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Abstract. Given an action of a finite group G on the derived category of a smooth

projective variety X we relate the fixed loci of the induced G-action on moduli spaces

of stable objects in Db(Coh(X)) with moduli spaces of stable objects in the equivariant

category Db(Coh(X))G. As an application we obtain a criterion for the equivariant

category of a symplectic action on the derived category of a symplectic surface to be

equivalent to the derived category of a surface. This generalizes the derived McKay

correspondence, and yields a general framework for describing fixed loci of symplectic

group actions on moduli spaces of stable objects on symplectic surfaces.
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1. Introduction

1.1. Equivariant categories. Let S be a smooth complex projective surface which is sym-

plectic, hence either a K3 or abelian surface. Whenever a finite group G acts symplectically

on S, the derived McKay correspondence provides an equivalence between the category

Db(S)G of G-equivariant objects in the derived category Db(S), and the derived category

of the minimal resolution of the quotient S/G. The equivariant category Db(S)G depends

only on the action of G on the derived category and not on the underlying surface. Hence

we may ask whether a similar correspondence can be formulated for group actions on the
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derived category which do not come from an action on the surface. Our first result considers

this question under the following assumptions:

Let ρ be the action of a finite group G on Db(S) satisfying the following conditions:

(i) For every g ∈ G the equivalence ρg : Db(S)→ Db(S) is symplectic.

(ii) There exists a stability condition σ ∈ Stab†(S) which is fixed by every ρg.

(iii) The group G acts faithfully, i.e. the equivariant category is indecomposable.

Here an equivalence is symplectic if the induced action on singular cohomology H∗(S,Z)

preserves the class of the symplectic form. We let Stab†(S) be the distinguished connected

component of the space of Bridgeland stability conditions of Db(S) introduced in [13]. The

action ρ is faithful, if ρg 6∼= id for all g 6= 1. Also no generality is lost by assuming (iii) since

for non-faithful actions the equivariant category decomposes as an orthogonal sum where

each summand is determined by a faithful action on Db(S), see [10]. By the derived Torelli

theorem for symplectic surfaces [28, Thm. 0.1], group actions satisfying these conditions

can be constructed using lattice methods. In particular, there are many such group actions

which do not arise from automorphisms of the surface even after deformation.

Write Λ = H2∗(S,Z) for the even cohomology lattice and let ΛGalg be the invariant

sublattice of the induced G-action on its algebraic part

Λalg = Λ ∩ (H0(S,C)⊕H1,1(S,C)⊕H4(S,C)).

Let Mσ(v) be a moduli space of σ-semistable objects of Mukai vector v ∈ ΛGalg. For the

induced G-action on Mσ(v) we prove the following:

Theorem 1.1. Assume that Mσ(v) is a fine moduli space and that the fixed locus Mσ(v)G

has a 2-dimensional G-linearizable connected component F . Then there exists a subgroup

H ⊂ G∨ = Hom(G,C∗), a connected H-torsor S′ → F and an equivalence

Db(S′)
∼=−→ Db(S)G.

We say here that a connected component of Mσ(v)G is G-linearizable if for some (or

equivalently any) point on it the corresponding G-invariant object in Db(S) admits a G-

linearization. By a result of Ploog [55] the obstruction to such a linearization is an element in

the second group cohomology H2(G,C∗). Hence for groups where this cohomology vanishes,

such as cyclic groups, the condition on F to be G-linearizable is automatically satisfied.

Recall from [8, 29] that every fine moduli space Mσ(v) is smooth and inherits a symplectic

form from the surface S. By assumption (i) the G-action preserves this symplectic form.

Hence, its fixed locus is smooth and symplectic, so S′ is a symplectic surface. If the action

of G is induced by an action on the surface S, then Theorem 1.1 recovers the usual derived

McKay correspondence by taking the moduli space to be the Hilbert scheme of points

Hilb|G|(S) (the component F is the closure of the locus of free orbits).

Theorem 1.1 applies also to coarse moduli spaces Mσ(v) of stable objects with the only

difference that Db(S′) has to be replaced by the derived category of α-twisted coherent

sheaves Db(S′, α), where α ∈ Br(S′) is the Brauer class obtain from the universal family
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of Mσ(v) by restriction. For a more general version of the theorem which applies also to

moduli spaces containing strictly semistable points, see Section 5.4.

1.2. Fixed loci. The result above relies on a general relationship between fixed loci of

moduli spaces of (semi)stable objects and the equivariant category.

Let X be a smooth projective variety and let

Stab∗(X) ⊂ Stab(X)

be a connected component of the space of stability conditions satisfying the technical con-

dition (†) of Section 3.6. The existence of components Stab∗(X) satisfying (†) is known

for arbitrary curves and surfaces, as well as for certain threefolds, see [9, Rem. 26.4] and

references therein. Moreover, as shown in [2] there exists good moduli spaces of semistable

objects with respect to any stability condition in Stab∗(X).

Consider an action on Db(X) by a finite group G. Any G-invariant stability condition

σ ∈ Stab(X) yields an induced stability condition σG on the equivariant category [38]. If

moreover σ ∈ Stab∗(X), then we will prove that there exists proper good moduli spaces

MσG(v′) of σG-semistable objects in Db(X)G, see Theorem 3.22.

Theorem 1.2. Let σ ∈ Stab∗(X) be G-invariant and let M be a smooth good moduli space

of σ-stable objects in Db(X) of class v ∈ K(Db(X))G. Then the natural morphism

(1.1)
⊔
v′ 7→v

MσG(v′) → MG

is a G∨-torsor over the union of all G-linearizable connected components of MG. Here v′

runs over all classes in K(Db(X)G) mapping to v under the forgetful functor.

Furthermore, (1.1) is surjective if H2(G,C∗) = 0 or, more generally, if the G-action on

Db(X) factors through the action of a quotient G � Q, such that G is a Schur covering

group of Q.

The notion of a Schur covering group will be reviewed in Section 2.1.

Theorem 1.2 serves as a bridge between the geometry of the fixed locus MG and the

formal properties of the equivariant category. Information can flow in both ways: It can be

used to describe moduli spaces of stable objects in the equivariant category in terms of the

fixed loci, for example showing projectivity. This generalizes an approach of Nuer towards

the moduli space of stable objects on an Enrique surface [46]. In the case of Theorem 1.1 it

is used to determine the equivariant category. In the opposite direction, if one knows that

the equivariant category is equivalent to the derived category of a variety whose moduli

spaces are well-understood (e.g. a curve, P2 or a symplectic surface1), then the left hand

side of (1.1) determines the G-linearizable part of the fixed locus up to an étale cover.

1Strictly speaking, for symplectic surfaces one also needs to know that the induced stability condition

σG lies in the distinguished component. This is proven in Section 6.3 if the equivalence is induced by a
Fourier–Mukai kernel as in Theorem 1.1.
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1.3. Back to symplectic surfaces. Consider again a G-action on the derived category of

a symplectic surface S satisfying (i)-(iii). Assume that we have an equivalence

Db(S′, α)
∼=−→ Db(S)G

for a symplectic surface S′ with Brauer class α ∈ Br(S′). Let v ∈ ΛGalg and define

Rv = {v′ ∈ Λ(S′,α),alg | v′ 7→ v},

where the algebraic part Λ(S′,α),alg of the lattice H2∗(S′,Z) is taken with respect to α [31].

If Mσ(v) is a moduli space of stable objects, then Theorem 1.2 shows that⊔
v′∈Rv

MσG(v′)→Mσ(v)G

is a G∨-torsor over the union of all G-linearizable components.

In a special case we can be more precise. Consider a set of representatives

Rv ⊂ Λ(S′,α),alg

for the coset Rv/G
∨ where the G∨-action is induced by the action on the equivariant

category by twisting the linearization, see Section 2.1.

Theorem 1.3. Suppose that G is cyclic and that S′ is a K3 surface. If Mσ(v) is a moduli

space of stable objects, then we have an isomorphism

(1.2) Mσ(v)G ∼=
⊔

v′∈Rv

MσG(v′).

Our description of fixed loci can be applied whenever a group action on a moduli space

of stable objects is induced by a group action on the derived category. Fortunately, it is

an immediate consequence of work of Mongardi [42], Huybrechts [28], and Bayer–Macŕı [8]

that for K3 surfaces every symplectic group action is of this type. One has the following:

Proposition 1.4. Let S be a K3 surface and let σ′ ∈ Stab†(S) be a stability condition. Let

G be a finite group which acts faithfully and symplectically on a moduli space M = Mσ′(v)

of σ′-stable objects. Then the following holds:

(a) There exists a surjection G′ → G from a finite group G′ and an action of G′ on

Db(S) satisfying (i), (ii) of Section 1.1 which induces the given G-action on M .

(b) If G is cyclic, then we can take G′ = G in part (a).

The results presented above yield a general framework to determine the fixed loci of any

symplectic group action on a moduli space M of stable objects on a symplectic surface S.

There are three steps that have to be taken:

Step 1. Find the group action on the derived category which induces the action on M

(Proposition 1.4).

Step 2. Determine the equivariant category2, i.e. express it in terms of derived categories

of symplectic surfaces (Theorem 1.1).

2In the non-cyclic case with respect to a Schur cover of the group
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Step 3. Apply Theorem 1.2.

In other words, we have reduced the problem of describing fixed loci of such symplectic

actions to determining the equivariant category. An example where the above process is

applied in a non-trivial case can be found in Section 7.4 below.

1.4. Related work. Kamenova, Mongardi, and Oblomkov determined in [33] the fixed loci

of symplectic involutions of holomorphic symplectic varieties of K3[n]-type. Their argument

proceeds by deforming to an involution of the Hilbert scheme of points of a K3 surface which

is induced by an involution on the surface. For these actions a description of the fixed locus

can be obtained by a local analysis near the fixed points. Our work here grew out of the

desire to also describe fixed loci of more general (e.g. non-natural) automorphisms.

By work of Huybrechts [28] and Gaberdiel, Hohenegger, and Volpato [22] there is a bijec-

tion between finite groups of symplectic auto-equivalences of a K3 surface fixing a stability

condition and subgroups of the Conway group with invariant lattice of rank at least four.

The bijection generalizes classical work of Mukai [43] relating symplectic automorphism

groups of a K3 surface with subgroups of the Mathieu group. Similar results for abelian

surfaces have been obtained by Volpato [61]. In particular, the derived Torelli theorem in

[28, Prop. 1.4] provides a large reservoir of symplectic group actions on the derived cate-

gory, and thus a good testing ground for our ideas. We refer to Section 7 for a series of

examples. The auto-equivalences obtained in this way are described lattice-theoretically,

but a concrete geometric description is often missing. By a criterion of Huybrechts [28] and

Mongardi [42] some of these auto-equivalences induce an action on a moduli space of stable

objects, but not all of them do (it is still an open question whether that criterion is sharp).

Group actions on the derived category also play an important role in the string theory of

K3 surfaces. In physics the pair (S, σ) of a symplectic surface and a distinguished stability

condition corresponds to a non-singular sigma model on S. Symplectic σ-preserving actions

on the derived category correspond to supersymmetry-preserving discrete symmetries. The

equivariant categories are the orbifold sigma models. Based partially on counting BPS

states/dyons, string theory predicts that the orbifold models should be again either K3 or

torus (i.e. abelian surface) models [54]. The relationship between auto-equivalences and

the Conway group cited above provides the key link between BPS counting in equivariant

sigma models and moonshine phenomena for the Conway group, see [52] and [22] for an

introduction on the physical and mathematical side respectively.

1.5. Open questions. The equivariant categories Db(S)G we have considered above are 2-

Calabi–Yau categories. Moduli spaces of stable objects in them are holomorphic-symplectic

varieties of yet unknown type, and hence provide potentially new examples of (irreducible)

holomorphic symplectic varieties. The most pressing question is therefore the following:

Question 1.5. Is the set of derived categories of (twisted) coherent sheaves on K3 and

abelian surfaces closed under the operation of taking equivariant categories with respect to

finite group actions satisfying (i)-(iii)?

In this set we should also include deformations of these categories in the sense of [9]

such as the Kuznetsov category of a cubic fourfold. All evidence so far (as well as the
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expectation of physics) points to a positive answer. The parallel question in dimension 1

has an affirmative answer, see [10, Sec. 7].

1.6. Plan of the paper. The paper consists of two parts. The first part can be read in-

dependently and deals with the construction of moduli spaces of objects in the equivariant

category. Section 2 recalls basic properties of equivariant categories. In Section 3 we con-

sider the relation between fixed stacks and the equivariant category and prove Theorem 1.2.

For the proof we first use Orlov’s result on Fourier–Mukai functors [50] to construct a

G-action on Lieblich’s stack M of universally gluable objects in Db(X) (Section 3.3). The

associated fixed stack MG defined in the categorical sense of Romagny is precisely the stack

of objects in the equivariant category Db(X)G (Proposition 3.8). By transferring geometric

properties from M to its fixed stack this yields a well-behaved moduli theory for objects in

the equivariant category (Section 3.5). Theorem 1.2 follows then simply by comparing the

fixed stack of a Gm-gerbe with the fixed locus of the underlying coarse moduli space.

The second part concerns equivariant categories of symplectic surfaces. In Section 4 we

first discuss Serre functors of equivariant categories and define equivariant Fourier–Mukai

transforms. In Section 5 we prove Theorem 1.1 (including its more general form) and

Theorem 1.3. In Section 6 we show that in good cases the induced stability condition lies

again in the distinguished component and prove Proposition 1.4. In Section 7 we discuss a

series of examples illustrating the general theory.

In Appendix A we prove that for every distinguished stability condition on a K3 surface

after a shift the heart generates the derived category. In Appendix B we prove a formula

for the topological Euler characteristic of the fixed locus of moduli spaces of stable objects

on K3 surfaces under cyclic groups actions.

