to show the following.

Theorem 1.1 (Taelman). A derived equivalence Φ: DbpXq �Ý // DbpY q between projective hyper-

Kähler manifolds induces naturally a Lie algebra isomorphism

Φg : gpXq �Ý // gpY q.
The induced isomorphism of quadratic spaces

ΦH : H�pX,Qq �Ý // H�pY,Qq
is equivariant with respect to Φg.

The theorem will be proven in Section 5.

We start these notes by introducing the main objects of study and a collection of known

results prior to [Tae19]. Afterwards, we introduce a new Lie subalgebra of the (ungraded)

endomorphism algebra EndpH�pX,Cqq which is better suited for the study of derived categories.
In the subsequent section we establish Theorem 1.1 via proving that the newly de�ned Lie
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2 T. BECKMANN

subalgebra coincides with the well-known LLV Lie algebra gpXq bQ C with scalars extended to

the complex numbers. The next three sections will draw consequences from this result for the

action of derived equivalences on cohomology and for Hodge structures of derived equivalent

hyper-Kähler manifolds.

Notation. We work over the complex numbers. Throughout these notes X and Y will be

projective hyper-Kähler manifolds of dimension 2n. All functors will be implicitely derived.

Acknowledgements. I thank Olivier Debarre and Daniel Huybrechts for helpful remarks on

a preliminary version of this article.

2. Derived categories

2.1. General theory. For a thorough introduction to derived categories we recommend [Huy06].

Let us recall one of the most important results in the study of derived equivalences proved by

Orlov [Orl97].

Theorem 2.1. Let Z and T be smooth projective varieties and Φ: DbpZq �Ý // DbpT q be an

exact derived equivalence. Then Φ is isomorphic to a Fourier�Mukai functor, i.e. there exists

E P DbpZ � T q such that

Φ � FME :� pT � � pE b_q � p�Z .
Orlov's result is in fact stronger in that it applies also to fully faithful exact functors be-

tween the derived categories of smooth projective varieties. The resulting isomorphism is an

isomorphism of exact functors.

Moreover, a derived equivalence as in the theorem naturally induces isomorphisms of several

invariants associated with the varieties such as (topological) K-theory [Huy06, Sec. 5.2]. For us

the most important invariant will be singular cohomology. Namely, every derived equivalence

FME induces a cohomological Fourier�Mukai transform FMH
E given by the correspondence vpEq P

H�pZ�T q where v � chp_q?td is the Mukai vector. These are compatible via the Mukai vector,

i.e. the following diagram commutes

(2.1)

DbpZq DbpT q

H�pZ,Qq H�pT,Qq.

FME

v v

FMH
E

Hence, the study of derived categories leads naturally to cycles on hyper-Kähler manifolds.

Remark 2.2. Let us mention properties of the cohomological Fourier�Mukai transform FMH
E .

 Since vpEq P `pHp,ppZ�T q is algebraic, the isomorphism FMH
E respects the weight-zero

Hodge structure on H�pZq (respectively H�pT q) given by

H�i,ipZq � à
q�p�i

Hp,qpZq
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for i P Z where the Hodge structure on the right-hand side is the usual one [Huy06,

Prop. 5.39].

 The isomorphism FMH
E respects the generalized Mukai pairing, see [C l03].

 The cohomological Fourier�Mukai transform FMH
E respects neither the cup product

structure on cohomology nor the cohomological grading as can be seen by considering

the equivalence given by tensoring with a non-trivial line bundle.

2.2. Case of hyper-Kähler manifolds. We know that if a smooth projective variety Z is

derived equivalent to a hyper-Kähler manifold X, then the dimensions of X and Z coincide and

the canonical bundle ωZ is trivial [Huy06, Sec. 4]. Huybrechts and Nieper-Wiÿkirchen [HNW11]

have proven that Z must in fact also be an irreducible hyper-Kähler manifold.

