
ON EQUIVARIANT DERIVED CATEGORIES

THORSTEN BECKMANN AND GEORG OBERDIECK

Abstract. We study the equivariant category associated to a finite group action

on the derived category of coherent sheaves of a smooth projective variety. We

discuss decompositions of the equivariant category and faithful actions, prove the

existence of a Serre functor, give a criterion for the equivariant category to be

Calabi–Yau, and describe an obstruction for a subgroup of the group of auto-

equivalences to act. As application we show that the equivariant category of any

symplectic action on the derived category of an elliptic curve is equivalent to the

derived category of an elliptic curve.
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1. Introduction

Equivariant categories appear naturally when expressing sheaves on a quotient

space X/G in terms of sheaves on the space X on which a given group G acts. For

example, given a finite group G acting freely on a complex quasi-projective variety

X the category of coherent sheaves on the quotient variety X/G is the G-equivariant

category of coherent sheaves on X:

Coh(X)G = Coh(X/G).

More generally, if we start with a category of sheaves on a space and an (abstract)

group action on the category, the equivariant category may be viewed as a form of

’non-commutative quotient’. Since the action does not have to come from an action

on the underlying space, in general this quotient exists only on a categorical level,

i.e. it is not clear whether it is again the category of sheaves on some space. If

we nevertheless hope for some geometric meaning of this category, it is natural to

explore what geometric structures it possesses. The focus of this paper is to discuss
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ON EQUIVARIANT DERIVED CATEGORIES 2

several of these structures (decompositions, duality, cohomology) for finite group

actions on the derived category of coherent sheaves on a smooth projective variety.

We give a short overview of the content of the paper: In Section 2 we define

group actions on C-linear additive categories. We give a natural obstruction class

in H3(G,C∗) that governs whether a subgroup of the group of auto-equivalences

can define an action on the category. We also discuss criteria for the vanishing of

this class, and give an example that the obstruction is effective.

In Section 3 we define equivariant categories, recall and prove their 2-categorical

universal properties, show (following work of Romagny [18]) that the equivariant

categories can be taken successively, and discuss the action of the dual group.

In Section 4 we study under what conditions the equivariant category is indecom-

posable. If it is not, we show that each summand is the equivariant category of a

related group action. Our approach relies on G-fixed stability conditions. These in-

duce stability conditions on the equivariant category [12] and their existence makes

equivariant categories behave quite similar to an actual geometric space, at least

with regard to taking components.

In Section 5 we prove that given a triangulated category with a Serre functor the

equivariant category also carries a Serre functor.

In Section 6 we discuss properties of the Hochschild cohomology of equivariant

categories. By relying on work of Perry [15] we give a criterion for the equivariant

category of a Calabi–Yau category to be again Calabi–Yau. We also describe the

induced action by the group of characters on Hochschild cohomology.

In Section 7 we illustrate our methods by determining the equivariant categories

of an elliptic curve with respect to Calabi–Yau group actions.

We attempted to make the presentation of this paper as self-contained as possible,

so that it can serve also as an introduction to the subject. Many of the topics we

discuss here are scattered around in the literature, and we expect many others,

where we have not found any references, to be folklore and known to the experts.

Useful sources for the equivariant category of derived categories are the works of

Elagin [7], Shinder [19], Perry [15], Kuznetsov and Perry [10] and others. We refer

to these paper for related discussions and applications.

Studying equivariant categories of derived categories of smooth projective vari-

eties becomes a rich subject only if interesting group actions are known beyond

geometric automorphism. The motivation for us arose from symplectic group ac-

tions on the derived category of K3 and abelian surfaces. In this case string theory

and holomorphic symplectic geometry alike provide a wide range of interesting ex-

amples. In many of these cases, the equivariant categories are in a non-trivial way

equivalent to the derived category of another symplectic surface. We refer to [1] for

more details and applications to fixed loci of holomorphic symplectic varieties.

1.1. Conventions. We always work over C. All categories are assumed to be small.

1.2. Acknowledgements. We thank Daniel Huybrechts and Johannes Schmitt for

useful conversations on Theorem 2.1 and the example in Section 3.6 respectively.
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2. Group actions on categories

Let G be a finite group and let D be a category.

2.1. Definition. An action (ρ, θ) of G on D consists of

• for every g ∈ G an auto-equivalence ρg : D → D,

• for every pair g, h ∈ G an isomorphism of functors θg,h : ρg ◦ ρh → ρgh

such that for all triples g, h, k ∈ G we have the commutative diagram

(2.1)

ρgρhρk ρgρhk

ρghρk ρghk.

ρgθh,k

θg,hρk θg,hk

θgh,k

We will often write g for ρg.

Recall the 2-category Cats of categories, where the objects are categories, the

morphisms are functors between categories and the 2-morphisms are natural trans-

formations. Similarly we have the 2-category G-Cats of categories with a G-action.

A morphism or G-functor

(f, σ) : (D, ρ, θ)→ (D′, ρ′, θ′)

between categories with G-actions is a pair of a functor f : D → D′ together with

2-isomorphisms σg : f ◦ ρg → ρ′g ◦ f such that (f, σ) intertwines the associativity

relations on both sides, i.e. such that the following diagram commutes:

fρgρh fρgh

ρ′gfρh

ρ′gρ
′
hf ρ′ghf.

fθg,h

σgρh

σgh

ρgσh

θ′g,hf

A 2-morphism of G-functors (f, σ) → (f̃ , σ̃) is a 2-morphism t : f → f̃ that inter-

twines the σg, i.e. such that the following diagram commutes:

f ◦ ρg ρ′g ◦ f

f̃ ◦ ρg ρ′g ◦ f̃ .

σg

tρg ρ′gt

σ̃g

An action of G on D is strict if θg,h = id for all g, h ∈ G. In particular, this

implies that ρ1 = id. By [19, Thm. 5.4] every G-action on D is equivalent to a strict

G-action on some equivalent category D′. Here we say that a G-action (ρ, θ) on D
is equivalent to a G-action (ρ′, θ′) on D′ if we have an equivalence in G-Cats, i.e.
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(D, ρ, θ) ∼= (D′, ρ′, θ′). Because of this, by passing to an equivalent category one can

(and we often will) assume that the action is strict.

2.2. Obstruction to actions. Let AutD be the group of isomorphism classes of

auto-equivalences of D. Hence two equivalences

f1, f2 : D → D

are identified in AutD if and only if there exists an isomorphism of functors f1
∼=−→ f2.

Every group action on D yields a subgroup of AutD. For C-linear categories the

converse however does not always hold and is obstructed by a class in the group

cohomology of G as explained in the following theorem.

To state it we will need a different notion of equivalence for group actions. We

say that G-actions (ρ, θ) and (ρ′, θ′) on D are isomorphic if there exists a G-functor

of the form (idD, σ) : (D, ρ, θ)→ (D, ρ′, θ′).

Theorem 2.1. Let D be a C-linear category and assume that Hom(idD, idD) = Cid.

Let G ⊂ AutD be a finite subgroup.

(a) There exists a class in H3(G,C∗) which vanishes if and only if there exists

an action of G on D whose image in AutD is G. Moreover, the set of

isomorphism classes of such actions is a torsor under H2(G,C∗).
(b) There exits a finite group G′ and a surjection G′ � G such that G′ acts on

D and the induced map G′ → AutD factors over the quotient map to G.

(c) If G = Zn, then we can take Zn2 → Zn in (b).

In the group cohomology H i(G,C∗) above the group G acts trivially on the

coefficient group C∗. For cyclic groups one has

H i(Zn,C∗) =


C∗ if i = 0,

Zn if i odd,

0 if i > 0 even.

Hence the obstruction in part (a) of Theorem 2.1 can be non-trivial even for cyclic

groups. We refer to Section 3.6 for a class of such examples in a geometrically

well-behaved situations.

Proof. (a) For every g ∈ G choose a functor ρg : D → D with image g in AutD
and for every pair g, h ∈ G choose isomorphisms θg,h : ρgρh → ρgh. Then for every

triple g, h, k ∈ G consider the composition given by applying the maps in (2.1) once

counterclockwise around the square,

(2.2) (g)(h)(k)
θg,hk−−−→ (gh)(k)

θgh,k−−−→ (ghk)
θ−1
g,hk−−−→ (g)(hk)

gθ−1
h,k−−−→ (g)(h)(k)

where we have written (g) for ρg. The assumption Hom(idD, idD) = C yields that

this composition is a scalar multiple of the identity, which we call c(g, h, k). The

first step of the proof is to prove that the assignment

c : G3 → C∗
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is a cocycle. Since the G-action on C∗ is taken to be trivial here, this boilds down

to showing that for all quadruples g, h, k, l ∈ G we have

(2.3) c(g, h, kl)c(gh, k, l) = c(h, k, l)c(g, hk, l)c(g, h, k).

We start with the left hand side. The constant c(g, h, kl) times the identity is

the composition

(2.4) (g)(h)(kl)→ (gh)(kl)→ (ghkl)→ (g)(hkl)→ (g)(h)(kl)

where the maps are all given by the corresponding θ’s as in (2.2).1 Similarly to

above, c(gh, k, l)id is the composition

(2.5) (gh)(k)(l)→ (ghk)(l)→ (ghkl)→ (gh)(kl)→ (gh)(k)(l).

Composing (2.4) with the 2-morphism (g)(h)(kl)→ (gh)(kl) and precomsing it with

its inverse yields

(2.6) c(g, h, kl)id = [(gh)(kl)→ (ghkl)→ (g)(hkl)→ (g)(h)(kl)→ (gh)(kl)] .