1.7. Conventions. We always work over C. A variety is connected unless specified oth-

erwise. All functors are derived unless mentioned otherwise. The K-group K(D) of a

triangulated category D with finite-dimensional Hom-spaces is always taken numerically,

i.e. modulo the ideal generated by the kernel of the Euler pairing. Given a smooth pro-

jective variety X we let Db(X) = Db(Coh(X)) denote the bounded derived category of

coherent sheaves on X. If π : X → T is a smooth projective morphism with geometrically

connected fibers to a C-scheme T , then D(X) or D(X/T ) will stand for the full triangulated

subcategory of T -perfect complexes of the unbounded derived category of OX -modules. We

refer to Sections 2 and 8.1 of [9] for definitions and further references. If T = Spec(C), then

D(X) is the bounded derived category of coherent sheaves as before.
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Part 1. Moduli spaces for the equivariant category

2. Equivariant categories

2.1. Categorical actions. An action (ρ, θ) of a finite group G on an additive C-linear

category D consists of

• for every g ∈ G an auto-equivalence ρg : D → D,

• for every pair g, h ∈ G an isomorphism of functors θg,h : ρg ◦ ρh → ρgh

such that for all g, h, k ∈ G the following diagram commutes

(2.1)

ρgρhρk ρgρhk

ρghρk ρghk.

ρgθh,k

θg,hρk θg,hk
θgh,k

A G-functor (f, σ) : (D, ρ, θ)→ (D′, ρ′, θ′) between categories with G-actions is a pair of

a functor f : D → D′ together with 2-isomorphisms σg : f ◦ ρg → ρ′g ◦ f such that (f, σ)

intertwines the associativity relations on both sides, i.e. such that the following diagram

commutes:

fρgρh ρ′gfρh ρ′gρ
′
hf

fρgh ρ′ghf.

fθg,h

σgρh ρ′gσh

θ′g,hf

σgh

A 2-morphism of G-functors (f, σ)→ (f̃ , σ̃) is a 2-morphism t : f → f ′ that intertwines the

σg, i.e. σ̃g ◦ tρg = ρ′gt ◦ σg.

Definition 2.1. Given a G-action (ρ, θ) on the category D the equivariant category DG is

defined as follows:

• Objects ofDG are pairs (E, φ) where E is an object inD and φ = (φg : E → ρgE)g∈G

is a family of isomorphisms such that

(2.2) E ρgE ρgρhE ρghE

φgh

φg ρgφh θEg,h

commutes for all g, h ∈ G.

• A morphism from (E, φ) to (E′, φ′) is a morphism f : E → E′ in D which commutes

with linearizations, i.e. such that

E E′

gE gE′

f

φg φ′g

ρgf

commutes for every g ∈ G.
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For all objects (E, φ) and (E′, φ′) in DG the group G acts on HomD(E,E′) via f 7→
(φ′g)

−1 ◦ ρg(f) ◦ φg. By definition,

HomDG((E, φ), (E, φ′)) = HomD(E,E′)G.

The equivariant category comes equipped with a forgetful functor

p : DG → D, (E,ψ) 7→ E

and a linearization functor

(2.3) q : D → DG, E 7→ (⊕g∈GρgE, φ)

where the linearization φ is given by considering θ−1
h,h−1g : ρgE → ρhρh−1gE and then taking

the direct sum over all g,

(2.4) φh = ⊕gθ−1
h,h−1g : ⊕g ρgE → ρh

(
⊕gρh−1gE

)
= ρh (⊕gρgE) .

By [21, Lem. 3.8], p is both left and right adjoint to q.

We discuss several properties of equivariant categories. We will often write g for ρg.

Example 2.2. The trivial G-action on D is defined by ρg = id and θg,h = id for all

g, h ∈ G. In this case the objects of DG are pairs of an object x ∈ D and a homomorphism

φ : G→ Aut(x).

Remark 2.3. Consider the 2-category G-Cats whose objects are categories with a G-action

and whose morphisms are G-functors. The equivariant category DG satisfies the universal

property that for all categories A we have the equivalence

HomCats (A,DG) ∼= HomG-Cats (ι(A),D)

where ι(A) is the category A endowed with the trivial G-action. Hence, any G-functor from

ι(A) to D factors over the forgetful functor p, see [23, Prop. 4.4] for more details.

If a triangulated category has a dg-enhancement, then the equivariant category is again

triangulated [21, Cor. 6.10]. This is implied also more directly as follows.

Proposition 2.4. Let D be a triangulated category with an action of a group G. Suppose

there is a full abelian subcategory A ⊂ D such that Db(A) = D and G preserves A, i.e.

ρgE ∈ A for all E ∈ A. Then the following holds.

(i) There exist a dg-enhancement Ddg of D together with an action of G on Ddg which

lifts the action of G on D.

(ii) The equivariant category DG is triangulated.

Proof. By [17, Sec. 1.2] the dg-quotient category

Ddg(A) = Cdg(A)/Acyclicdg(A)

of the dg-category of bounded complexes in A by the dg-category of acyclic bounded com-

plexes in A defines a dg-enhancement of Db(A). By hypothesis Db(A) ∼= D hence Ddg(A)

is a dg-enhancement. Moreover, the G-action on D induces a G-action on A. Since G
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preserves acyclic complexes we obtain a G-action on Ddg(A) with the desired properties.

This proves the first part. For the second part we apply [19], see also [21, Thm. 7.1], to get

DG = Db(A)G ∼= Db(AG)

and as a derived category the latter is naturally triangulated. �

Remark 2.5. If X is a smooth projective variety, then Db(X) has (up to equivalence) a

unique dg-enhancement [37].

The group of characters G∨ = {χ : G→ C∗ | χ homomorphism} acts on the equivariant

category DG by the identity on morphisms and by

χ · (E, φ) = (E,χφ)

on objects, where we let χφ denote the linearization χ(g)φg : E → ρgE.

An object E ∈ D is called G-invariant if for all g ∈ G there exists an isomorphism

ρgE ∼= E. A G-linearization of E is an element Ẽ ∈ DG such that pẼ ∼= E. There is

the following obstruction for a G-invariant simple object to be G-linearizable (which, since

H2(Zn,C∗) = 0 for all n, is trivial for cyclic groups).

Lemma 2.6 ([55, Lem. 1]). Given a G-invariant simple object E ∈ D, there exists a class

in H2(G,C∗) which vanishes if and only if there exists a G-linearization of E. The set of

(isomorphism classes) of G-linearizations of E is a torsor under G∨.

Example 3.15 below shows that this obstruction is effective.

Recall that an extension of groups 1→ K → E → G→ 1 is stem if K is contained both

in the commutator subgroup and the center of E. Any maximal stem extension G̃� G is

called a Schur covering group of G. It has the property that the restriction morphism

H2(G,C∗)→ H2(G̃,C∗)

vanishes. Hence, by Lemma 2.6 if we let G̃ act on D via the quotient map to G, then every

invariant simple object admits a G̃-linearization.

Let AutD be the group of equivalences ofD. Every group action onD yields a subgroup of

AutD. For the converse one has the following obstruction (which because of H3(Zn,C∗) =

Zn is non-trivial even for cyclic groups).

Lemma 2.7. ([10, Sec. 2.2]) Assume that Hom(idD, idD) = Cid and let G ⊂ AutD be a

finite subgroup.

(a) There exists a class in H3(G,C∗) which vanishes if and only if there exists an action

of G on D whose image in AutD is G. Moreover, the set of isomorphism classes

of such actions is a torsor under H2(G,C∗).

(b) There exits a finite group G′ and a surjection G′ → G such that G′ acts on D and

the induced map G′ → AutD is the given quotient map to G.

(c) If G = Zn, then we can take Zn2 → Zn in (b).
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2.2. Stability conditions. A (Bridgeland) stability condition on a triangulated category

D is a pair (A, Z) consisting of

• the heart A ⊂ D of a bounded t-structure on D and
• a stability function Z : K(A)→ C

satisfying several conditions, see [12]. Given an equivalence Φ: D → D′ of triangulated

categories the image of σ under Φ is defined by

Φσ = (ΦA, Z ◦ Φ−1
∗ )

where Φ∗ : K(D) → K(D′) is the induced map on K-groups. If Φ: D → D is an auto-

equivalence, we say that Φ preserves (or fixes) σ if Φσ = σ.

Let X be a smooth projective variety together with an action of a finite group G on

Db(X) which fixes a stability condition σ = (A, Z). By [38, Lem. 2.16] σ induces a stability

condition on Db(X)G defined by

σG = (AG, ZG), ZG := Z ◦ p∗ : K(AG)→ C.

Lemma 2.8. Let (E, φ) ∈ AG. Then (E, φ) is σG-semistable if and only if E is σ-

semistable. If E is σ-stable, then (E, φ) is σG-stable.

Proof. If an element E ∈ AG is destabilized by F , then p(E) is destabilized by p(F ).

Conversely, if p(E) is destabilized by F ′ ∈ A, then the image of the adjoint morphism

qF ′ → E destabilizes E. Hence an element in (E, φ) ∈ AG is σG-semistable if and only

if E ∈ A is σ-semistable. A subobject of (E, φ) is given by a subobject F ⊂ E such that

φ restricts to a linearization of F . Hence any destabilizing subobject of (E, φ) yields a

destabilizing subobject of E. This shows the second claim. �

Definition 2.9. A class v ∈ K(A)G is (G, σ)-generic if it is primitive and for every splitting

v = v0 + v1 with vi ∈ K(A)G \ Zv the summands have different slopes.

Lemma 2.10. Let (E, φ) ∈ AG such that E is σ-semistable and its class [E] ∈ K(A)G is

(G, σ)-generic. Then (E, φ) is σG-stable. In particular,

HomAG((E, φ), (E, φ)) = Cid.

Proof. As explained above the object (E, φ) is σG-semistable. If it is not stable, then there

exists a short exact sequence in AG

0→ (F1, φ)→ (E, φ)→ (F2, φ)→ 0

with F1, F2 of the same phase as E. Applying the forgetful functor we obtain

0→ F1 → E → F2 → 0

in A with Fi semistable of the same phase as E. However, the classes [Fi] are G-invariant

which shows that [E] = [F1] + [F2] is not (G, σ)-generic. �
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2.3. Fourier–Mukai actions. Let π : X → T be a smooth projective morphism to a C-

scheme T with geometrically connected fibers. Let

p, q : X ×T X → X

be the projections to the factors. The Fourier–Mukai transform FME : D(X)→ D(X) with

kernel E ∈ D(X ×T X) is defined by

FME(A) = q∗(p
∗(A)⊗ E).

Using a push-pull argument we have isomorphisms

(2.5) FME(A⊗ π∗B) ∼= FME(A)⊗ π∗B

for all A ∈ D(X) and B ∈ D(T ), functorial in both A and B.

Definition 2.11. A Fourier–Mukai action of G on D(X) consists of3

• for every g ∈ G a Fourier–Mukai kernel Eg ∈ D(X ×T X),

• for every pair g, h ∈ G an isomorphism θg,h : Eg ◦ Eh → Egh

such that for all g, h, k the diagram (2.1) commutes with ρg replaced by Eg.

For smooth projective varieties we have not defined anything new:

Lemma 2.12. ([10, Sec. 2.3]) Let X be smooth projective variety and let G be a finite

group. Then any G-action on Db(X) is induced by a unique Fourier–Mukai action.

Given a Fourier–Mukai action on the derived category of X/T our next goal is to define

natural operations on the equivariant category. If G is induced by an action on X, this is

discussed in [14, Sec. 4]. Since our G-action does not have to preserve the tensor product

or the structure sheaf, some care is needed in the general case.

2.3.1. Pushforward and pullback. Consider a fiber product diagram

(2.6)

X ′ X

T ′ T.

α

π′ π

β

The pullback of the kernels of the G-action on X,

(α× α)∗Eg ∈ D(X ′ ×T ′ X ′),

together with the pullback of the θg,h define a Fourier–Mukai G-action on D(X ′). We say

that the morphism α is G-equivariant.

Given an equivariant object (F, φ) in D(X)G we define its pullback by

α∗(F, φ) = (α∗F, φ′) ∈ D(X ′)G

3We write E ◦ F to indicate the composition of correspondences E,F .
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where the G-linearization φ′g is the composition

α∗F
α∗φg−−−→ α∗(gE) = α∗q∗(p

∗(F )⊗ Eg) ∼= q′∗(α× α)∗(p∗(F )⊗ Eg)
∼= q′∗(p

′∗(α∗F )⊗ (α× α)∗Eg) = gα∗(F )

with p′, q′ : X ′ ×T ′ X ′ → X ′ the projections. The pullback α∗ of an equivariant morphism

is the pullback of the morphism in D(X) (one checks that the pullback morphism is G-

invariant). Taken together this yields a functor

α∗ : D(X)G → D(X ′)G.

Similarly if β is proper and flat and (E, φ) ∈ D(X ′)G, we define the pushforward functor

by

α∗(E, φ) := (α∗E, φ
′)

where the G-linearization φ′ is obtained as the composition

α∗E
α∗φg−−−→ α∗gE = α∗q∗(p

∗(E)⊗ (α× α)∗(Eg))
∼= q′∗(α× α)∗(p

∗(E)⊗ (α× α)∗(Eg)) ∼= q′∗(p
′∗(α∗E)⊗ Eg) = gα∗(E).

The pushforward of an equivariant morphism is the pushforward of the underlying mor-

phism. The pullback functor α∗ is left adjoint to α∗.

2.3.2. Hom and tensor product. Given a T -perfect object B ∈ D(T ) and an equivariant

object (E, φ) ∈ D(X)G we define the tensor product by

(E, φ)⊗ π∗B := (π∗B ⊗ E, φ′)

where the linearization φ′ is the composition

E ⊗ π∗(B)
φg⊗id−−−−→ FMEg (E)⊗ π∗(B)

(2.5)∼= FMEg (E ⊗ π∗(B)) = g(E ⊗ π∗(B)).

More generally, if D(T ) is equipped with the trivial G-action and (B,χ) ∈ D(T )G, we let

(B,χ)⊗ (E, φ) := (π∗B ⊗ E,χφ′)

Similarly, given two equivariant objects (E, φ) and (F,ψ) in D(X)G and an open sub-

set U ⊂ T the group G acts on HomD(XU )(E|U , F |U ) by f 7→ φg|U ◦ FMEg|U (f) ◦ ψ−1
g |U

where we use again that Fourier–Mukai actions induce actions after base change. Since

this action is compatible with restrictions to smaller open subsets we obtain a G-action on

Homπ(E,F ) := π∗Hom(E,F ) and thus a bifunctor

Homπ : D(X)G ×D(X)G → D(T )G.

It satisfies the usual adjunctions with respect to the tensor product.

For any (closed or non-closed) point t ∈ T let ιt : Xt → X be the inclusion of the fiber

of X over t. Given (E, φ) ∈ D(X)G we write (E, φ)t for the equivariant pullback ι∗t (E, φ).