3. Recollection of the LLV Lie algebra

We quickly recall the de�nition of the LLV Lie algebra introduced independently by Looijenga�

Lunts [LL97] and [Ver96]. For a more thorough discussion we refer to [Bot21].

Let X be a hyper-Kähler manifold and λ P H2pX,Qq be a cohomology class. We attach to it

the operator

eλ :� λY_ P EndpH�pX,Qqq
given by cup product with the class λ. We say that λ has the Hard Lefschetz property, if for all

i the maps

eiλ : H2n�ipX,Qq //H2n�ipX,Qq
are isomorphisms. The class λ is often called a Hard Lefschetz class. We denote by h P
EndpH�pX,Qqq the grading operator acting on HipX,Qq via pi � 2nqid. For a Hard Lefschetz

class λ P H2pX,Qq, the triple
peλ, h, fλq,

where fλ is the dual Lefschetz operator, spans a Lie subalgebra of EndpH�pX,Qqq isomorphic

to the Lie algebra sl2.

De�nition 3.1. The LLV Lie algebra gpXq is the Lie subalgebra of EndpH�pX,Qqq generated
by all sl2-triples peλ, h, fλq for λ P H2pX,Qq Hard Lefschetz.

As said in the beginning, we refer to [Bot21] or [LL97, Ver96] for more details and properties

of gpXq. Our main goal is to relate the Lie algebra gpXq to DbpXq. Note that since a cohomo-

logical Fourier�Mukai functor does not respect cup product nor grading, which are the de�ning

properties of the LLV algebra, it is a priori not clear how this can be done. The main ingredient

for it is the ring of polyvector �elds, to be introduced now.
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4. Polyvector fields

De�nition 4.1. The ring of polyvector �elds HT�pXq is the graded C-algebra whose degree k

part is

HTkpXq :� `p�q�kHqpX,
p©

TXq.
The ring structure is induced from the exterior algebra.

For X a hyper-Kähler manifold we can choose a symplectic form σ P H0pX,Ω2
Xq which

induces isomorphisms
p©

TX � Ωp
X

which, in turn, induce a graded C-algebra isomorphism

HT�pXq � H�pX,
�©

TXq � H�pX,Ω�
Xq � H�pX,Cq.(4.1)

Thus, as a graded C-algebra, the ring of polyvectors is isomorphic to the de Rham cohomology.

In this note, we are mostly interested in another viewpoint of the polyvector �elds. Namely,

the ring of polyvectors acts on the de Rham cohomology by contraction. That is, given v P
HqpX,�p TXq and x P Hq1pX,Ωp1

Xq the action is de�ned as

v{x P Hq�q1pX,Ωp1�p
X q.

The following is immediate, see also [Tae19, Lem. 2.4].

Lemma 4.2. For X a hyper-Kähler manifold the de Rham cohomology is a free module of rank

one over the polyvector �elds generated by a Calabi�Yau form σn P H0pX,Ω2n
X q.

The reason why the ring of polyvectors is of interest to us is the following crucial result.

It relies on the modi�ed Hochschild�Konstant�Rosenberg isomorphism identifying Hochschild

(co)homology with polyvectors and the de Rham cohomology [CRVdB12].

Theorem 4.3. A derived equivalence Φ: DbpXq �Ý // DbpY q induces naturally a C-algebra iso-

morphism ΦHT : HT�pXq �Ý // HT�pY q such that the action of the polyvector �elds is equivariant

for the induced isomorphism ΦH : H�pX,Cq �Ý // H�pY,Cq.

Spelling this out, for v P HT�pXq and x P H�pX,Cq we have
ΦHpv{xq � ΦHTpvq{ΦHpxq P H�pY,Cq.