Composing (2.5) by (gh)(k)(l)→ (gh)(kl) and precomposing by its inverse yields

(2.7) c(gh, k, l)id = [(gh)(kl)→ (gh)(k)(l)→ (ghk)(l)→ (ghkl)→ (gh)(kl)] .

By considering the composition (2.6) ◦ (2.7) and noting that the last map in (2.7) is

precisely the inverse of the first map in (2.6), we hence find that c(g, h, kl)c(gh, k, l)

times the identity is given by the following composition

(2.8)

(gh)(kl)→ (gh)(k)(l)→ (ghk)(l)→ (ghkl)→ (g)(hkl)→ (g)(h)(kl)→ (gh)(kl).

We now turn to the right hand side of (2.3). Arguing in a similar manner shows

that c(h, k, l)c(g, hk, l)c(g, h, k) times the identity is equal to the composition

(2.9) (g)(h)(k)(l)→ (gh)(k)(l)→ (ghk)(l)→ (ghkl)

→ (g)(hkl)→ (g)(h)(kl)→ (g)(h)(k)(l).

We see that except for the two respective outer arrows, the compositions (2.8) and

(2.9) agree. Hence to prove the desired equation (2.3) it remains to prove that the

1It is very suggestive to write this composition vertically:

(g) (h) (kl)

(gh) (kl)

(ghkl)

(g) (hkl)

(g) (h) (kl).

We invite the reader to re-write the other maps below in a similar form, in order to make the
various compositions more clear. For brevity we will stick to the horizontal notation.
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compositions

(g)(h)(kl)→ (gh)(kl)→ (gh)(k)(l)

(g)(h)(kl)→ (g)(h)(k)(l)→ (gh)(k)(l)

agree, or equivalently, that we have a commutative diagram

(g)(h)(kl) (gh)(kl)

(g)(h)(k)(l) (gh)(k)(l).

θgh(kl)

(g)(h)θ−1
kl

(gh)θ−1
k,l

θg,h(k)(l)

This follows from the following.

Lemma 2.2. Let f, f ′, g, g′ : D → D be functors and let α : f → f ′ and β : g → g′

be natural transformations. Then we have a commutative diagram

fg f ′g

fg′ f ′g′

fβ

αg

f ′β

αg′

Proof. For every A ∈ D we need to prove that

fgA f ′g

fg′ f ′g′

fβA

αgA

f ′βA

αg
′A

commutes. This follows when we apply the condition that α is a natural transfor-

mation to the morphism βA : gA→ g′A. �

Therefore, the above defines a cocycle c : G3 → C∗. It dependeds on the choice

of representative ρg and the choice of θg,h. By the assumption Hom(idD, idD) = C
for any second choice of isomorphism θ′g,h : (g)(h)→ (gh) we have θ′g,h = λ(g, h)θg,h

for some λ(g, h) ∈ C∗. The new cocycle c′ one obtains in this way is

c′(g, h, k) = λ(g, h)λ(gh, k)λ(g, hk)−1λ(h, k)−1c(g, h, k)

and hence c differs from c′ by a coboundary. Similarly, any other choice of repre-

sentative ρ′g changes c by at most a coboundary. Hence we obtain a well-defined

class

c ∈ H3(G,C∗)

depending only on G ⊂ AutD. By construction, it vanishes if and only if there is a

choice of θg,h which satisfies (2.1), hence if and only if there is an action (ρ, θ) of G

on the category D. Moreover, once an action (ρ, θ) has been found, we obtain any

other action θ′ by multiplying θ with an arbitrary λ : G2 → C∗ which is a 2-cocycle.
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One checks that such a λ is a coboundary if and only if the actions θ and θ′ are

isomorphic. This proves part (a).

(b) We will show that given α ∈ H3(G,C∗) there exists a surjection G′ � G

from a finite group G′ such that the restriction of α to H3(G′,C∗) vanishes. Since

H3(G,C∗) is finite, α is the image of some β ∈ H3(G,Zn) for some n under the map

induced by the inclusion Zn → C∗. Recall that we have the commutative diagram

H3(G′,Zn) H3(G′,C∗)

H3(G,Zn) H3(G,C∗).

We find that it is enough to construct a surjection G′ � G such that the image of

β in H3(G′,Zn) vanishes.

It is known that β corresponds to a crossed module

1→ Zn → N → E → G→ 1

where the action of G on Zn is trivial [3, IV.5]. The pullback of β along E → G

corresponds to the crossed module

1→ Zn → N → E ×G E → E → 1.

Since this has a section s : E → E ×G E and G acts trivially on Zn, it is equivalent

to the trivial crossed module. Concretely, there is a morphism

1 Zn Zn E E 1

1 Zn N E ×G E E 1

id

id

0 id

s id

of crossed modules, which by definition is a map of long exact sequences compatible

with the actions of the groups in the crossed modules. The upper crossed module

corresponds to the trivial crossed module.

Therefore the pullback of the class β to E vanishes. Moreover, by [8, p. 502] we

can choose E to be finite, so setting G′ = E yields the claim.

(c) Consider the short exact sequence

0→ Zn → Zn2 → Zn → 0

and apply the Lyndon–Hochschild–Serre spectral sequence. We have

E3,0
2 = H3(Zn,C∗) ∼= Zn,

and the composite map

E3,0
2 � E3,0

∞ ⊂ H3(Zn2 ,C∗)

corresponds to the pullback map

H3(Zn,C∗) = Zn → H3(Zn2 ,C∗) = Zn2 .
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Since H2(Zn2 ,C∗) = 0, the differential d : E1,1
2 → E3,0

2 is injective. Hence, the

assertion follows from E1,1
2 = H1(Zn, H1(Zn,C∗)) ∼= Zn and E3,0

2
∼= Zn. �

2.3. Action via Fourier–Mukai transforms. Let X be a smooth complex pro-

jective variety and let

Db(X) = Db(Coh(X))

be the bounded derived category of coherent sheaves on X. Given an object

E ∈ Db(X ×X)

the Fourier–Mukai transform FME : Db(X)→ Db(X) with kernel E is defined as

FME(A) = q∗(p
∗(A)⊗ E)

where p, q : X × X → X are the projections and all functors are derived. For a

multitude of applications it is very useful to know whether a given endofunctor of

Db(X) is given by a Fourier–Mukai transform. For fully faithful exact functors this

was answered affirmatively by Orlov [14].

Definition 2.3. A Fourier–Mukai action of G on Db(X) consists of2

• for every g ∈ G a Fourier–Mukai kernel Eg ∈ Db(X ×X),

• for every pair g, h ∈ G an isomorphism θg,h : Eg ◦ Eh → Egh
such that for all g, h, k the diagram (2.1) commutes with ρg replaced by Eg.

By associating to a kernel its Fourier–Mukai transform we see that any Fourier–

Mukai action on Db(X) induces a group action on Db(X) in the sense of Section 2.1.

We have the following converse.

Lemma 2.4. Let X be smooth complex projective variety and let G be a finite group.

Then any G-action on Db(X) is induced by a unique Fourier–Mukai action.

Proof. Given (ρ, θ), by Orlov’s theorem [14] for every g ∈ G there exists a kernel

Eg ∈ Db(X × X) with FMEg
∼= ρg. By uniqueness of the kernels there also exists

isomorphisms θ′g,h : Eg ◦Eh ∼= Egh. Since Hom(Eg, Eg) = C, arguing as in the proof of

Theorem 2.1 yields a class α in H3(G,C∗) which vanishes if and only if after replac-

ing θ′ by a boundary the pair (Eg, θ′) defines a Fourier–Mukai action. By passing to

Fourier–Mukai transforms one sees that α is the same class as the obstruction class

defined by G ⊂ AutDb(X) and hence has to vanish (since G acts on Db(X)). This

shows that there is a Fourier–Mukai action of G on Db(X) such that FMEg
∼= ρg.

A similar argument shows further that the possible isomorphism classes of such

Fourier–Mukai G-actions are a torsor under H2(G,C∗). Moreover the map that

associated to a Fourier–Mukai action the induced action on Db(X) is equivariant

with respect to the action of H2(G,C∗). This implies that we can also match (in a

2We write E ◦ F to indicate the composition of correspondences E ,F .
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unique way, up to isomorphism) the 2-isomorphisms θ for the action on Db(X) and

for the Fourier–Mukai action. �

3. Equivariant categories

Let (ρ, θ) be an action of a finite group G on an additive C-linear category D.

3.1. Definition. The equivariant category DG is defined as follows:

• Objects of DG are pairs (E, φ) where E is an object in D and φ = (φg : E →
ρgE)g∈G is a family of isomorphisms such that

(3.1) E ρgE ρgρhE ρghE

φgh

φg ρgφh θEg,h

commutes for all g, h ∈ G.

• A morphism from (E, φ) to (E′, φ′) is a morphism f : E → E′ in D which

commutes with linearizations, i.e. such that

E E′

gE gE′

f

φg φ′g

ρgf

commutes for every g ∈ G.

The definition of morphism can be reformulated as follows. For any objects (E, φ)

and (E′, φ′) in DG consider the action of G on HomD(E,E′) via

f 7→ (φ′g)
−1 ◦ ρg(f) ◦ φg.

Then we have

HomDG((E, φ), (E′, φ′)) = HomD(E,E′)G.

3.2. Induction and restriction functor. Given a subgroup H ⊂ G we have a

restriction functor

ResGH : DG → DH
defined by restricting the linearization of an equivariant object to the subgroup H.