EQUIVARIANT CATEGORIES AND FIXED LOCI 13

Lemma 2.13. Let (E, φ), (F,ψ) be objects in D(X)G. Then

t 7→ χ((E, φ)t, (F,ψ)t) :=
∑
i

dim ExtiD(Xt)G ((E, φ)t, (F,ψ)t)

is locally constant in t.

Proof. By a push-pull argument we have that

χ((E, φ)t, (F,ψ)t) = χ(k(t),Homπ((E, φ), (F,ψ))G ⊗ k(t)).

Since Homπ((E, φ), (F,ψ)) is perfect, the same holds for its invariant part which implies

the claim. �

3. Moduli spaces

3.1. Group actions on stacks. Following [56] an action of a finite group G on a stackM
over C consists of

• for every g ∈ G an automorphism of stacks ρg : M→M
• for every pair g, h ∈ G an isomorphism of functors θg,h : ρgρh → ρgh

such that for all g, h, k ∈ G the diagram (2.1) commutes. In other words, if we viewM as a

category fibered in groupoids, then a G-action onM is precisely a G-action on the category

M in the sense of Section 2.1 with the additional assumption that every ρg is a morphism

of stacks. A morphism of stacks with G-actions (also called a G-equivariant morphism) is

a G-functor (f, σ) such that f is a morphism of stacks. A 2-morphism of such morphisms

is a 2-morphism of G-functors.

Let St and G-St denote the 2-categories of stacks and stacks with a G-action respectively.

There is a functor ι : St→ G-St which equips a stack with the trivial G-action. Let Grpds

be the category of groupoids.

Definition 3.1 ([56, Def. 2.3]). Let G be a finite group acting on a stack M. The fixed

stack is the functor MG : St → Grpds defined by the condition that for all stacks T we

have the equivalence

HomSt(T,MG) ∼= HomG-St(ι(T ),M).

Hence there is a G-equivariant morphism ε : ι(MG) → M satisfying the following uni-

versal property: For any stack T and for any G-equivariant morphism f : ι(T )→M there

exists a unique morphism f̃ : T →MG such that ε ◦ f̃ = f .

Remark 3.2. As explained in [56, Proof of Prop. 2.5] the objects of MG are pairs

(x, {αg}g∈G) of an element x ∈M and maps αg : x→ g.x such that θxg,h◦gαh◦αg = αgh for

all g, h ∈ G. Morphisms are the morphisms in M which respect the linearizations. Hence,

viewed as a category, the fixed stackMG is the equivariant categoryMG of the action (ρ, θ)

in the sense of Definition 2.1. This can be seen also more conceptually: By the universal

property of the equivariant category (Definition 3.1) we have a functor MG → MG, but

by the universal property of the fixed stack we also have an inverse.
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Remark 3.3. By the universal property, if (f, σ) : N → M is a G-equivariant morphism

which is a monomorphism (e.g. an open or closed immersion), then we have a fiber diagram

NG MG

N M.

ε ε

f

Proposition 3.4. [56, Thm. 3.3, 3.6] Let G be a finite group acting on an Artin stack M
(locally) of finite type over C. Then MG is an Artin stack (locally) of finite type over C
and the classifying morphism ε : MG →M is representable, separated and quasi-compact.

If M has affine diagonal, then so does MG.

Furthermore, consider any property of morphisms of schemes that is satisfied by closed

immersions and is stable under composition. Then, if the diagonal of M has this property,

then ε has this property.

Proof. We prove that MG has affine diagonal if M has. Everything else can be found in

[56]. Assume that M has affine diagonal and consider the commutative diagram

MG MG ×MG

M×M.

∆MG

∆M◦ε
ε×ε

Since ∆M is affine, ε is affine by the second part, hence so is the composition ε ◦∆. Since

ε× ε is separated, its diagonal is a closed immersion and hence affine. By the cancellation

lemma it follows that ∆MG is affine. �

If G acts on a separated scheme, then the fixed stack is a closed subscheme and equal

to the fixed locus defined in the usual way. However, in general the map ε : MG → M
may behave quite subtle. For example, taking fixed stacks usually does not commute with

passing to the good or coarse moduli space (if it exists).

3.2. The fixed stack of a Gm-gerbe. Consider a G-action (ρ, θ) on the stack BGm such

that ρg = id for all g ∈ G but we allow the 2-isomorphisms θ to be arbitrary. According to

Lemma 2.7 there is an associated class

α(θ) ∈ H2(G,C∗)

where we let the trivial action correspond to the trivial class.4 We have [56]

(BGm)G =

{⊔
χ∈G∨ BGm if α(θ) = 0,

∅ if α(θ) 6= 0.

In this section we consider the following generalization: Let M be a complete variety,

and consider the trivial Gm-gerbe

M = M ×BGm.

4We have stated Lemma 2.7 only for additive C-linear category, but since Aut(idBGm ) = C∗id on which

G acts trivially by conjugation, the result applies verbatim also in this case.
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The projection and the section of the gerbe are denoted by

p1 : M→M, s = (idM , t) : M →M

where t : M → BGm corresponds to the trivial line bundle. We refer to [49, Def. 12.2.2] for

a definition of gerbes and morphisms of gerbes.

Lemma 3.5. There is a natural bijection between the set of morphisms of Gm-gerbes

f : M → M and the set of pairs (F,L) where F : M → M is an automorphism and

L ∈ Pic(M). If the morphism f corresponds to (F,L) and g corresponds to (G,L′), then

f ◦ g corresponds to (F ◦G,L ⊗ F ∗(L′)).

Proof. See also [26] for an equivalence on the categorical level. Let f : M → M be a

morphism of gerbes. Define F = p1 ◦ f ◦ s and let L be the line bundle corresponding to

p2 ◦ f ◦ s : M → BGm. By [49, Lem. 12.2.4] F is an automorphism.

Let Luniv be the universal line bundle on BGm. We write Luniv also for its pullback to

M ×BGm. Since f is a morphism of gerbes we have5

f∗Luniv = (f∗Luniv)|M ⊗ Luniv = p∗1(L)⊗ Luniv.

Hence given (F,L) we can recover f as the product of F ◦ p1 and the morphism associated

to p∗1(L)⊗ Luniv. This yields the 1-to-1 correspondence.

For the last claim, we have that

g∗Luniv = (g∗Luniv)|M ⊗ Luniv = p∗1(L′)⊗ Luniv

hence

f∗g∗Luniv = p∗1F
∗(L′)⊗ f∗Luniv

which gives the claim by restriction to M . �

Let (ρ, θ) be a G-action on M such that for all g ∈ G:

• the morphism ρg is a morphism of Gm-gerbes, and

• if (Fg,Lg) is the pair associated to ρg, then Fg = id.6

For a C-point p ∈M the G-action (ρ, θ) induces an action (ρp, θp) on p×BGm such that

for all g ∈ G we have ρpg
∼= idBGm (since ρg acts by gerbe morphisms). Hence as before we

have an associated class

α(θp) ∈ H2(G,C∗).

The class α(θp) vanishes if and only if (p×BGm)G is non-empty. In this case we say that

p ∈M is G-linearizable.

By Remark 3.3 the fixed stackMG is non-empty if and only ifM contains aG-linearizable

point. Hence let p ∈ M be G-linearizable. The 2-isomorphisms θg,h : ρgρh → ρgh induce

isomorphisms

(3.1) θg,h : Lg ⊗ Lh
∼=−→ Lgh

5The restriction to each m × BGm is equal to Luniv by hypothesis. Hence f∗Luniv = Luniv ⊗ p∗1L for

some L ∈ Pic(M). Restricting to M yields the claim.
6One can always reduce to this case by replacing M with M×M F for an irreducible component F of

MG.
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which satisfy the associativity relations (2.1). In particular, up to isomorphism the line

bundles Lg only depend on the conjugacy class ḡ of g and we obtain a group homomorphism

Gab → Pic(M), ḡ 7→ [Lg]

where Gab is the abelianization of G, and [L] stands for the isomorphism class of a line

bundle L.

Claim. The G-action onM is isomorphic to an action which factors through Gab and such

that the isomorphisms (3.1) are commutative, i.e. θg,h = θh,g where we identify Lg ⊗ Lh
with Lh ⊗ Lg by swapping the factors.

Proof of Claim. Let H = [G,G] and choose representatives {g1, . . . , gr} for the cosets G/H

where we take the identity element for the unit coset. Given any element g ∈ giH we set

ρ′g = ρgi . The isomorphisms Lg ∼= Lgi induced by (3.1) yield isomorphisms tg : ρg ∼= ρgi =

ρ′g. Consider the action (ρ′g, θ
′) on M where θ′ is determined by the commutative diagram

ρgρh ρgh

ρ′gρ
′
h ρ′gh.

tgth

θg,h

tgh

θ′g,h

By construction, ρ′g only depends on the image of g in G/H. We need to show that we can

further modify θ′ such that it also only depends on the image in G/H, and is commutative.

The key idea is that since M is a complete variety, Hom(Lg,Lg) = C, and hence we may

find and check all the required relations by restricting to the point p ∈M where the action

is trivial. Concretely, we may first choose an identification Lg|p ∼= Cp for every g. Since

α(θp) = 0 we may then modify θ′ (i.e. replace θ′g,h by λg,hθ
′
g,h for some λg,h ∈ C∗ which is

the derivative of a 1-cycle) such that the restrictions

θ′g,h|p : Lg|p ⊗ Lh|p → Lgh|p

are the identity maps under the given identification. Since Lg only depends on G/H it

follows that θg,g′ only depends on the image of g and g′ in G/H. (To spell this out: for

any g ∈ giH, g′ ∈ gjH and h, h′ ∈ H we have that θg,g′ and θgh,g′h′ are both morphisms

Lgi⊗Lgj → Lgk where gigj ∈ gkH; they agree after restriction to p hence they must agree.)

Similarly, the commutativity θ′g,g′ = θ′g′,g follows by restriction. �

After replacing (ρ, θ) with an isomorphic action as in the Claim, we obtain a commutative

OM -algebra

A =
⊕
g∈Gab

Lg,

where the multiplication is induced by θ. Consider the étale cover

π : Y →M, Y = Spec(A).
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For every g ∈ G the natural inclusion Lg → A yields a natural isomorphism

(3.2) φg : π∗(Lg)
∼=−→ OY .

The composition

π∗(Lg ⊗ Lh)
φg⊗idLh−−−−−−→ π∗(Lh)

φh−−→ OY

is induced by Lg ⊗ Lh → A⊗A → A and hence isomorphic to

π∗(Lg ⊗ Lh)
π∗θg,h−−−−→ π∗Lgh

φgh−−→ OY .

We see that φg gives s◦π : Y →M the structure of a G-equivariant morphism with respect

to the trivial action on Y . This yields a morphism Y →MG.

Define the product

Y = Y ×BGm

and consider the morphism

f = π × idBGm : Y →M.

As before, the tensor product of φg with the identity on the universal bundle makes f

equivariant with respect to the trivial action on Y. We obtain a morphism Y →MG. This

yields the following description of the fixed stack.

Proposition 3.6. In the setting above, if M contains a G-linearizable point, then f : Y →
M is the fixed stack of the G-action on M.

Proof. We have seen above that there is a natural morphism Y →MG. Conversely, giving

an equivariant morphism h : T → M × BGm, where the scheme T carries the trivial G-

action, is equivalent to a line bundle L on T , a morphism h′ = p1 ◦ h : T → M and

maps h′∗Lg → OT satisfying the cocycle condition. The cocycle condition implies that the

induced map

h′∗(⊕g∈Gab
Lg)→ OT

is an algebra homomorphism with respect to the algebra structure on ⊕gLg defined by θ.

Hence the map T → M factors through Y and thus h factors through Y × BGm. This

yields the inverse MG → Y. �

Remark 3.7. Parallel results hold for a non-trivial Gm-gerbe π : M→M with Brauer class

α ∈ Br(M): There exists a π∗(α)-twisted line bundle Luniv onM (playing the role of Luniv

as before) such that for every morphism f : X →M and every f∗(α)-twisted line bundle L
on X there exists a unique map F : X → M such that F ∗(Luniv) = L and f = π ◦ F . A

morphism F : M →M of Gm-gerbes is then equivalent to the pair of an (untwisted) line

bundle L on M and a morphism f : M → M such that f∗(α) = α. See also [26, Sec. 5].

The formulation of the analogue of Proposition 3.6 is similar.
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3.3. Moduli spaces of equivariant objects. Let X be a smooth projective variety over

C. Recall from [35] the stack

M : Sch/C→ Grpds

which associates to each scheme T the groupoid of T -perfect universally gluable objects in

D(X × T ). As proven in loc. cit. M is a quasi-separated algebraic stack locally of finite

type over C with affine diagonal, see also [59, 0DPV] and [9, Sec. 8].

Let G be a finite group which acts on Db(X). By Lemma 2.12 the action is given by

Fourier–Mukai transforms. The pullback of the Fourier–Mukai kernels define a Fourier–

Mukai action D(X × T ) such that the pullback morphisms are G-equivariant. This defines

an action of G on M in the sense of Section 3.1,

(ρ, θ) : G×M→M.

Remark 3.2 yields the following description of the fixed stack:

Proposition 3.8. The fixed stack MG is the stack of G-equivariant universally gluable

perfect complexes in D(X), i.e. for every scheme T we have

MG(T ) = {(E , φ) ∈ D(X × T )G×1 | E is universally gluable, T -perfect}.

The isomorphisms in MG(T ) are the isomorphisms of objects in D(X×T )G×1. The pullback

is the equivariant pullback. The morphism ε : MG → M is the map that forgets the G-

linearization.

From now on let σ be a stability condition on Db(X) which is preserved by the G-action.

Let Mσ(v) be the moduli stack of σ-semistable objects of class v ∈ K(A), i.e. for any

scheme T we let

Mσ(v)(T ) = {E ∈ D(X × T ) | ∀t ∈ T : Et is σ-semistable with [Et] = v}.

Since G preserves σ-semistability, for any G-invariant v ∈ K(A) we have an action

G×Mσ(v)→Mσ(v).

The following result follows immediately from Proposition 3.8 and Lemma 2.8.

Proposition 3.9. We have

Mσ(v)G =
⊔

v′∈K(AG)
p∗(v

′)=v

MσG(v′),

where MσG(v′) is the substack of MG defined by

MσG(v′)(T ) = {E ∈ D(X × T )G×1 | ∀t ∈ T : Et is σG-semistable, [Et] = v′}.

