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Abstract

The Segre cubic and Castelnuovo–Richmond quartic are two projectively dual hypersurfaces

in P4, with a long and rich history starting in the 19th century. We will explain how Kuznetsov’s

theory of homological projective duality lifts this projective duality to a relationship between

the derived category of a small resolution of the Segre cubic and a small resolution of the Coble

fourfold, the double cover of P4 ramied along the Castelnuovo–Richmond quartic.

Homological projective duality then provides a description of the derived categories of linear

sections, which we will describe to illustrate the theory. The case of the Segre cubic and Coble

fourfold is non-trivial enough to exhibit interesting behavior, whilst being easy enough to explain

the general machinery in this special and very classical case.
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1 Introduction
Projective duality has been a cornerstone of (algebraic) geometry since a long time, going back to

the 19th century and before. It provides a way to recover a projective variety from its set of tangent

hyperplanes in the dual projective space. For a modern treatment one is referred to [30, 62, 64].

An interesting example is provided by

1. the Segre cubic S
3
,
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the up to projective equivalence unique singular cubic threefold with the maximal number of

10 nodes, studied by Segre in 1887 [61]. An explicit description is recalled in (26). Its projective dual

is

2. the Castelnuovo–Richmond quartic CR
4
,

an explicit singular quartic threefold, whose equations are given in (28). It was studied by Casteln-

uovo in 1891 [15] and independently by Richmond in 1902 [60]. This threefold is also called Igusa
quartic1, because its modular properties were studied by Igusa in 1962 [36], The third main character

is

3. the Coble fourfold Cob,

the double cover 𝜋 : Cob → P4 ramied along CR
4
, thoroughly studied by Coble in his 1929 book

[17]. We will discuss some of the many interesting geometric and modular properties of S
3
, CR

4

and Cob in Section 3.

Recently Kuznetsov has introduced a homological version of projective duality [43]. The original

motivation is to study derived categories of linear sections, and it has blossomed into a rich theory of

“homological projective geometry” [47, 48, 56] where classical constructions in projective geometry

(such as cones and joins) have an analogous construction on the level of derived categories. For an

introduction to the theory one is referred to [45, 46, 63].

The theory roughly states that, for a morphism 𝑓 : 𝑋 → P(𝑉 ) where 𝑋 is a smooth projective

variety the derived category of a linear section 𝑋 ×P(𝑉 ) P(𝐿) for some 𝐿 ⊆ 𝑉 is described in terms

of a homological projective dual variety 𝑓 ♮ : 𝑋 ♮ → P(𝑉 ∨) (possibly noncommutative) and its dual

linear sections. To make this possible we consider a semiorthogonal decomposition of Db (𝑋 ) which
is compatible with O𝑋 (1) = 𝑓 ∗OP(𝑉 ) (1) in a suitable way, a so-called Lefschetz decomposition. The
general theory is developed in the geometric setting in [43], and in complete generality without

geometricity conditions in [56]. We will briey introduce the framework in Section 2.1.

The main result of the theory is the existence of a homological projective dual together with a

recipe to understand derived categories of hyperplane sections. The name refers to the fact that,

if 𝑋 is in fact a closed subvariety of P(𝑉 ), then the classical projective dual arises as the critical

locus of the dual morphism 𝑓 ♮ . However, whilst the theory provides an abstract existence result

it does not give an explicit geometric description of the dual in concrete situations (much like an

explicit description of the classical projective dual is usually hard to come by), which is necessary

to interpret the output of the machinery.

Instances in which the homological projective dual has a nice geometric description are listed in

[45], and include cases like quadrics, Grassmannians of lines (the Grassmannian–Pfaan duality,

which is still incomplete), or Veronese embeddings (the Veronese–Cliord duality).

The goal of this (mostly expository) paper is to give a case study of homological projective duality for

the classically relevant case of the Segre cubic S
3
. It has the benet that the linear sections appearing

are all well-known varieties, such as (smooth and singular) cubic surfaces, Kummer quartics, elliptic

curves as plane cubics and double covers. Because all the objects are commutative (in particular, no

need for noncommutative or categorical resolutions), reasonably small, completely classical, and

their derived categories are easy to describe the workings and the output of the abstract machinery

becomes tractable.

The main result The version of homological projective duality from [43] works for a mor-

phism 𝑋 → P(𝑉 ) where 𝑋 is smooth projective. Because the Segre cubic is singular, we will recall

1
This might be the more common name nowadays, but Dolgachev writes the following in [20, §10.3]: “The quartic

hypersurface isomorphic to CR
4
is often referred to in modern literature as an Igusa quartic (apparently, reference [23] is

responsible for this unfortunate terminology).” Therefore we will write Castelnuovo–Richmond quartic.
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in Section 3.1 a certain small resolution 𝜛 : 𝑋 → S
3
together with a natural map 𝑓 : 𝑋 → P(𝑉 )

which is the composition of the resolution and the closed immersion.

For its homological projective dual we will consider a small resolution of singularities 𝜌 : 𝑌 → Cob,
which induces a natural map 𝑔 : 𝑌 → P(𝑉 ∨). The short version of the main result is then:

Theorem 1. Let 𝑓 : 𝑋 → P(𝑉 ) be the composition of the small resolution 𝜛 and the inclusion of the
Segre cubic S

3
. Consider the Lefschetz structure from (41).

The homological projective dual is 𝑔 : 𝑌 → P(𝑉 ∨), where 𝑔 is the composition of the small resolution 𝜌

and the double cover ramied along the Castelnuovo–Richmond quartic.

In Theorem 12 we will give the precise version. The proof of this theorem is given in Section 3.2. It

is an application of homological projective duality for projective bundles [43, §8] which we will

recall in Section 2.2.

More interesting than the theorem itself are the applications of the machinery of homological

projective duality. Linear sections of 𝑋 and 𝑌 are easy to describe and often have a very classical

interpretation. The description of their derived categories is performed in Section 4.

Comparison with homological projective duality for quadrics Arguably the easiest non-

trivial case of homological projective duality is that of quadrics [49]. On the other hand, the

homological projective dual of a smooth cubic threefold is very complicated, as explained in

Section 3.3, and the classical projective dual is highly singular hypersurface of degree 24 (by (27)).

However, the many singularities of the Segre cubic make its dual hypersurface tractable. This,

together with the existence of a rectangular Lefschetz decomposition for a small resolution, and

an understanding of the geometry in very classical terms, make it possible to prove Theorem 1,

with a statement analogous to that of odd-dimensional quadrics, except that it involves singular

hypersurfaces of degrees 3 and 4, and double covers thereof. We will recall homological projective

duality for quadrics in Example 6, and the reader is invited to compare this description to the

statement of Theorem 12.

A second Lefschetz decomposition The input for homological projective duality is not just the

morphism 𝑓 : 𝑋 → P(𝑉 ), one also needs to specify a Lefschetz structure on Db (𝑋 ). In the context

of homogeneous varieties this leads to the search for minimal Lefschetz centers [27, 51], which
are in some sense optimal: their homological projective duals will be as small as possible. Many

examples of homological projective duality are considered for minimal Lefschetz centers.

The Lefschetz decomposition in Theorem 1 is rectangular, so the Lefschetz center is in particular

minimal, so optimal from the point-of-view of homological projective duality.

But we can construct a second rectangular Lefschetz decomposition. We will rst do this by using a

dierent small resolution of S
3
in Proposition 11. Then in Proposition 31 we will construct another

rectangular Lefschetz decomposition using a modular interpretation of S
3
and its resolutions in

terms of quiver representations. We will compare the Lefschetz centers in Proposition 33, and leave

a description of the homological projective dual for further work.

Conventions Throughout 𝑘 will be an algebraically closed eld of characteristic 0.

Acknowledgements We would like to thank Sasha Kuznetsov for many interesting discussions,

and suggesting this particularly nice approach to homological projective duality of the Segre cubic.

This expository writeup can also be seen as a (very late) oshoot of the online learning seminar

on homological projective duality, organised by Daniel Huybrechts in the spring of 2020 at the

University of Bonn, and we would like to thank him for setting this up in very trying times. The
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2 Homological projective duality
We will now give a brief introduction to homological projective duality, and discuss the case of

projective bundles. For more information the reader is referred to [45, 63], or the original [43]. In

our presentation we will include the noncommutative picture from [56].

2.1 Lefschetz categories and homological projective duality
Let 𝑋 be a smooth and proper variety over 𝑘 , let 𝑉 be a nite-dimensional vector space, and

let 𝑓 : 𝑋 → P(𝑉 ) be a morphism. We set O𝑋 (1) = 𝑓 ∗OP(𝑉 ) (1).

A Lefschetz center of Db (𝑋 ) is an admissible subcategory A0 of Db (𝑋 ), for which

• there exist admissible subcategories A1, . . . ,A𝑚−1 of Db (𝑋 ),

• which t into a chain of admissible subcategories

(1) 0 ⊆ A𝑚−1 ⊆ . . . ⊆ A1 ⊆ A0

such that there exists a semiorthogonal decomposition

(2) Db (𝑋 ) = 〈A0,A1 (1), . . . ,A𝑚−2 (𝑚 − 2),A𝑚−1 (𝑚 − 1)〉.

Here we write A𝑖 (𝑖) for the image of A𝑖 under the tensor product with O𝑋 (𝑖). The A𝑖 are the

Lefschetz components, and the semiorthogonal decomposition in (2) is a Lefschetz decomposition
of Db (𝑋 ). One can moreover show that the choice of A0 determines all the components A𝑖 ⊆ A0.

The main motivation for this denition is that, if one takes a hyperplane 𝐻 ⊆ P(𝑉 ) such that the

“hyperplane section” 𝑋 ×P(𝑉 ) 𝐻 has dimension
2
dim𝑋 − 1, one gets an induced semiorthogonal

decomposition

(3) Db (𝑋 ×P(𝑉 ) 𝐻 ) = 〈C𝐻 ,A1 (1),A2 (2), . . . ,A𝑚−2 (𝑚 − 2),A𝑚−1 (𝑚 − 1)〉

where one can restrict the subcategories A𝑖 to admissible subcategories for the hyperplane section,

and preserve their semiorthogonality as long as one discards A0. The category C𝐻 is by denition

the right orthogonal to the restricted decomposition.

The homological projective dual The main construction of homological projective duality

is a family of categories over P(𝑉 ∨), the dual projective space whose points correspond to the

hyperplanes 𝐻 , whose bers are the categories C𝐻 . To make this construction, we consider the

universal hyperplane section H ⊂ P(𝑉 ) × P(𝑉 ∨) and set H(𝑋 ) := 𝑋 ×P(𝑉 ) H. One can show that

there exists a P(𝑉 ∨)-linear3 semiorthogonal decomposition

(4) Db (H(𝑋 )) = 〈Db (𝑋 )♮,A1 (1) � Db (P(𝑉 ∨)), . . . ,A𝑚−1 (𝑚 − 1) � Db (P(𝑉 ∨))〉.

HereDb (𝑋 )♮ is dened as the right orthogonal to the “standard” components, andwe have surpressed

some of the notation for the embedding functors. The category Db (𝑋 )♮ is P(𝑉 ∨)-linear, and one

can construct a canonical Lefschetz structure on it, whose Lefschetz center B0 is equivalent to the

Lefschetz center A0.

2
Without this condition one needs to take the derived ber product. We will discuss derived ber products in Section 4.

3
To be taken in the sense of [44, §2.6], i.e. it commutes with tensor products of pullbacks along H(𝑋 ) → P(𝑉 ∨) of

objects in Db (P(𝑉 ∨) .
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The category Db (𝑋 )♮ is not necessarily the derived category of a variety. But if it is we make the

following denition.

Denition 2. We say that the homological projective dual to 𝑓 : 𝑋 → P(𝑉 ) equipped with a Lefschetz
decomposition is a morphism 𝑓 ♮ : 𝑋 ♮ → P(𝑉 ) such that

• Db (𝑋 ♮) is equipped with a Lefschetz decomposition,

• there exists a P(𝑉 ∨)-linear Fourier–Mukai functor from Db (𝑋 ♮) to Db (H(𝑋 )), i.e. the kernel
needs to live in the derived category of the ber product (𝑋 × 𝑌 ) ×P(𝑉 )×P(𝑉 ∨) 𝑄 where 𝑄 is

the incidence variety,

which induces a Lefschetz equivalence Db (𝑋 ♮) � Db (𝑋 )♮ , i.e. an equivalence which also gives an

equivalence of Lefschetz centers, between the canonical Lefschetz center from the construction and

the Lefschetz center from the rst point.

For the theory to work it is not actually necessary that 𝑓 ♮ : 𝑋 ♮ → P(𝑉 ) is really a morphism from a

(smooth proper) variety 𝑋 ♮
to the dual projective space. This will rarely be the case in fact. Rather

it suces to treat Db (𝑋 )♮ as an enhanced triangulated category, which is linear over P(𝑉 ∨). One
can then just formally consider this as the homological projective dual. The general machinery of

[56] makes this possible, and proves the existence of a homological projective dual without any

geometricity conditions.

We can now discuss the two main parts of the main theorem of homological projective duality [43,

Theorem 6.3].

First part of the main theorem: Dual Lefschetz decompositions Homological projective

duality is indeed a duality, so its output is again a derived category with a Lefschetz structure to

which the machinery can be applied again.