5. Reinventing the LLV Lie algebra

We will de�ne a new Lie algebra, which will turn out to be isomorphic to gpXq with scalars

extended to C. This will prove Theorem 1.1 from the introduction.
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Recall that X is a hyper-Kähler manifold of dimension 2n. We consider the holomorphic

grading operator hp and the antihomolorphic grading operator hq de�ned by acting on Hk,lpXq
via

hp � pk � nqid, hq � pl � nqid.
To avoid confusions, the indices p and q do not relate to k or l in any way, but just refer to the

standard convention that the holomorphic degree of a smooth form is usually denoted by p and

the antiholomorphic degree of a form by q.

With these de�nitions the usual grading operator h for the cohomological grading is just

h � hp � hq. We de�ne the Hodge grading operator h1 :� hq � hp.

h1-gradingoo ÝÝ //

H0,0

H1,0 H0,1

H2,0 H1,1 H0,2

...

H2n,0 H2n�1,1 . . . Hn,n . . . H1,2n�1 H0,2n

�����h-grading
...

H2n,2n�2 H2n�1,2n�1 H2n,2n�2

H2n,2n�1 H2n�1,2n

H2n,2n

With this de�nition the action of the polyvector �elds HT�pXq on the de Rham cohomology

H�pX,Cq alluded to in Lemma 4.2 has degree two with respect to the grading h1.

For µ P HT2pXq we de�ne the operator
eµ :� µ{_ P EndpH�pX,Cqq.

We say that µ is Hard Lefschetz if the operator eµ satis�es the Hard Lefschetz isomorphisms

with respect to the grading operator h1. The Jacobson�Morozov theorem asserts that this is

equivalent to the existence of an operator fµ P EndpH�pX,Cqq such that

peµ, h1, fµq
generates a Lie subalgebra of EndpH�pX,Cqq isomorphic to sl2.

De�nition 5.1. The complex Lie algebra g1pXq is de�ned to be the smallest Lie subalgebra of

EndpH�pX,Cqq containing all sl2-triples peµ, h1, fµq for all Hard Lefschetz µ P HT2pXq.

Equivalently, one could have de�ned the Lie algebra g1pXq as the Lie subalgebra of the

endomorphism algebra EndpHT�pXqq containing all sl2-triples with µ Hard Lefschetz. Through
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the isomorphism

HT�pXq{σn � H�pX,Cq
these two de�nitions are identi�ed.

Recall from (4.1) that the choice of a symplectic form produces an abstract graded C-algebra
isomorphism

HT�pXq � H�pX,Ω�
Xq � H�pX,Cq.

Thus, the choice of a symplectic form leads to the following result.

Lemma 5.2. There is an isomorphism of complex Lie algebras

gpXq bQ C � g1pXq.

We also deduce the following consequence from Theorem 4.3.

Proposition 5.3. For a derived equivalence between hyper-Kähler manifolds Φ: DbpXq �
DbpY q the isomorphism

ΦHT : HT2pXq �Ý // HT2pY q
induces naturally a Lie algebra isomorphism

Φg : g1pXq �Ý // g1pY q
such that the induced isomorphism

ΦH : H�pX,Cq �Ý // H�pY,Cq
is equivariant with respect to Φg.

Spelling this again out means that for j P g1pXq and x P H�pX,Cq we have
ΦHpj.xq � Φgpjq.ΦHpxq P H�pY,Cq.

The connection between all that has been said so far and the main tool for all the applications

we will present is the following main theorem of [Tae19] which was also implicitely proven (but

not stated in the form below) by Verbitsky [Ver99].

Theorem 5.4. The Lie algebras gpXq bQ C and g1pXq are equal as Lie subalgebras of the Lie

algebra EndpH�pX,Cqq.

Proof. Verbitsky showed that there is an isomorphism of ungraded vector spaces

η : H�pX,Cq �Ý // H�pX,Cq.
The explicit description of η is not import, we only need the following two properties shwon by

Verbitsky. Firstly, η conjugates the two Lie algebras, i.e.