3.4. The fixed stack of a fine moduli space. In the setting of Section 3.3, let v ∈
K(Db(X)) be a G-invariant class such thatMσ(v) has a fine moduli space Mσ(v) which is

smooth. The goal of this section is to determine the fixed stack Mσ(v)G.

Write M =Mσ(v) and M = Mσ(v). By assumption there is a universal family

E ∈ D(M ×X),
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unique up to tensoring with a line bundle pulled back from the first factor. By the universal

property ofM this yields a section sE : M →M of the Gm-gerbeM→M . Hence sE defines

a trivialization

(3.3) M∼= M ×BGm.

The universal family EM ∈ D(M×X) is identified under (3.3) with

(p1 × idX)∗(E)⊗ p∗2(Luniv)

where p1, p2 are the projections to the factors.

Let f : M→M be a morphism of Gm-gerbes and let

F = p1 ◦ f ◦ sE , L = (p2 ◦ f ◦ sE)∗Luniv

be the associated automorphism and line bundle as in Lemma 3.5. We consider the difference

of the pullbacks of the universal families under F and f .

Lemma 3.10. In the situation above, we have

((f × idX)∗EM)|M = (F × idX)∗(E)⊗ L.

Proof. Under the identification (3.3) we have EM = (p1 × idX)∗(E)⊗ Luniv. Hence

(f × idX)∗(EM) = (f × idX)∗((p1 × idX)∗(E))⊗ (f × idX)∗Luniv

= (p1 × idX)∗((F × idX)∗(E))⊗ ((p1 × idX)∗(L)⊗ Luniv)

= (p1 × idX)∗((F × idX)∗(E)⊗ L)⊗ Luniv.

Restricting to M completes the claim. �

Consider the action of G on M. For every g ∈ G the morphism ρg : M→M commutes

with the inclusion of the automorphism groups (in the derived category, we have g(λid) =

λg(id) = λid) and hence is a morphism of Gm-gerbes. Let

Fg : M →M, Lg ∈ Pic(M)

be the associated pair constructed in Lemma 3.5. By Lemma 3.10 the line bundle Lg can

also be described by

(3.4) (1× g)(E) = ((1× g)EM)|M = ((ρg × idX)∗EM)|M = (Fg × idX)∗(E)⊗ Lg.

Let F be a connected component of the fixed locus MG ⊂ M and let Lg = Lg|F which

only depends on the conjugacy class of g, see the discussion in Section 3.1. Consider further

the associated étale cover

(3.5) Y = Spec

 ⊕
g∈Gab

Lg

 , π : Y → F

and define

Y = Y ×BGm, ε : Y π×idBGm−−−−−−→ F ×BGm →M.
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Proposition 3.11. In the setting above, if F contains a G-linearizable point, then Y is the

union of the connected components ofMG which map to F and ε : Y →M is the restriction

of the classifying map MG →M to Y. The universal linearization of ε∗(EM) is pulled back

from the canonical linearization of (π × idX)∗(E|F×X).

By Proposition 3.8, a point p ∈ F is G-linearizable if and only if the corresponding

G-invariant object Ep is G-linearizable. Using Proposition 3.11 we see that there exists a

G-linearizable point p ∈ F if and only if every point on F is G-linearizable. In this case we

say that the connected component F of MG is G-linearizable.

Proof. The first statement is Proposition 3.6. The second part follows since the linearization

on Y is the pullback of the linearization on Y given by (3.2). �

Remark 3.12. The action of G∨ on Db(X)G by twisting the linearization preserves the

stability condition σG. Moreover, for every χ ∈ G∨ we have p∗χv
′ = p∗v

′. Hence we have

an induced action of G∨ on

Mσ(v)G =
⊔

p∗(v′)=v

MσG(v′).

By Lemma 2.6 the action is free if Mσ(v) is a moduli space of stable objects.

In the setting of Proposition 3.11, the G∨-action can be desribed by letting a character

χ ∈ G∨ act on the line bundle Lg by multiplication by χ(g). In particular, Y/G∨ = F and

the projection π : Y → F is a G∨-torsor (in the étale topology).

Remark 3.13. The results of this section can be generalized to the case when π : Mσ(v)→
Mσ(v) is a non-trivial Gm-gerbe (if E ∈ D(M ×X,−α) is the twisted universal object, then

the universal family EM on the stackM×X is given by π∗(E)⊗Luniv, see also Remark 3.7).

Example 3.14. Let E be an elliptic curve and let ta : E → E be the translation by a

2-torsion point a ∈ E. The group G = Z2 acts on Coh(E) by t∗a. Let E′ = E/ta. The

equivariant category is Coh(E)G = Coh(E′). Consider the moduli stack M = M(1, 0)

of Gieseker stable sheaves with Chern characters v = (1, 0) ∈ H2∗(E) or equivalently the

moduli stack of degree 0 line bundles. It admits the fine moduli space M ∼= E with universal

family the Poincaré bundle P on E × E. Hence M∼= E ×BGm. Since every degree 0 line

bundle is translation invariant, the group G induces the trivial action on M . However,

because of

(1× t∗a)(P) = (id× ta)∗P = P ⊗ p∗1Pa,

the bundle P can not be linearized over M . Indeed by Proposition 3.11 (with Lg = Pa)

one has MG = Ẽ ×BGm where Ẽ is the cover of E defined by Pa.

An alternative description of the fixed stack is also given by Proposition 3.9 as follows:

MG =ME′(1, 0) ∼= E′ ×BGm.

Since E′ ∼= Ẽ these two presentations agree with each other.
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Example 3.15. We give an example of a component which is not G-linearizable.

Let G = Z2 × Z2 be the subgroup of 2-torsion points of E acting by translation. Let

M =M(1, 2) be the moduli stack of degree 2 line bundles and let M ∼= E be its fine moduli

space. ThenMG = M butMG = ∅, soM is notG-linearizable. Indeed, anyG-linearization

of a degree 2 line bundle L is a descent datum for the quotient map π : E → E/G. Hence

there would exists a line bundle L′ on E/G with π∗L′ = L which would imply that the

degree of L is divisible by 4.

3.5. The Artin–Zhang functor. As before we consider an action of a finite group G on

Db(X) which preserves a stability condition σ = (A, Z). In this section we further assume

the following properties:

• A is Noetherian,

• A satisfies the generic flatness property of [1, Prop. 3.5.1].

The second condition implies that the subfunctor MA ⊂ M of objects, such that every

geometric fiber lies in A, is open. By Remark 3.3 the open immersion MA ⊂M yields the

fiber diagram

(3.6)

(MA)G MG

MA M.

ε

By base change this shows that also (MA)G ⊂MG is an open immersion.

Given a cocomplete7, locally noetherian, k-linear abelian category C, let NC be the stack

of finitely presented objects in C as introduced by Artin and Zhang [4], see also [2, Def.

7.8]. Concretely, for a commutative ring R let CR be the category of pairs (E, φ) with E

an object in C and φ : R → EndC(E) a morphism of k-algebras. Then NC(SpecR) is the

groupoid of flat and finitely presented objects in CR,

As discussed in [2, Ex. 7.20] our assumptions on A imply that the stacks MA and

NInd(A) are equivalent, where Ind(A) is the Ind-completion of A. Our first goal is to prove

the parallel result for the equivariant abelian category AG:

Proposition 3.16. (MA)G ∼= NInd(AG).

We begin with two technical lemmata.

Lemma 3.17. If A is a Noetherian abelian C-linear category, then every object in Ind(A)

can be written as a union of objects in A.

Proof. 8 Given objects E ∈ A and F ∈ Ind(A) and an inclusion F ⊂ E in Ind(A) we first

claim that F ∈ A. Indeed, write F = limi Fi where the Fi lie in A. Then since F → E is

a monomorphism we have F ′i := Im(Fi → F ) = Im(Fi → E) and thus this image lies in A.

Therefore, F is a union of objects in A (namely the F ′i ) which are subjects of E. Since E is

Noetherian, this union has to stabilize and since abelian categories contain finite colomits,

7i.e. C has all small filtered colimits
8We thank Eugen Hellman for providing this argument.
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F ∈ A as desired. Now, if E → F is a quotient in Ind(A) with E ∈ A and F ∈ Ind(A)

then by the above the kernel lies in A and hence so does F . Therefore A is closed under

quotients in Ind(A). We conclude, that if E = limiEi with Ei ∈ A, then E is the union of

the Fi = Im(Ei → E). �

Lemma 3.18. Let A be a Noetherian abelian C-linear category and G a finite group. Then

there exists a canonical isomorphism Ind(AG) ∼= Ind(A)G.

We refer to [53, Lem. 3.6] for a parallel result for ∞-categories.

Proof. IfA is cocomplete and (Ei, φi) is a direct system inAG, then the φi define a canonical

G-linearization on E = limEi. Hence AG is also cocomplete.

Let A now be Noetherian. Applying the above argument to Ind(A) we see that Ind(A)G

is cocomplete. Hence by the universal property of Ind-completion, the inclusion AG →
Ind(A)G lifts to a functor Ind(AG) → Ind(A)G. By composing with the forgetful functor

Ind(A)G → Ind(A) one sees the functor is faithful. We check that the functor is essentially

surjective and full: Let (E, φ) ∈ Ind(A)G where E =
⋃
iEi is a union of objects Ei in A.

By replacing Ei by
⋃
g∈G φ

−1
g (gEi) if necessary we get that the restrictions φg|Ei : Ei →

gEi define G-linearizations on Ei. Moreover, after replacing the Ei and Fi suitably, any

morphism (E, φ)→ (F,ψ) is the limit of a morphism (Ei, φi)→ (Fi, ψi). �

Proof of Proposition 3.16. Since MA = NInd(A) we have that MG
A(SpecR) is the groupoid

of pairs of x ∈ NA(R) together with linearizations φg : x→ gx satisfying the cocycle condi-

tion. Spelling this out this is the groupoid of triples of objects E ∈ Ind(A), homomorphisms

σ : R→ End(E) and linearizations φg : E → gE satisfying

φg ◦ σr = gσr ◦ φg,

or equivalently, the groupoid of pairs (E, φ) ∈ Ind(A)G and σ : R → EndInd(A)G(E, φ).

However, G finite implies that Ind(A)G = Ind(AG) (see Lemma 3.18) and hence this is

precisely the groupoid NInd(AG)(SpecR). �

A stability condition σ = (A, Z) is called algebraic if Z(K(A)) ⊂ Q + iQ.

Theorem 3.19. In the above situation assume moreover that σ is algebraic and thatMσ(v)

is bounded for every v ∈ K(D(X)). Then for every v′ ∈ K(Db(X)G) the moduli stack

MσG(v′) is an universally closed Artin stack of finite type over C which has a proper good

moduli space. The inclusion MσG(v′)→MG is an open embedding.

Proof. Let v = p∗v
′ and let MA,v ⊂ MA be the open and closed substack parametrizing

objects of class v. Invoking [2, Ex. 7.27], the stack MA,v has a Θ-stratification whose open

piece is Mσ(v). This yields the fiber diagram

Mσ(v)G (MA,v)
G

Mσ(v) MA,v,

ε ε
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where the horizontal maps are open immersions. Since MA,v ⊂ M is open and M is an

Artin stack locally of finite type with affine diagonal over C, applying Proposition 3.4 the

same holds for (MA,v)
G. Moreover, by Proposition 3.4 again both vertical morphisms ε are

affine. Since Mσ(v) is of finite type, so is Mσ(v)G.

By [2, Sec. 7] the stack Mσ(v) is Θ-reductive and S-complete. By [2, Prop. 3.20(1)]

affine morphisms are Θ-reductive and by [2, Prop. 3.42(1)] they are S-complete. Since both

these properties are stable under composition,Mσ(v)G is Θ-reductive and S-complete and

hence by [2, Thm. A] admits a separated good moduli space.

It remains to show that Mσ(v)G is universally closed.9 For this recall from Proposi-

tion 3.16 the isomorphism (MA)G ∼= NInd(A). It follows from [2, Lem. 7.17] that MG
A sat-

isfies the existence part of the valuative criterion of properness. Since ε : (MA,v)
G →MA,v

is affine, by [24, Prop. 1.19] the preimage of the Θ-stratification of MA,v defines a Θ-

stratification of (MA,v)
G. By definition its open piece is the preimage of the stack of

σ-semistable objets, which, is precisely the stack of σG-semistable objects.10 By semistable

reduction [2, Thm. B/C] we conclude thatMσ(v)G is universally closed and therefore that

its good moduli space is proper. By Proposition 3.9 the stackMσG(v′) is a closed and open

substack of Mσ(v)G, hence it satisfies the same conclusion. �

We consider the deformation-obstruction theory of the functor MG
A.

Proposition 3.20. Suppose that A is Noetherian, satisfies the generic flatness property

and we have Db(A) ∼= Db(X).

Let 0 → I → A′ → A → 0 be a square zero extension of rings and let ι : X × SpecA →
X × SpecA′ be the natural inclusion. Let (E, φ) ∈ MG

A(SpecA). Then there exists an

obstruction class

ω(E, φ) ∈ Ext2(E,E ⊗ I)G0

which vanishes if and only if there exists a complex (E′, φ′) ∈MG
A(A′) such that ι∗(E′, φ′) ∼=

(E, φ). Moreover, in this case the set of extensions is a torsor over Ext1(E,E ⊗ I)G.

Here the subscript 0 stands for the traceless part defined by

Ext2(E,E)0 = Ker
(
Tr: Ext2(E,E)→ H2(X,OX)

)
.

Proof. By Proposition 3.16 we can use the deformation theory of the Artin–Zhang functor

NInd(A). Since Db(A) = Db(X) for any (E, φ) ∈ AG we have

ExtiDb(AG)((E, φ), (E, φ)) = ExtiDb(X)G
((E, φ), (E, φ)) = ExtiDb(X)(E,E)G.

9Since ε is not proper in general (see Section 7.2 for an example where this fails) this does not follow
directly from the fact that Mσ(v) is universally closed. Instead we use the alternative description of the

bigger stack (MA)G.
10The Θ-stratification of MA,v corresponds to the Harder–Narasimhan filtration inA. Given an equivari-

ant object (E, φ) and a Harder–Narasimhan filtration Ei of E with respect to σ the restrictions (Ei, φ|Ei )
define a Harder–Narasimhan filtration of (E, φ) which corresponds to the ’preimage’ Θ-stratification of
(MA)G.
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Hence the existence of the obstruction class ω(E, φ) ∈ Ext2(E,E ⊗ I)G follows from [36].

