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Abstract. We introduce and study the notion of atomic sheaves and complexes

on higher-dimensional hyper-Kähler manifolds and show that they share many of

the intriguing properties of simple sheaves on K3 surfaces. For example, we prove

formality of the dg algebra of derived endomorphisms for stable atomic bundles.

We further demonstrate the characteristics of atomic objects by studying atomic

Lagrangian submanifolds. In the appendix, we prove non-existence results for

spherical objects on hyper-Kähler manifolds.

1. Introduction

1.1. K3 surfaces and Mukai vectors. Since the seminal work of Mukai [38],

simple bundles on a K3 surface X and, more generally, simple complexes in its

bounded derived category Db(X) := Db(Coh(X)) have been studied intensively.

One is therefore led to look for an analogue of these objects on higher-dimensional

compact hyper-Kähler manifolds.

Again motivated by the case of K3 surfaces, we introduced in [5] the notion of an

(extended) Mukai vector taking values in the (extended) Mukai lattice

H̃(X,Q) := H2(X,Q)⊕Q⊕2

for certain objects E ∈ Db(X) on hyper-Kähler manifolds X. In this paper, we

consider a natural re�nement of this construction which leads to the notion of atomic
sheaves and complexes. It turns out that these objects possess many of the properties

of simple sheaves and complexes on K3 surfaces.

1.2. Cohomology and LLV algebra. From now on, X will denote a compact ir-

reducible hyper-Kähler manifold of dimension 2n. The second cohomology H2(X,Q)

of a hyper-Kähler manifold is endowed with the Beauville�Bogomolov�Fujiki (BBF)

form q = qX making it into a quadratic space. Moreover, the full cohomology

H∗(X,Q) is naturally a module for the Looijenga�Lunts�Verbitsky (LLV) Lie alge-

bra g(X) ∼= so(H̃(X,Q)) generated by all sl2-triples for all elements in H2(X,Q)

having the Hard Lefschetz property, see [17, 33, 44] for more details. This leads

naturally to a decomposition

(1.1) H∗(X,Q) ∼=
⊕
λ

Vλ
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of the cohomology into irreducible g(X)-representations. The most prominent irre-

ducible representation is the Verbitsky component SH(X,Q) ⊂ H∗(X,Q) which is

the subalgebra generated by H2(X,Q).

1.3. Atomic objects. Recall the de�nition of the Mukai vector

v(E) = ch(E)td1/2 ∈ H∗(X,Q)

for a sheaf E ∈ Coh(X) or an object E ∈ Db(X), where td1/2 =
√
td is the formal

root of the Todd class td := tdX of X. The idea in [5, Sec. 4] was to compare the

projection v(E)SH of the Mukai vector v(E) of an object E ∈ Db(X) to the Verbitsky

component

(_)SH : H∗(X,Q)→ SH(X,Q)

with some vector ṽ ∈ H̃(X,Q) by means of the short exact sequence

0→ SH(X,Q)→ Symn(H̃(X,Q))→ Symn−2(H̃(X,Q))→ 0.

This de�nition has the disadvantage that it only concerns the Verbitsky component

and ignores all other irreducible representations of the LLV algebra g(X), but for

many applications, such as in [5], this is su�cient.

Instead of only focusing on the projection to the Verbitsky component, one can

consider more generally the decomposition

(1.2) v(E) =
∑
λ

v(E)λ

obtained from the decomposition (1.1). In particular, one may demand a compat-

ibility of the Mukai vector v(E) of E not only with its projection to the Verbitsky

component, but with respect to the entire decomposition (1.2). This leads naturally

to the central notion of this paper.

De�nition 1.1. A sheaf E ∈ Coh(X) or an object E ∈ Db(X) is called atomic if

there exists a non-zero vector ṽ ∈ H̃(X,Q) such that the annihilator Lie subalgebra

Ann(v(E)) ⊂ g(X) of the representation of g(X) on H∗(X,Q) equals the annihilator

Lie subalgebra Ann(ṽ) ⊂ g(X) ∼= so(H̃(X,Q)) of the representation of g(X) on

H̃(X,Q).