The Lefschetz structure on Db (𝑋 )♮ is the dual Lefschetz decomposition4

(5) Db (𝑋 )♮ = 〈B𝑛−1 (1 − 𝑛), . . . ,B1 (−1),B0〉

for some Lefschetz center B0 which is equivalent to A0. The length 𝑛 is given in [43, equation (11)]

and reads

(6) 𝑛 := dim𝑉 − 1 −max{𝑖 | A𝑖 = A0}.

The relationship between the A𝑖 and B𝑗 can be described as follows. The chain of inclusions (1)

allows one to obtain semiorthogonal decompositions

(7) A𝑖 = 〈𝔞𝑖 ,A𝑖+1〉 = . . . = 〈𝔞𝑖 , . . . , 𝔞𝑚−1〉

and the categories 𝔞𝑖 are the primitive categories of the Lefschetz decomposition. The categories B𝑗

are built using the same primitive categories, namely there exist semiorthogonal decompositions

(8) B𝑗 = 〈𝔞0, . . . , 𝔞dim𝑉−𝑗−2〉.

In all examples mentioned in this paper, except Example 6, the Lefschetz decomposition is in fact

rectangular: A0 = . . . = A𝑚 . This means that there is but one non-zero primitive subcategory,

𝔞0 = . . . = 𝔞𝑚−2 = 0 and 𝔞𝑚−1 = A0. We have that 𝑛 = dim𝑉 − 𝑛, and the dual Lefschetz

decomposition is also rectangular.

4
We will not go into the details of left and right homological projective duality: by [56, §7.4] these notions agree because

we are working with smooth and proper varieties.

5



Second part of the main theorem: Linear sections The main application of homological

projective duality is to provide a description of the derived category of a linear section of 𝑋 , in

terms of the Lefschetz decomposition and the derived category of the dual linear section of 𝑋 ♮
. We

will from now on write 𝑌 = 𝑋 ♮
.

For this we consider a linear subspace 𝐿 ⊆ 𝑉 , so that we can consider 𝐿⊥ ⊆ 𝑉 ∨
, and dene

(9) 𝑋𝐿 := 𝑋 ×P(𝑉 ) P(𝐿), 𝑌𝐿⊥ := 𝑌 ×P(𝑉 ∨) P(𝐿⊥).

For now we will assume that 𝐿 ⊆ 𝑉 is admissible, i.e. that 𝑋𝐿 and 𝑌𝐿⊥ have their expected dimension,

so

(10) dim𝑋𝐿 = dim𝑋 − dim𝑘 𝐿
⊥, dim𝑌𝐿⊥ = dim𝑌 − dim𝑘 𝐿.

We comment in Remark 3 on what to do in general.

With this setup, the second part of the main theorem of homological projective duality states that

the derived categories of 𝑋𝐿 and 𝑌𝐿⊥ have induced semiorthogonal decompositions

(11)

Db (𝑋𝐿) = 〈C𝐿,Adim𝑘 𝐿⊥ (1), . . . ,A𝑚−1 (𝑚 − dim𝑘 𝐿
⊥)〉,

Db (𝑌𝐿⊥ ) = 〈B𝑛−1 (dim𝑘 𝐿 − 𝑛), . . . ,Bdim𝑘 𝐿 (−1),C𝐿〉.

The important observation is that they have the component C𝐿 in common. So understanding

a semiorthogonal decomposition for one variety gives information on the semiorthogonal de-

composition of a possibly very dierent variety, of “complementary dimension”. This of course

requires a decent enough understanding of the homological projective dual variety, and a way to

understand C𝐿 .

Remark 3. The admissibility condition that 𝑋𝐿 and 𝑌𝐿⊥ from (9) are of expected dimension can be

removed using methods from derived algebraic geometry, provided that one takes the derived ber
products

(12) 𝑋𝐿 := 𝑋 ×L
P(𝑉 ) P(𝐿), 𝑌𝐿⊥ := 𝑌 ×L

P(𝑉 ∨) P(𝐿
⊥).

This is worked out in [56]. From now on 𝑋𝐿 and 𝑌𝐿⊥ refer to these derived ber products.

To explicitly compute the derived ber product𝑋𝐿 we take a locally free resolution ofOP(𝑉 ) -modules

of either O𝑋 or OP(𝐿) which has the structure of a dg algebra of, and take the tensor product with

of dg algebras instead of the tensor product of algebras in the formation of the ber product. In this

way we obtain a derived scheme structure on the ordinary ber product. We will discuss how to do

this in practice in Section 4.

Let us now illustrate these results in two examples, which also explain how to build intuition for

the structure of the homological projective dual.

Example 4. The easiest example of a Lefschetz decomposition is provided by Beilinson’s exceptional

collection [5]

(13) Db (P(𝑉 )) = 〈OP(𝑉 ) ,OP(𝑉 ) (1), . . . ,OP(𝑉 ) (dim𝑉 − 1)〉

where one takes 𝑓 : P(𝑉 ) → P(𝑉 ) the identity morphism, and takes as Lefschetz center

(14) A0
:= 〈OP(𝑉 )〉.

Because a hyperplane section (and linear section) is always just a lower-dimensional projective space,

for which the restricted decomposition is again a full exceptional collection, all the categories C𝐻

(and C𝐿) are zero, because the part in the semiorthogonal decomposition (3) (and (11)) determined

6



by the A𝑖 already generates the derived category of the section. In fact, the homological projective

dual of projective space (with respect to this choice of Lefschetz center!) is just the zero category.

More interesting to consider is an inclusion of vector spaces 𝑊 ⊂ 𝑉 and the resulting mor-

phism 𝑓 : P(𝑊 ) ↩→ P(𝑉 ), using Beilinson’s collection for P(𝑊 ) and Lefschetz center (14). Rea-

soning as in the case of𝑊 = 𝑉 considered before, one can see that the homological projective

dual is supported on P(𝑊 ⊥) ⊂ P(𝑉 ∨): for a point ℎ outside P(𝑊 ⊥) corresponding to a hyper-

plane 𝐻 ⊂ P(𝑉 ) the intersection 𝐻 ∩P(𝑊 ) has the expected dimension and the restricted collection

is again a full exceptional collection. One can in fact show that the homological projective dual is
the inclusion P(𝑊 ⊥) ⊂ P(𝑉 ∨) [45, §4.1].

Whilst especially the rst example looks quite pathological and the generalisation isn’t too com-

plicated either, it turns out that their relative version (i.e. for projective bundles) is exactly the

ingredient we need for homological projective duality for the Segre cubic, and also a convenient

way to prove homological projective duality for P(𝑊 ) ⊂ P(𝑉 ). We will discuss this relative version

in detail in Section 2.2.

Remark 5.We also emphasise that in Example 4 we consider a Lefschetz decomposition with

respect to OP(𝑉 ) (1). If one instead considers the second Veronese embedding P(𝑉 ) ↩→ P(Sym2𝑉 ),
it is possible to consider Lefschetz structures with respect to OP(𝑉 ) (2). This is done in [42], and

gives rise to a description of the derived categories of intersections of quadrics, as these correspond

to linear sections with respect to this choice of line bundle.

Instead of describing homological projective duality for the Veronese embedding in more detail we

describe homological projective duality for quadrics, as there are some interesting parallels between

this situation and that of the Segre cubic.

Example 6. Let 𝑄 ⊆ P(𝑉 ) be a smooth quadric hypersurface. On an odd-dimensional quadric 𝑄

there exists a unique spinor bundle S, on an even-dimensional quadric 𝑄 there exist two spinor
bundles S+, S− which are related by the isomorphism S± ⊗ O𝑄 (1) � S∨± or S∨∓ depending on the

parity of dim𝑄/2. By mutating Kapranov’s decomposition from [38] these bundles give rise to the

Lefschetz decompositions

(15) Db (𝑄) =
{
〈S,O𝑄 ,O𝑄 (1), . . . ,O𝑄 (dim𝑄 − 1)〉 dim𝑄 odd,

〈S+,O𝑄 , S+ (1),O𝑄 (1), . . . ,O𝑄 (dim𝑄 − 1)〉 dim𝑄 even.

In both cases the Lefschetz centerA0 is generated by two objects, namelyA0 = 〈S,O𝑄 〉 resp. 〈S+,O𝑄 〉.
In the odd-dimensional case we have that A1 = . . . = Adim𝑄−1 = 〈O𝑄 〉, whilst in the even-

dimensional case we have that A0 = A1, and A2 = . . . = Adim𝑄−1 = 〈O𝑄 〉.

To heuristically understand the homological projective dual, observe that a general hyperplane

section 𝑄 ∩ 𝐻 is again a smooth quadric hypersurface. Here 𝐻 = P(𝐿) for subspace 𝐿 ⊆ 𝑉 of

codimension 1, so that P(𝐿⊥) = pt. The answer depends on the parity of dim𝑄 ∩ 𝐻 .

If the hyperplane section is odd-dimensional, then the restriction from the Lefschetz collection on𝑄

provides the full exceptional collection in (15) because the restriction of a spinor bundle is again

a spinor bundle. This suggests that the homological projective dual is supported on the classical

projective dual, because only for singular hyperplane sections a non-trivial contribution can exist.

If the hyperplane section is even-dimensional, then the restriction from the Lefschetz collection

on 𝑄 provides all the twists of O𝑄∩𝐻 in (15), but not the two spinor bundles. These are orthogonal

exceptional objects, so that we may interpret C𝐻 in (3) as corresponding to a double cover with

discriminant the classical projective dual.

This heuristic picture can be made fully rigorous, and this is indeed the main result of [49]. It is

quite rare that the homological projective dual is supported on the classical projective dual, as
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this requires the full exceptional collection to restrict to a full exceptional collection for a smooth

hyperplane section. Whilst it will turn out not to be the case for the Segre cubic, it is conjecturally

true for the Cartan cubic in P26, see [7, Conjecture 1.2].

2.2 Homological projective duality for projective bundles
We will now introduce the version of homological projective duality we will need to study the

Segre cubic. To do so we will rst recall the setup of [43, §8], which sets up a relative homological

projective duality, and then we will explain how this leads to the absolute version.

Let 𝑆 be a smooth variety, and E a vector bundle of rank 𝑟 on 𝑆 , such that the dual E∨
is globally

generated. Let 𝑋 = P𝑆 (E) be the projective bundle over 𝑆 parameterising line subbundles of E, with

structure morphism

(16) 𝑝 : 𝑋 → 𝑆,

and let O𝑝 (−1) denote the tautological line subbundle of 𝑝∗E such that 𝑝∗O𝑝 (1) = E∨
.

We will also need a map to some projective space. For this we take

(17) 𝑉 := H
0 (𝑋,O𝑝 (1))∨ = H

0 (𝑆,E∨)∨,
so that we can consider the morphism

(18) 𝑓 : 𝑋 → P(𝑉 ).

Orlov’s projective bundle formula gives a Db (𝑆)-linear Lefschetz decomposition

(19) Db (𝑋 ) = 〈A0,A1 (1), . . . ,ArkE−1 (rkE − 1)〉
with respect to O𝑋 (1) := O𝑝 (1), such that the Lefschetz center is A0 = 𝑝∗ (Db (𝑆)). We have

(20) A0 = . . . = ArkE−1 = 𝑝∗ (Db (𝑆)),
so this is a rectangular Lefschetz decomposition. Observe that O𝑝 (1) � 𝑓 ∗OP(𝑉 ) (1), so that we also

have a Lefschetz decomposition with respect to (18).

The (relative) homological projective dual to 𝑋 = P𝑆 (E) is constructed using the orthogonal bundle,

i.e. we set

(21) E⊥
:= ker(𝑉 ∨ ⊗ O𝑆 → E∨)

and consider 𝑌 := P𝑆 (E⊥), with
(22) 𝑞 : 𝑌 → 𝑆.

Equip the derived category with the (again rectangular) Db (𝑆)-linear Lefschetz structure
(23) Db (𝑌 ) = 〈BrkE⊥−1 (− dim𝑉 + rkE + 1), . . . ,B1 (−1),B0〉
with respect to O𝑌 (1) := O𝑞 (1), where B0 = 𝑞∗ (Db (𝑆)).

Again we will need a map to some projective space. In the denition of 𝑌 we have 𝑞∗O𝑞 (1) = E⊥,∨

where

(24) 0 → E → 𝑉 ⊗ O𝑆 → E⊥,∨ → 0

is the dual of the dening sequence (21) so that H
0 (𝑌,O𝑞 (1)) = H

0 (𝑆,E⊥,∨) = 𝑉 , and we get the

morphism

(25) 𝑔 : 𝑌 → P(𝑉 ∨).
As before, we have that 𝑔∗OP(𝑉 ∨) (1) � O𝑞 (1) so (23) is also a Lefschetz decomposition with respect

to (25) In [43, Corollary 8.3] homological projective duality for projective bundles is then stated
5
as

5
There is a typo in the statement: in the notation of op. cit. one has to require that 𝐸∗

is generated by global sections.
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follows.

Theorem 7 (Relative version). Let 𝑆 be a smooth variety, and E a vector bundle of rank 𝑟 on 𝑆 such
that E∨ is globally generated. The relative homological projective dual of 𝑝 : 𝑋 → 𝑆 (where𝑋 := P𝑆 (E))
with respect to the Lefschetz structure from (19), is 𝑞 : 𝑌 → 𝑆 (where 𝑌 := P𝑆 (E⊥)) with respect to the
Lefschetz structure from (23).