η pgpXq bQ Cq η�1 � g1pXq.
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Secondly, the isomorphism η is obtained by integrating the action of the Lie algebra gpXq, that
is it lies in the subgroup of automorphism AutpH�pX, pCqqq generated by integrated operators

of gbQ C. Since all such operators µ contained in the above subgroup satisfy

µ pgpXq bQ Cqµ�1 � gpXq bQ C.

one can conclude the proof.

We will, however, follow Taelman's proof. From Lemma 5.2 we infer that it is enough to

show only the inclusion

g1pXq � gpXq bQ C.

A straightforward calculation shows that

peσ, hp, eσ̌q
is an sl2-triple, where σ̌ P H0p�2pTXqq is the dual symplectic form (note that the Lefschetz

operator eσ acts via cup product, whereas eσ̌ acts by contraction of polyvector �elds).

Analogously or using Hodge symmetry, for the complex conjugate form σ̄ P H2pX,OXq
the operator eσ̄ has the Hard Lefschetz property for the grading operator hq. The Jacobson�

Morozov Theorem grants the existence of an operator g P EndpH�pX,Cqq such that

peσ̄, hq, gq
forms an sl2-triple. An easy check shows that all elements from the sl2-triple peσ, hp, eσ̌q com-

mute with all elements from the sl2-triple peσ̄, hq, gq. For example, eσ and eσ̄ commute as the

de Rham cohomology is graded-commutative and the operators eσ and eσ̌ commute with hq,

because they does not change the antiholomorphic degree of a form. Similar arguments apply

to the other operators. Thus we obtain two new sl2-triples

peσ � eσ̄, h, eσ̌ � gq, peσ � eσ̄, h, eσ̌ � gq.
This gives that eσ̌ P gpXq bQ C. Since reσ, eσ̌s � hp and hp � hq � h, we deduce furthermore

that hp, hq and therefore h1 � hq � hp are all contained inside gpXq bQ C.
Since evidently eσ̄ is also contained in gpXq bQ C (the action via contraction of polyvector

�elds agrees with the cup product), it is left to show that for almost all µ P H1pX, TXq the
operator eµ lies in gpXq bQ C. This follows from the identity

reσ̌, eηs � eµ

for η P H1pX,ΩXq satisfying
µ � σ̌{η P H1pX, TXq

which follows from a straightforward calculation, see [Tae19, Lem. 2.13]. �

The theorem implies that the isomorphism Φg from Proposition 5.3 is already de�ned over

Q, since the same holds for the induced isomorphism on singular cohomology. We thus have

proved Theorem 1.1 which we state her again for the reader's convenience.
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Corollary 5.5. A derived equivalence Φ: DbpXq �Ý // DbpY q between hyper-Kähler manifolds

induces naturally a Lie algebra isomorphism

Φg : gpXq �Ý // gpY q
such that the induced isomorphism

ΦH : H�pX,Qq �Ý // H�pY,Qq
is equivariant with respect to Φg.

6. Verbitsky component and extended Mukai lattice

We want to draw consequences of Theorem 5.4 for the study of derived equivalences of hyper-

Kähler manifolds and their induced actions on cohomology.

De�nition 6.1. The Verbitsky component SHpX,Qq � H�pX,Qq is the subalgebra generated

by H2pX,Qq.

It is easy to see that the Verbitsky component is an irreducible representation of the LLV

Lie algebra gpXq and it is characterized as such as the irreducible representation whose Hodge

strucutre attains the maximal possible width. It is equipped with the Mukai pairing bSH de�ned

via

bSHpλ1 . . . λm, µ1 . . . µ2n�mq :� p�1qm
»
X
λ1 � � �λmµ1 � � �µ2n�m

for classes λi, µj P H2pX,Qq which agrees with the generalized Mukai pairing alluded to in

Remark 2.2.

Corollary 6.2. For a derived equivalence Φ: DbpXq �Ý // DbpY q between hyper-Kähler manifolds

the induced isomorphism ΦH restricts to a Hodge isometry

ΦSH : SHpX,Qq �Ý // SHpY,Qq.