The (G-invariant) trace map is the derivative to the determinant map on S. Since the

Picard stack is smooth, all obstructions to deforming det(E) vanishes. This shows that the

obstruction class lies in the kernel of

Ext2(E,E)G
p∗−→ Ext2(E,E)

Tr−→ C. �

3.6. Conclusion. Let X be a smooth projective variety and let Stab∗(X) ⊂ Stab(X) be a

connected component of the stability manifold satisfying the following condition:

(†) There exists an algebraic stability conditions σ = (A, Z) ∈ Stab∗(X) such that

• A satisfies the generic flatness property and

• for all v ∈ K(A) the stack Mσ(v) is bounded.

Then by [57, Prop. 4.12] the same holds for all algebraic stability conditions in Stab∗(X).

Moreover, as explained in [2, Ex. 7.27], for any v ∈ K(Db(X)) and stability condition

σ ∈ Stab∗(X) one can find an algebraic stability condition σ′ such thatMσ(v) andMσ′(v)

define the same moduli functor.

Assume as before that we have a G-action on Db(X). We will need the following G-

invariant version of the argument in [2, Ex. 7.27].

Lemma 3.21. Let v ∈ K(Db(X))G and σ ∈ Stab∗(X)G. Then there exists an algebraic

stability condition σ′ ∈ Stab∗(X)G, such that Mσ(v) and Mσ′(v) define the same moduli

functor.

Proof. We follow the arguments and notations from [2, Ex. 7.27]. Note also that the argu-

ments from [38, Lem. 2.15] apply in our setting. We restrict the decomposition of [2]

CS′ =

 ⋃
γ′∈S′

Wγ′

 \ ⋃
γ′ 6∈S′

Wγ′

associated to v and σ to the set of invariant stability conditions Stab∗(X)G. Since we have

σ ∈ CS′ , we conclude for all γ′ 6∈ S′ that the connected component of the submanifold

Stab∗(X)G containing σ is not entirely contained in Wγ′ . Then arguing as in [2, Ex. 7.27]

for CS′ ∩ Stab∗(X)G completes the proof. �

This yields the following existence result.

Theorem 3.22. Let σ ∈ Stab∗(X) be a G-fixed stability condition. Then for every v′ ∈
K(Db(X)G) the stack MσG(v′) is a universally closed Artin stack of finite type over C
which has a proper good moduli space.

Proof. By Lemma 3.21 we may assume that σ is algebraic and apply Theorem 3.19. �

We are ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. We will assume for simplicity that M is a fine moduli space. The

case of a coarse moduli space of stable objects works parallel by using a twisted universal
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object instead, see Remark 3.13. By Proposition 3.9 we have the decomposition

(3.7) Mσ(v)G =
⊔

p∗v′=v

MσG(v′).

The map (1.1) is induced from ε : Mσ(v)G → Mσ(v) by passing to good moduli spaces.

For every G-linearizable connected component F ⊂MG, the scheme Y = Spec (⊕g∈Gab
Lg)

as defined in (3.5) is a G∨-torsor over F , see Remark 3.12. By Proposition 3.11 the gerbe

Y × BGm is the union of all connected components of (3.7) mapping to F . Since every

connected component maps to some F this shows the first claim.

If G factors through a Schur cover G→ Q, then we have MG = MQ. Moreover for every

connected component F and point p ∈ F the obstruction of being G-linearizable (as given

by Lemma 2.6) is the pullback of a class in H2(Q,C∗) and hence vanishes. This shows that

every connected component of MG is G-linearizable and so (1.1) is surjective. �

Part 2. Equivariant categories of symplectic surfaces

4. More on equivariant categories

4.1. Calabi–Yau categories. The main reference for this section is [10].

Let D be a C-linear triangulated category with finite-dimensional Hom spaces. A Serre

functor for D is an equivalence S : D → D together with bifunctorial isomorphisms

ηA,B : Hom(A,B)
∼=−→ Hom(B,SA)∨

for all objects A,B ∈ D. By [10, Sec. 5] if we are given an action by a finite group G on D
the Serre functor S lifts to a Serre functor

S̃ : DG → DG

which is of the form S̃(A, φ) = (SA, φ′) for a certain linearization φ′. Moreover, for any

objects (A, φ) and (B,ψ) in DG the restriction of ηA,B to the G-invariant part defines

bifunctorial isomorphisms

ηA,B : Hom(A,B)G
∼=−→ (Hom(B,SA)G)∨

where the G-action on the left is defined by the linearizations φ, ψ and the G-action on the

right is defined by the linearizations ψ and φ′

We say that the category D is Calabi–Yau if there exists a 2-isomorphism

idD
∼=−→ S[−n]

for some integer n, called the dimension of D.

Remark 4.1. The derived category Db(X) of a smooth projective n-dimensional variety X

has the Serre functor S = (−)⊗ωX [n]. In this case we will usually denote the lifted functor

S̃ also by (−)⊗ ωX [n] where the action on the linearization is implicitly understood. So

(A, φ)⊗ ωX [n]

will stand for S̃(A, φ) = (A⊗ ωX [n], φ′).
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Remark 4.2. The results discussed above work also in the relative case of a smooth pro-

jective morphism π : X → T with geometrically connected fibers as in Section 2.3. Given

a Fourier–Mukai G-action on D(X), the π-relative Serre functor lifts to a π-relative Serre

functor of the equivariant category D(X)G.

We have the following criterion for the equivariant category of a Calabi–Yau variety to

be Calabi–Yau.

Proposition 4.3. ([10, Sec. 6.3, 6.4]) Let X be a smooth projective variety which is Calabi–

Yau, i.e. ωX ∼= OX . Consider the action of a finite group G on Db(X) which lifts to an

action on the dg-enhancement Ddg(X).

(i) If the induced action of G on singular cohomology preserves the class of the Calabi–

Yau form [ωX ] ∈ H0(X,ΩnX), then Db(X)G is Calabi–Yau of dimension n.

(ii) Suppose that, moreover, we have an equivalence Db(X)G ∼= Db(X ′) for a variety

X ′. The induced action of G∨ on H∗(X ′,C) preserves the class of ωX′ .

4.2. Equivariant Fourier–Mukai transforms. Let X and Y be smooth projective vari-

eties and let G be a finite group which acts on Db(X). By Lemma 2.12 this action is given

by Fourier–Mukai transforms and hence defines an action by Fourier–Mukai transforms on

Db(X × Y ), see Section 2.3.1.11 Since this action is pulled back from X, we often write

G× 1 for the group which acts on Db(X × Y ).

Consider the projections X
ρ←− X ×Y π−→ Y . The (equivariant) Fourier–Mukai transform

FE : Db(Y )→ Db(X)G with kernel E ∈ Db(X × Y )G×1 is defined by

FEA = ρ∗(π
∗(A)⊗ E)

where the tensor product takes values in Db(X × Y )G×1 and ρ∗ is the equivariant pushfor-

ward. Similarly, the (reverse) equivariant Fourier–Mukai transform GE : Db(X)G → Db(Y )

is defined by

GE(E, φ) = Homπ (E , ρ∗(E, φ))
G

where we used equivariant pullback and the π-relative Hom of Section 2.3.2.

Lemma 4.4. For any E ∈ Db(X × Y )G×1 let

EL = E ⊗ ρ∗ω∨X [−dimX], ER = E ⊗ π∗ω∨Y [−dimY ].

Then GEL and GER is the left and right adjoint of FE respectively.

Here we followed Remark 4.1 and have written E ⊗ ρ∗ω∨X [−dimX] for the application of

the inverse of the π-relative Serre functor of Db(X × Y )G×1.

11Take β to be Y → Spec(C).
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Proof of Lemma 4.4. For any (A, φ) ∈ Db(X) and B ∈ Db(Y ) we have

HomDb(X)G((A, φ),FEB)

∼= HomDb(X×Y )G×1
(ρ∗(A, φ), π∗(B)⊗ E)

∼= HomDb(X×Y )(ρ
∗A, π∗(B)⊗ E)G

∼=
(
HomDb(X×Y )(π

∗(B)⊗ E , ρ∗(A)⊗ ωX×Y [dimX + dimY ])∨
)G

∼=
(
HomDb(Y )(B,Homπ(E , ρ∗(A)⊗ ωX×Y [dimX + dimY ]))∨

)G
∼= HomDb(Y )(Homπ(E , ρ∗(A)⊗ ρ∗ωX [dimX]), B)G

∼= HomDb(Y )(GE⊗ρ∗ω∨X [− dimX](A), B).

The other case is similar. �

We have the following criterion when a Fourier–Mukai transform FE : Db(Y )→ Db(X)G

is an equivalence.

Proposition 4.5. Let E ∈ Db(X × Y )G×1. Assume that

(i) HomDb(X)G(Ex, Ey[i]) = HomDb(Y )(Cx,Cy[i]) for all x, y ∈ Y .

(ii) Db(X)G is indecomposable.

(iii) The functor FE commutes on objects with Serre functors, i.e. S̃FE(A) ∼= FES(A)

for all A ∈ Db(Y ).

Then FE is an equivalence.

Proof. By Lemma 4.4 the functor FE : Db(Y ) → Db(X)G has both right and left adjoints.

The assertion then follows from [14, Thm. 2.3]. �

5. Proof of results

Let S be a symplectic surface with a G-action on Db(S) satisfying conditions (i)-(iii) of

Section 1.1 and let σ ∈ Stab†(S) be a G-fixed stability condition.

5.1. Preliminaries. We have the following structure result.

Proposition 5.1. The equivariant category Db(S)G is triangulated, indecomposable and

Calabi–Yau of dimension 2.

Proof. Write σ = (A, Z). Since the actions of G̃L+(2,R) and G on the stability manifold

commute, by Proposition A.1 we may assume that Db(A) ∼= Db(S). Applying Proposi-

tion 2.4 we see that Db(S)G is triangulated and that the G-action on Db(S) lifts to an

action on the dg-enhancement. Hence by Proposition 4.3 and assumption (i) the category

Db(S)G is Calabi–Yau. Since G acts faithfully, the indecomposability of Db(S)G holds by

definition. �
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5.2. Moduli spaces. By work of Toda [60] the distinguished component Stab†(S) satisfies

condition (†) of Section 3.6. Hence by Theorem 3.22 we have the following.

Proposition 5.2. Let v′ ∈ K(Db(S)G). Then MσG(v′) is a universally closed Artin stack

of finite type over C which admits a proper good moduli space.

Recall the notion of a (G, σ)-generic class from Definition 2.9.

Proposition 5.3. If v ∈ ΛG is (G, σ)-generic, then Mσ(v)G has a good moduli space N

which is smooth, symplectic and proper. The map π : Mσ(v)G → N is a Gm-gerbe.

Proof. By arguing as in the proof of Lemma 3.21 we can deform σ inside Stab†(S)G to an

algebraic stability condition, without modifying the moduli functor Mσ(v). Together with

Remark A.5 we hence can assume that σ is algebraic and that Db(A) ∼= Db(S).

Let π : Mσ(v)G → N be the good moduli space of Mσ(v)G. For every x ∈ Mσ(v)G(T )

over a scheme T corresponding to an equivariant object (E, φ) we have an inclusion Gm(T ) ↪→
Aut(x) by sending f ∈ Gm(T ) to f · idE . Moreover, for every C-point p ∈ Mσ(v)G by

Lemma 2.10 we have

AutMσ(v)G(p) = AutMσG
(v′)(p) = AutAG(E, φ) = C∗ · id.

This shows that π is a Gm-gerbe.

Let p ∈ Mσ(v)G be a C-valued point corresponding to some object (E, φ) ∈ AG. Let

v′ ∈ K(AG) be the class of (E, φ). Applying Lemma 2.10 again we have

HomAG((E, φ), (E, φ)) = C.

Since Db(S)G is Calabi–Yau of dimension 2, we find that

Ext2
AG((E, φ), (E, φ)) = HomAG((E, φ), (E, φ))∨ ∼= C.

By Lemma 2.13 the Euler characteristic χ((E, φ), (E, φ)) is locally constant and hence

depends only on v′. We write χ(v′, v′) for its value. By Proposition 3.20 we conclude that

the dimension of the tangent space of N at p is

dimTN,p = dim Ext1
AG((E, φ), (E, φ)) = −χ(v′, v′) + 2.

In particular, the dimension is locally constant in p. Moreover, from the G-invariant inclu-

sion C·id ⊂ Hom(E,E) we obtain via Serre duality a G-invariant surjection Ext2(E,E)→ C
which is precisely the trace map. This shows that the trace map is surjective on the G-

invariant part and thus that the trace-free part vanishes:

Ext2(E,E)G0 = 0.

Using Proposition 3.20 again we find that all obstructions vanish and N is smooth.

The symplectic form on N can be constructed from the fact that it is a moduli space of

stable objects in a 2-CY category. It can be seen also directly:

Recall from [29, Sec. 10] the anti-symmetric Yoneda pairing on Mσ(v),

(5.1) E xt1ρ(E , E)× E xt1ρ(E , E)→ E xt2ρ(E , E),
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where E is the universal family on S ×Mσ(v) and ρ : S ×Mσ(v) →Mσ(v) is the projec-

tion to the second factor. Restricting to the G-invariant part and pulling back (5.1) via

ε : MσG(v′)→Mσ(v) yields a pairing

(5.2) ε∗E xt1ρ(E , E)G × ε∗E xt1ρ(E , E)G → ε∗E xt2ρ(E , E).

By Proposition 3.20 the sheaf ε∗E xt1ρ(E , E)G is the tangent bundle of N . Since the sym-

plectic form is G-invariant, the image of (5.2) is the G-invariant part ε∗ρE xt
2(E , E)G = ON .

Equivariant Serre duality implies that the pairing (5.2) is non-degenerate and hence a sym-

plectic form. �

5.3. Proof of Theorem 1.1. Consider the G∨-torsor given in (1.1),

(5.3)
⊔

p∗v′=v

MσG(v′)→MG.

Let F ⊂MG be a G-linearizable 2-dimensional component and let

S′ ⊂MσG(v′)

be a connected component which maps to F . The map S′ → F is a torsor for the subgroup

of G∨ that preserves this component.