This relative version of homological projective duality is explained in [43, Remark 6.28]: instead

of the morphism 𝑋 → P(𝑉 ) the morphism 𝑋 → P(𝑉 ) × 𝑆 is used. One can apply this relative

version of homological projective duality using arbitrary morphisms of vector bundles 𝜙 : F → E∨
,

as explained in [43, Theorem 8.8]. This e.g. leads to a derived equivalence for certain ops, see

Corollary 8.9 in op. cit.

Rather we want to consider homological projective duality for the morphism (18), so that we will

only consider linear sections given by 𝐿 ⊆ 𝑉 .

Corollary 8 (Absolute version). With the setup of Theorem 7, dene𝑉 := H
0 (𝑆,E∨)∨. The homological

projective dual of 𝑋 → P(𝑉 ) with respect to the Lefschetz structure from (19) is 𝑌 → P(𝑉 ∨), with
respect to the Lefschetz structure from (23).

In the setting of Theorem 7 and Corollary 8 the homological projective dual is again a very explicit

variety (which a priori does not need to be true at all). In order to apply this absolute version

of homological projective duality, one needs to determine E⊥
and understand the induced mor-

phism 𝑌 → P(𝑉 ∨).

The interested reader is referred to [11] for other applications of Corollary 8, where this setup is

the main ingredient in the proof of homological projective duality for determinantal varieties. The

geometric input in op. cit. is provided by the Springer resolution of the space of matrices of bounded

rank, so that E⊥
has an interpretation in terms of representation theory. In the next section we will

describe the geometric input for the Segre cubic.

3 The Segre cubic, the Castelnuovo–Richmond quartic and
the Coble fourfold

The Segre cubic S
3

The Segre cubic S
3
lives in P4, but we can dene it more symmetrically in P5

as the subvariety dened by

(26)


0 =

5∑︁
𝑖=0

𝑥𝑖 ,

0 =

5∑︁
𝑖=0

𝑥3𝑖 .

We will consider S
3
as embedded in the invariant hyperplane given by the rst equation. This is a

more invariant description than a description directly within P4, as this exhibits S
3
as the zero locus

of the rst and third symmetric polynomial, and it is the starting point to prove that Aut(S
3
) � 𝔖6.

The Segre cubic is characterised as the unique cubic threefold with ten nodes, up to projective

equivalence. For more about its projective geometry we refer to Section 4.1.

It appears often in algebraic geometry. For instance, by Coble [18] (see also [20, Theorem 9.4.8])

S
3
is isomorphic to the GIT quotient (P1)6 // SL2. If one blows up the 10 nodes on S

3
the resulting

variety isM0,6, the Deligne–Mumford compactication of the moduli space of stable rational curves

with 6 marked points [16, Remark 2.33].
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It is also the Igusa compactication of the moduli space of principally polarised abelian surfaces

with a level-2 structure, as explained in [32, Theorem IV.1.4]. One can moreover show that S
3
is

the Satake compactication of 𝑌 ∗ (
√
−3) [34, Theorem 1], the arithmetic quotient (Γ(

√
−3) \ B3)∗,

where Γ(
√
−3) is the corresponding lattice in U(3, 1,OQ(√−3) ) and B3 is the complex 3-ball.

Another modular interpretation of S
3
and some of its resolutions, closely related to the GIT descrip-

tion, will be discussed in Section 5.

What is relevant to us about the Segre cubic is that its projective dual is of degree 4, which is

remarkably low. Indeed, the Plücker–Teissier formula [20, Theorem 1.2.5] for a hypersurface 𝑋 of

degree 𝑑 in P𝑛 with𝑚 nodal singularities (and no other singularities) gives

(27) deg𝑋∨ = 𝑑 (𝑑 − 1)𝑛−1 − 2𝑚

for the projectively dual hypersurface 𝑋∨
. We will describe the projective dual of the Segre cubic

explicitly next. On the other hand, the projective dual of a smooth cubic threefold is a highly singular

hypersurface of degree 24, and we explain in Section 3.3 why homological projective duality in this

case is not very enlightening.

The Castelnuovo–Richmond quartic CR
4

The Castelnuovo–Richmond quartic CR
4
(or Igusa

quartic) in P5 can be dened as the complete intersection by the two equations

(28)


0 =

5∑︁
𝑖=0

𝑥𝑖 ,

0 =

(
5∑︁

𝑖=0

𝑥2𝑖

)
2

− 4

5∑︁
𝑖=0

𝑥4𝑖 .

We will consider CR
4
as embedded in the invariant hyperplane given by the rst equation. By

[20, Theorem 9.4.12] CR
4
is projectively dual to S

3
. It is singular along 15 lines, which inter-

sect in 15 points, with 3 lines through each point, and 3 points on each line, giving rise to the

Cremona–Richmond conguration. We will further discuss its singularities and projective geometry

in Section 4.1.

This quartic threefold is part of the pencil of𝔖6-invariant quartics in the invariant hyperplane given

by

(29)

(
5∑︁

𝑖=0

𝑥2𝑖

)
2

− 1

𝑡

5∑︁
𝑖=0

𝑥4𝑖 ,

as explained in [16, §1]. For 𝑡 = 1/4 we obtain CR
4
, whilst 𝑡 = 1/2 is the Burkhardt quartic. Other

values of 𝑡 exhibit their own interesting behavior.

As for S
3
, the Castelnuovo–Richmond quartic has a rich modular theory. From the projective

duality S
3
and CR

4
are birational. This manifests itself for instance as an interpretation of CR

4
as

the compactication of the moduli of 6 ordered points on a conic, and hence also has a quotient

description as (another) GIT quotient (P1)6 // SL2. It is also the Satake compactication of the

moduli space of principally polarised abelian surfaces with a level-2 structure, and it is the Satake

compactication 𝑋 ∗ (2) [34, Theorem 1’], the arithmetic quotient (Γ(2) \ S2)∗, where Γ(2) is the
corresponding lattice in Sp(4,Z), and S2 is the Siegel space of degree 2.

The Coble fourfold Cob The last remaining player to be introduced in this section is the Coble

fourfold Cob, dened as the double cover

(30) 𝜋 : Cob → P4

10



branched along the Castelnuovo–Richmond quartic.

The Coble fourfold also appears often in algebraic geometry. For instance, by Coble [18] (see [23] for

a modern account) Cob is isomorphic to the GIT quotient (P2)6 //SL3, and thus related to the moduli

space of marked cubic surface (with the marking corresponding to the ordering of the 6 points being

blown up). It also has a modular interpretation as the Baily–Borel compactication of an arithmetic

quotient, parametrising K3 surfaces which are double covers of P2 branched along an (ordered) set

of 6 lines [33, Theorem 3.5.6].

The geometry of its singularities is the same as that of the Castelnuovo–Richmond quartic.

3.1 Resolutions of singularities
In order to apply the theory of homological projective duality as described in Section 2 we need to

suitably replace the Segre cubic (and the Coble fourfold), because the input (at least in the version

from [43]) is required to be smooth and proper. We comment on a variation without resolution in

Section 3.3.

The small resolutions of the Segre cubic were classied by Finkelnberg in [24]. There are two

resolutions in the overview table in §5 of op. cit. whose automorphism group is𝔖5, corresponding

to type IV and VI. The geometry of one of these resolutions is linked to a resolution of the Coble

fourfold Cob, and we will now recall this from [16, §2.2]. An alternative discussion of the same

geometry is given in [19, §5]. We comment on the other resolution in Remark 10.

The quintic del Pezzo surface The key in the description of the two resolutions is the del Pezzo

surface 𝑆 of degree 5. There is (up to isomorphism) a unique such surface, isomorphic to the blowup

of P2 in 4 points, no three of which are collinear. Its automorphism group is𝔖5, whose irreducible

representations are described in Table 1. The most important representation for us will be the

irreducible 5-dimensional representation𝑊 with trivial determinant. It arises, together with𝑊 ⊗−1,
as the summands of Ind

𝔖5

𝔖4

𝑈 where𝑈 is the unique 2-dimensional irreducible representation of𝔖4.

As recalled in [16, §2.2], the canonical embedding

(31) 𝑆 ↩→ P(H0 (𝑆, 𝜔∨
𝑆 )) = P(

∧
2𝑉 ) = P5

involves the unique irreducible𝔖5-representation

∧
2𝑉 of dimension 6. From this description of 𝑆 as

the (non-complete) intersection of 5 quadrics, we obtain the irreducible 5-dimensional representation

(32) H
0 (P5, I𝑆 (2))∨ =𝑊

as per [16, Remark 2.31].

Two manifestations of the Grassmannians will play a role in what follows: Gr(2,𝑊 ∨) and Gr(3,𝑊 ).
These come equipped with universal subbundles of ranks 2 respectively 3, which will be denoted U2

resp. U3. We have the universal short exact sequences

(33) 0 → U2 →𝑊 ∨ ⊗ OGr(2,𝑊 ∨) → Q3 → 0

and

(34) 0 → U3 →𝑊 ⊗ OGr(3,𝑊 ) → Q2 → 0.

Using the embedding P(∧2𝑉 ) ↩→ P(∧3𝑊 ) from [16, Lemma 2.29] we can describe 𝑆 as the

intersection of Gr(3,𝑊 ) in its Plücker embedding with P(∧2𝑉 ). We remark that the linear 𝔖5-

invariant embedding P(∧2𝑉 ) ↩→ P(∧3𝑊 ) corresponds to the irreducible representation 𝑉 ∧𝑉

appearing as the only six-dimensional irreducible representation in

∧
3𝑊 , see also [22, §2.4].
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description notation dimension partition determinant

trivial representation 1 1 1

sign representation −1 1 −1

standard representation 𝑉 4 −1

twisted standard representation 𝑉 ⊗ −1 4 −1

half of induced from𝔖4 𝑊 5 1

other half of induced from𝔖4 𝑊 ⊗ −1 5 −1

exterior square of standard

∧
2𝑉 6 −1

Table 1: Irreducible representations of𝔖5

This allows us to restrictU2 andU3 to 𝑆 ⊆ Gr(2,𝑊 ∨) � Gr(3,𝑊 ), and we will use the same notation

for these rank 2 and 3 bundles on 𝑆 .

Small resolutions of the Segre cubic and Coble fourfold We now dene the two main vari-

eties, whose homological projective duality we will prove in Theorem 12. Namely we set

(35) 𝑋 := P𝑆 (U2), 𝑌 := P𝑆 (U3).

Because U2 respectively U3 are naturally subbundles of𝑊 ∨ ⊗ O𝑆 respectively𝑊 ⊗ O𝑆 we obtain

two (𝔖5-equivariant) morphisms:

(36) 𝑓 : 𝑋 → P(𝑊 ∨), 𝑔 : 𝑌 → P(𝑊 ).

The following proposition explains our interest in these projective bundles. It is a combination of

[16, Lemma 2.32 and Proposition 2.44].

Proposition 9 (Cheltsov–Kuznetsov–Shramov). The natural map 𝑓 : 𝑋 → P(𝑊 ∨) has the Segre
cubic S

3
as its image, and exhibits 𝑋 as a small resolution 𝜛 : 𝑋 → S

3
.

The Stein factorisation of the natural map 𝑔 : 𝑌 → P(𝑊 ) has the Coble fourfold Cob as intermediate
variety, and it is the composition of a small resolution 𝜌 : 𝑌 → Cob and the Coble fourfold’s dening
double cover ramied in the Castelnuovo–Richmond quartic CR

4
.

We can summarise the situation in the following diagrams: for the Segre cubic S
3
we have

(37)

𝑋 = P𝑆 (U2) P(𝑊 ∨)

𝑆 S
3

𝑝

P1-bundle

𝑓

𝜛

small

resolution

𝑖

and the Coble fourfold Cob (and Castelnuovo–Richmond quartic CR
4
) we have

(38)

CR
4

𝑌 = P𝑆 (U3) P(𝑊 )

𝑆 Cob
𝑞

P2-bundle

𝑔

𝜌

small

resolution

𝜋

2:1
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We will discuss some properties of these resolutions in Section 4, as we need to understand the

properties of the bers in order to describe how (derived categories of) linear sections of 𝑋 and 𝑌

are related.

Remark 10. All small resolutions of the Segre cubic are all obtained by blowing up the 10 nodes,

and contracting a factor of every exceptional P1 × P1. This gives 210 resolutions, which can be

grouped into 13 isomorphism classes [24]. Of these, 6 correspond to smooth projective varieties, the

other 7 correspond to smooth proper non-projective varieties. They are all related via ops, hence

by [12, Theorem 3.9] (or the more general [13, Theorem 1.1]) they are all derived equivalent.

The preferred resolution used here, and taken from [16], has the benet of giving an easy-to-

describe Lefschetz structure for which we can immediately apply an existing result to determine

the homological projective dual.