Proof. Since the Verbitsky component is the unique irreducible representation whose Hodge

strucutre attains the maximal possible width and by Theorem 1.1 the isomorphism ΦH respects

the LLV algebra, we conclude that ΦH must restrict to an isomorphism of the Verbitsky com-

ponent. The Mukai pairing on the Verbitsky component agrees with the generalized Mukai

pairing, which is a derived invariant. �

We want to study the Verbitsky component and the LLV Lie algebra more closely to further

re�ne the study of AutpDbpXqq.

De�nition 6.3. The rational quadratic vector space de�ned by

H̃pX,Qq :� Qα` H2pX,Qq `Qβ.
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is called the extended Mukai lattice. Its quadratic form b̃ restricts to the Beauville�Bogomolov�

Fujiki form b on H2pX,Qq [Huy03, Sec. 23] and the two classes α and β are orthogonal to

H2pX,Qq and satisfy b̃pα, βq � �1 as well as b̃pα, αq � b̃pβ, βq � 0.

Furthermore, we de�ne on H̃pX,Qq a grading by declaring α to be of degree �2, H2pX,Qq
sits in degree zero and β is of degree two. Finally, the extended Mukai lattice is equipped with

a weight-two Hodge structure

pH̃pX,Qq b Cq2,0 :� H2,0pXq
pH̃pX,Qq b Cq0,2 :� H0,2pXq
pH̃pX,Qq b Cq1,1 :� H1,1pXq ` Cα` Cβ.

There exists a graded morphism ψ : SHpX,Qqr�2ns // SymnpH̃pX,Qqq sitting in the follow-

ing short exact sequence

0 // SHpX,Qqr�2ns ψÝ // SymnpH̃pX,Qqq ∆nÝ // Symn�2pH̃pX,Qqq // 0.

Here, the map ∆n is the Laplacian operator de�ned on pure tensors via

v1 � � � vn � //
¸
i j

b̃pvi, vjqv1 � � � v̂i � � � v̂j � � � vn.

Surjectivity follows easily from the fact that the symmetric power SymkV of a vector space V

is generated by v � � � v for all v P V . The map ψ is uniquely determined (up to scaling) by the

condition that it is a morphism of gpXq-modules. The gpXq-structure of H̃pX,Qq is de�ned by

eωpαq � ω, eωpµq � bpω, µqβ and eωpβq � 0 for all classes ω, µ P H2pX,Qq. The n-th symmetric

power SymnpH̃pX,Qqq then inherits the structure of a gpXq-module by letting gpXq act by

derivations. We �x once and for all a choice of ψ by setting ψp1q � αn{n!. By Schur's lemma,

ψ is injective.

Taelman [Tae19, Sec. 3] showed that the map ψ is an isometry with respect to the Mukai

pairing on SHpX,Qq and the pairing

brnspx1 � � �xn, y1 � � � ynq � p�1qncX
¸
σPSn

n¹
i�1

b̃pxi, yσpiqq

on SymnpH̃pX,Qqq, where cX is the Fujiki constant characterized by the property»
X
ω2n � cX

p2nq!
2nn!

bpω, ωqn

for all ω P H2pX,Qq. Note that our de�nition of brns di�ers from Taelman's de�nition by the

Fujiki constant. Ours has the advantage that ψ is always an isometry.

Summing up, the inclusion ψ respects the

 gpXq-module structure,

 quadratic forms,
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 Hodge structures,

 gradings.

7. Action of derived equivalences on the extended Mukai lattice

Recall that we have deduced the existence of a representation

ρSH : AutpDbpXqq //OpSHpX,Qqq(7.1)

and the isometries in the image of this representation normalize the action of the LLV algebra

gpXq, i.e. for these g P OpSHpX,Qqq we have
ggpXqg�1 � gpXq � EndpSHpX,Qqq.

Let us study these automorphisms a bit further.