In the opposite direction we have an induction functor

IndGH : DH → DG

which is constructed as follows: Let gi be representatives of the cosets G/H, where

one of the gi equals 1 ∈ G (representing the unit coset). Then we set

IndGH(E, φ) =

(⊕
i

ρgiE, φ
G

)
,
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where for every g ∈ G the restriction of φGg to the summand ρgjE is defined by

ρgjE
ρgjφh−−−→ ρgjρhE

θgj ,h−−−→ ρgjh
θ−1
g,gi−−−→ ρgρgiE

where gi and h are defined by ggi = gjh. By a similar argument as in [7, Lem. 3.8]

one has that IndGH is both left and right adjoint to ResGH , see also [15, Lem. 3.3].

In the case of the trivial subgroup, H = 1, the restriction and induction functors

specialize to the forgetful functor

p : DG → D, (E,ψ) 7→ E

which forgets the linearization, and the linearization functor

(3.2) q : D → DG, E 7→ (⊕g∈GρgE, φ) .

3.3. Universal property. Equivariant categories can be viewed as limits in the

category Cats. To explain this let us view a finite group G as the 2-category G
with one object, 1-morphisms given by the elements of G, and only identities as

2-morphisms. Giving a G-action on a category D is then equivalent to giving a

2-functor

G → Cats

which takes the unique object in G to the category D. The equivariant category is

the 2-limit of this morphism:

DG = 2-lim(G → Cats).

This yields a universal property of the equivariant category that we state in explicit

terms below. The proof follows by general theory, but for concreteness we will sketch

a direct argument. We also refer to [21, App. A] for a discussion of 2-(co)limits in

Cats, and to [9, Prop. 4.4] for more details in the case of equivariant categories.

Given a category A, let ι(A) denote the category A endowed with the trivial

G-action. For any two categories A,B let

Hom(A,B)

be the category whose objects are functors A → B and whose morphisms are natural

transformations of such functors, and similarly for categories with G-action.

Proposition 3.1. Let G be a finite group which acts on a C-linear category D.

Then for every category A we have a bifunctorial equivalence of categories

HomCats (A,DG) ∼= HomG-Cats (ι(A),D).

The proposition implies that every G-functor ι(A) → D can be factored via the

equivariant category:

DG

ι(A) D

p

G–functor

∃!
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Conversely, the forgetful functor p : DG → D carries a natural structure of a G-

functor. Hence composing any functorA → DG with p yields a G-functor ι(A)→ D.

Proof of Proposition 3.1. We can assume that the G-action on D is strict.

Let A be a category and let (f, σ) : ι(A)→ D be a G-functor. By definition of a

G-functor, the 2-isomorphisms σg : f → ρgf fit into the commutative diagram

(3.3) f ρgf ρgρhf.
σg

σgh

ρgσh

Thus for any E ∈ A the collection

(σg)
E : fE → ρgfE

is a G-linearization of fE. Moreover, since σg is a natural transformation, for any

morphism ψ : E → F in A the map fψ : fE → fF is G-invariant with respect to

these linearizations. This yields a functor

F : A → DG, E 7→ (fE, σE), ψ 7→ fψ.

One further checks that any natural transformation of G-functors (f, σ) → (f ′, σ′)

yields a natural transformation F → F ′ of the corresponding functors. These

assignments define a functor

(3.4) HomG-Cats (ι(A),D)→ HomCats (A,DG).

Conversely, the 2-isomorphisms

τg : p
∼=−→ ρg ◦ p

defined using the linearization τ
(E,φ)
g = φg for all g ∈ G give p the structure of a G-

functor (p, τ) : ι(DG) → D. Any functor F : A → DG is automatically a G-functor

(F, id) : ι(A)→ ι(DG) and hence we obtain a G-functor

(pF, τF ) : ι(A)→ D.

Similarly, for any natural transformation t : F → F ′ of functors A → DG we obtain

the natural transformation of G-functors

pt : (pF, τF )→ (pF ′, τF ′).

This yields an inverse to (3.4). �

If D is an abelian category we also have a universal property with respect to the

functor q. It says that DG is the 2-colimit in the 2-category of abelian categories

where the morphisms are left exact functors. We state it here for completeness, but

it will not be essential later on. For any two abelian categories let us denote by

Homl.e.(A,B) ⊂ Hom(A,B)

the subcategory of left-exact additive functors.
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Proposition 3.2. Let G be a finite group which acts on an abelian category D.

Then for any abelian category A we have the equivalence of categories

HomCats,l.e. (DG,A) ∼= HomG-Cats,,l.e. (D, ι(A)).

Similar results hold for dg-categories (or certain stable ∞-categories) and will

play a role in determining the Hochschild cohomology of the equivariant category,

see Section 6 below and [15].

Proof. We assume that the action is strict. Since q(gE) = qE for all objects E in

D, the linearization functor q : D → DG defines a G-functor (q, id) : D → ι(DG). We

define a functor

(3.5) HomCats (DG,A)→ HomG-Cats (D, ι(A))

by pre-composing with q, i.e. by sending a functor F : DG → A to (Fq, F id), and a

natural transformation t of such functors to tq.

Conversely, let (f, σ) : D → ι(A) be a G-functor. One checks immediately (or see

e.g. [19, Lem. 3.5]) that (f, σ) naturally lifts to a functor f̃ : DG → AG such that as

a composition of G-functors we have

(3.6) (f̃ , id) ◦ (q, id) = (q, id) ◦ (f, σ).

Since G acts trivially on A, objects in AG are pairs (E, φ) where E is an object

in A endowed with a G-action given by the linearization φg : E → E. Since A is

abelian and hence has finite limits, we have a functor

(−)G : AG → A

which associates to (E, φ) its G-invariants EG. It satisfies (−)G ◦ q = idA. We set

(3.7) F = (−)G ◦ f̃ : DG → A.

Similarly, any natural transformation t : f → f ′ lifts to a natural transformation

t̃ : f̃ → f̃ ′. Taking G-invariants we obtain a natural transformation (−)Gt̃ : F → F ′.

This yields a functor

(3.8) HomG-Cats (D, ι(A))→ HomCats (DG,A).

We need to show that (3.5) and (3.8) are quasi-inverse to each other when re-

stricted to the subcategory of left-exact functors. Consider a G-functor (f, σ) ∈
HomG-Cats,l.e. (D, ι(A)) and let F be defines as in (3.7). Then F is a left-exact

additive functor and we have the composition of G-functors

(F, id) ◦ (q, id) = ((−)G, id) ◦ (f̃ , id) ◦ (q, id)

(3.6)
= ((−)G, id) ◦ (q, id) ◦ (f, σ)

= (f, σ).

Conversely, given F ∈ HomCats,l.e. (DG,A), define the G-functor

(f, σ) = (F, id) ◦ (q, id) : D → ι(A)
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which is left-exact and additive, and consider its lift f̃ : DG → AG. We need to

show that

F ∼= (−)G ◦ f̃ .
Given (B,φ) ∈ DG, consider the object qB = qp(B,φ) = (⊕ggB, φcan). The

linearization φh : B → hB yields the morphism qφh : qB → qB in DG given by

(3.9)

⊕
g∈G

gB, φcan

 (gφh)g∈G−−−−−−→

⊕
g∈G

ghB, φcan

 =

⊕
g∈G

gB, φcan

 .

This defines aG-action on the object qB, i.e. a homomorphismG→ HomDG(qB, qB).

The morphism ⊕
g∈G

φg : B →
⊕
g∈G

gB

is G-invariant with respect to the linearizations φ and φcan, and defines an isomor-

phism from (B,φ) with the G-invariants (qB)G.

By definition the element f̃(B,φ) is the pair (FqB, Fqφh) where the linearization

Fqφh is obtained as the composition

FqB
Fqφh−−−→ FqhB = FqB.

Hence it is precisely F applied to the morphism (3.9). Since F is left exact and

hence commutes with finite limits, we find(
f̃(B,φ)

)G
= (F (qB, qφh))G = F

(
(qB, qφh)G

)
∼= F (B,φ).

The final step (which is left to the reader) is to show that (3.5) and (3.8) are inverse

to each other on natural transformations. �

3.4. Taking equivariant categories successively. The following result shows

that when determining equivariant categories it is sufficient to consider simple

groups G. We also refer to [18, Rem. 2.4] for the parallel statement for stacks.

Proposition 3.3. If H ⊂ G is a normal subgroup, then there exists an induced

action of G on DH such that (p, id) : DH → D is a G-functor. The action on DH is

isomorphic to an action which factors through G/H and we have DG ∼= (DH)G/H .

Proof. We assume that the action is strict. For every g ∈ G define a functor

ρ̄g : DH → DH by letting it act on morphisms by ρg and on objects by

ρ̄g : (A, φ) 7→ (ρgA, φ
′) with φ′h = ρgφg−1hg.

One checks that the assignment g 7→ ρ̄g defines a strict G-action on DH for which

(p, id) is a G-functor.

For the second part we define a new action ρ̃g. Choose representatives g1, . . . , gn ∈
G for the elements in G/H, where we take the identity element for the coset of the

identity. Given any element g ∈ giH we set

ρ̃g = ρ̄gi .
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For any two elements g ∈ giH and g′ ∈ gjH write gigj = gkh (here gk and h only

depend on gi, gj). Then define

θg,g′ : ρ̃gρ̃g′ = ρ̄gi ρ̄gj = ρ̄gkh → ρ̄gk = ρ̃gg′

by associating to (A, φ) ∈ DH the morphism ρ̄gkh(A, φ)
ρgkφ

−1
h−−−−→ ρ̄gk(A, φ). The

action of (ρ̃, θ) on DH is isomorphic to (ρ̄, id) and factors through a G/H-action.