One could also use another resolution. By [57, Proposition 4.6] the blowup 𝑋 ′
:= Bl5P

3
of 5 points

in general position realises the second isomorphism type of small resolutions of S
3
with auto-

morphism group 𝔖5. This is again a weak Fano threefold of index 2, whose half-anticanonical

divisor O𝑋 ′ (− 1

2
K𝑋 ′) in this description is O𝑋 ′ (2𝐻 − 𝐸), where the 𝐸𝑖 are the exceptional divisors,

we set 𝐸 :=
∑

5

𝑖=1 𝐸𝑖 , and 𝐻 is the pullback of OP3 (1). It is basepoint-free, and denes a morphism

to P4 with image the Segre cubic, which realises it as the resolution of S
3
.

Proposition 11. Let 𝑋 ′ → S
3
be the small resolution of the Segre cubic S

3
↩→ P(𝑊 ∨) given by

[57, Proposition 4.6], so that 𝑋 ′ = Bl5 P
3 of 5 points in general position. Let O𝑋 ′ (𝐻 ) be the pullback

of OP3 (1), and 𝐸1, . . . , 𝐸5 the exceptional divisors. Then

(39)

Db (𝑋 ′) = 〈O𝑋 ′,O𝑋 ′ (𝐻 ),O𝐸𝑖 | 𝑖 = 1, . . . , 5;

O𝑋 ′ (2𝐻 − 𝐸),O𝑋 ′ (3𝐻 − 𝐸);O𝐸𝑖 (𝐸𝑖 ) | 𝑖 = 1, . . . , 5〉,

is a rectangular Lefschetz decomposition of Db (𝑋 ′) � Db (𝑋 ).

Proof. From Orlov’s blowup formula we have the full exceptional collection

(40) Db (𝑋 ′) = 〈O𝑋 ′,O𝑋 ′ (𝐻 ),O𝑋 ′ (2𝐻 ),O𝑋 ′ (3𝐻 );O𝐸𝑖 ,O𝐸𝑖 (−𝐸𝑖 ) | 𝑖 = 1, . . . , 5〉.

Now right mutate 〈O𝑋 ′ (2𝐻 ),O𝑋 ′ (3𝐻 )〉 with respect to 〈O𝐸𝑖 | 𝑖 = 1, . . . , 5〉 to obtain (39). Here we

have used that O𝐸𝑖 (𝐻 ) = O𝐸𝑖 and O𝐸𝑖 (𝐸 𝑗 ) = O𝐸 if 𝑖 ≠ 𝑗 . �

We will come back to this Lefschetz structure in Proposition 32. Observe that 𝑋 and 𝑋 ′
are related

by ops, hence we have by [13, Theorem 1.1] we have that Db (𝑋 ) � Db (𝑋 ′).

3.2 Homological projective duality for the Segre cubic
We can now state and prove themain theorem, whichwas stated somewhat imprecisely in Theorem 1.

Because the small resolutions discussed in Section 3.1 are both described by projective bundles over

the quintic del Pezzo surface 𝑆 we only need to check the relation between the dening bundles to

establish homological projective duality.

Theorem 12. Let 𝑋 → S
3
be the small resolution of the Segre cubic S

3
↩→ P(𝑊 ∨) given in Proposi-

tion 9, so that 𝑝 : 𝑋 = P𝑆 (U2) → 𝑆 is a P1-bundle over the del Pezzo surface 𝑆 of degree 5. Consider the
morphism 𝑓 : 𝑋 → P(𝑊 ∨), and the rectangular Lefschetz decomposition

(41) Db (𝑋 ) = 〈𝑝∗ (Db (𝑆)), 𝑝∗ (Db (𝑆)) ⊗ O𝑋 (1)〉

where O𝑋 (1) = 𝑓 ∗ (OP(𝑊 ∨) (1)).
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Its homological projective dual is 𝑔 : 𝑌 → P(𝑊 ), where 𝑌 → Cob is the small resolution of the Coble
fourfold given in Proposition 9, so that 𝑞 : 𝑌 = P𝑆 (U3) → 𝑆 is a P2-bundle over 𝑆 . The dual Lefschetz
decomposition is given by

(42) Db (𝑌 ) = 〈𝑞∗ (Db (𝑆)) ⊗ O𝑌 (−2), 𝑞∗ (Db (𝑆)) ⊗ O𝑌 (−1), 𝑞∗ (Db (𝑆)) ⊗ O𝑌 〉

where O𝑌 (1) = 𝑔∗ (OP(𝑊 ) (1)).

Proof. By the setup in Section 2.2 we need to check that U2 and U3 are related by taking the

orthogonal bundle (21). But they are restrictions of the universal subbundle on the Grassmanni-

ans Gr(2,𝑊 ∨) � Gr(3,𝑊 ). Before the restriction we have that U∨
2
on Gr(2,𝑊 ∨) in (33) is identied

withQ2 onGr(3,𝑊 ) in (34) by this isomorphism, so thatU⊥
2
is identiedwithU3 by this isomorphism.

It now suces to restrict this identication to 𝑆 , and apply Corollary 8. �

Classical projective duality The motivation for the terminology homological projective duality
is explained on [43, page 159], at least when the homological projective dual is an honest variety.

Namely if 𝑋 → P(𝑉 ) is a closed immersion (so that it has a projective dual 𝑋∨ ⊆ P(𝑉 ∨) in the usual

sense), then we have an equality of subsets of P(𝑉 ∨) between

• the projective dual 𝑋∨
;

• the critical locus of the homological projective dual variety 𝑌 → P(𝑉 ∨).

Here critical locus refers to the complement of the dense open locus where 𝑌 → P(𝑉 ∨) is smooth

(by generic smoothness). This allows homological projective duality to be interpreted as a categori-

cation, or homological version, of classical projective duality.

More generally, in [43, §7.4] a denition of 𝑋∨
is given when 𝑋 → P(𝑉 ) is not necessarily a closed

immersion. This is called the classical projective dual, a terminology explained by [43, Theorem 7.9].

This is further generalised to a noncommutative setting in [56, §7.5].

We can conclude with the following corollary, which shows that replacing the Segre cubic with

a small resolution in order to apply the theory of homological projective duality did not change

the link with classical projective duality. Observe that by dimension reasons the critical locus

of 𝑌 → P(𝑊 ) is the critical locus of Cob → P(𝑊 ), which is CR
4
.

Corollary 13. The classical projective dual of 𝑓 : 𝑋 → P(𝑊 ∨) is the Castelnuovo–Richmond quar-
tic CR

4
⊆ P(𝑊 ). The classical projective dual of 𝑔 : 𝑌 → P(𝑊 ) is the Segre cubic S

3
⊆ P(𝑊 ∨). In

particular, for all 𝐿 ⊆𝑊 ∨ the following are equivalent:

• 𝑋𝐿 is singular;

• 𝑌𝐿⊥ is singular.

Here we take the derived ber product in the sense of derived algebraic geometry, so that smooth

and singular are to be taken in the sense of [56, §4.7].

Remark 14.We observe that for the equivalence in Corollary 13 it is important that we use

resolutions and derived ber products. As we will explain in Lemma 19, for a point 𝐻 ∈ P(𝑊 ) we
have that the corresponding hyperplane section of S

3
is smooth if and only if it lies outside the union

of CR
4
and the 10 hyperplanes 𝑃𝑖 corresponding to the 10 nodes, making the classical projective

dual too big. But for a point 𝐻 of 𝑃𝑖 \CR4
we have that 𝐻 ∩Cob = 𝑌𝐿⊥ = {2 points} is smooth (and

the ber product agrees with the derived ber product). By considering the resolution 𝑋 → P(𝑊 ∨)
instead of S

3
⊆ P(𝑊 ∨) the hyperplane section 𝑋𝐻 is smooth as we will explain in Section 4.2.

Secondly, for most points in the singular locus of CR
4
the ordinary ber product is a smooth rational

curve by [16, Proposition 2.44]. But the relative dimension of the morphism 𝑌 → P(𝑊 ) is 0, not 1.
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Remark 15. If 𝐿 is admissible in the sense of [43, Denition 6.2], i.e. both derived ber products

are in fact underived because they are of the expected dimension, [43, Theorem 7.12] gives an

identication of the singularity categories of𝑋 ×P(𝑊 ∨) P(𝐿) and𝑌 ×P(𝑉 ∨) P(𝐿⊥). If 𝐿 is not admissible

(because at least one ber product does not have the expected dimension) then for the derived ber

product(s) one has to use a notion of singularity category from derived algebraic geometry. We will

not go into this.

3.3 What about other cubic threefolds?
We now discuss some possible variations on the theme of homological projective duality for our

chosen resolution of the Segre cubic.

Smooth cubics If one would like to study homological projective duality for a smooth cubic

threefold, one runs into the following problem. Let 𝑋 denote a smooth cubic threefold for now, then

we have the semiorthogonal decomposition

(43) Db (𝑋 ) = 〈R𝑋 ,O𝑋 ,O𝑋 (1)〉

where R𝑋 is a
5

3
-Calabi–Yau category [41, Corollary 4.1].

Whilst it is not clear whether R𝑋 is indecomposable, the decomposition (43) cannot in any way

be rened to an interesting Lefschetz decomposition. By considering the Hodge numbers of 𝑋

together with the additivity of Hochschild homology we see that the longest length of an exceptional

collection is 4, so A1 can at most consist of 2 exceptional objects, hence the interesting component

(if such a Lefschetz decomposition exists at all) consists of 7 exceptional objects with a complicated

structure.

If on the other hand we were to take 〈R𝑋 ,O𝑋 〉 as the initial block, so that A1 = 〈O𝑋 〉, then the only

contribution to the derived category of a hyperplane section is a single exceptional object. Hence

the homological projective dual is a very complicated object, and we refer to [3, §4] for a description

of derived categories of hypersurfaces in terms of gauged Landau–Ginzburg models, which can be

used as a possible starting point for a description of the interesting component (which in this case

is a
4

3
-Calabi–Yau category consisting of 8 exceptional objects).

One could argue that homological projective duality is a balancing act, where one tries to make the

input data and the resulting homological projective dual have roughly equal complexity, so that

one can leverage information about one to understand the other. The resolution of the Segre cubic

seems to provide a particularly good solution to this balancing act.

The unresolved Segre cubic The smoothness assumption for the initial input which is present

in [43] has been removed in [56]. But currently lacking an interesting Lefschetz decomposition

for Db (S
3
) to start the machinery with we have focused in this article on the smooth case. It would

be interesting to nd a similar Lefschetz decomposition for the Segre cubic, or rule out the existence

of one.

Resolutions of singular cubic threefolds with fewer nodes If instead of the Segre cubic or a

smooth cubic threefold one wishes to analyse homological projective duality for (a resolution of) a

cubic threefold with 1 to 9 nodes, one can consider the description and classication obtained in

[25]. A starting point for the description of the derived categories of the singular cubics is provided

by [37].

Starting with the 1-nodal case, by [10, Proposition 4.6] the derived category of a small resolution

has a semiorthogonal decomposition in terms of the 2 exceptional line bundles O𝑋 ,O𝑋 (1) and the
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derived category of a genus 4 curve. This brings us in a situation similar to that of the smooth cubic

and the homological projective dual is seemingly a complicated object.

But if the nodal cubic threefold has a determinantal presentation, we can bootstrap from homological

projective duality for determinantal varieties [11].

Consider rst the 6-nodal case, which is the general determinantal cubic threefold and corresponds to

the case 𝐽9 in [25]. The derived category of a small resolution has a semiorthogonal decomposition

in terms of the 2 exceptional line bundles O𝑋 ,O𝑋 (1) and 4 additional exceptional objects [11,

Remark 6.10]. Assume for now that we can turn these 6 exceptional objects into a rectangular

Lefschetz decomposition, then the theory provides 3 exceptional objects for the derived category

of a hyperplane section. A general section is a smooth cubic surface, for which a full exceptional

collection contains 9 exceptional objects. Therefore the general ber of the homological projective

dual 𝑋 ♮ → P(𝑉 ∨) consists of 6 exceptional objects.

We can make this prediction precise by the following proposition, which also covers cases with

more nodes. We recall the setup for homological projective duality for determinantal hypersurfaces

from [11, §5, §6.3] for this specic instance.

Setup 16. Let 𝐴 and 𝐵 be 3-dimensional vector spaces, and set 𝑉 := 𝐴 ⊗𝑘 𝐵. Let 𝑋 ⊂ P(𝑉 ∨) = P8
be the cubic determinantal 7-fold corresponding to the locus of 3 × 3-matrices of rank at most 2.

Let 𝑋 → 𝑋 be its Springer resolution, given as the projectivisation of Ω1

P(𝐴) (1) ⊗𝑘 𝐵. We will

consider the composition

(44) 𝑓 : 𝑋 → P(𝑉 ∨).

On the dual side we let

(45) 𝑔 : 𝑌 = P2 × P2 = P(𝐴) × P(𝐵) ↩→ P(𝑉 )

be the Segre embedding. These have rectangular Lefschetz decompositions

(46)

Db (𝑋 ) = 〈A0,A1 (1),A2 (2),A3 (3),A4 (4),A5 (5)〉
Db (𝑌 ) = 〈B2 (−2),B1 (−1),B0〉

with Lefschetz center A0 = B0 = Db (P(𝐴)), and by [11, Theorem 3.5] we have homological

projective duality for 𝑋 and 𝑌 with respect to these choices. This result is another instance of

homological projective duality for projective bundles given in Section 2.2.