De�nition 7.1. The group AutpSHpX,Qq, bSH, gpXqq is the group of all isometries of the

Verbitsky component that normalize the action of the LLV algebra.

The main representation-theoretic input for our discussion is the following result [Tae19, Sec.

4].

Proposition 7.2. If n is odd or the second Betti number is odd, then

AutpSHpX,Qq, bSH, gpXqq � OpH̃pX,Qqq.
We make this isomorphism more explicit. Let X and Y be deformation-equivalent hyper-

Kähler manifolds together with a derived equivalence Φ: DbpXq �Ý // DbpY q. Then there exists

a unique Hodge isometry

ΦH̃ : H̃pX,Qq �Ý // H̃pY,Qq
inducing the following commutative diagram

(7.2)

SHpX,Qq SHpY,Qq

SymnpH̃pX,Qqq SymnpH̃pY,Qqq.

εpΦH̃qΦSH

ψ ψ

SymnΦH̃

The scalar εpΦH̃q P t�1u depends on de�ning orientations on the vector spaces H̃pX,Qq respec-
tively H̃pY,Qq and for X � Y we simply have εpΦH̃q � detpΦH̃qn�1. In particular, in the case

X � Y , the representation (7.1) factors via the commutative diagram

(7.3)

OpH̃pX,Qqq

AutpDbpXqq

OpSHpX,Qqq.

ρH̃

ρSH
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Remark 7.3. In all known examples, derived equivalent hyper-Kähler manifolds are deformation-

equivalent, but this is not known in general. Without this assumption, the above proposition

has to be weakened as we shall demonstrate.

One can, using similitudes, still formulate a version of Proposition 7.2 in the general case.

This will be needed in the next section for the application to Hodge structures.

Theorem 7.4. Let X and Y be arbitrary hyper-Kähler manifolds and Φ: DbpXq �Ý // DbpY q
be a derived equivalence. Then there exists a Hodge similitude ΦH̃ : H̃pX,Qq // H̃pY,Qq and a

scalar λ P Q� such that

(7.4)

SHpX,Qq SHpY,Qq

SymnpH̃pX,Qqq SymnpH̃pY,Qqq

ΦSH

ψ ψ

λSymnΦH̃

commutes.

8. Hodge structures

In this section we want to give one application of the results presented so far regarding derived

equivalent hyper-Kähler manifolds and their Hodge structures. We �rst want to recall a recent

result of Soldatenkov [Sol21]1, whose statement and proof are similiar in �avour to what we will

discuss afterwards for derived equivalences.

Theorem 8.1. Let X and Y be arbitrary hyper-Kähler manifolds and ϕ : H2pX,Qq �Ý // H2pY,Qq
be an isomorphism of Q-Hodge structures, which is the restriction of a global algebra automor-

phism φ : H�pX,Qq �Ý // H�pY,Qq. Then for all i P Z the restrictions

φ : HipX,Qq �Ý // HipY,Qq
are isomorphisms of Q-Hodge structures.

Proof. We brie�y sketch the argument. Since φ is a graded algebra automorphism, the adjoint

action produces an isomorphism

adpφq : gpXq �Ý // gpY q.
The fact that φ is graded implies that adpφqphq � h. Moreover, the restriction of φ to H2pX,Qq
respects the Hodge structures. This implies that adpφqph1q � h1, where again h1 � hq � hp.

Indeed, the adjoint action of φ is determined by its restriction to the degree two component

[Sol21, Prop. 2.11]. As the morphism φ respects the Hodge structure on the second cohomology,

the claim follows.

Since h� h1 � 2hq and h� h1 � 2hp we deduce adpφqphpq � hp and adpφqphqq � hq. This is

equivalent to φ being a morphism of Q-Hodge structures. �

1We thank Andrey Soldatenkov for a stimulating conversation about his results.
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The assertion that the isomorphism of Hodge structures is the restriction of a global algebra

automorphism is frequently met. For example, Hodge isometries with positive determinant can

be extended to algebra automorphisms of the even cohomology by integrating the LLV action.