The adjunction

HomG/H-Cats(ιG/H(A),DH)
∼=−→ HomG-Cats(ι(A),D)

follows by a direct check. Using Proposition 3.1 and the 2-categorical Yoneda lemma

yields the isomorphism DG ∼= (DH)G/H . �

3.5. Action of the dual group. The group of characters of G,

G∨ = {χ : G→ C∗ | χ homomorphism},

acts on the equivariant category DG via the identity on morphisms and by

χ · (E, φ) = (E,χφ)

on objects, where we let χφ denote the linearization (χφ)g = χ(g)φg : E → ρgE.

The cocycle condition for χφ is satisfied because for any g, h ∈ G one has

χ(gh) = χ(g)χ(h).

We discuss a typical example arising in geometry.

Example 3.4. Let G be a finite group acting on an complex quasi-projective al-

gebraic variety X. The G-action induces an action on the category of Coh(X) of

coherent sheaves on X by sending a sheaf E to its pushforward g∗E under the au-

tomorphism g : X → X. If G acts freely, then we have the following well-known

equivalence of the equivariant category with the category of coherent sheaves on the

quotient variety X/G:3

(3.10) Coh(X/G)
∼=−→ Coh(X)G.

The equivalence is given by pullback of sheaves along the quotient map π : X →
X/G. Conversely the linearization φ of some (E, φ) is the descent datum of the sheaf

E with respect to π. Under the equivalence the structure sheaf of OX/G corresponds

to the equivariant sheaf (OX , 1), where we write 1 for the canonical linearization

OX → g∗OX

given by pullback of functions along g. For every character χ ∈ G∨ consider the

line bundle

Lχ ∈ Pic(X/G)

3If the G-action is not free, then parallel statements apply to the stack quotient [X/G].
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which corresponds to the twisted linearization (OX , χ). Then tensoring with Lχ on

Coh(X/G) corresponds under the equivalence (3.10) to the dual action of χ ∈ G∨

on the equivariant category. In particular, the line bundles Lχ are all torsion. �

If the group G is abelian, then G∨ is called the dual group and is non-canonically

isomorphic to G. In this case we have the following:

Proposition 3.5 (Reversion, [7, Thm. 1.3]). Let D be an idempotent complete

additive category over C with an action of a finite abelian group G. Then there is

an equivalence (DG)G∨ ∼= D.

The proposition can be applied for example to the categories Coh(X) and Db(X),

since they are both idempotent complete.

Example 3.6. If X is an algebraic variety and H ⊂ Pic(X) a finite subgroup which

acts on Coh(X) by tensoring, then the equivariant category Coh(X)H is equivalent

to Coh(X̃) where X̃ is the cover

X̃ = Spec

(⊕
L∈H
L−1

)
,

see [7, Thm. 7.5] for a discussion.

In particular, if G is taken to be abelian in Example 3.4, and we take the subgroup

of line bundles Lχ for all χ ∈ G∨, then one recovers

Coh(X/G)G∨ ∼= Coh(X).

Hence this is a basic example of the reversion principle of Proposition 3.5. �

A G-linearization of an object E ∈ D is an object Ẽ ∈ DG such that pẼ ∼= E. We

say that an object E is G-linearizable if it admits a G-linearization. Equivalently,

it lies in the essential image of the functor p.

By work of Ploog, the action of the dual group yields the following useful de-

scription of the set of G-linearizations of a simple object.

Lemma 3.7. ([17, Lem. 1]) Let a finite group G act on a C-linear category D
and consider a simple object E, i.e. Hom(E,E) = C. Then there exists a class in

H2(G,C∗) which vanishes if and only if E admits a G-linearization. Furthermore,

the dual group G∨ acts freely and transitively on the set of (isomorphism classes)

of linearizations.

3.6. A subgroup of the group of auto-equivalences which does not act.

Let D be a triangulated category and let τ : D → D be an auto-equivalence of order

4 (so τk 6∼= id unless 4|k) which defines a strict Z4-action on D. Let 〈τ2〉 ∼= Z2

denote the subgroup generated by τ2 and let

D′ = D〈τ2〉
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be the equivariant category. As in Proposition 3.3, τ induces an auto-equivalence

τ̄ : D′ → D′ together with a natural isomorphism t : idD′ ∼= τ̄2. Concretely, for an

equivariant object (A, φ) we define

t(A,φ) : (A, φ)
φτ2−−→ τ̄2(A, φ) = (τ2A, τ2φ).

We also have an equivalence χ : D′ → D′ of order 2 obtained by twisting with the

non-trivial character χ of Z2. The automorphisms τ̄ and χ commute canonically

and hence the composition χ ◦ τ̄ is of order 2 in AutD′. Suppose also that4

Hom(idD′ , idD′) = Cid.

Claim. The subgroup Z2 ⊂ AutD′ generated by g = χ ◦ τ̄ does not act on D′.

Proof of Claim. Since Hom(idD′ , idD′) = C, any isomorphism θg,g : g2
∼=−→ id is a

scalar multiple of t−1. Hence it is enough to show that gt 6= tg. For any (A, φ)

the map (gt)(A,φ) is obtained by applying χτ̄ to φτ2 : (A, φ) → τ̄2(A, φ). Hence it

is equal to τφτ2 (twisting by χ acts by the identity on morphisms). On the other

hand we have

(tg)(A,φ) = tg(A,φ) = t(τA,χ(τ2)τφ) = χ(τ2)τφτ2 = −τφτ2 . �

To translate the above into a simple concrete case, let τ : Coh(E) → Coh(E)

be the translation by a 4-torsion point on an elliptic curve E. The equivariant

category D〈τ2〉 is then equivalent to Coh(E′) with E′ = E/〈τ2〉 being the quotient.

The induced morphism τ̄ is equivalent to translation ta by a 2-torsion point and χ is

equivalent to tensoring with a 2-torsion line bundle Lb = OE′(b−0E′) corresponding

to a 2-torsion point b which is distinct from a. We find that the involution Lb⊗t∗a(−)

does not define an action of Z2 on Coh(E′), but only a Z4-action.

4. Decompositions of equivariant categories

In this section we assume D to be a C-linear triangulated category.

The goal of this section is to understand the decomposition of the equivariant

category into its components (defined in Section 4.1). We will say that an action

of a finite group G on a category D is faithful if the equivariant category DG can

not be decomposed in a non-trivial way into components, or in other words if it

is indecomposable. Our first aim is to describe the number of components of the

equivariant category in terms of cohomology. This leads to a useful criterion for an

action to be faithful. Then we describe each component of the equivariant category

as the equivariant category of a faithful action. The main tool we will use are

stability conditions5.

4This is automatically satisfied in many instances, see Theorem 4.6 and Lemma 4.4.
5Often an appropriate notion of weak stability conditions would suffice for our applications. For

simplicity we work with stability conditions throughout.
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4.1. Orthogonal decompositions. A triangulated category D is the orthogonal

direct sum of n full subcategories Di if every object E ∈ D is isomorphic to a direct

sum ⊕iEi with Ei ∈ Di and there are no non-trivial morphisms between objects

which lie in different subcategories. In this case we write D = ⊕iDi. The category

D is indecomposable if in any such decomposition all except one summand is trivial.

Given a finite decomposition

D =
⊕
i

Di,

where all Di are non-trivial and indecomposable, the summands Di are unique up

to permutation and called the components of D.

Example 4.1. If D is the derived category Db(X) of a smooth projective (not

necessarily connected) variety X, then we have the orthogonal decomposition

Db(X) =
⊕
i

Db(Xi)

where Xi are the connected components of X. Hence X is connected if and only if

Db(X) is indecomposable. �

4.2. Triangulated categories. Let G be a finite group acting on a C-linear tri-

angulated category D. We define a shift functor [1] : DG → DG by

(E, φ)[1] = (E[1], φ[1])

and we say a triangle in DG is distinguished if and only it it is distinguished after

applying the forgetful functor p. By a result of Elagin [7, Thm. 6.10], if D admits

a dg-enhancement6, then these definitions make DG a triangulated category.

The existence of a dg-enhancement is a technical condition [4] but known for the

case we are most interested in. Indeed, by a result of Lunts and Orlov [11] the

bounded derived category Db(Coh(X)) of coherent sheaves on a smooth projective

variety X has up to equivalence a unique dg-enhancement.

We can also ask for the stronger condition that the G-action on D lifts to a G-

action on a dg-enhancement of D. This is satisfied for example if G preserves a full

abelian subcategory A ⊂ D such that Db(A) ∼= D, see [4] and [1, Sec. 2.1]. This

condition is useful since it will allow us to use methods from Hochschild cohomology.

From now on we will always assume that DG is triangulated.

4.3. ρ-trivial actions. Let D be a triangulated category with Hom(idD, idD) = C.

Let (ρ, θ) be the action of a finite group G on D such that

ρg = id for all g ∈ G,

but with θ arbitrary. By Theorem 2.1 there is an associated cocycle

α ∈ H2(G,C∗)

where the trivial action corresponds to the trivial class.

6We refer to [4] for references on dg-enhancements.
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Let fi : G→ GL(Vi) be the projective irreducible representations of G of class α,

see [5] for an introduction to the theory of these representations.

Lemma 4.2. If DG is also triangulated, then we have the orthogonal decomposition

DG =
⊕
i

D ⊗ Vi

where each D ⊗ Vi is the full subcategory of pairs (E ⊗ Vi, φ) with E ∈ D and the

linearization is defined by φh = idE ⊗ fi(h) : E ⊗ Vi → E ⊗ Vi.

Proof. The case of the trivial action (α = 0) can be found in [10, Prop. 3.3]. The

argument for the general case is completely parallel (note that for projective repre-

sentations we also have that the regular (projective) representation C[G] decomposes

into ⊕V ∨i ⊗ Vi, see [5, Cor. 3.11]). �

4.4. Stability conditions. A (Bridgeland) stability condition on a triangulated

category D is a pair (A, Z) consisting of

• the heart A ⊂ D of a bounded t-structure on D and
• a stability function Z : K(A)→ C

satisfying the existence and uniqueness of Harder–Narasimhan filtrations, positivity

and the support property, see [2].