We need to reduce the case of cubic in P8 to that of a cubic in P4, and deduce homological projective

duality for this linear section.

Proposition 17. Let 𝐿 ⊂ 𝑉 ∨ be a 5-dimensional linear subspace, such that 𝑌 ∩ P(𝐿⊥) = ∅, and
hence 𝑋 ∩ P(𝐿) is a 6-nodal determinantal cubic threefold.

The linear projection 𝑔𝐿 : 𝑌 → P(𝐿∨) is homological projective dual to the restriction 𝑓𝐿 : 𝑋𝐿 → P(𝐿),
where Db (𝑌 ) and Db (𝑋𝐿) are equipped with the rectangular Lefschetz decompositions

(47)

Db (𝑋𝐿) = 〈A0,A1 (1)〉
Db (𝑌 ) = 〈B2 (−2),B1 (−1),B0〉

with A0 = B0 = Db (P2).

Proof. This follows from applying homological projective duality for linear systems with a base

locus [14, Theorem 1.1] (see also [48, §A.2] for an abstract version with empty base locus), with the
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roles of 𝑋 and 𝑌 reversed in the notation of op. cit. The linear section 𝑋𝐿 is the crepant resolution

of a determinantal cubic threefold, and 𝑌𝐿⊥ = ∅ by our assumption. These are smooth, and satisfy

the expected dimension condition, hence we obtain the stated homological projective duality for 𝑋𝐿

and 𝑌 = Bl𝑌𝐿⊥ 𝑌 . �

We have that the linear projection 𝑌 = P2 × P2 → P(𝐿) = P4 is a 6 : 1-cover, ramied along the

classical projective dual of the cubic. By the Plücker–Teissier formula (27) this is a hypersurface of

degree 12. Because this is a 6 : 1-cover, we have that a smooth hyperplane section of 𝑋 has 3 ex-

ceptional objects coming from the Lefschetz center A0 = Db (P2), and 6 orthogonal exceptional

objects from the cover, which is an incarnation of Orlov’s blowup formula for the smooth cubic

surface 𝑋𝐿 � Bl6 P
2
.

We can also consider a general plane section of 𝑋𝐿 , which is a smooth cubic curve. On the dual

side we have a line section of 𝑌𝐿⊥ , which is a 6 : 1-cover of P1 ramied along 12 points, and by the

Riemann–Hurwitz formula this is a curve of genus 1. Homological projective duality thus provides

an equivalence of categories for these curves by (11).

4 Applying homological projective duality
In this section we will describe linear sections of the resolved Segre cubic and its homological

projective dual. This illustrates how the abstract machinery describes derived categories of linear

sections, which in this setting have an explicit and classical description. We will describe two

methods for this:

• a bottom-up approach, starting from a linear section of S
3
resp. Cob, and then understanding

how the resolution aects the description;

• a top-down approach, starting from a linear section of 𝑋 resp. 𝑌 , and then understanding

how the restriction of the resolution can be interpreted.

We will be exhaustive in our discussion of hyperplane sections of the (resolved) Segre cubic in

Section 4.2, but restrict ourselves to only discussing some interesting examples in the other settings

in Section 4.3, as the amount of cases to be covered in a complete case-by-case analysis is large. For

the analysis we need to understand both the projective geometry of S
3
, CR

4
and Cob (which we

recall in Section 4.1) and the geometry of the resolutions dened in Section 3.1.

Before we do this we will explain the recipe of describing the derived category in the ideal situation,

when the resolutions do not play a role in the description.

Denition 18. We will say that 𝐿 ⊆𝑊 ∨
of dimension 2, 3, 4 is generic if

• P(𝐿) ∩ S
3
is smooth of dimension dim𝑘 𝐿 − 2, and it avoids the singular locus of S

3
;

• P(𝐿⊥) ∩ CR
4
is smooth of dimension 3 − dim𝑘 𝐿, and it avoids the singular locus of CR

4
.

What happens in this case is that P(𝐿) ∩ S
3
� 𝑋𝐿 and P(𝐿⊥) ×P(𝑊 ) Cob � 𝑌𝐿⊥ . This makes describ-

ing the output of homological projective duality using the bottom-up approach straightforward.

If dim𝑘 𝐿 = 1 then P(𝐿⊥) ∩CR
4
always hits the singular locus of the Castelnuovo–Richmond quartic

as we will explain in Section 4.1, so there is no generic 𝐿 ⊆𝑊 ∨
in this case.

We have summarised the description in Table 2. Let us explain what is written there. If dim𝑘 𝐿 = 2,

then on the Segre side we see that 𝑋𝐿 consists of 3 points, whilst on the Coble side we obtain a del

Pezzo surface 𝑌𝐿⊥ of degree 2 as the double cover of P(𝐿⊥) � P2 ramied in the smooth quartic

curve P(𝐿⊥) ∩ CR
4
which is isomorphic to the blowup Bl7P

2
of 7 points in general position. By (11)
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dim𝑘 𝐿 P(𝐿) ∩ S
3

P(𝐿⊥) ∩ CR
4

P(𝐿⊥) ×P(𝑊 ) Cob
Db (P(𝐿) ∩ S

3
) Db (P(𝐿⊥) ×P(𝑊 ) Cob)

2 3 points smooth quartic curve double cover of P2 ramied in quartic

3 orthogonal objects 10 = 7 + 3 exceptional objects

3 smooth cubic curve 𝐶 4 points double cover 𝐶 of P1 ramied in 4 points

Db (𝐶) Db (𝐶)
4 smooth cubic surface ∅ 2 points

9 = 7 + 2 exceptional objects 2 orthogonal objects

Table 2: Description of the generic situation

we get

(48)

Db (𝑋𝐿) = C𝐿 = 〈𝐸1, 𝐸2, 𝐸3〉
Db (𝑌𝐿⊥ ) = 〈B1 (−1),C𝐿〉 = 〈Db (𝑆), 𝐸1, 𝐸2, 𝐸3〉.

Here 𝐸1, 𝐸2, 𝐸3 are completely orthogonal exceptional objects. In fact, the composition𝑌𝐿⊥ ↩→ 𝑌 � 𝑆

obtained similarly to (67) exhibits 𝑌𝐿⊥ as Bl3 𝑆 , and thus the semiorthogonal decomposition induced

by homological projective duality can be interpreted as an instance of Orlov’s blowup formula.

If dim𝑘 𝐿 = 3, then on the Segre side we obtain a smooth cubic curve 𝑋𝐿 , whilst on the Coble side

we obtain a double cover 𝑌𝐿⊥ of P(𝐿⊥) � P1 ramied in the 4 points P(𝐿⊥) ∩ CR
4
, which is also a

curve of genus 1. By (11) we get

(49) Db (𝑋𝐿) � Db (𝑌𝐿⊥ )

as there are no contributions by the Lefschetz components on either side. By the reconstruction of

curves from their derived category (see e.g. [35, Corollary 5.46]) we even obtain 𝑋𝐿 � 𝑌𝐿⊥ .

If dim𝑘 𝐿 = 4, then on the Segre side we obtain a smooth cubic surface, whilst on the Coble side we

see that 𝑌𝐿⊥ consists of 2 points, as P(𝐿⊥) ∩ CR
4
= ∅. By (11) we get

(50)

Db (𝑋𝐿) = 〈C𝐿,A1 (1)〉 = 〈𝐸1, 𝐸2,Db (𝑆)〉
Db (𝑌𝐿⊥ ) = C𝐿 = 〈𝐸1, 𝐸2〉.

Here 𝐸1, 𝐸2 are completely orthogonal exceptional objects. As for the case of dim𝑘 𝐿 = 2 we can

consider the composition 𝑋𝐿 ↩→ 𝑋 � 𝑆 obtained similarly to (67) and this exhibits 𝑋𝐿 as Bl2 𝑆 , so

the same comment as for 𝑌𝐿⊥ with dim𝑘 𝐿 = 2 applies.

In what follows we will discuss what happens in the non-generic situation, and explain how the

resolutions 𝜛 : 𝑋 → S
3
and 𝜌 : 𝑌 → Cob change the resulting descriptions of (some) linear sections

and their derived categories.

4.1 The projective geometry of S
3
, CR

4
and Cob

We will now discuss the geometry of the Segre cubic, Castelnuovo–Richmond quartic and Coble

fourfold in more detail, to prepare for the description and (partial) classication of linear sections

of 𝑋 and 𝑌 .

Segre cubic The Segre cubic contains ten nodes 𝑝1, . . . , 𝑝10, which are the𝔖6-orbit of the point

(1 : 1 : 1 : −1 : −1 : −1). Moreover, S
3
contains exactly 15 planes, called Segre planes, dened as

(51) 𝑃𝜎 := {𝑥𝜎 (0) + 𝑥𝜎 (3) = 𝑥𝜎 (1) + 𝑥𝜎 (4) = 𝑥𝜎 (2) + 𝑥𝜎 (5) = 0}
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for 𝜎 ∈ 𝔖6. No three of the ten nodes are collinear, and each Segre plane contains exactly four of the

ten nodes. Each node is contained in exactly six Segre planes. This gives a (154, 106)-conguration.

Let us also mention two sets of hyperplanes in P5 (which dene hyperplanes in P(𝑊 ∨)). The rst
set is given by the 15 hyperplanes

(52) 𝑇𝑖, 𝑗 := {𝑥𝑖 − 𝑥 𝑗 = 0} 0 ≤ 𝑖 < 𝑗 ≤ 5,

whose intersection with S
3
is the Cayley cubic surface, the unique cubic surface with 4 nodes. The

other set of 15 hyperplanes is given by

(53) 𝐻𝑖, 𝑗 := {𝑥𝑖 + 𝑥 𝑗 = 0} 0 ≤ 𝑖 < 𝑗 ≤ 5,

which have the property that they each contain exactly three of the fteen Segre planes so that

their intersection with S
3
is the union of three projective planes.

Castelnuovo–Richmond quartic The Castelnuovo–Richmond quartic CR
4
is singular along

fteen lines ℓ1, . . . , ℓ15. The singular set of CR
sing

4
consists of fteen points 𝑞1, . . . , 𝑞15 dual to the 𝐻𝑖, 𝑗 .

and each 𝑞𝑖 is contained in 3 lines, so that each ℓ𝑖 intersects 6 other lines. This makes up the

Cremona–Richmond conguration, which has type (153, 153).

The Segre cubic and the Castelnuovo–Richmond quartic are projectively dual in the classical sense

and we will use the duality throughout the next section. We will therefore elaborate here a bit about

it.

There are ten hyperplanes 𝑃𝑖 ⊆ P(𝑊 ) which correspond to hyperplanes containing the nodes 𝑝𝑖 ∈ S
3
.

The hyperplanes 𝑃𝑖 intersect the Castelnuovo–Richmond quartic in a smooth quadric 𝑄𝑖 with non-

reduced structure.

The fteen singular lines of CR
4
are exactly the projective duals of the fteen Segre planes. Their

fteen intersection points are dual to the fteen hyperplanes 𝐻𝑖, 𝑗 ⊆ P(𝑊 ).

We can also describe the (rational) duality map

(54) 𝑑 : S
3
d CR

4
.

The map 𝑑 restricted to the complement of the fteen Segre planes is an isomorphism onto the

complement of the ten hyperplanes 𝑃𝑖 , i.e.

(55) 𝑑 : S
3
\

⋃
𝜎 ∈𝔖6

𝑃𝜎
∼→ CR

4
\

⋃
𝑖=1,...,10

𝑃𝑖 ,

see [33, Section 3.3.4]. There are several implications of this, from which we mention two.

Firstly, for two points 𝑥 ≠ 𝑦 ∈ S
3
the tangent hyperplanes T𝑥S3,T𝑦S3 agree if and only if both

points are contained in a common 𝑃𝜎 ⊂ S
3
and the line joining 𝑥 and 𝑦 passes through one of the

four nodes contained in 𝑃𝜎 . Secondly, any tangent hyperplane T𝑥S3 at a point 𝑥 ∈ S
3
\ ⋃

𝜎 ∈𝔖6

𝑃𝜎
does not contain a node.

Coble fourfold Recall that the Coble fourfold Cob was dened as the double cover 𝜋 : Cob → P4
branched along the Castelnuovo–Richmond quartic CR

4
. It follows from the denition that the

singular locus of Cob is isomorphic to the singular locus of CR
4
.

4.2 Hyperplane sections of the (resolved) Segre cubic
We can now describe hyperplane sections of 𝑋 and their derived categories using the analysis of

the projective geometry of S
3
and CR

4
and their resolutions.
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Bottom-up approach For this approach we consider hyperplane sections of S
3
, we have to

explain which type of singularities a hyperplane section can obtain, and then how the restriction of

the resolution interacts with the hyperplane section. Depending on the origin of the singularity, the

resolution will interact dierently with the hyperplane section. We have summarised the conclusions

in Table 3.

We write 𝐻 = P(𝐿) ⊂ P(𝑊 ∨), where 𝐿 ⊂𝑊 ∨
is a codimension-one subspace, whilst we denote the

projective dual by ℎ = pt = P(𝐿⊥) ∈ P(𝑊 ), and we will write

(56) 𝑋𝐻 := 𝑋 ×P(𝑊 ∨) P(𝐿), 𝑌ℎ := 𝑌 ×P(𝑊 ∨) P(𝐿⊥).