For more details and examples we refer to [Sol21].

With this in mind, we can now prove the following result of Taelman [Tae19, Sec. 5]. It

also establishes a conjecture of Orlov in the case of hyper-Kähler manifolds [Orl05] stating that

derived equivalent varieties have the same Hodge numbers.

Theorem 8.2. Let X and Y be derived equivalent hyper-Kähler manifolds. Then for all i P Z
we have an isomorphism

HipX,Qq � HipY,Qq
of Q-Hodge structures.

Proof. Let us denote by Φ a derived equivalence between X and Y . Recall from [LL97, Ver96]

the Lie algebra isomorphism gpXq � sopH̃pX,Qqq (in loc. cit. the isomorphism is only stated

over R. For the statement with rational coe�cients, see [Sol21, Prop. 2.9].). Composing this

isomorphism with Φg we obtain a Lie algebra isomorphism

sopH̃pX,Qqq � sopH̃pY,Qqq.
Every such Lie algebra isomorphism is equal to adpφq for some φ : H̃pX,Qq // H̃pY,Qq, see
[Tae19, Prop. 4.1] which is the analogue of Proposition 7.2 in this case. Theorem 7.4 now

implies that φ must be a Hodge similitude. More precisely, it di�ers from ΦH̃ only by a scalar.

Using

H̃pX,Qq � Qα`Qβ ` NSpXqQ ` TpXqQ
and Witt cancelation for quadratic spaces, one easily shows that there exists a Hodge isometry

γ P SOpH̃pY,Qqq such that the composition γ � φ is now a graded Hodge similitude, i.e. α and

β are mapped to multiples of themselves. By de�nition, this implies that the adjoint morphism

of γ � φ satis�es

adpγ � φqphq � h, adpγ � φqph1q � h1.(8.1)

Let us for the moment assume that we can �nd a global algebra isomorphism η : H�pY,Qq �Ý //

H�pY,Qq whose adjoint action equals γ as isomorphisms of the LLV Lie algebra gpY q. Then we

can consider the composition

η � ΦH : H�pX,Qq �Ý // H�pY,Qq.
From (8.1) we infer again that adpη � ΦHqphq � h and adpη � ΦHqph1q � h1. As in the proof of

Theorem 8.1 this implies that η �ΦH induces in each degree the desired isomorphism of Hodge

structures.

It is left to prove the existence of the global algebra isomorphism η. In general, integrating

the action of the LLV algebra gpXq produces an action of SOpH̃pY,Qqq on the even cohomology
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H2�pY,Qq [Sol21, Prop. 2.10]. To construct an algebra automorphism of the full cohomology

H�pY,Qq one uses the Q-algebraic group GSpin. More precisely, one uses the natural surjection

GSpinpH̃pY,Qqq // // SOpH̃pY,Qqq
to lift γ and constructs an action of GSpinpH̃pY,Qqq on the full cohomology such that the

induced action of SpinpH̃pY,Qqq � GSpinpH̃pY,Qqq is the integrated action of the LLV algebra.

For details we refer to [Tae19, Sec. 5]. �

9. Further results

We have presented the �rst six sections of [Tae19]. In the remaing part of loc. cit. the

representation ρH̃ from (7.3) is further studied. The main result is a bound on the image of ρH̃

in terms of (subgroups) of the orthogonal group OpΛq some lattice

Λ � H̃pX,Qq
for X (a deformation of) the Hilbert scheme of two points on a K3 surface.

In [Bec21], building upon the results presented so far, the study of derived categories of

projective hyper-Kähler manifolds is further re�ned. The main technical tool is a Mukai vector

taking values in the extended Mukai lattice H̃pX,Qq. This yields structural results for derived
categories and derived equivalences for general hyper-Kähler varieties as well as many generali-

sations of results known for derived categories of K3 surfaces to the case of higher-dimensional

deformations of Hilbert schemes.
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