Given an equivalence Φ: D → D′ of triangulated categories the image of σ under

Φ is defined by

Φσ = (ΦA, Z ◦ Φ−1
∗ )

where Φ∗ : K(D) → K(D′) is the induced map on K-groups. If Φ: D → D is an

auto-equivalence, we say that Φ preserves (or fixes) σ if Φσ = σ.

Let us assume that D has an action of a finite group G which fixes a stability

condition σ = (A, Z). Let us also assume as usual that DG is triangulated. Then

an application of [12, Thm. 2.14] shows that the pair

σG = (AG, ZG), ZG := Z ◦ p∗ : K(AG)→ C

defines a stability condition on DG.

If an element E ∈ AG is destabilized by F , then p(E) is destabilized by p(F ).

Similarly, if p(E) is destabilized by F ′ ∈ A, then the image of the adjoint morphism

qF ′ → E destabilizes E. Hence an element in (E, φ) ∈ AG is σG-semistable if

and only if E ∈ A is σ-semistable. Being stable is more subtle: Since there may

be destabilizing objects in A which do not lie in the image of AG, an equivariant

object (E, φ) ∈ AG can be σG-stable while p(E) is not. The precise relation is given

by the following.

Lemma 4.3. Let (E, φ) ∈ AG.

(i) If E is σ-stable, then (E, φ) is σG-stable.
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(ii) If (E, φ) is σG-stable, then

E =
⊕

g∈G/H

φ−1
g (gF )

for some subgroup H ⊂ G and σ-stable object F . Hence E is σ-polystable,

and it is σ-stable if and only if it is simple.

Proof. By applying the forgetful functor, any destabilizing object of (E, φ) yields a

destabilizing object of E. This shows (i).

For the proof of (ii) compare also with [22, Sec. 2.3] and [13, Lem. 5.9].

Assume (E, φ) is σG-stable and E is strictly σ-semistable. Take a σ-stable desta-

bilizing subobject F ⊂ E. Consider the two subobjects gF and φgF of gE. Since

they are both stable of the same phase, either gF = φgF or gF ∩ φgF = 0 as sub-

objects of gE. Let H ⊂ G denote the subgroup consisting of elements h satisfying

hF = φhF . Define the subobject

F ′ :=
∑
g∈G

φ−1
g (gF ) ⊂ E

which by definition of H is equal to F ′ = ⊕g∈G/Hφ−1
g (gF ). The linearization φ of

E restricts to give a linearization

φ′g = φg|F ′ : F ′ → F ′

making (F ′, φ′) a subobject of (E, φ) in AG of the same slope. Stability of (E, φ)

implies E = F ′ which finishes the proof. �

4.5. Number of components. We write Hom(f, g) for the vector space of a nat-

ural transformations f → g for functors f, g : D → D. The number of components

of a triangulated category can be described as follows.

Lemma 4.4. Let D be a triangulated category with a stability condition σ. If

HomD(idD, idD) is finite-dimensional, then D has finitely many components, in

which case the number of components of D is equal to dimC HomD(idD, idD).

Proof. If D admits an orthogonal decomposition ⊕ni=1Di then the projections to the

i-th factor define n linearily independent elements in HomD(idD, idD). This shows

that if HomD(idD, idD) is finite-dimensional of dimension n, then there are at most

n components Di.
Hence it suffices to show that ifD is indecomposable, then HomD(idD, idD) = Cid.

Let t : idD → idD be a natural transformation. For every stable object A ∈ D we

have tA = λAidA for some λA ∈ C. Moreover, if tA = λAid while tB = λBid

for σ-stable objects A,B with λA 6= λB, then Hom(A,B) = 0. Let Dλ be the

full triangulated subcategory of D generated by all σ-stable objects A for which

tA = λid. The categories are orthogonal and, since D is indecomposable, all except

one are trivial. This shows the claim. �
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To apply Lemma 4.4 to the equivariant category DG we need to understand the

C-dimension of Hom(idDG , idDG). This is provided by the following.

Proposition 4.5. Let (ρ, θ) be a G-action on a triangulated category D which lifts

to an action on a dg-enhancement of D. Then there exists an isomorphism

(4.1) Hom(idDG , idDG) ∼=

⊕
g∈G

Hom(idD, ρg)

G

where the action on the right is given by conjugation.

More precisely, the G-action is given as follows. An element g ∈ G acts by

g : Hom(idD, ρh)→ Hom(idD, ρghg−1)

by sending t : idD → ρh to g • t which is defined by the commutative diagram

(4.2)

ρgρg−1 ρgρhρg−1

ρghρg−1

idD ρghg−1 .

ρgtρg−1

θg,g−1

θg,hρg−1

θgh,g−1

g•t

Proof of Proposition 4.5. The left hand side of (4.1) can be identified with the de-

gree 0 Hochschild cohomology of DG and the result hence follows from the descrip-

tion of the Hochschild cohomology of DG by Perry, see [15] and Theorem 6.1 below.

However, to provide an idea of the proof, let us nevertheless sketch the argument

in the case where D is an abelian category. The argument used to prove the result

of Perry is parallel by translating all steps into the language of dg-categories.

Hence let D be an abelian category. By Proposition 3.2 and its proof we have

Hom(idDG , idDG) ∼= Hom(idDGq, idDGq)
G

where g acts on Hom(q, q) by sending t : q → q to the composition q ∼= qg
tg−→ qg ∼= q

(the isomorphisms are provided by θ). By Proposition 3.1 we have further

Hom(idDGq, idDGq)
∼= Hom(pidDGq, pidDGq)

G

where g ∈ G acts by sending t : pq → pq to pq ∼= gpq
gt−→ gpq ∼= pq. This yields

Hom(idDG , idDG) ∼= Hom (⊕g∈Gρg, ⊕g∈Gρg)G×G

where (g1, g2) acts via t 7→ g1tg2. Finally observe that we have⊕
g∈G

ρg = IndG×GG idD
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where the embedding G ↪→ G × G is given by g 7→ (g, g−1). This yields the claim

by the adjunction with the restriction functor ResG×GG :

Hom (⊕g∈Gρg, ⊕g∈Gρg)G×G ∼= Hom (idD,⊕g∈Gρg)G .

�

4.6. Faithful actions I. Consider a G-action on D such that DG is triangulated.

We say that the G-action on D is faithful if the associated equivariant category is

indecomposable. We have the following criterion for an action to be faithful.

Theorem 4.6. Let (ρ, θ) be a G-action on an indecomposable triangulated category

D which preserves a stability condition σ and lifts to an action on a dg-enhancement

of D. If ρg 6∼= id for all g 6= 1, then G acts faithfully.

We refer to Section 4.9 below for an example which shows that the converse of

Theorem 4.6 does not hold.
The proof relies on the following lemma.

Lemma 4.7. Let D be an indecomposable triangulated category with an action by

a finite group G which fixes a stability condition σ. For any g ∈ G, if t : id→ ρg is

a natural transformation, then either t = 0 or t is an isomorphism.

Proof. If A is a σ-stable object, then so is its image gA, and in this case by stability

the morphism tA : A → gA is either an isomorphism or zero. Moreover, if tA is an

isomorphism while tB = 0 for some σ-stable objects A,B, then Hom(A,B) = 0.

The claim now follows by arguing as in the proof of Lemma 4.4. �

Proof of Theorem 4.6. By Lemma 4.4 the number of components of DG is the di-

mension of (4.1). By Lemma 4.7 this dimension is 1. �

4.7. Faithful actions II. We show that when determining equivariant categories

it is enough to consider faithful actions.

Theorem 4.8. Let (ρ, θ) be a G-action on a indecomposable triangulated category

D which preserves a stability condition σ and lifts to an action on a dg-enhancement

of D. Then there exists a finite decomposition

DG =
⊕
i

Di

and for every i a faithful action ρi by a finite group Ki on D such that Di ∼= DKi.
Moreover, every ρi preserves the stability condition σ.

If G is abelian, then there exists a subgroup H ⊂ G such that for every i we can

take Ki = G/H and the map G→ AutD factors through G/H
ρi−→ AutD.

For the proof we will need the following lemma of independent interest.

Lemma 4.9. Let G act on triangulated category D with a dg-enhancement. Let

D = ⊕iDi be an orthogonal decomposition such that G acts transitively on the set

of components {Di}. Let K ⊂ G be the subgroup of elements which preserves a
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fixed component D0. Then the composition of the inclusion (D0)K ↪→ DK and the

induction functor IndGK : DK → DG defines an equivalence

F : (D0)K
∼=−→ DG.

The composition (D0)K
F−→ DG

p−→ D is given by (E, φ) 7→ ⊕g∈G/KgE.

Proof. Since D has a dg-enhancement, all equivariant categories are triangulated.

The composition of ResGK : DG → DK followed by the restriction to (D0)K is the

adjoint (both left and right) to F . This and a straightforward calculation implies

that F is fully faithful and hence yields a semi-orthogonal decomposition DG =

〈(D0)K , E〉. Moreover, for any object A ∈ E we have that the projection of pA to

D0 vanishes and since pA is G-invariant, one obtains that pA = 0, so A = 0. �

Proof of Theorem 4.8. Recall from Proposition 4.5 that we have

(4.3) HomDG(idDG , idDG) ∼=

⊕
g∈G

HomD(idD, ρg)

G

.

Since G acts by conjugation on the right hand side, we can consider the decompo-

sition according to conjugacy classes c:

HomDG(idDG , idDG) =
⊕
c

Vc with Vc =

(⊕
g∈c

Hom(idD, ρg)

)G
.