By the second part of Proposition 3.11 the moduli space MσG(v′) is fine, i.e. there is a

universal equivariant object on MσG(v′)× S. Let

E = (E, φ) ∈ Db(S′ × S)1×G.

be its restriction to S′ × S. We will check that the induced Fourier–Mukai transform

FE : Db(S′)→ Db(S)G

is an equivalence.

For any x ∈ S′ we have

HomDb(S)G(Ex, Ex) = HomDb(S)(Ex, Ex)G = C

Ext1
Db(S)G

(Ex, Ex) = Ext1
Db(S)(Ex, Ex)G = TS′,x ∼= C2

Ext2
Db(S)G

(Ex, Ex) = HomDb(S)G(Ex, Ex)∨ ∼= C.

The first line follows from the stability of Ex. The second line follows from Proposition 3.20,

the smoothness of S′, and since F and hence S′ are 2-dimensional. The third line follows

since the equivariant category is Calabi–Yau. In particular, we have χ(Ex, Ex) = 0, and

using Lemma 2.13 this yields

χ(Ex, Ey) = 0 for all x, y ∈ S′.

Further for all distinct x, y ∈ S′ by the stability of Ex and Ey we have

HomDb(S)G(Ex, Ey) = 0

Ext2
Db(S)G

(Ex, Ey) = HomDb(S)G(Ey, Ex)∨ = 0.
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Hence from the Euler characteristic calculation we also get Ext1(Ex, Ey) = 0. We have

therefore proven that for all x, y ∈ S′ we have

HomDb(S′)(Cx,Cy[i]) = HomDb(S)G(Ex, Ey[i]).

By Proposition 5.1 the category Db(S)G is indecomposable and Calabi–Yau of dimen-

sion 2. Applying Proposition 4.5 we conclude that FE is an equivalence. �

5.4. A stronger version of Theorem 1.1. We state a version of Theorem 1.1 where we

drop the condition on the moduli space to parametrize only stable objects. This is useful

since not every group action on Db(S) induces an action on such a moduli space.

Theorem 5.4. Let v ∈ ΛGalg be (G, σ)-generic and let N be the good moduli space of

Mσ(v)G. If N has a 2-dimensional connected component S′, then we have an equivalence

Db(S′, α)
∼=−→ Db(S)G

where α ∈ Br(S′) is the Brauer class of the gerbe π : Mσ(v)G → N restricted to S′.

Proof. Since π (restricted to π−1(S′)) is a Gm-gerbe with Brauer class α, the universal

equivariant object onMσG(v)G × S restricted to π−1(S′)× S descends to an α× 1-twisted

1×G-equivariant universal family E on S′ × S. Arguing as in Theorem 1.1 shows that the

associated Fourier–Mukai transform FE : Db(S′, α)→ Db(S)G is an equivalence. �

5.5. Proof of Theorem 1.3. For every v′ ∈ Rv consider the natural morphism

(5.4) MσG(v′)→MG.

By Theorem 1.2 this is a H-torsor over a connected component of MG, where H is the

stabilizer of v′ under the G∨-action on Λ(S′,α). In particular, H acts freely on MσG(v′).

Assume first that the induced stability condition σG lies in the distinguished component

Stab†(S′). Since S′ is a K3 surface, this implies that MσG(v′) is an irreducible holomorphic

symplectic variety. By the second part of Proposition 4.3 the group H acts symplectically

on MσG(v′) and thus by the holomorphic Lefschetz fixed point formula every non-trivial

element must have a fixed point. This shows that H = 1 and that (5.4) is an isomorphism

onto its image. In the general case, the main result of [40] implies that ⊕iH0,i(MσG(v′))

is generated by (the conjugate of) the class of a symplectic form, so by the holomorphic

Lefschetz fixed point formula we again obtain H = 1. In any case, the morphism (5.3) is

a trivial G∨-torsor over its image. Since G is cyclic, every point of MG is G-linearizable

hence (5.3) is also surjective. This shows the claim. �

6. Existence and properties of auto-equivalences

Let S be a symplectic surface. In this section we tie up some loose ends in order to make

the theorems we proved in the last section effective in practice. After some preliminary

notation, we will consider the following topics:
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(i) Given a G-fixed distinguished stability condition σ ∈ Stab†(S) we will show that the

induced stability condition is distinguished, at least if the equivalence arises from

a universal family. This is useful, because for distinguished stability conditions the

moduli spaces of objects are well-understood.

(ii) We will prove that any symplectic action on a moduli space of stable objects on a

K3 surface is induced by an action on the derived category (Proposition 1.4).

6.1. Mukai lattice. The even cohomology of the symplectic surface S,

Λ = H2∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z),

admits a non-degenerate pairing, called the Mukai pairing, defined by

〈(r1, D1, n1), (r2, D2, n2)〉 = −r1n2 − r2n1 +

∫
S

D1 ∪D2.

We will also write α · β for 〈α, β〉. For any E,F ∈ Db(S) we have

v(E) · v(F ) = −χ(E,F )

where v(E) = ch(E)
√

td(S) is the Mukai vector of E.

6.2. Stability conditions. Given a stability condition σ = (A, Z) ∈ Stab†(S) in the

distinguished component we will identify the stability function

Z : Λalg → C

with the corresponding element in Λalg ⊗ C under the Mukai pairing.

Let P(S) ⊂ Λalg⊗C be the open subset of elements whose real and imaginary part span

a positive-definite 2-plan, let P+(S) ⊂ P(S) be the connected component which contains

eiω for an ample class ω, and let

P+
0 (S) = P+(S) \

⋃
δ∈Λalg

δ·δ=−2

δ⊥.

Bridgeland [13] proved that

(6.1) π : Stab†(S)→ P+
0 (S), σ = (A, Z) 7→ Z

is a covering map. His results were generalized to the twisted case in [30].

6.3. Induced stability conditions. Let σ ∈ Stab†(S) be a stability condition and let

G be a finite group which acts on Db(S). We assume the conditions (i), (ii) and (iii) of

Section 1.1 are satisfied. Suppose we are given an equivalence

FE : Db(S′, α)→ Db(S)G

induced from a universal family E as in Theorem 1.1 or Theorem 5.4.

Proposition 6.1. We have F−1
E (σG) ∈ Stab†(S′).
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We begin with a description how the Mukai lattices Λ and Λ′ of the surfaces S and

S′ interact. Consider the composition of the forgetful and linearization functors with the

equivalence FE :

FMp(E) = p ◦ FE , FMp(E)∨[2] = F−1
E ◦ q,

where we have also written p for the forgetful functor of Db(S′ × S)1×G. Passing to coho-

mology this yields morphisms

p : Λ′ → Λ, q : Λ→ Λ′

which are both left and right adjoints of each other. The composition is pq = ⊕gg. Let

L ⊂ Λ′

denote the saturation of the sublattice q(Λ).

Given a lattice M we write M(n) for the lattice obtained by multiplying the intersection

form with the integer n.

Lemma 6.2. We have the finite-index sublattices

ΛG ⊕ (ΛG)⊥ ⊂ Λ, L⊕ L⊥ ⊂ Λ′.

The map p vanishes on L⊥ and defines an embedding of lattices p : L(|G|) ↪→ ΛG. The map

q vanishes on (ΛG)⊥ and defines an embedding of lattices q : ΛG(|G|) ↪→ L.

Proof. The isomorphism of correspondences

ρg ◦ p(E) = (id× ρg)(p(E)) ∼= p(E),

shows that the image of p : Λ′ → Λ lies in the invariant lattice ΛG. By adjunction it follows

that q vanishes on (ΛG)⊥. In particular, for all v′, w′ ∈ L we can write v′ = q(v) and

w′ = q(w) where v, w ∈ ΛG ⊗Q. We obtain

〈v′, w′〉Λ′ = 〈qv, qw〉Λ′ = 〈v, pqw〉Λ = |G|〈v, w〉Λ.

Since ΛG is non-degenerate, this shows that L is non-degenerate and we have the finite-

index sublattice L ⊕ L⊥ ⊂ Λ′. It also shows that q defines an embedding ΛG(|G|) ↪→ L.

Moreover, with the same notation as above we have

〈pv′, pw′〉Λ = 〈pqv, pqw〉Λ = |G|〈v, pqw〉Λ = |G|〈qv, qw〉Λ′ = |G|〈v′, w′〉Λ′ .

We find that p defines an embedding L(|G|) ↪→ ΛG. For every w′ ∈ L⊥ we have 〈pw′, v〉Λ =

〈w′, qv〉Λ′ = 0 for all v ∈ Λ, which shows that pw′ = 0. �

If G is abelian, then one can show that L is the invariant lattice for the action of the

dual group on Db(S′), that is L = (Λ′)G
∨

.

Proof of Proposition 6.1. To ease the notation we assume that the Brauer class α vanishes

and hence that we work with the usual derived category Db(S′). The case with non-trivial

Brauer class works parallel.
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Let τ = F−1
E (σG). By construction the functor FE is induced from a universal family

E ∈ Db(S′×S)1×G of σG-stable objects. Since Ex is σG-stable for all x ∈ S′, the skyscraper

sheaves Cx are τ -stable for all x ∈ S′.
Let us consider the central charge Zτ of the stability condition τ . By definition, it is

given by the composition

Zτ : Λ′
p−→ ΛGalg ⊂ Λalg

Z−→ C.

By Lemma 6.2 the central charge Zτ factors over L and the real and imaginary part of Zτ

span a positive-definite 2-plane, because <(Z) and =(Z) do so.

We want to apply now the reasoning of the proof of [13, Prop. 10.3]. As in [13, Sec. 10],

there is a unique g ∈ G̃L+(2,R) such that the central charge of gτ is of the form exp(β+ iω)

for some β, ω ∈ NS(S′) with ω2 > 0, and such that the sheaves Cx have phase 1. Then as

in the first step in [13, Prop. 10.3] we apply [13, Lem. 10.1] to conclude that for any curve

C ⊂ S′ and torsion sheaf E supported on C satisfies =Zτ (E) > 0 which implies ω · [C] > 0.

Combining this with ω2 > 0 we find that the class ω is ample.

Invoking again [13, Lem. 10.1] we find further that the heart B of gτ is the tilt of the

torsion pair (T ,F), where T = Coh(S′)∩P(0, 1] and F = Coh(S′)∩P(−1, 0] and P is the

slicing corresponding to gτ (for more on tilting we refer to Appendix A or [25]). Arguing

as in the second step of the proof of [13, Prop. 10.3] we deduce that the torsion pair

(T ,F) coincides with the torsion pair (Tω,β ,Fω,β) associated with the classes ω, β which is

constructed in [13, Sec. 6]. With the notation of loc. cit. this yields that B = A(ω, β) and

therefore gτ = σω,β . In particular, τ ∈ Stab†(S′) and the proof is finished. �

6.4. Proof of Proposition 1.4. Let S be a K3 surface with a stability condition σ′ =

(A′, Z ′) ∈ Stab†(S). Let M be a fine12 moduli space of σ′-stable objects of Mukai vector

v ∈ Λ and let G be a finite group which acts symplectically on M . Consider the Hodge

isometry

Λ ⊃ v⊥ ∼= H2(M,Z).

By [42, Thm. 26] the induced action of G on H2(M,Z) acts trivially on the discriminant

lattice. Hence, the action lifts to an action on Λ which fixes the vector v and acts by Hodge

isometries. Since G acts symplectically on M , the action on Λ preserves the class of the

symplectic form.

Let H ∈ H2(M,Z) be a G-invariant ample class (obtained for example by averaging

any ample class over its images under G). Recall the wall and chamber decomposition of

Stab†(S) associated to v [13, Sec. 9] and denote by C the chamber which contains σ′. From

[7, Thm. 1.2] we infer that there exists a stability condition σ = (A, Z) ∈ C such that the

associated divisor class `σ equals the class H (for the construction and properties of the

divisor classes `σ we refer to [8]). By definition the central charge Z is contained in the

C-vector space SpanC〈H, v〉 ⊂ Λ⊗C and hence fixed by G. Moreover, since σ and σ′ lie in

the same chamber, the moduli functorsMσ(v) andMσ′(v) agree. This proves M = Mσ(v).

12The case of a coarse moduli space works similarly.
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Hence we have obtained a subgroup G ⊂ O(Λ) which acts by Hodge isometries, preserves

the class of the symplectic form and Z. An application of [28, Prop. 1.4] shows that

this action on Λ is induced by a subgroup G ⊂ AutDb(S) which preserves σ and acts

symplectically. Using part (b) of Lemma 2.7 there is a surjection G̃ → G from a finite

group G̃ which acts on Db(S) with image G in AutDb(S). By construction the action of G̃

preserves σ and v and hence induces an action on M = Mσ(v). Since the restriction map

Aut(M)→ O(H2(M,Z)) is injective [41, Lem. 7.1.3], the action of G̃ on M factors through

the given action by G. This proves the first part.

For the second part, assume that G ⊂ AutM is cyclic. Then the action of Zn on M has

at least one fixed point which corresponds to a Zn-invariant simple object F . Hence the

claim follows from [10, Sec. 4.8]. �

7. Examples

We consider a series of examples to illustrate our methods. For simplicity we restrict

ourselves mostly to cyclic groups acting on the derived category of a K3 surface.

7.1. Classification. Given a variety X and an element g ∈ AutH∗(X,C) of finite order n

we define the frameshape of g as the formal symbol

πg =
∏
a|n

am(a)

that encodes the characteristic polynomial of g via

det(t · id− g) =
∏
a|n

(ta − 1)m(a).

Symplectic auto-equivalences of K3 surfaces of finite order preserving a stability condition

are neatly classified in terms of the frameshape of their action on cohomology. There are 42

frameshapes and at most 82 O+(Λ)-conjugacy classes which can occur [20]. The invariant

lattices can be found in [54, App. C]. For example, in order 2 there are three cases: 1828,

1−8216, and 212, each in a unique conjugacy class. Symplectic involutions of K3 surfaces

have frameshape 1828, while the others are strictly of derived nature.

7.2. The dual action of a geometric involution. Let ι : S → S be a symplectic invo-

lution of a symplectic surface with at least one fixed point and let G = Z2 be the group

generated by ι. Hence we are in one of the following two cases:

(i) S is an abelian surface and ι is multiplication by (−1), or

(ii) S is a K3 surface and ι is a Nikulin involution [58].

The number r of fixed points of G is 16 and 8 respectively, and in both cases the minimal

resolution S′ of S/Z2 is a K3 surface. In the fiber diagram

Z S′

S S/Z2

α

β



EQUIVARIANT CATEGORIES AND FIXED LOCI 35

the map β is the blowup at the fixed points and α identifies S′ with the fixed locus Hilb2(S)G.