Let us comment on the de�nition. First, every non-zero sheaf on a K3 surface is

atomic. Moreover, a sheaf E being atomic is equivalent to Ann(E) having the largest

possible dimension, see Proposition 3.1 and Lemma 3.7. This should be interpreted

as its Mukai vector behaving just as in the case of K3 surfaces. As demonstrated in

Proposition 3.10 the property of being atomic is invariant under derived equivalences

as well as deformations.
Furthermore, De�nition 1.1 recovers [5, Def. 4.16] when restricted to the Verbitsky

component. That is, denoting by T the orthogonal projection to the isometric
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embedding SH(X,Q) ↪→ Symn(H̃(X,Q)), the condition

v(E)SH ∈ Q〈T (ṽn)〉

is by Proposition 3.3 equivalent to the equality

Ann(v(E)SH) = Ann(ṽ) ⊂ g(X).

In particular, as discussed in Section 3.2, these objects possess a Mukai vector in

H̃(X,Q) which for a torsion-free atomic sheaf E is of the form rk(E)α+c1(E)+sβ for

some s ∈ Q. Let us also remark that we show in Section 3.1 that many summands

in (1.2) must vanish for atomic objects. See Section 3 for a thorough discussion of

the de�nition.

1.4. Obstruction maps. One of the key results exploited throughout the whole

paper is the relation and interplay for a sheaf or an object E between the (a priori

topological) property of being atomic, (noncommutative) deformations parametrized

by Hochschild cohomology HH∗(X) respectively polyvector �elds HT∗(X), and its

extension groups Ext∗(E , E). This relationship is established through the use of

two so called obstruction maps, which we now elaborate on. The name obstruction

maps refers to their appearance and application in deformation theory, see also

Remark 4.5.
We recall here

HT2(X) := H2(X,OX)⊕H1(X, TX)⊕H0(X,Λ2TX)

and refer to Section 2.1 for a thorough de�nition of the ring of polyvector �elds. To

every object E ∈ Db(X) we associate a natural morphism

obsE : HT2(X)→ H∗(X,Ω∗X), µ 7→ µyv(E)

de�ned by contraction of vector �elds. We call it the cohomological obstruction map

for E .
We have the �rst result.

Theorem 1.2. Let X be a hyper-Kähler manifold and E ∈ Db(X). Then E is atomic

if and only if the cohomological obstruction map obsE has a one-dimensional image.

This result enables us to freely intertwine the representation theory of the LLV

algebra with the (symplectic) geometry of vector �elds on hyper-Kähler manifolds.

We remark that Markman has obtained the if direction in the above theorem in
[35, Thm. 6.13] under the extra assumption that v(E)SH 6= 0.

Next, to any E ∈ Db(X) we can associate the natural homomorphism

χE : HH2(X)→ Ext2(E , E)

via evaluation at the natural transformation called the obstruction map. See Sec-

tion 2.1 for a brief recollection on the notions of Hochschild (co)homology. The map

χE parametrizes the obstruction to lifting the complex E to �rst order along the

(noncommutative) �rst-order deformations given by HH2(X) [43, Prop. 6.1]. For
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an element γ ∈ HH2(X) we will often denote its image χE(γ) as γE . By [22] the

following diagram

(1.3)

HH∗(X) Ext∗(E , E)

HT∗(X)

χE

IHKR

y exp(AtE)

commutes, where exp(AtE) is the exponential of the Atiyah class AtE ∈ Ext1(E , E ⊗
Ω1
X) of E and IHKR : HH∗(X) ∼= HT∗(X) is the Hochschild�Konstant�Rosenberg

(HKR) isomorphism. Markman [35] recently studied objects for which the obstruc-

tion map has a one-dimensional image. We will call such objects 1-obstructed. The

following result is a strengthening of [35, Thm. 6.13 (1)].

Theorem 1.3. If E ∈ Db(X) is a 1-obstructed object such that v(E) is not annihi-

lated by the LLV algebra g(X), then E is atomic. In particular, 1-obstructed sheaves

are atomic.

We note that if E satis�es the conclusion of the theorem, i.e. if E is atomic, then its

Mukai vector v(E) satis�es the assumption in the theorem of not being annihilated

by the LLV algebra, see Section 4.2. Under a certain non-degeneracy condition for

the Serre duality trace map, the implication that 1-obstructed objects are atomic

holds unconditionally, see Conjecture A.

It is, however, not true that the converse implication always holds. As shown by

Example 4.4, there are vector bundles on K3 surfaces which are not 1-obstructed.

However, for K3 surfaces, 1-obstructedness and atomicity are equivalent for simple

sheaves and complexes. We show that under the above alluded to non-degeneracy

condition of the Serre duality trace morphism restricted to the image of the ob-

struction map, this statement remains valid for simple atomic objects on higher-

dimensional hyper-Kähler manifolds.