For any non-trivial transformations t1 : id → ρg and t2 : id → ρg by Lemma 4.7 we

can form the composition t−1
2 ◦ t1, which (since D is indecomposable) is a multiple

of the identity. We conclude that dimVc ∈ {0, 1} for all c.

Let H ⊂ G be the set of all elements whose conjugacy class c satisfies dimVc = 1.

A direct check shows thatH is a subgroup ofG. In particular, it is normal. Moreover

for all h ∈ H there exist isomorphisms7

(4.4) th : id
∼=−→ ρh such that ρgthρg−1

∼= tghg−1 for all g ∈ G.

After modifying the action by the isomorphisms th, we may assume ρh = id and

th = id. Relation (4.4) is then equivalent to the condition that the composition

(4.5) id ρgρg−1

ρgthρ
−1
g

= ρgρhρg−1 ρghρg−1 ρghg−1

tghg−1

= id
θ−1

g,g−1 θg,hρg−1 θgh,g−1

is the identity for all g ∈ G and h ∈ H.

Let Vi, i ∈ I be the projective irreducible representations of H for the cocycle

defined by θ. We consider the decomposition of Example 4.3,

DH =
⊕
i∈I
D ⊗ Vi,

7The isomorphisms ρgthρg−1
∼= tghg−1 are provided by (4.2).
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and the induced G-action on DH as in Proposition 3.3. For any Ẽ = (E ⊗ Vi, φ) in

DH we have ρgẼ = (ρg(E)⊗ Vi, φ′) where

φ′h = [ρg(E)⊗ Vi
φg−1hg−−−−→ ρgρg−1hg(E)⊗ Vi

(∗)−−→ ρhρg(E)⊗ Vi]

and the isomorphism (*) is precisely ρg applied to the inverse of (4.5). Since (*) is

the identity and φg−1hg = idE ⊗ fi(g−1hg), we find that

ρgẼ ∈ D ⊗ Vg(i)

where Vg(i) is the irreducible representation defined by h 7→ fi(g
−1hg).

This shows that for any j ∈ I/G (where G acts on the index set I by i 7→ g(i))

the G-action on DH preserves and acts transitively on the subcategory

Ej =
⊕

i∈I : ī=j

D ⊗ Vi.

Consider the quotient action G/H on DH as in Proposition 3.3. Then G/H acts

also transitively on Ej . Let Kj ⊂ G/H be the subgroup which preserves a given

(fixed) summand D ⊗ Vij of Ej . Applying Lemma 4.9 yields the equivalence

(Ej)G/H ∼= (D ⊗ Vij )Kj .

Hence by Proposition 3.3 we find that

(4.6) DG ∼= (DH)G/H ∼=
⊕
j∈I/G

(Ej)G/H ∼=
⊕
j∈I/G

(D ⊗ Vij )Kj .

The order of I equals the number of conjugacy classes of H.8 Hence the order

of I/G equals the number of conjugacy classes of G which are contained in H.

This latter number is by construction the dimension of (4.3), which by Lemma 4.4

is precisely the number of components of DG. This shows that the summands

(D ⊗ Vij )Kj in (4.6) are the components of DG, and therefore indecomposable.

Hence the action of Kj on D ⊗ Vij ∼= D is faithful. Moreover, since the induced

G-action on DH preserves the induced stability condition σH , and σH restricts to

every D ⊗ Vi ∼= D as σ, the Kj-action preserves σ. If G is abelian, then the action

of G on I is trivial, so Kj = G/H for all j. �

4.8. A stronger version of Theorem 2.1. Using the techniques from this section,

we can prove the following stronger version of part (c) of Theorem 2.1.

Corollary 4.10. Let D be indecomposable and let Zn ⊂ AutD such that

• Zn preserves a stability condition σ = (A, Z) with Db(A) ∼= D, and

• there exists a Zn-invariant simple object in D.

8This uses that by (4.5) all conjugacy classes of H consist of ’α-elements’ where α is the cocycle
defined by θ, see [5, Sec. 2].
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Then there exists an action of Zn on D such that the induced map Zn → AutD is

the inclusion we started with.

Proof. Using part (c) of Theorem 2.1, we have an action of Zn2 on D such that the

induced map Zn2 → AutD is the quotient map to the given subgroup Zn ⊂ AutD.

Since the Zn2-action preserves the stability condition and Db(A) ∼= D, it lifts to

an action on a dg-enhancement of D. Applying Theorem 4.8 we hence find a faithful

action by some Zm such that its image in AutD is the subgroup Zn.

We will show that m = n. Let k = m/n and consider the short exact sequence

0→ Zk → Zm → Zn → 0.

The image of Zk in AutD is the trivial group. Since H2(Zk,C∗) = 0 we see that

the Zm-action on D restricts to the trivial action by Zk (or, more precisely, to an

action which is isomorphic to the trivial action). We consider the induced action of

Zn on the equivariant category

(4.7) DZk =

k⊕
i=1

D ⊗ Vi,

where Vi are the irreducible representations of Zk.
Since DZm is indecomposable, Zn acts transitively on the summands (4.7). Let

Zl ⊂ Zn be the stabilizer of the first summand. In particular, Zk = Zn/Zl. Applying

Proposition 3.3 and Lemma 4.9 we obtain the equivalence

DZm
∼= (DZk)Zn

∼=

(⊕
i

D ⊗ Vi

)
Zn

∼= (D ⊗ V1)Z` .

Moreover, under this equivalence the forgetful functor p : DZm → D is given by

sending (E ⊗ V1, φ) ∈ (D ⊗ V1)Z` to

(4.8) pZk

 ⊕
g∈Zn/Zl

gE ⊗ V1

 =
⊕

g∈Zn/Zl

gE.

On the other hand, by the assumption that Zn ⊂ AutD fixes some simple ob-

ject, there is a simple object F ∈ D which is invariant under the Zm-action. By

Lemma 3.7 the object F admits a linearization with respect to Zm and hence lies

in the image of the forgetful functor from the equivariant category DZm . In other

words, F is of the form (4.8). This implies that Zn/Zl is trivial, so k = 1. �

4.9. The equivariant category of Example 3.6. We return to Example 3.6.

Recall that there we considered a subgroup

Z2 ⊂ AutD′

generated by an involution g : D′ → D′ which does not act on D′. Note that by

Corollary 4.10 this implies that there is no simple object in D′ which is invariant

under the action of Z2.
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By part (c) of Theorem 2.1 the involution g defines a (unique) Z4-action on D′.
Here we determine the associated equivariant category. Let us assume that the

action preserves a stability condition and lifts to a dg-enhancement of D′.

Claim. We have an equivalence Φ: D′
∼=−→ D′Z4

. The composition of Φ with the

forgetful functor is given by (p ◦ Φ)(E) = E ⊕ gE.

Proof of Claim 2. We first show that the equivariant category D′Z4
is indecompos-

able: By Proposition 4.5 and Lemma 4.7 this reduces to showing that

Hom(id, ρg2)Z4 = 0.

However, we have seen in Example 3.6 that the generator of this vector space

t : id
∼=−→ ρg2

is not G-invariant. Hence Hom(id, ρg2)Z4 = 0 and D′Z4
is indecomposable.

Since H2(Z2,C∗) = 0, the restriction of the Z4-action to the subgroup Z2 ⊂ Z4

is trivial. An application of Proposition 3.3 gives

D′Z4
∼=
(
D′Z2

)
Z4/Z2

=
(
D′ ⊕D′

)
Z4/Z2

.

Since D′Z4
is indecomposable, Z4/Z2 acts transitively on the two summands. The

claim now follows from Lemma 4.9. �

Recall the concrete example discussed at the end of Section 4.9. We have seen

that the involution Lb ⊗ t∗a(−) on Db(E′) does not define an action of Z2, but only

a Z4-action. By the above claim we see that

Db(E′)Z4
∼= Db(E′).

Another example is described in [1, Sec. 7].

5. The Serre functor on equivariant categories

Let D be a C-linear triangulated category with finite-dimensional Hom’s.

A Serre functor for D is an equivalence S : D → D together with a collection of

bifunctorial isomorphisms

ηA,B : Hom(A,B)
∼=−→ Hom(B,SA)∨

for all objects A,B. We write 〈f, f ′〉 for the pairing of f ∈ Hom(A,B) with f ′ ∈
Hom(B,SA). The functoriality in A is equivalent to

(5.1) 〈f ◦ ψ, f ′〉 = 〈f, Sψ ◦ f ′〉

for all f ∈ Hom(A′, B), ψ : A → A′ and f ′ ∈ Hom(B,SA). The functoriality in B

is equivalent to

(5.2) 〈ρ ◦ f, f ′〉 = 〈f, f ′ ◦ ρ〉
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for all f ∈ Hom(A,B), f ′ ∈ Hom(B′, SA) and ρ : B → B′. The following is well-

known.

Lemma 5.1. For every equivalence F : D → D there exist a canonical 2-isomorphism

tF : SF
∼=−→ FS with the following properties:

(a) For all equivalences F,G : D → D the following diagram commutes:

SFG FSG FGS.
tFG

tFG

FtG

(b) 〈f, f ′〉 = 〈Ff, (tAF )−1 ◦ Ff ′〉 for all f ∈ Hom(A,B) and f ′ ∈ Hom(B,SA).