By [14] (or Theorem 1.1) we have the equivalence Φ = β∗α
∗ : Db(S′)→ Db(S)G.

Let Q : Db(S′)→ Db(S′) be the involution given by the action of the dual group G∨. By

applying both sides to skyscraper sheaves one finds13

Q = TOS(−δ) ◦
r∏
i=1

STOEi (−2)

where we let STE(F ) = Cone(Hom•(E,F ) ⊗ E → F ) denote the spherical twist by the

spherical object E, and TL(E) = E ⊗ L is the twist by a line bundle L. The Ei are the

exceptional divisors of the resolution S′ and δ = 1
2

∑r
i=1Ei.

The involution Q fixes skyscraper sheaves of points not on the exceptional divisor and

sends OS′ to OS′(δ) as well as OEi(−1) to OEi(−2)[1]. For x ∈ Ei the action exchanges

the two distinguished triangles

(7.1)
OEi(−1)→ Cx → OEi(−2)[1]

OEi(−2)[1]→ Q(Cx)→ OEi(−1).

The frameshape of Q is 1−8216 if S is an abelian surface, and 1828 if S is a K3 surface.14

As an example of a fixed stack computation, consider the moduli space

M =MσG(0, 0, 1)

where σG is induced by aG-fixed stability condition onDb(S) which is equivalent to Gieseker

stability for the Mukai vector v = (0, 0, 1). The C-points of M correspond to the objects

Cx for all x ∈ S′, Q(Cx) for all x ∈ Ei, OEi(−1)⊕OEi(−2)[1].

In this list the Cx for all x /∈ Ei and the OEi(−1)⊕OEi(−2)[1] are invariant under Q. Every

Cx for x /∈ Ei admits two distinct G∨-linearizations, while OEi(−1) ⊕ OEi(−2)[1] admits

only one. We find that the good moduli space of M is the quotient S/Z2, and that the

good moduli space of the fixed stackMG∨ is S. Moreover, the forgetful map ε : MG∨ →M
induces the quotient map S → S/Z2 on good moduli spaces. Applying Theorem 5.4 we

obtain the equivalence

(7.2) Db(S)
∼=−→ Db(S′)G∨

where the Brauer class α is trivial since S/Z2 is a fine moduli space away from the singu-

larities. (The equivalence (7.2) also follows by a result of Elagin [21, Thm. 1.3].)

Among other things this example shows that while the good moduli space of M may

be singular, its fixed stack has a smooth proper good moduli space (as guaranteed by

Proposition 5.3). We also see that ε is not proper, because it does not satisfy the valuative

criterion of properness.

13See also [34] for a related discussion of this involution.
14On the Mukai lattice the involution Q acts by

(1, 0, 0) 7→ (1, δ,−r/4), (0, Ei, 0) 7→ (0,−Ei, 1), (0, 0, 1) 7→ (0, 0, 1).
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7.3. Involutions on a genus 2 K3 surface. Let π : S → P2 be a K3 surface obtained as

the double cover of a sextic plane curve, and let g : S → S be a symplectic involution which

fixes the hyperplane class H ∈ Pic(S). In this section we will determine the fixed locus of

the moduli spaces of Gieseker semistable sheaves with Mukai vector (0, H, 0) and (0, 2H, 0).

As an application we describe the fixed locus of the induced symplectic birational involution

of the resolution of Mσ(0, 2H, 0) of O’Grady 10 type.

Recall that the involution g descends to an involution gP2 of P2 which can be choosen to

act by (x, y, z) 7→ (−x, y, z), see [58, Sec. 3.2]. The fixed locus of gP2 is p = (1, 0, 0) and the

line x = 0. Let C0 be the preimage under π of the line x = 0 and let C1 be the preimage

of a generic line of the form λy + µz. Let also C ∈ |O(2H)| be a curve that is preserved

under g but disjoint from the fixed points pi. These curves are preserved by g and contain

6, 2 and 0 fixed points respectively. Consider the quotients

C ′0 = C0/Z2, C ′1 = C1/Z2 and C ′ = C/Z2

which are rational, elliptic, and of genus 3 respectively. After reordering the exceptional

divisors one has in Pic(S′) the relations15

C ′0 =
1

2
C ′ − 1

2
(E3 + . . .+ E8), C ′1 =

1

2
C ′ − 1

2
(E1 + E2).

Suppose that S is of minimal Picard rank 9. Then by [58, Lem. 1.10] the Picard group of S′

has the Z-basis C ′1, δ, E2, . . . , E8. The map on cohomology H∗(S′,Z) → H∗(S,Z) induced

by the composition Db(S′)
Φ−→ Db(S)G → Db(S) is given by

1 7→ 1− p, p 7→ 2p, Ei 7→ p, δ 7→ 4p, C ′ 7→ 2H, C ′1 7→ H − p

where we let p denote the class of a point on both S and S′.

Let σ be a generic G-fixed stability condition on S which for vectors (0, kH, 0) is equiv-

alent to Gieseker stability. We consider the moduli spaces Mσ(0, kH, 0) for k = 1, 2 and

their fixed loci: Since H is irreducible on S, the coarse moduli space Mσ(0, H, 0) is smooth.

Hence by Theorem 1.3 (and using the notation given there) we have

Mσ(0, H, 0)G =
⊔

v′∈RH

MσG(v′).

A direct calculation shows that there is a unique vector in RH of square 0 given by C ′1 +E1,

and 28 vectors of square −2. Therefore,

Mσ(0, H, 0)G = S̃ t (28 points)

where S̃ = MσG(0, C ′1 + E1, 0) is a smooth K3 surface. This matches the results of [33].

We turn to Mσ(0, 2H, 0). Since the moduli space contains strictly semistable objects, we

can not apply Theorem 1.2 directly, but have to account for the semistable locus. We begin

15We denote the class in the Picard group with the same symbol as the underlying curve.
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by describing the set R2H . It is given by vectors of the form

v′ = C ′ +

8∑
i=1

aiEi + cp

where all the ai are either integers or half-integers,
∑
i ai is even and c = −

∑
i ai/2.

Moreover, only vectors satisfying

• (v′)2 ≥ −2 (equivalently
∑
i a

2
i ≤ 3), or

• v′ = v1 + v2 with vi ∈ RH
contribute to R2H . One finds that R2H (i.e. modulo Q) consists of the following:

(i) The vector C ′ of square 4. It can be decomposed in 28 different ways as a sum

v1 + v2 with v1, v2 ∈ RH both of square −2, and in a unique way as v1 + v2 with

v1, v2 ∈ RH both of square 0 (given as C ′1 + Ei). The moduli space MσG(C ′) is of

dimension 6. Its singular locus is the disjoint union of the product variety S̃ × S̃
and 28 isolated points.

(ii) 63 vectors of square 0. Each vector can be written in 6 different ways as a sum

of two (−2)-vectors in RH . The moduli space in each case is a K3 surface with 6

singularities of type A1.

(iii) 56 vectors of square 0, each written uniquely as v1 +v2 where v1 is of square 0 (equal

to C ′1 +E1) and v2 is of square −2. In each case we have MσG(v′) = MσG(v1) = S̃.

(iv) 1 vector of square 0 obtained as 2v1, where v1 = C ′1 +E1 ∈ RH is of square 0. The

good moduli space MσG(2v1) is Sym2MσG(v1) = Sym2S̃.

(v) 378 vectors of square −4 written uniquely as v1 + v2 where v1, v2 ∈ RH are both of

square −2. The good moduli space is a point.

(vi) 28 vectors of square −8 obtained as 2v, where v ∈ RH is of square −2. The good

moduli space is a point.

By considering the possible types of semistable points in Mσ(0, 2H, 0) and using that G

is cyclic one finds that the image of
⊔
v′∈R2H

MσG(v′) in Mσ(0, 2H, 0) is precisely the fixed

locus we are interested in. A basic sublocus of the fixed locus is

Sym2
(
Mσ(0, H, 0)G

)
⊂Mσ(0, 2H, 0)G.

The scheme Sym2
(
Mσ(0, H, 0)G

)
consists of

(a) 1 copy of Sym2(S̃),

(b) 28 copies of S̃ corresponding to sheaves E ⊕F with E ∈ S̃ and F corresponding to

one of the 28 fixed points and

(c) Sym2(28 points) consisting of 378 + 28 points corresponding to the direct sum of

distinct and identical stable sheaves respectively.

Given distinct G-invariant stable sheaves E,F of the same slope, the direct sum E ⊕ F
admits precisely |G∨|2 many G-linearizations. Moreover, if distinct E,F ∈ Mσ(0, H, 0)

are isolated points of the fixed locus, then no equivariant lift of E ⊕ F has class C ′ (since
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otherwise (E, φ) = Q(F, φ), so E = F ). We see that the 378 points in (c) are the image of

the points (v), but also of the 6 · 63 singular points on the K3 surfaces in (ii).

Similarly, the 28 K3 surfaces in (b) are the image of the 56 K3 surfaces in (iii). Since

there are precisely 4 linearizations, these K3 surfaces can not appear in the image of other

components, and so yield connected components of Mσ(0, 2H, 0)G. A direct sum E⊕E of a

stable object E admits precisely |Sym2(G∨)| =
(|G∨|+1

2

)
many linearizations (here 3). Hence

the 28 remaining points in (c) are the image of the 28 points in (vi) and the 28 isolated

singularities in (i). Moreover, if v1 ∈ RH of square 0, then MσG(2v1) = Sym2MσG(v1) maps

to the same locus as the inclusion

(7.3) MσG(v1)×MσG(Qv1) ⊂MσG(0, C ′, 0).

Hence the image of MσG(2v1) lies in the image of the main component MσG(0, C ′, 0). The

63 moduli spaces in (ii) contain stable points and since we have already taken the coset

modulo Q, they must embed into Mσ(0, 2H, 0)G as isolated components. We conclude that

Mσ(0, 2H, 0)G = Y t (28 smooth K3s) t (63 K3s with 6 nodes)

where Y is the image of MσG(0, C ′, 0) and hence 6-dimensional.

Rcall that the singular moduli space M(0, 2H, 0) admits an irreducible holomorphic sym-

plectic resolution X → Mσ(0, 2H, 0) of O’Grady 10 type [47, 3]. Recall from [58] that

Pic(S) = ZH ⊕ E8(−2). Hence there exists 240 vectors α ∈ E8(−2) of square −4. The

involution g acts on these vectors by gα = −α. Let A ⊂ E8(−2) be a list of representatives

of the orbits of the (−4)-vectors under this action. The singular locus of Mσ(0, 2H, 0) is

the locus of polystable sheaves, and therefore given by

Mσ(0, 2H, 0)sing = Sym2Mσ(0, H, 0) t
⊔
α∈A

(Mσ(H + α)×Mσ(H − α)) .

The resolution X is obtained by a blowup of Mσ(0, 2H, 0) along Sym2Mσ(0, H, 0), followed

by a resolution of the 120 isolated points. The fiber of X over each of these 120 points is

a P5. The automorphism g : Mσ(0, 2H, 0) → Mσ(0, 2H, 0) natural lifts to the blowup (by

universal property), but it is not clear a priori whether it lifts along the resolution of the

120 points. Hence we only obtain a birational involution g′ : X 99K X defined away from

120 disjoint copies of P5. We will show the following:

Proposition 7.1. The closure of the fixed locus of the birational symplectic involution

g : X 99K X is smooth and the disjoint union of one connected component of dimension 6

containing 120 copies of P5, and 119 K3 surfaces of which 88 are derived equivalent to S′.

Proof. The claim follows from our discussion above above and a local analysis of g along

Mσ(0, 2H, 0)sing ∩Mσ(0, 2H, 0)G using the local description of the moduli spaces given in

[32, Sec. 2] and [3, Sec. 3]. This is straightforward and we just highlight the main points:

• The 120 isolated singular points of Mσ(0, 2H, 0) lie in Y . They are the images of

the stable points of MσG(C ′) corresponding to q(Eα) where Eα is the unique stable
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object in class H+α. The map g′ does not extend to the resolution and the closure

of the fixed locus of g′ contains the whole exceptional P5.

• The 63 K3 surfaces with 6 nodes described in (ii) meet the singular locus of

Mσ(0, 2H, 0) at the singularities. The corresponding component in the fixed lo-

cus of g′ is the proper transform and smooth.

• The 28 smooth K3 surfaces in Mσ(0, 2H, 0)G corresponding to (iii) lie completely

in the singular locus Mσ(0, 2H, 0)sing. The corresponding component in the fixed

locus of g′ is a trivial 2 : 1 cover of this locus and hence given by 56 K3 surfaces.

• The K3 surfaces in (iii) and precisely 32 of the K3 surfaces in (ii) arise as moduli

spaces of semistable objects on S′ for a Mukai vector w which satisfies 〈w,Λ′〉 = Z.

Hence all of them are derived equivalent to S′. �

7.4. An order 3 equivalence. Let E,F be elliptic curves defined by cubic equations f, g

respectively and consider the cubic fourfold X ⊂ P5 defined by the equation f(x0, x1, x2) +

g(x3, x4, x5) = 0. Let ζ be a non-trivial third root of unity. As in [44, Ex. 1.7(iv)] we define

a G = Z3-action on X by letting the generator act by

(x0, . . . , x5) 7→ (x0, x1, x2, ζx3, ζx4, ζx5).

The induced action of G on the Fano variety of lines on X has fixed locus F (X)G = E×F .

Since F (X) is a moduli space of stable objects in the Kuznetsov component A of Db(X),

and the Kuznetsov component A is equivalent to the derived category of a K3 surface by a

result of Ouchi [51], Theorem 1.1 shows that AG ∼= Db(A) for some connected étale cover

A → E × F of degree 1 or 2. In particular, A is an abelian surface. Theorem 1.2 then

determines the fixed loci of the induced action on any smooth Mσ(v) (with v ∈ K(A)Z3).

7.5. Frameshape 212. We give an example which shows that the equivariant category can

behave rather strange. Consider a symplectic automorphism τ : S → S of a K3 surface

of order 4, and let S′ be the resolution of the quotient S/〈τ2〉. Since we have taken the

quotient only by τ2, we have a residual involution τ̄ : S′ → S′. The equivalences τ̄∗ and the

dual action Q of Section 7.2 commute and are symplectic. One checks that the composition

g = τ̄∗ ◦Q is an involution of Db(S′) of frameshape 212. Then, as a special case of [10, Sec.