These are denoted 𝑋𝐿 and 𝑌𝐿⊥ in Section 2.

Lemma 19. A hyperplane section 𝐻 ∩ S
3
⊂ P(𝑊 ∨) is smooth if and only if

(57) ℎ ∈ P(𝑊 ) \
( ⋃
𝑖=1,...,10

𝑃𝑖 ∪ CR
4

)
.

Proof. This follows from classical projective duality for varieties with isolated nodal singularities.

Any hyperplane ℎ which lies in 𝑃𝑖 for some 𝑖 will inherit the node 𝑝𝑖 and any hyperplane ℎ ∈ CR
4

will be tangent to S
3
at some point. �

The restriction of the resolution 𝜌 in this case is an isomorphism and one obtains a smooth cubic

surface. This is precisely the generic situation already discussed in Section 4.1.

The following two lemmas describe the cases in which there is a single isolated singularity.

Lemma 20. A hyperplane section 𝐻 ∩ S
3
⊂ P(𝑊 ∨) is a one-nodal cubic surface if and only if

ℎ ∈ 𝑃𝑖 \ (CR4
∪ ⋃

𝑗≠𝑖 𝑃 𝑗 ) or ℎ ∈ CR
4
\ ⋃

𝑖=1,...,10 𝑃𝑖 .

Proof. Let us rst show that these two cases yield one-nodal cubic surfaces.

In the rst case, the point ℎ will lie in some 𝑃𝑖 and therefore the intersection S
3
∩ 𝐻 contains the

node 𝑝𝑖 . Since we assume that the hyperplane 𝐻 contains no other node, we also deduce that it

cannot be tangent at a point contained in a Segre plane, since such a hyperplane would contain

the Segre plane and therefore four nodes. Moreover, the duality map restricts to an isomorphism

between S
3
\⋃

𝜎 ∈𝔖6

𝑃𝜎 and CR
4
\⋃

𝑖=1,...,10 𝑃𝑖 and therefore the hyperplane ℎ ∈ 𝑃𝑖 cannot be tangent

at a point not contained in a Segre plane. To conclude, since the hyperplane ℎ does not lie on CR
4
,

the hyperplane 𝐻 does not acquire a singularity worse than a node at the point 𝑝𝑖 .

This also shows that a tangent hyperplane T𝑝S3 at a point 𝑝 ∈ S
3
\ ⋃

𝜎 ∈𝔖6

𝑃𝜎 can never contain

a node 𝑝𝑖 and is only tangent at the point 𝑝 . Indeed, the duality map shows that T𝑝S3 at a point
𝑝 ∈ S

3
\⋃

𝜎 𝑃𝜎 does not contain any of the ten nodes of the Segre cubic. Since the duality map is an

isomorphism when restricted to the complement of the Segre planes, we infer that it will only be

tangent at the point 𝑝 .

Conversely, if a hyperplane section is a one-nodal cubic surface, then it must intersect the Segre

cubic non-transversely or contain a node.

To nish the proof, just note that a hyperplane 𝐻 intersecting the Segre cubic at a general point

𝑝 ∈ 𝑃𝜎 not transversely will contain the whole Segre plane 𝑃𝜎 ⊂ 𝐻 . �

The two cases in Lemma 20 behave dierently with respect to the resolution 𝜌 . In the latter case,

the resolution is an isomorphism and we have a 1-nodal cubic surface. In the rst case, we blow up

the node of the cubic surface and end up with a weak del Pezzo surface.
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On the dual side, the picture is also twofold. In the latter case, the ℎ is contained in the smooth

locus of the Castelnuovo–Richmond quartic and

(58) 𝑌ℎ = Cob ×P(𝑊 ) ℎ = Spec𝑘 [𝜖]/(𝜖2).

In the rst case ℎ ∈ 𝑃𝑖 does not lie on CR
4
. Therefore

(59) 𝑌ℎ = {2 points}.

The last possible case for a hyperplane section 𝐻 ∩ CR
4
to have exactly one isolated singularity is

the following.

Lemma 21. The hyperplane section𝐻 ∩S
3
⊂ P(𝑊 ∨) is a cubic surface with an isolated A2-singularity

if and only if ℎ ∈ (CR
4
∩ 𝑃𝑖 ) \

⋃
𝑗≠𝑖 𝑃 𝑗 .

Proof. A point ℎ ∈ CR
4
∩𝑃𝑖 induces a hyperplane section𝐻 ∩S

3
such that 𝑝𝑖 ∈ 𝐻 ∩S

3
is a singularity

worse than an A1-singularity.

More precisely, the hyperplane 𝐻 will be at the node 𝑝𝑖 tangent to the smooth tangent cone

of the node. That means that the tangent cone of the point 𝑝𝑖 considered in the hyperplane

section 𝐻 ∩ S
3
is the cone over a smooth conic. We choose coordinates so that the node 𝑝𝑖 is

[1 : 0 : 0 : 0] ∈ 𝑃𝑖 � P
3

𝑥0:𝑥1:𝑥2:𝑥3
. Writing

(60) 𝑓 =

3∑︁
𝑖=0

𝑥𝑖
0
𝑓𝑖 (𝑥1, 𝑥2, 𝑥3)

with 𝑓𝑖 homogenous of degree 𝑖 , we have that 𝑓0 = 0 as 𝑝𝑖 ∈ S
3
and the point 𝑝𝑖 being singular

translates into 𝑓1 = 0. The above discussion shows that 𝑓2 is a singular conic and we can rewrite 𝑓

after projective transformation to have the form

(61) 𝑓 = 𝑥0 (𝑥21 + 𝑥2
2
) + 𝑓3 (𝑥1, 𝑥2, 𝑥3)

for 𝑓3 a homogenous polynomial of degree 3.

The cubic surface 𝐻 ∩ S
3
will only be singular at the point 𝑝𝑖 . Indeed, no tangent hyperplane at a

point outside the Segre planes contains a node and tangent hyperplanes at smooth points on Segre

planes lie on the singular locus of the Castelnuovo–Richmond quartic. Since CRsing

4
⊂ ⋃

𝑗≠𝑖 𝑃 𝑗 we

know that 𝐻 ∩ S
3
will neither be reducible nor contain any other node. This genericity implies

that 𝑓3 (𝑥1, 𝑥2, 𝑥3) denes a smooth elliptic curve inside the projective plane 𝑥0 = 0 and that the

completion of the local ring of the surface 𝐻 ∩ S
3
at 𝑝𝑖 is isomorphic to C[[𝑥1, 𝑥2, 𝑥3]]/(𝑥21 + 𝑥22 + 𝑥33)

showing that the isolated singularity is an A2-singularity.

For the converse, by Lemma 20 no tangent hyperplane at a point not lying on a Segre plane acquires

a worse singularity than a node. Moreover, tangent hyperplanes at smooth points lying on a Segre

plane produce reducible hyperplane sections.

Thus, a hyperplane 𝐻 such that 𝐻 ∩ S
3
has an A2-singularity must contain a node 𝑝𝑖 and therefore

ℎ must lie on some 𝑃𝑖 . Moreover, since the singularity is worse than nodal, ℎ is contained in the

intersection 𝑃𝑖 ∩ CR
4
.

To conclude, we need to show that ℎ ∉ 𝑃 𝑗 for 𝑗 ≠ 𝑖 . This follows as the cubic surface is assumed to

have a unique isolated singularity. �

Remark 22. In fact any hyperplane 𝐻 which is tangent at a node 𝑝𝑖 is either nowhere else tangent

and contains no other node or must contain a Segre plane. This follows from the above proof

together with the fact that CR
4
∩ 𝑃𝑖 ∩ 𝑃 𝑗 is the union of two non-reduced lines, and therefore is

contained in the singular locus of the Castelnuovo–Richmond quartic. For the latter claim, see [33,

Section 3.3.1].
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The small resolution of the Segre cubic produces a partial resolution for the A2 singularity, and we

end up with a nodal singularity.

Since we are again considering a point ℎ in the smooth locus of the Castelnuovo–Richmond quartic,

we have

(62) 𝑌ℎ = Cob ×P(𝑊 ) ℎ = Spec𝑘 [𝜖]/(𝜖2).

Next, we treat the case of several isolated singularities.

Lemma 23. Let 𝑟 ∈ {2, 3, 4}. A hyperplane section 𝐻 ∩ S
3
⊂ P(𝑊 ∨) is an 𝑟 -nodal cubic surface if and

only if ℎ ∈ P(𝑊 ) lies on exactly 𝑟 dierent hyperplanes 𝑃𝑖 ’s, but not on the Castelnuovo–Richmond
quartic. Such points ℎ ∈ P(𝑊 ) exist for all 𝑟 ∈ {2, 3, 4}.

Proof. Let us rst prove the if direction. For a point ℎ ∈ P(𝑊 ) which is contained in exactly 𝑟 of the

hyperplanes 𝑃𝑖 the intersection 𝐻 ∩ S
3
will contain exactly 𝑟 nodes of the Segre cubic. Moreover,

the intersection is transversal at all other points of the Segre cubic, since we assume that ℎ does not

lie on the singular locus of the Castelnuovo–Richmond quartic and therefore does not contain a

Segre plane (transversality outside the Segre planes again follows from (55)).

To prove the converse note that for a tangent hyperplane at a point of the Segre cubic we have

two possibilities. Either the point lies on a Segre plane and the hyperplane section will therefore

contain some 𝑃𝜎 . The second option is that the point does not lie on any of the Segre planes which

by Lemma 20 is always one-nodal. Remark 22 shows that such a hyperplane ℎ cannot lie on CR
4
,

since otherwise the hyperplane section would be a cone over an elliptic curve.

It remains to show that such hyperplanes exist. For this we can consider the hyperplanes 𝑇𝑖, 𝑗
which contain exactly four of the nodes and the intersection 𝑇𝑖, 𝑗 ∩ S

3
is isomorphic to the Cayley

cubic surface, the (unique up to isomorphism) cubic surface with four nodes. By what we have

already proven, we know that for each hyperplane 𝑇𝑖, 𝑗 there are exactly four distinct integers

𝑎, 𝑏, 𝑐, 𝑑 ∈ {1, . . . , 10} such that

(63) 𝑡𝑖, 𝑗 = 𝑃𝑎 ∩ 𝑃𝑏 ∩ 𝑃𝑐 ∩ 𝑃𝑑 ∈ P(𝑊 ) \ CR
4
.

Thus a general point of the plane 𝑃𝑎 ∩ 𝑃𝑏 corresponds to a hyperplane containing exactly two nodes

and a general point of 𝑃𝑎 ∩ 𝑃𝑏 ∩ 𝑃𝑐 yields a hyperplane containing exactly three of the nodes such

that the hyperplanes do not contain any Segre plane. �

Since all nodes of the hyperplane section were already nodes on the Segre cubic, they are resolved

by the restriction of 𝜌 and we again obtain a smooth weak del Pezzo surface.

On the dual side we have that ℎ ∉ CR
4
, so that we always obtain that 𝑌ℎ is 2 points. Hence either

by Orlov’s blowup formula for 𝑋𝐻 as an (iterated) blowup or homological projective duality we

obtain 9 exceptional objects in the hyperplane section.

Remark 24. The above cases of smooth, nodal and A2 singular cubic surfaces correspond exactly to

hyperplanes ℎ ∈ P(𝑊 ) such that ℎ does not lie on the singular locus of the Castelnuovo–Richmond

quartic.

Lemma 25. All other hyperplane sections 𝐻 ∩ S
3
yield reducible cubic surfaces which are either the

union of a plane and a quadric or the union of three Segre planes.

Proof. It is immediate from the above discussion that we have already exhausted all possibilities for

hyperplanes 𝐻 ⊂ P(𝑊 ∨) such that the corresponding point ℎ ∈ P(𝑊 ) does not lie on the singular

locus of the Castelnuovo–Richmond quartic. This yields the assertion. �
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We just remark that in the rst case the residual quadric is the hyperplane section of the tangent

cone of one of the nodes.

We will not provide an explicit description of 𝑋𝐻 , as this is a non-normal surface. On the dual

side something interesting happens with 𝑌ℎ : because ℎ lies in the singular locus of CR
4
we have

that ℎ∩Cob is a double point, but 𝑌ℎ is not of the expected dimension. By [16, Lemma 2.35] the ber

of 𝑌 → P(𝑊 ) over ℎ is either a line or a conic. This means we have to compute 𝑌ℎ as a derived ber

product. We will illustrate such a computation for a hyperplane section of 𝑌 instead, see Lemma 29

and the ensuing discussion.

Top-down approach It is also possible to directly consider hyperplane sections of 𝑋 and bers

of 𝜛 : 𝑌 → P(𝑊 ), using the description as projective bundles. Only a posteriori do we make the link

to the more classical picture of the singular varieties S
3
and Cob. We will only briey explain this

method, to avoid too much redundancy with the earlier discussion.

The hyperplane section of P(𝑊 ∨) corresponding to 𝐿 ⊂𝑊 ∨
gives a surjective morphism𝑊 ∨ → 𝑘 ,

so that the ber product 𝑋𝐿 corresponding to the hyperplane section

(64)

𝑋𝐿 𝑋

P(𝐿) P(𝑊 ∨)

𝑓

can be written as P𝑆 (R), where

(65) R := im(U2 → O𝑆 )

using the composition

(66) U2 ↩→𝑊 ∨ ⊗𝑘 O𝑆 � O𝑆 .