Proof. For any A,B ∈ D we have the chain of isomorphisms

(5.3) Hom(B,SFA) ∼= Hom(FA,B)∨ ∼= Hom(A,F−1B)∨

∼= Hom(F−1B,SA) ∼= Hom(B,FSA)

where we applied Serre duality in the first and third, and F and F−1 in the second

and fourth step respectively. Since Serre duality and application of F is functorial in

both arguments, the isomorphisms are functorial in both A and B. By the Yoneda

lemma this gives the desired natural transformation tF . For the functoriality of t

in F we need to show that for every A ∈ D we have the commutative diagram

SFG(A) FSG(A) FGS(A).
tF (GA)

tFG(A)

F (tG(A))

This is checked by applying Hom(B,−). The adjunctions used to define the com-

position yield precisely the adjunction to define the curved arrow. This shows (a).

For (b) we dualize (5.3) and replace B with FB, i.e.

Hom(FB, SFA)∨ ∼= Hom(FA,FB) ∼= Hom(A,B)

∼= Hom(B,SA)∨ ∼= Hom(FB,FSA)∨.

If we apply this chain of isomorphisms to ηFA,FB(Ff), we obtain

ηFA,FB(Ff) 7→ Ff 7→ f 7→ ηA,B(f) 7→ FηA,B(f).

By definition, the resulting dual map f̃ := FηA,B(f) satisfies

f̃(g) = 〈f, F−1g〉

for all g ∈ Hom(FB,FSA). Applied to g = Ff ′ this yields

f̃(Ff ′) = 〈f, f ′〉.
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On the other hand, we have by construction f̃ = ((tAF )−1)∨ (ηFA,FB(Ff)). Thus

〈Ff, (tAF )−1 ◦ Ff ′〉 = ηFA,FB(Ff)((tAF )−1 ◦ Ff ′)

=
(
((tAF )−1)∨ (ηFA,FB(Ff))

)
(Ff ′)

= f̃(Ff ′)

= 〈f, f ′〉

as desired. �

Let G be a finite group acting on D. Given an object (A, φ) in DG we claim that

the collection

(5.4) φ′g : SA
Sφg−−→ SgA

tAg−→ gSA

for all g ∈ G is a G-linearization of SA. Indeed, consider the diagram

SA SgA gSA

SghA gShA

ghSA.

Sφg

Sφgh
Sgφh

tAg

gSφh
thAg

tAgh

gtAh

The relation we need to check (given in (3.1)) is the commutativity of the outer

triangle. Since tg is a natural transformation the upper right square commutes.

The upper left triangle commutes since it is obtained by applying S to the diagram

(3.1) for the linearization φ. The lower right triangle commutes by the functoriality

of tF in F implied by Lemma 5.1.

For any morphism (A, φ) → (B,ψ) given by a morphism α : A → B in D the

morphism Sα : SA→ SB is G-invariant with respect to the the G-linearizations of

SA and SB just defined. Hence we obtain an equivariant morphism Sα : (SA, φ′)→
(SB,ψ′). This yields a functor

S̃ : DG → DG, (A, φ) 7→ (SA, φ′), α 7→ S(α)

which by construction satisfies pS̃ = Sp.

Proposition 5.2. The functor S̃ together with the restriction of ηA,B to the G-

invariant part defines a Serre functor on DG. Equivalently for any two objects

(A, φ) and (B,ψ) in DG we have bifunctorial isomorphisms

ηA,B : Hom(A,B)G
∼=−→ (Hom(B,SA)G)∨

where the G-action on the left is defined by the linearizations φ, ψ and the G-action

on the right is defined by the linearizations ψ and φ′ (as in (5.4)).
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Proof. The action of g ∈ G on Hom(B,SA) defined by ψ and φ′ is

f ′ 7→ S(φg)
−1 ◦ (tAg )−1 ◦ gf ′ ◦ ψg.

Hence for any f ∈ Hom(A,B) we obtain

〈f, g · f ′〉 = 〈f, S(φg)
−1 ◦ (tAg )−1 ◦ gf ′ ◦ ψg〉

= 〈ψg ◦ f ◦ φ−1
g , (tAg )−1 ◦ gf ′〉

= 〈g−1ψg ◦ g−1f ◦ g−1(φ−1
g ), (tgA

g−1)−1 ◦ g−1(tAg )−1 ◦ f ′〉

= 〈(ψg−1)−1 ◦ g−1f ◦ φg−1 , f ′〉

= 〈g−1 · f, f ′〉

where we have used (5.1) and (5.2) in the second and Lemma 5.1 (b) and (a) in

the third and fourth equality respectively. Hence the action on Hom(B,SA) with

respect to ψ, φ′ is dual to the action on Hom(A,B) with respect to φ, ψ. This

implies the claim. �

6. Hochschild cohomology

In this section we discuss how Hochschild cohomology can be used to describe

equivariant categories. The definition requires us to work with enhanced categories,

for which we take as model dg-categories (another, in characteristic 0 equivalent,

choice would be stable ∞ categories as used in the work of Perry [15]).

Throughout let C be a pre-triangulated dg-category over C.

6.1. Definition. Let Func(C, C) be the dg-category of functors C → C where mor-

phisms are natural transformations. The Hochschild cohomology of C with values

in a functor φ : C → C is defined by

HH•(C, φ) :=
⊕
i∈Z

HomFunc(C,C)(idC , φ[i])[−i].

The (absolute) Hochschild cohomology of C is

HH•(C) = HH•(C, idC).

6.2. Equivariant category. Every equivalence F : C → C induces (functorially) a

morphism on Hochschild cohomology by conjugation,

F∗ : (idC
t−→ idC [i]) 7→ (F idCF

−1 FtF−1

−−−−→ F idC [i]F
−1) ∼= (idC

FtF−1

−−−−→ idC [i]).

In particular, a group action on C induces a group action on Hochschild cohomology.

By work of Perry, we have the following description of the Hochschild cohomology

of the equivariant category CG.



ON EQUIVARIANT DERIVED CATEGORIES 29

Theorem 6.1. ([15, Thm. 4.4]) Let a finite group G act on C via the equivalences

ρg : C → C for all g ∈ G. Then we have

(6.1) HH•(CG) =

⊕
g∈G

HH•(C, ρg)

G

where G acts on the right by conjugation.

The cohomology group

TrC(g) = HH•(C, ρg) =
⊕
i

HomFunc(C,C)(idC , ρg[i])[−i]

is called the categorical trace of g with respect to the given G-action [9]. If the

element h ∈ G commutes with g, then we have an induced action of h on TrC(g).

The 2-characters of the representation are

χρ(g, h) = Tr(h|TrC(g))

where the trace is taken in the supercommutative sense.9

Corollary 6.2. Assume HH•(C, ρg) is finite-dimensional for all g. Then

e(HH•(CG)) =
1

|G|
∑
gh=hg

χρ(g, h).

Proof. If a finite group G acts on a vector space V , then

dimV G =
1

|G|
∑
g∈G

Tr(g|V ).

Applying this to the expression in Theorem 6.1 yields the claim. �

In the decomposition (6.1) an element h acts by HH•(C, ρg) → HH•(C, ρhgh−1).

Hence we may rewrite

(6.2) HH•(CG) =
⊕
c

Vc, where Vc =

(⊕
g∈c

HH•(C, ρg)

)G
and c runs over all conjugacy classes of G.

Recall that the group of characters G∨ acts on the equivariant category CG. The

following describes the induced action on HH•(CG).

Lemma 6.3. For every χ ∈ G∨ we have χ|Vc = χ(c)idVc.

Proof. If a natural transformation t : idC → idC [i] is G-invariant, then tA : A→ A[i]

is G-invariant for every (A, φ) ∈ CG. Hence t lifts to the natural transformation

(6.3) t̃ : idCG → idCG [i]

9In physics language these are the h-twisted, g-twined characters of the representation.
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defined by t̃(A,φ) := tA. Since t̃(A,φ) does not depend on the linearization, but only

on the underlying object A, we find for all χ ∈ G∨ that

(χt̃χ−1)(A,φ) = χt̃χ
−1(A,φ) = χt̃(A,χ

−1φ) = t̃(A,φ).

Hence, t̃ is G∨-invariant and the claim is proven for the conjugacy class of the unit.

More generally, consider an element h ∈ G in the center of G. As in the proof of

Proposition 3.3 the functor ρh : C → C lifts to the functor

ρ̃h : CG → CG, (A, φ) 7→ (ρhA, ρhφ).

Let t : idC → ρh[i] be a G-invariant natural transformation. As before, t lifts to a

natural transformation t̃ : idCG → ρ̃h[i] with t̃(A,φ) = tA.

Consider the natural transformation Φh : idCG → ρ̃h defined by

(Φh)(A,φ) = φh : A→ hA.

Unlike before, this morphism depends on the linearization: For every character χ

we have (Φh)(A,χφ) = χ(h)φh, therefore

(Φh)χ(A,φ) = χ(h)(Φh)(A,φ).

Consider now the composition

t̃ρ̃h−1 ◦ Φh−1 : idCG → ρ̃h−1 → idCG [i]

which under the isomorphism of Lemma 6.1 is precisely the Hochschild cohomology

class corresponding to t. Then we have(
χ(t̃ρ̃h−1 ◦ Φh−1)χ−1

)(A,φ)
= χ

(
t̃ρ̃h−1 ◦ Φh−1

)χ−1(A,φ)

=
(
t̃ρ̃h−1 ◦ Φh−1

)χ−1(A,φ)

= (t̃ρ̃h−1)χ
−1(A,φ) ◦ (Φh−1)χ

−1(A,φ)

= (t̃ρ̃h−1)(A,φ) ◦ χ−1(h−1) · (Φh−1)(A,φ)

= χ(h) · (t̃ρ̃h−1 ◦ Φh−1)(A,φ).