4.9] the involution g does not define an action of Z2 on the category, but defines instead a

faithful(!) action of Z4. Moreover one has the equivalence:

Db(S′)Z4
∼= Db(S′).

In other words, the equivariant category under this action is equivalent to the category we

started with. In particular, there does not exist a stable object which is G-invariant and G

does not act on any fine moduli space of S.16

16This example first appeared in [20, Sec. 4.2] as a symmetry of K3 non-linear sigma models. We expect

that the behaviour Db(S)G ∼= Db(S) is typical of the case where we have a ’failure of the level-matching
condition’, i.e. λ > 1 in [54, App. C].
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7.6. Order 11 equivalences. Let g : Db(S)→ Db(S) be a symplectic auto-equivalence of

a K3 surface S of order 11 fixing a stability condition σ ∈ Stab†(S). The associated action

on cohomology is one of three possible conjugacy classes, each with invariant lattice of rank

4 [54, App. C]. This implies that the pairs (S, g) are isolated points in their moduli space.

Using the Huybrechts–Mongardi criterion [28, 42] each such g induces an automorphism of

a moduli spaces M of stable objects in Db(S). If we want to determine the equivariant

category Db(S)Z11 through Theorem 1.1, we would need to find a 2-dimensional component

of the fixed locus in some M . This seems difficult in this case without studying the concrete

geometry. By Appendix B we can at least read off the Euler characteristic of the fixed locus:

If M is of dimension 2n, then e(Mg) is the coefficient of qn−1 of the series

1

η(q)2η(q11)2
=

1

q
+ 2 + 5q + 10q2 + 20q3 + 36q4 + 65q5 + 110q6 +O(q7).

We hence should expect 2-dimensional fixed components only in cases where dimM ≥ 10.

Appendix A. Hearts on symplectic surfaces

Let S be a smooth projective symplectic surface and recall the notation from Section 6.2.

The goal of this section is to prove the following result:

Proposition A.1. Let σ ∈ Stab†(S) be a stability condition. Then there exists an element

g ∈ G̃L+(2,R) such that gσ = (A, Z) satisfies

Db(A) ∼= Db(S).

Let us first recall from [13] how the component Stab†(S) is built up. First one considers

the set V (S) of stability conditions σω,β = (Aω,β , Zω,β) with central charge Zω,β = 〈exp(β+

iω), 〉 where β, ω ∈ NS(S)⊗R with ω ample. The heart Aω,β is obtained from the torsion

pair (Tω,β ,Fω,β) of Coh(S) by tilting, see [13, Sec. 6]. Next, let U(S) be the orbit of V (S)

under the free action of G̃L+(2,R) on Stab†(S). Elements in U(S) are characterized as

those stability conditions in Stab†(S) such that all skyscraper sheaves are stable of the

same phase. Finally, a detailed analysis of the boundary ∂U(S) [13, Thm. 12.1] yields that

any σ ∈ Stab†(S) can be mapped into U(S) using (squares of) spherical twists. If S is an

abelian surface, then we even have U(S) = Stab†(S) [13, Thm. 15.2].

We start the proof by considering the set of geometric stability conditions V (S).

Lemma A.2. For all σ = (A, Z) ∈ V (S) we have Db(A) ∼= Db(S).

Proof. Recall that a torsion pair (T ,F) of an abelian category C is called cotilting, if for

all E ∈ C there is a surjection F � E with F ∈ F . By [11, Prop. 5.4.3], which is a refined

version of [25], for any cotilting torsion pair (T ,F) one has Db(C′) ∼= Db(C), where C′ is the

tilt along (T ,F).

If σω,β ∈ V (S), then its heart Aω,β is obtained from Coh(S) by tilting along the torsion

pair (Tω,β ,Fω,β). Huybrechts proved in [27, Prop. 1.2] that this torsion pair is cotilting. �
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Proposition A.3. Let σ ∈ V (S) and let P be the associated slicing. Then for all a ∈ R
there is a natural derived equivalence Db(P(a, a+ 1]) ∼= Db(S).

Since Lemma A.2 proves the assertion for a = 0 and the property is preserved by shifts,

we only need to consider the case a ∈ (0, 1). Write σ = (Aω,β , Zω,β) and A := P(a, a+ 1].

Then

A ⊂ 〈Aω,β ,Aω,β [1]〉

and A is a tilt of Aω,β for the torsion pair T = Aω,β ∩A = P(a, 1] and F = Aω,β ∩A[−1] =

P(0, a]. There is a natural exact functor

Φ: Db(A)→ Db(Aω,β) ∼= Db(S)

of triangulated categories [45, Sec. 7.3]. The proof given below shows that this functor

defines a derived equivalence.

Proof of Proposition A.3. The main idea in the proof is to show that Φ is essentially sur-

jective. For this we make first some observations.

Take a very ample line bundle O(1). The line bundle O(−i) will lie in Fω,β for i � 0.

Recall from [13, Sec. 6] that the central charge Zω,β of the stability condition σω,β sends

an object E ∈ Db(S) with Mukai vector v(E) = (r, l, s) to

Zω,β(E) = −s+
r

2
(ω2 − β2) + lβ + i(lω − rωβ).(A.1)

Thus there exists an i0 such that for all i ≥ i0 the object O(−i)[1] lies in P(0, a]. Let us

assume (after relabelling) that already i0 = 1 is sufficient.

Consider a morphism of sheaves

O(−i)⊕m α−→ O(−j)⊕n.

Since Fω,β is the free part of a torsion pair and hence closed under subobjects, the kernel

K = Ker(α) lies in Fω,β . Similarly, R = Image(α) is a subsheaf of O(−j)⊕n and lies in

Fω,β . Therefore the distinguished triangle

K[1]→ O(−i)⊕m[1]→ R[1]

in Db(S) yields a short exact sequence in P(0, 1]. In particular, K[1] ∈ P(0, a].

Let E ∈ Db(S) be an object. Using the line bundles O(−i) we can find a quasi-

isomorphism OE
'−→ E in the homotopy category K(S) = K(Coh(S)), where OE =

(. . . Oi−1
E → OiE → . . . ) is a (possibly only bounded above) complex whose components

are all direct sums of the line bundles O(−i) for i > 0. Let c be the smallest integer such

that the cohomology Hc(E) ∈ Coh(S) is not isomorphic to zero. Define a new complex

FE = (. . . 0→ Ker(∂c−1)→ OcE → Oc+1
E → . . . ).

This is a subcomplex ofOE which is bounded and the composition yields a quasi-isomorphism

FE
'−→ E.
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From the above discussion we infer that FE [1] is a bounded complex whose components

all lie inside P(0, a]. In particular, the complex FE [2] viewed inside Kb(P(1, 1 + a]) is an

element in Db(A). This shows that the realization functor

Φ: Db(A)→ Db(P(0, 1]) ∼= Db(S)

is essentially surjective. Invoking [18, Thm. A] finishes the proof. �

Corollary A.4. For all σ = (A, Z) ∈ U(S) we have Db(A) ∼= Db(S).

Proof. Any σ ∈ U(S) is a G̃L+(2,R)-translate of a unique τ ∈ V (S). Thus we have

A = P(a, a + 1] for some a ∈ R, where P is the slicing corresponding to τ . The assertion

follows from Proposition A.3. �

Proof of Proposition A.1. Corollary A.4 proves the assertion for abelian surfaces. Hence we

can assume that S is a K3 surface.

If Φ: Db(S)→ Db(S) is a derived auto-equivalence and A ⊂ Db(S) is a heart, then the

restriction Φ|A : A → Φ(A) induces an equivalence Db(A) ∼= Db(Φ(A)). Hence Db(A) ∼=
Db(S) if and only of Db(Φ(A)) ∼= Db(S). Moreover any auto-equivalence commutes with

the G̃L+(2,R)-action. Since, as discussed earlier, any stability condition in Stab†(S) can

be mapped by an auto-equivalence into the closure of U(S), and we know the claim for

elements in the interior of U(S) by Corollary A.4, we may therefore assume that σ lies on

the boundary of U(S).

As σ is contained in U(S), all skyscraper sheaves Cx are semistable. After applying an

element of G̃L+(2,R) we may further assume that all skyscraper sheaves have phase 1 with

respect to σ.

Following ideas of [5] we will consider a stability condition σ′ = (A′, Z ′) ∈ U(S) such

that skyscraper sheaves have slope 1 and approach σ = (A, Z) ∈ ∂U(S) by first deforming

only the real part of Z ′ and afterwards the imaginary part of the central charge

Concretely, consider the covering map π : Stab†(S) → P+
0 (S) ⊂ ΛGalg ⊗ C and choose

an open ball B ⊂ P+
0 (S) of small radius containing Z. Choose a stability condition σ′ =

(A′, Z ′) ∈ U(S) such that skyscraper sheaves have slope 1 and such that the line from Z ′

to <Z + =Z ′ and the line from <Z + =Z ′ to Z viewed in the vector space ΛGalg ⊗ C are

contained inside B. Let Z̃ be the stability function <Z + =Z ′ and let σ̃ = (Ã, Z̃) be the

stability condition obtained from the covering property of π. By construction all skyscraper

sheaves remain of phase 1 along this deformation from σ to σ′.

The crucial observation now is that the stability condition σ̃ is still contained in the

open subset U(S). Indeed, recall that the set U(S) can be characterized as the set of

all stability conditions for which all skyscraper sheaves Cx are stable of the same phase.

Assume that a skyscraper sheaf Cx becomes unstable along the line segment from Z ′ to Z̃.

Since semistablity is a closed property, there would have to exist a τ on this line segment

where Cx becomes semistable. Since the imaginary part of the central charges stays constant

along the path, Cx is still contained in the abelian category P(1), where P is the slicing
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associated to τ . As Cx is semistable, there exists a stable object F ∈ P(1) and a non-zero

morphism F → Cx which is not an isomorphism. Since being stable is an open property [6,

Prop. 2.10], the object F was also stable for a stability condition on the line segment where

Cx is stable. However, a morphism between stable objects of the same phase is either an

isomorphism or 0, yielding a contradiction. We conclude that σ̃ ∈ U(S).

Let P̃ be the the slicing associated to σ̃. Then as argued in [5, Lem. 5.2] the abelian

category Ã = P̃(1/2, 3/2] is constant along a deformation that only changes the imaginary

part of the stability condition. This yields P(1/2, 3/2] = Ã, where P is the slicing associated

to σ. Let g ∈ G̃L+(2,R) denote the rotation by π/2. Then Ã is the heart of both gσ̃ and

gσ. Since G̃L+(2,R) preserves U(S), we have gσ̃ ∈ U(S) and therefore by Corollary A.4

we conclude that Db(Ã) ∼= Db(S). �

Remark A.5. Given an algebraic stability condition σ = (A, Z) ∈ Stab†(S), the proof

above shows that in Proposition A.1 one can choose the element g such that gσ is algebraic

as well. Indeed, this is immediate for stability conditions which are mapped by some auto-

equivalence into U(S). For σ ∈ ∂U(S), we first applied an element from G̃L+(2,R) so

that skyscraper sheaves get mapped to −1 and then applied the rotation by π/2. If σ is

algebraic, both steps can be achieved by multiplying Z with elements from Q + iQ.

Appendix B. The Euler characteristic of fixed loci

We state a result which may be viewed as a numerical version of Theorems 1.3:

Let M = Mσ(v) be a moduli space of stable objects of Mukai vector v on a K3 surface

S, and let g : M → M be a symplectic automorphism of finite order. Let πg =
∏
a a

m(a)

be the frameshape of the induced action on the Mukai lattice Λ (obtained from lifting the

action on H2(M,Z) to Λ, see Section 6.4). We define the modular form

fg(q) =
∏
a

η(qa)m(a) = q +O(q2),

where η(q) = q1/24
∏
m≥1(1− qm) is the Dedekind elliptic function.

Proposition B.1. e(Mσ(v)g) = Coefficient of qv·v/2 of fg(q)
−1.

Here e(Z) denotes the topological Euler characteristic of a finite type scheme Z. If M is

the Hilbert scheme of points and the automorphisms is induced by an automorphisms of the

underlying surface, this follows by a local analysis, see [16] and also [15] for the extension to

non-cyclic groups. The general case is evidence for an affirmative answer to Question 1.5.

Proof. We prove the claim by computing the trace of the induced automorphism g∗ : H∗(M,Z)→
H∗(M,Z). By a result of Markman [39], g∗ is a monodromy operator. By Mongardi [42,

Thm. 26] the unique lift of g∗|H2(M,Z) to an automorphism of the Mukai lattice fixes v, and

by the classification [54, App. C] the lift is of determinant 1. This shows that g∗|H2(M,Z) is
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also of determinant 1. Using [39, Lem. 4.13] we see that g∗ acts via the canonical represen-

tation of the (intergrated) Looijenga–Lunts–Verbitsky (LLV) Lie algebra

SO(H2(M,C))→ SO(H∗(M,C)).

It hence remains to prove that, given an element ϕ ∈ SO(H2(M,C)) of finite order with

frameshape
∏
a a

m(a) (when extended to Λ ⊗ C by the identity on H2(M,C)⊥), then the

trace of ϕ on H∗(M,C) has the given form. Since this is a purely topological question, we

may assume M = Hilbn(S) where n = (v · v)/2 + 1. Moreover, after conjugation by an

element in SO(H2(M,C)) we may assume that the lifted element ϕ̄ ∈ SO(Λ⊗C) preserves

the decomposition by degree and acts as the identity on H0(S,C)⊕H4(S,C). In particular,

ϕ̄ induces an action on H∗(Hilbk(S)) for any k. By the formulas for the LLV Lie algebra

action in [48] in terms of Nakajima operators, the Nakajima operators are equivariant with

respect to the action of ϕ̄ on Λ ⊗ C and H∗(Hilbk(S)). If Vi are the eigenspace of ϕ̄ on

Λ⊗ C with eigenvalue λi this yields ⊕k≥0H
∗(Hilbk(S)) = ⊗24

i=1Sym•(Vi) and thus

∑
k≥0

Tr (ϕ|H∗(Hilbk(S))) qn =
∏
m≥1

24∏
i=1

1

(1− λiqm)
=
∏
n≥1

∏
a≥1

(
1

1− qan

)m(a)

where the last equality follows from a direct computation. �
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