We need to understand what the degeneracy locus of the morphism U2 → O𝑆 is. The analysis is

similar to that of [16, Lemma 2.35]: the zero locus of a non-zero section 𝜎 ∈ H
0 (Gr(2,𝑊 ∨),U∨

2
)

is Gr(2, 4), and from the description 𝑆 = Gr(2,𝑊 ∨) ∩ P5 we see that there are 3 cases:

1. a 0-dimensional scheme 𝑍 of length 2;

2. a line 𝐿 ⊂ 𝑆 ;

3. a conic 𝐶 ⊂ 𝑆 .

In the rst case we get that R � I𝑍 and thus the composition

(67) 𝑋𝐻 � P𝑆 (I𝑍 ) ↩→ 𝑋 = P𝑆 (U2) � 𝑆

is equal to Bl𝑍 𝑆 → 𝑆 . This can now be compared to the results in Table 3: when 𝑍 is reduced the

position of the two points with respect to the 10 lines on 𝑆 determines which case we are in, when 𝑍

is non-reduced we are in the case that 𝑋𝐻 is a nodal weak del Pezzo surface.

In the second case we have that R � I𝐿 , and the restriction of U2 to 𝐿 is O𝐿 ⊕ O𝐿 (−1), as in the

proof of [16, Lemma 2.32]. We get that

(68) 𝑋𝐻 � P𝐿 (U2 |𝐿) ∪𝐿 𝑆 ↩→ 𝑋 .

The composition P𝐿 (U2 |𝐿) � F1 ↩→ 𝑋 → S
3
has as image a Segre plane (with the restriction to

this P2 being the blowup), and 𝑆 gets blown down to the residual quadric of the hyperplane section

through the Segre plane.
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In the third case the restriction of U2 to 𝐶 is now O𝐶 (−1) ⊕ O𝐶 (−1), and we get that

(69) 𝑋𝐻 � P𝐶 (U2 |𝐶 ) ∪𝐿 𝑆.

If𝐶 is a smooth conic we get that P1 × P1 is mapped isomorphically onto a quadric in S
3
, and 𝑆 gets

blown down to a Segre plane.

4.3 Other linear sections
We will now discuss hyperplane sections of the Coble fourfold, and codimension 2 linear sections

of both the Segre cubic and the Coble fourfold. Doing so we can describe the derived categories of

the linear sections of the resolutions.

Hyperplane sections of the Coble fourfold Dual to the discussion in Section 4.2 we are con-

sidering hyperplane sections of the resolution 𝑌 of Cob ⊂ P(𝑊 ). We will now write 𝐻 ⊂ P(𝑊 ) for
a hyperplane corresponding to 𝐿 ⊂𝑊 of codimension 1, and ℎ ∈ P(𝑊 ∨) for the dual point P(𝐿⊥).
Likewise 𝑋ℎ and 𝑌𝐻 denote the (derived) ber products. Observe that we are now applying Section 2

to 𝑌 and consider 𝑋 as its homological projective dual.

Because the singular locus of the Castelnuovo–Richmond quartic consists of 15 lines, every hyper-

plane section 𝐻 ⊂ P(𝑊 ) will necessarily intersect the singular locus. An overview of the cases we

will discuss is given in Table 4.

The generic case is when this happens in exactly 15 nodes, so that we obtain a singular quartic

surface with 15 nodes. On the Segre side this corresponds to the hyperplane ℎ ∈ P(𝑊 ∨) not lying
on the Segre cubic and not being contained in one of the hyperplanes 𝐻𝑖, 𝑗 the hyperplanes dual to

the singular locus of the singular locus of the Castelnuovo–Richmond quartic.

The corresponding hyperplane section of Cob is a quartic double solid with 15 nodes, branched

along the singular quartic surface. The following result shows how the Castelnuovo–Richmond

quartic and Coble fourfold are universal for such varieties [2, Theorem 1 and Proposition 2],

Proposition 26 (Avilov). Let 𝑇 be a quartic surface, singular in precisely 15 nodes. Then 𝑇 is a
hyperplane section of the Castelnuovo–Richmond quartic. Let 𝑍 be a quartic double solid, singular in
precisely 15 nodes. Then 𝑍 is a hyperplane section of the Coble fourfold.

Incorporating the resolution 𝜛 into the picture, the results of Avilov imply the following.

Lemma 27. Let 𝐻 ⊆ P(𝑊 ) be a hyperplane as in Proposition 26. Then 𝑌𝐻 is a smooth projective weak
Fano threefold, obtained as a small resolution of a quartic double solid singular in 15 nodes. Its derived
category has semiorthogonal decompositions

(70)

Db (𝑌𝐻 ) = 〈Db (𝑆),Db (𝑆)〉
= 〈Db (P(TP2 )), 𝐸1,1, 𝐸1,2, 𝐸2,1, 𝐸2,2, 𝐸3,1, 𝐸3,2, 𝐸4,1, 𝐸4,2〉

where the 𝐸𝑖, 𝑗 are exceptional objects.

Proof. The hyperplane section 𝑌𝐻 is a smooth projective weak Fano threefold because it is a

small resolution of a quartic double solid. The rst semiorthogonal decomposition is induced by

homological projective duality and consists of 14 = 2 × 7 exceptional objects, as 𝑋ℎ is empty

in this case. The second semiorthogonal decomposition follows from an explicit description of

the hyperplane section given in [2, Proposition 1], as the blowup of the Fano threefold P(TP2 ),
isomorphic to a (1, 1)-section of P2×P2, in 4 points in general position, and applying Orlov’s blowup

formula. We again count 14 = 6 + 4 × 2 exceptional objects. �
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Remark 28. Observe that the description of 𝑌𝐻 in the proof of Lemma 27 parallels that of the second
small resolution of singularities of the Coble fourfold discussed in [16, §2.1]. This small resolution is

obtained as the blowup of P2 × P2 in 4 points, and the small resolution in Lemma 27 is a hyperplane

section of it.

The next case we consider is that of a tangent hyperplane.

Lemma 29. For any point 𝑝 ∈ CR
4
∩ 𝑃𝑖 \ CRsing

4
the tangent hyperplane is the non-reduced quadric

𝑄𝑖 . For any other point 𝑝 ∈ CR
4
\ (⋃𝑖 𝑃𝑖 ) the tangent hyperplane section T𝑝CR4

∩ CR
4
is a singular

Kummer quartic surface.

Proof. The rst statement is clear. For the second, use that the inverse of the duality map restricted

to the complement of the hyperplanes 𝑃𝑖 is an isomorphism. This shows that the hyperplane will

only be tangent at 𝑝 ∈ CR
4
. For more details, see [33, Theorem 3.3.8]. �

There are 16 singularities on the Kummer quartic surface 𝐻 ∩ CR
4
, and 𝐻 ∩ Cob is a double

cover ramied in the Kummer quartic, a 16-nodal double quartic solid. The restriction of the

resolution 𝑌 → Cob resolves all nodes except the one coming from the tangency point, so that 𝑌𝐻
is a singular weak Fano fold.

To compute 𝑋ℎ we need to take the derived ber product, as ℎ ∈ S
3
\ Ssing

3
implies that the usual

ber product 𝑋 ×P(𝑊 ∨) ℎ is a single point, which is not of the expected dimension −1. To compute

the derived ber product 𝑋ℎ we can take a Koszul resolution for S
3
⊂ P(𝑊 ∨):

(71) 0 → OP(𝑊 ∨) (−3) → OP(𝑊 ∨) → OS
3

→ 0

and consider the restriction of the sheaf of dg algebras [OP(𝑊 ∨) (−3) → OP(𝑊 ∨) ] living in degrees −1
and 0 to ℎ. This gives a dg algebra 𝐴 given by [𝑘 → 𝑘] living in degrees −1 and 0. Because the

morphism in the Koszul resolution is multiplication with the dening equation, and ℎ ∈ S
3
we obtain

that the restricted dierential vanishes. Hence𝐴 = 𝑘 [𝜖]/(𝜖2) is the formal dg algebra where |𝜖 | = −1.
The dg algebra 𝐴 is an ingredient in the theory of absorption of nodal singularities as introduced in

[50] (see also [46, Proposition 5.11 and §5.3]).

What is interesting in this case is that 𝑋ℎ has a derived structure, but 𝑌𝐻 is a singular variety.

This frequently happens when 𝑋 is (similar to) a closed subvariety. In the next example both ber

products will have a derived structure.

Plane sections of the Segre cubic Let 𝐿 ⊂ 𝑊 ∨
be a subspace of codimension 2. We will

write 𝑃 = P(𝐿) ⊂ P(𝑊 ∨), and 𝑝 ⊂ P(𝑊 ) for the dual projective line. We wish to describe 𝑋𝑃

and 𝑌𝑝 .

If 𝑃 ⊆ S
3
it is one of the fteen Segre planes, and 𝑋 ×P(𝑊 ∨) 𝑃 is either F1 � Bl1 P

2
or 𝑆 � Bl4 P

2
.

This can be deduced from the arguments at the end of Section 4.2 for hyperplane sections of S
3

containing a Segre plane. In any case it is not of the expected dimension. On the dual side 𝑝 is one of

the 15 lines of the singular locus of CR
4
, and 𝑌 ×P(𝑊 ) 𝑝 is described in [16, Lemmas 2.41 and 2.43]. It

is again not of the expected dimension. In (11) there are no contributions from the Lefschetz center,

and we obtain an equivalence of categories

(72) Db (𝑋𝑃 ) � Db (𝑌𝑝 )

where both 𝑋𝑃 and 𝑌𝑝 are surfaces equipped with a derived structure.

If 𝑃 is not strictly contained within the Segre cubic, we obtain a plane cubic curve. Let us rst

consider a plane cubic 𝑃 ∩ S
3
contained in a smooth hyperplane section of S

3
(as discussed in

Lemma 19) such that 𝑝 ∩ CRsing

4
= ∅. Then 𝑃 ∩ S

3
is a reduced (but possibly reducible) plane cubic.
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All cases except three lines meeting in one point arise for a smooth cubic surface. For this last case

to occur the cubic surface needs to contain an Eckardt point.

Again we obtain an equivalence

(73) Db (𝑋𝑃 ) � Db (𝑌𝑝 ),

now for a (possibly singular) plane cubic and a (possibly singular) double cover of P1 ramied in a

subscheme of length 4. The reconstruction result [53, Theorem 1.1] shows that we in fact have an

isomorphism 𝑋𝑃 � 𝑌𝑝 . We leave the non-generic situation to the interested reader.

Plane sections of the Coble fourfold Finally, let 𝐿 ⊂𝑊 be a subspace of codimension 2. We

will write 𝑃 = P(𝐿) ⊂ P(𝑊 ), and 𝑝 ⊂ P(𝑊 ∨) for the dual projective line.

There are 2 possible scenarios for 𝑝 ∩ S
3
:

• 𝑝 ⊂ S
3
: there is a Fano surface of lines on S

3
described in [21, §4], such that 𝑋𝑝 acquires

a derived structure and its geometry moreover depends on the position of 𝑝 with respect

to Ssing
3

;

• dim(𝑝 ∩ S
3
) = 0: the intersection is a scheme of length 3.

Let us consider the generic case of a zero-dimensional intersection. Then 𝑋𝑝 consists of 3 points

which avoid the singular locus of S
3
. On the dual side we obtain a double cover of 𝑃 = P2, ramied

in a quartic 𝑃 ∩ CR
4
which avoids CRsing

4
, so that 𝑌𝑃 is a (smooth) del Pezzo double plane, a del

Pezzo surface of degree 2.

By (11) we obtain semiorthogonal decompositions

(74)

Db (𝑋𝑝 ) = 〈𝐸1, 𝐸2, 𝐸3〉
Db (𝑌𝑝 ) = 〈Db (𝑋𝑝 ),Db (𝑆)〉

where 𝐸1, 𝐸2, 𝐸3 are completely orthogonal. Similar to (67) we get that the composition 𝑌𝑝 → 𝑆 is

the blowup in 3 points. Generically it will give a del Pezzo surface as in Table 2, but we will not

perform the case-by-case analysis of when the 3 points are not in general position with respect to

the 10 lines on 𝑆 .

If 𝑝 ∩ Ssing
3

= ∅ and 𝑋𝑝 is still reduced but 𝑃 ∩ CRsing

4
≠ ∅ the ber product 𝑌𝑃 is a smooth weak

del Pezzo surface of degree 2, and (74) still holds. If on the other hand 𝑝 ∩ Ssing
3

= ∅ and 𝑋𝑝 non-

reduced, we obtain that 𝑌𝑃 is a singular weak del Pezzo surface of degree 2, such that Db (𝑋𝑝 ) in
(74) becomes Db (Spec𝑘 [𝜖]/(𝜖2) × 𝑘) or Db (Spec𝑘 [𝜖]/(𝜖3)). We leave it to the interested reader to

match this up with the classication of [20, §8.7.1]

If 𝑝 ∩ Ssing
3

≠ ∅ the ber product 𝑋𝑝 acquires a derived structure and we will not discuss it further.