We finally consider the general case given by a conjugacy class c. By tracing

through the isomorphism of Lemma 6.1 (compare also to the proof of Proposi-

tion 4.5) one checks that a G-invariant natural transformation

t =
⊕
h∈c

th : idC →
⊕
h∈c

ρh

corresponds to the transformation10∑
h∈c

t̃hρ̃wh−1 ◦ Φh−1 : idCG → idCG .

The claim follows now by the same argument as before. �

10One checks that the left hand side is G-invariant for any (A, φ) ∈ CG and hence defines a
well-defined natural transformation of idCG .
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6.3. Hochschild homology and Serre functors. From now on we assume that

the category C is equipped with a Serre functor S. The Hochschild homology of C
is then defined by

HH•(C) := HH•(C, S)

By Lemma 5.1 (or, more precisely, its analogue for dg-categories) any equivalence

F : C → C commutes with the Serre functor S in a canonical way. Hence, F acts on

Hochschild homology by conjugation11

F∗ : HH•(C)→ HH•(C), a 7→ FaF−1.

Moreover, arguing as in Section 5 shows that the Serre functor S lifts to a Serre

functor S̃ on the equivariant category CG.

Remark 6.4. The existence of Serre functors on the equivariant category can also

be argued more abstractly using the notions of ’smooth’, ’proper’ and ’dualizable’

dg-categories for which we refer to Part I of [16]. This proceeds as follows.

Let C be a smooth and proper dg-category, for example the bounded derived dg-

category of coherent sheaves on a smooth and proper variety. Then C is dualizable

and hence admits a Serre functor S, see [16, Sec. 4.6]. If we have a finite group G act-

ing on C, then since the morphisms in the equivariant category CG are precisely the

G-invariant morphisms in C, it is immediate that CG is again proper. We claim that

CG is also smooth: Indeed, we need to show that idInd(CG) ∈ Func(Ind(CG), Ind(CG))

is a compact object. By [1, Lem. 3.18] or [15, Lem. 3.6] we have Ind(CG) = Ind(C)G
and combining with [15, Lem. 4.7] this yields an isomorphism

Func(Ind(CG), Ind(CG)) ∼= Func(Ind(C), Ind(C))G×G.

By [15, Lem. 3.7] it suffices then to show that the image of idInd(CG) under the

forgetful morphism Func(Ind(C), Ind(C))G×G → Func(Ind(C), Ind(C)) is compact.

But according to [15, Lem. 4.7] this image is precisely ⊕g∈Gρg and hence as a finite

direct sum of compact objects compact (to show that ρg is compact, use that idInd(C)

is compact, and since ρg is invertible, left multiplication by it preserves compact

objects, therefore also ρgidInd(C) = ρg is compact).

Having that CG is both smooth and proper, we find that it is dualizable and hence

admits a Serre functor S̃. Using that by Yoneda’s Lemma every Serre functor is

characterized by the defining isomorphism Hom(τ(−,−))∨ ∼= Hom(−, S(−)), where

τ is the functor that swaps th two factors (see [16, Proof of Lem. 4.19]), one finds

that the Serre functor S̃ agrees with the one constructed in Section 5.

6.4. Calabi–Yau categories. Suppose now further that C is a Calabi–Yau cate-

gory, i.e. that there exists a 2-isomorphism

a : idC
∼=−→ S[−n]

11See also [15, Sec. 5] for the construction of this action in the dg-setting.
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for some integer n, called the dimension of C. In particular, we have

HH•(C) ∼= HH•(C)[n].

We can ask under which conditions is the equivariant category CG again Calabi–Yau.

The answer is very natural and given as follows.

Lemma 6.5. If the homology class (a : idC
∼=−→ S[−n]) ∈ HH•(C) is invariant under

the action of G, then CG is Calabi–Yau of dimension n. Moreover, the induced

action of G∨ on HH•(CG) preserves the class of the Calabi–Yau form.

Proof. As in the proof of Lemma 6.3, if a is G-invariant, then the morphism

ã(A,φ) : (A, φ)→ (SA[−n], Sφ[−n])

given by aA : A→ SA[−n] defines a lift

ã : idCG → S̃[−n].

Similarly, the inverse of ã also lifts. Hence, ã is a 2-isomorphism.

Moreover, since ã is a lift of a G-invariant class, arguing as in the proof of

Lemma 6.3 shows that it is fixed by the action of G∨ by conjugaction. �

6.5. Hochschild and singular cohomology. Let X be a smooth projective va-

riety and let Ddg(X) be the dg-enhancement of Db(X). The Hochschild homology

and cohomology of X are defined by

HH•(X) = HH•(Ddg(X)), HH•(X) = HH•(Ddg(X)).

One has the Hochschild–Kostant–Rosenberg (HKR) isomorphism

HHn(D(X)) ∼=
⊕
p−q=n

Hq(X,Ωp
X).

Consider a Fourier–Mukai transform FME : Ddg(X) → Ddg(Y ) for a kernel E ∈
Ddg(X × Y ). If FME is an equivalence, this defines an isomorphism of Hochschild

homology by conjugation

FME,∗ : HH•(X)→ HH•(Y ), a 7→ FMEaFM
−1
E .

The kernel E also induces a morphism on singular cohomology

FME,∗ : H∗(X)→ H∗(Y ), α 7→ q∗(p
∗(α) · v(E))

where p, q are the projections of X × Y onto the factors and we let v(E) =

ch(E)
√

tdX denote the Mukai vector. By the main result of [6] the action of FME on

Hochschild and singular cohomology are compatible under the HKR isomorphism,

i.e. the following diagram commutes:

HH•(X) HH•(Y )

H∗(X,C) H∗(Y,C).

HKR

FME,∗

HKR

FME,∗
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In particular, in order to apply Lemma 6.5 to Ddg(X) it suffices to check the

invariance of the Calabi–Yau form on singular cohomology, i.e. that the element in

H0(X,ωX) = Hn,0(X,C)

corresponding to the isomorphism ωX ∼= OX is preserved by G.

7. Equivariant categories of elliptic curves

We illustrate some of the results of the previous sections by applying them to the

example of the derived category of coherent sheaves on an elliptic curve.

Let E be a non-singular elliptic curve and let G be a finite group which acts on

Db(E). By Lemma 2.4 the action is given by Fourier–Mukai transforms and hence

induces an action on cohomology. We assume that each g ∈ G fixes the Calabi–Yau

form, i.e. that the cohomological Fourier–Mukai transform FMEg ,∗ acts trivially on

H1,0(E). In this case we also say that the G-action on Db(E) is Calabi–Yau.

Our goal in this section is to prove the following:

Theorem 7.1. For any Calabi–Yau action of G on Db(E), the equivariant category

Db(E)G decomposes into finitely many derived categories of elliptic curves.

The subgroup of AutDb(E) acting trivially on cohomology is isomorphic to

(7.1) Z× E × Pic0(E)

where the first summand is identified with the shift by [2], the second one with

the pullback along translations and the last one with tensoring with degree 0 line

bundles. We first show that any Calabi–Yau action acts trivially on cohomology.

Lemma 7.2. For any Calabi–Yau action by a finite group G on Db(E) the induced

action on H∗(E,Z) is trivial.

Proof. Recall that auto-equivalences of elliptic curves induce Hodge isometries on

the integral cohomology lattice. Since H1(E,Z) is preserved by FMEg ,∗ and by

assumption the action on H1,0 is trivial, it follows that FMEg ,∗ acts trivially on

H1(E,Z).

The isometry FMEg ,∗ induces an isometry of H0(E,Z) ⊕ H2(E,Z) which, as a

lattice, is isometric to the hyperbolic plane U . We have AutU = Z2 × Z2. More-

over, only ±id can occur in our case, since the action of every auto-equivalence is

orientation-preserving. Let us denote this isometry by τ .

Let ι : E → E denote the morphism given by multiplication with −1. Observe

that the auto-equivalence F = [1] ◦ ι fixes H1(E,Z) and acts as −id on H0(E) ⊕
H2(E), hence its cohomological Fourier–Mukai transform yields τ . Given any auto-

equivalence F ′ : Db(E) → Db(E) which induces τ , the composition F ◦ F ′ acts

trivial on cohomology and hence lies in the subgroup (7.1). It follows that every

auto-equivalence inducing τ on cohomology has infinite order. Hence, it can never

be contained in the image of G in AutD. �
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Proof of Theorem 7.1. From the lemma it follows that the image of G in AutDb(E)

maps to E×Pic0(E). This shows that G preserves the category Coh(E) and hence

lifts to an action of a dg-enhancement of Db(E). By Theorem 4.8 we may assume

that the action is faithful. Moreover, by Lemma 6.5 the equivariant derived category

Db(E)G ∼= Db(Coh(E)G)

is again a 1-Calabi–Yau category. In particular, Coh(E)G is an indecomposable

1-Calabi–Yau abelian category.

To prove the claim we apply the classification [20, Thm. 1.1] of such categories.

More precisely, the proof of [20, Thm. 4.7] shows that as soon as Coh(E)G has

two non-isomorphic simple objects (i.e. objects T such that Hom(T, T ) = C), then

Coh(E)G is equivalent to the category Coh(E′) for some elliptic curve E′.

Hence we need to find two simple, non-isomorphic objects in Coh(E)G. Since G′

acts trivially on the stability manifold, we know from Section 4.4 that Db(Coh(E)G)

has again a stability condition satisfying the support property. In particular, finite

Jordan–Hölder filtrations of semistable objects exist. If, up to isomorphism, there

would only exist one simple object, then there would be only one stable object T in

Db(Coh(E)G). Since pq acts by multiplication by |G| on the numerical K-group of

Coh(E), this implies that p(E) generates up to finite index the numerical K-group

of E. However, clearly we have

Knum(E) = Z2

which gives a contradiction. �
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