5 The Segre cubic vs. moduli of quiver representations
As explained in Section 3 the Segre cubic has a modular interpretation as the Satake compactication

of a Picard modular variety. This interpretation a priori does not yield anything interesting for

the resolution 𝑋 from the point of view of homological projective duality. But there is a dierent

modular interpretation of S
3
and the resolution 𝑋 , which gives rise to a second rectangular Lefschetz

decomposition.
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By [23, page 17] and [29, §5.1] we have that S
3
is themoduli space of semistable quiver representations

for the 6-subspace quiver

(75) S6 :

wherewe use the dimension vector (1, 1, 1, 1, 1, 1; 2), and the canonical stability condition as discussed
in [29, §2.2]. This stability condition lies on a wall, and by considering a small perturbation of

the stability condition we can obtain small desingularisations [59, Theorem 4.3]. Two particular

choices were studied in [28], and by the description of their automorphisms we know that they

correspond to types IV and VI in [24], hence by Remark 10 we know that they are isomorphic

to P𝑆 (U2) and Bl5 P
3
.

A fully faithful functor in modular settings On the other hand, in full generality there is

an expected relationship between Db (𝑘𝑄) and Db (𝑀), where 𝑄 is an acyclic quiver and 𝑀 is a

suitable moduli space of semistable representations. Namely we expect that, for the right choice of

dimension vector and stability condition, there is a fully faithful embedding of Db (𝑘𝑄) into Db (𝑀)
given by the universal representation.

There exists a rich literature on similar admissible embeddings into derived categories of moduli

spaces:

• for curves of 𝑔 ≥ 2 and moduli spaces of vector bundles [8, 26, 52, 54];

• for Hilbert schemes of points [6, 40]

In the case of noncommutative algebra, we refer to

• for two noncommutative surfaces and Hilbert schemes of points [9, 55];

• for quivers, provided the dimension vector is thin (i.e. the moduli space is toric) [1].

Mutating the original Lefschetz structure Starting from the Lefschetz structure in Theorem 12

we can perform a sequence of mutations to nd a new Lefschetz structure, whose existence is related

to the expectation outlined above.

Proposition 30. Let 𝑆 be the del Pezzo surface of degree 5. There exists a 3-block exceptional collection

(76) Db (𝑆) = 〈O𝑆 ;O𝑆 (ℎ − 𝑒1),O𝑆 (ℎ − 𝑒2),O𝑆 (ℎ − 𝑒3),O𝑆 (ℎ − 𝑒4),O𝑆 (2ℎ − 𝑒);U∨
2
〉

where ℎ is the pullback of the hyperplane class of P2, 𝑒1, . . . , 𝑒4 are the classes of the exceptional divisors,
we set 𝑒 := 𝑒1 +𝑒2 +𝑒3 +𝑒4, and U2 is as in Section 3.1. The 5 line bundles in the middle block correspond
to the 5 conic bundle structures on 𝑆 .

Moreover, we have isomorphisms

(77) Ext
•
𝑆 (O𝑆 (ℎ − 𝑒𝑖 ),U∨

2
) � 𝑘 [0], Ext

•
𝑆 (O𝑆 (2ℎ − 𝑒),U∨

2
) � 𝑘 [0] .

Proof. We obtain this collection by mutating the 3-block exceptional collection from [39, page 452].

Their collection, written using the notation of the statement of the proposition, is

(78) Db (𝑆) = 〈O𝑆 ;F;O𝑆 (ℎ),O𝑆 (𝑒1 − 𝜔𝑆 − ℎ),O𝑆 (𝑒2 − 𝜔𝑆 − ℎ),O𝑆 (𝑒3 − 𝜔𝑆 − ℎ),O𝑆 (𝑒4 − 𝜔𝑆 − ℎ)〉

where F is the vector bundle obtained as the universal extension

(79) 0 → O𝑆 (−𝜔𝑆 − ℎ) → F → O𝑆 (ℎ) → 0.
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We have that F � U∨
2
. Indeed, the Chern classes of F and U∨

2
satisfy

(80) c1 (F) = −𝜔𝑆 = c1 (U∨
2
), c2 (F) = −𝜔𝑆ℎ − ℎ2 = 2 = c2 (U∨

2
) .

The last equality follows from classical Schubert calculus saying that 𝜎4

1
𝜎1,1 = 2 on Gr(2, 5). Since

both bundles are of rank two and exceptional (for U∨
2
this is a Koszul computation) they must be

isomorphic by [39, Proposition 1.3].

Mutating the third block of the last 5 line bundles in (78) to the very left corresponds to tensoring

the objects with 𝜔𝑆 . Now perform a right mutation on the rst two blocks. The resulting mutated

exceptional sheaves are computed using division, i.e. they are the cokernels in the short exact

sequences

(81) 0 → O𝑆 (𝜔𝑆 + ℎ) → Hom𝑆 (O𝑆 (𝜔𝑆 + ℎ),O𝑆 )∨ ⊗ O𝑆 → O𝑆 (2ℎ − 𝑒) → 0

and

(82) 0 → O𝑆 (𝑒𝑖 − ℎ) → Hom𝑆 (O𝑆 (𝑒𝑖 − ℎ),O𝑆 )∨ ⊗ O𝑆 → O𝑆 (ℎ − 𝑒𝑖 ) → 0.

The Hom-spaces in the middle term are 2-dimensional, as they are identied with the global sections

of the 5 conic bundle structures on 𝑆 , and the identication of the cokernels is a Chern class

computation. The result is the 3-block exceptional collection in (76).

The identications in (77) follow from (79), so that we obtain

(83)

Ext
•
𝑆 (O𝑆 (ℎ − 𝑒𝑖 ),U∨

2
) � H

• (𝑆,O𝑆 (𝑒𝑖 ))
Ext

•
𝑆 (O𝑆 (2ℎ − 𝑒),U∨

2
) � H

• (𝑆,O𝑆 ).

by the vanishing of H
• (𝑆,O𝑆 (ℎ − 𝑒 + 𝑒𝑖 )) and H• (𝑆,O𝑆 (𝑒 −ℎ)) thanks to the projection formula. �

FromOrlov’s projective bundle formula applied to 𝑝 : 𝑋 → 𝑆 we therefore obtain the semiorthogonal

decomposition

(84)

Db (𝑋 ) = 〈O𝑋 ;O𝑋 (ℎ − 𝑒𝑖 ) | 𝑖 = 1, 2, 3, 4;O𝑋 (2ℎ − 𝑒), 𝑝∗U∨
2
;

O𝑋 (𝑠);O𝑋 (𝑠 + ℎ − 𝑒𝑖 ) | 𝑖 = 1, 2, 3, 4;O𝑋 (𝑠 + 2ℎ − 𝑒), 𝑝∗U∨
2
(𝑠)〉

where we denote the relative hyperplane class by 𝑠 . This is of course nothing but the decomposition

(41) written as a full exceptional collection using (76). We can now modify this collection into a new
Lefschetz decomposition, with a Lefschetz center that is not equivalent to the Lefschetz center in

(41).

Proposition 31. There exists a rectangular Lefschetz decomposition

(85) Db (𝑋 ) = 〈A0,A1 (1)〉

with respect to the line bundle O𝑋 (1) = O𝑋 (𝑠) = 𝑓 ∗OP(𝑊 ∨) (1), where the Lefschetz center is

(86) A0 = 〈O𝑋 (ℎ − 𝑒𝑖 ) | 𝑖 = 1, . . . , 4;O𝑋 (2ℎ − 𝑒),O𝑋 (3ℎ − 𝑒 − 𝑠), 𝑝∗U∨
2
〉

such that A0 = A1 � Db (𝑘S6) is the derived category of the 6-subspace quiver from (75).

Proof. The right mutation of O𝑋 with respect to its orthogonal complement gives the anticanonical

line bundle O𝑋 (2𝑠) as the nal object. We obtain a rectangular Lefschetz decomposition with

Lefschetz center

(87) 〈O𝑋 (ℎ − 𝑒𝑖 ) | 𝑖 = 1, . . . , 4;O𝑋 (2ℎ − 𝑒), 𝑝∗U∨
2
,O𝑋 (𝑠)〉
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To identify this with (86) and show that A0 � Db (𝑘S6) we do the left mutation on the objects 𝑝∗U∨
2

and O𝑋 (𝑠) which does not change the Lefschetz center. The left mutation is dened by the kernel

in the short exact sequence

(88) 0 → L𝑝∗U∨
2

O𝑋 (𝑠) → Hom𝑋 (𝑝∗U∨
2
,O𝑋 (𝑠)) ⊗ 𝑝∗U∨

2
→ O𝑋 (𝑠) → 0,

using the identication U∨
2
� 𝑝∗O𝑋 (𝑠) and the exceptionality of U∨

2
, which gives the surjectivity

and the kernel is a line bundle by a rank computation. The identication with O𝑋 (3ℎ−𝑒 −𝑠) follows
from a Chern class computation using (79).

We can now check that A0 � Db (𝑘S6). We have that

(89) Ext
•
𝑋 (O𝑋 (ℎ − 𝑒𝑖 ), 𝑝∗U∨

2
) � Ext

•
𝑋 (O𝑋 (2ℎ − 𝑒), 𝑝∗U∨

2
) � 𝑘 [0]

by the last part of Proposition 30. The rst 6 objects are completely orthogonal: the rst 5 because they

originate from a block in the 3-block collection, the orthogonality with the 6th object follows from

the vanishing of R𝑝∗O𝑋 (−𝑠) in one direction and from the exceptional sequence in the other. �

Comparison of Lefschetz structures Wehave now obtained 3 (rectangular) Lefschetz structures

on Db (𝑋 ):

1. the projective bundle Lefschetz structure used in Theorem 12, where the Lefschetz center

is Db (𝑆);

2. the blowup Lefschetz structure from (39) in Proposition 11, where the Lefschetz center isDb (𝐴)
for the nite-dimensional algebra 𝐴 = 𝑘𝑄/𝐼 where 𝑄 is the quiver

(90)

𝑤
𝑥
𝑦
𝑧

𝑎

𝑏
𝑐

𝑑
𝑒

and 𝐼 is the ideal of relations

(91) 𝐼 = (𝑥𝑎,𝑦𝑎, 𝑧𝑎,𝑤𝑏,𝑦𝑏, 𝑧𝑏,𝑤𝑐, 𝑥𝑐, 𝑧𝑐,𝑤𝑑, 𝑥𝑑,𝑦𝑑,𝑤𝑒 − 𝑥𝑒, 𝑥𝑒 − 𝑦𝑒,𝑦𝑒 − 𝑧𝑒)

which encodes 5 points in general position on P3𝑤:𝑥 :𝑦:𝑧 as up to the action of PGL4 we can take

these to be

(92) (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (1 : 1 : 1 : 1),

so that the structure follows from the composition law in (39);

3. the quiver Lefschetz structure from Proposition 31, where the Lefschetz center is Db (𝑘S6).

The following propositions gives a comparison between these Lefschetz structures, in the sense of

[56, Denition 6.9]. We have that

• the blowup and quiver Lefschetz structures agree;

• the projective bundle Lefschetz structure is dierent from the other two.

Proposition 32. The projective bundle Lefschetz structure is not Lefschetz equivalent to the quiver
Lefschetz structure.
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Proof. We observe that the Lefschetz centers are already inequivalent. Indeed, D(𝑆) is not equiv-
alent to Db (𝑘S6), as HH2 (𝑆) � H

0 (𝑆, 𝜔∨
𝑆
) = 𝑘6 by the Hochschild–Kostant–Rosenberg theorem,

whilst HH
2 (𝑘S6) = 0 as 𝑘S6 is hereditary (and as S6 is a tree we moreover have HH

1 (𝑘S6) = 0). �

Hence we have found a genuinely new Lefschetz decomposition for Db (𝑋 ). On the other hand we

have the following identication.

Proposition 33. The blowup Lefschetz center is equivalent to the quiver Lefschetz center.

Proof. We want to prove that Db (𝐴) � Db (𝑘S6). One can compute (e.g. using [58] and the explicit

presentation given above) that HH
1 (𝐴) = HH

2 (𝐴) = 0, and HH
≥3 (𝐴) = 0 by global dimension

reasons. Now consider 𝐴 as a one-point extension of the 5-quotient quiver by the representation𝑀 .

By the long exact Hochschild cohomology sequence [31, Theorem 5.3] we see that𝑀 is an exceptional

representation.

On the other hand 𝑘S6 can also be seen as a one-point extension, of the 5-subspace quiver, using

the indecomposable projective (thus exceptional) representation 𝑃 concentrated at the sink.

Let 𝑀 ′
be the image of 𝑃 under the composition of the Nakayama functor (sending it to the

indecomposable injective at the sink) and the reection functor at the sink. This is also an exceptional

representation for the 5-quotient quiver, so𝑀 � 𝑀 ′
as we have dim𝑀 = dim𝑀 ′ = (1, 1, 1, 1, 1; 4) if

we put the source as the last vertex.

By considering the derived versions of the Nakayama functor and the reection functor we get that

their composition is an equivalence of derived categories for the 5-subspace and 5-quotient quiver,

which sends 𝑃 to𝑀 . Hence by [4, Theorem 1] we obtain an induced derived equivalence between

one-point extensions. This gives an identication of the Lefschetz centers. �

It would be interesting to further understand (noncommutative) homological projective duality for

this second Lefschetz center.
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