Theorem 1.4. If E ∈ Db(X) is a simple object satisfying Conjecture A, then E is

1-obstructed if and only if E is atomic.

We want to emphasize that we view the property of being 1-obstructed as a

(conjectural) feature of simple atomic objects and not vice versa.

1.5. Modular & projectively hyperholomorphic bundles and deformations.
Stable vector bundles are the easiest examples of simple objects on K3 surfaces. On

higher-dimensional hyper-Kähler manifolds, there exists the notion of (projectively)

hyperholomorphic bundles due to Verbitsky [45]. Recently, O'Grady proposed the

notion of modular sheaves and bundles in [39].

We discuss their relation and, in particular, how atomic sheaves and bundles �t

into the picture. The discussion can be summarized by the following two results.

Proposition 1.5. Let E be a torsion-free atomic sheaf. Then E is modular.
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In particular, for torsion-free atomic sheaves the ample cone admits a wall and

chamber decomposition similar to the case of K3 surfaces as proven in [39, Prop.

3.4].

In [35, Thm. 1.2], the author obtained a weaker form of the above result, where it

is also assumed that the sheaf is re�exive as well as slope stable for ample classes in

an open subcone of the ample cone. Our result does not require these assumptions

and our proof is independent and shorter.

Proposition 1.6. Let E be a slope polystable atomic vector bundle. Then E is

projectively hyperholomorphic.

We will recall the relevant details on (projectively) hyperholomorphic bundles in

Section 5. However, quite intriguingly, the tangent bundle TX on higher-dimensional

hyper-Kähler manifolds, which is hyperholomorphic as well as modular, fails to be

atomic, see Proposition 8.3.

One remarkable property of stable bundles on K3 surfaces is their deformation

behavior. We investigate the deformation theory of (poly)stable atomic bundles.

We obtain two results. From Theorem 1.6 one can deduce that for stable atomic
bundle E the associated projective bundle P(E) deforms over the whole moduli space

which is the content of Proposition 5.5. The other result is the following.

Theorem 1.7. Let E be an atomic slope stable vector bundle. Then the dg algebra

RHom(E⊕k, E⊕k) is formal for any k > 0.

More precisely, in Theorem 6.1 we prove formality of the dg algebra of derived

endomorphisms for the bigger class of projectively hyperholomorphic bundles. The

above result then follows immediately from Proposition 1.6. One consequence of this

is that the local Kuranishi space of in�nitesimal deformations is cut out by quadrics.

For the details and further consequences for moduli spaces of stable sheaves we refer

to Section 6.

1.6. Lagrangians. It follows easily from the de�nitions that atomic sheaves E which
are torsion must be skyscraper sheaves or supported on Lagrangian subvarieties.

This raises the question which Lagrangian submanifolds ι : L ⊂ X can support

atomic sheaves.

Theorem 1.8. Let ι : L ⊂ X be a connected Lagrangian submanifold. Then ι∗OL
is atomic if and only if the restriction map ι∗ : H2(X,Q) → H2(L,Q) has a one-

dimensional image and c1(L) = c1(TL) ∈ Im(ι∗) ⊂ H2(L,Q).

If one uses the interplay of (obstructions to) deformations and atomicity derived

from Theorem 1.2, the �rst condition in the above theorem controls the behaviour

with respect to geometric deformations parametrized by H1(X, TX) and the second

condition controls Poisson deformations parametrized by H0(X,Λ2TX). For the spe-

cial case of K3[2]-type hyper-Kähler manifolds, where only the Verbitsky component

is present, this result was obtained in [35, Lem. 7.3].
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We call submanifolds which satisfy one of the equivalent conditions from Theo-

rem 1.8 atomic Lagrangians. Since being atomic is stable under derived equivalences,

we get many examples of atomic sheaves supported on atomic Lagrangians.

Theorem 1.8 displays once more that atomic objects behave similarly to those on

K3 surface. Namely, smooth Lagrangian submanifolds of K3 surfaces correspond to

Riemann surfaces and are therefore either Fano, of Kodaira dimension zero, or have

ample canonical bundle. This conclusion remains true for atomic Lagrangians, that

is the canonical bundle ωL of an atomic Lagrangian L ⊂ X is also (anti-)ample or

numerically trivial.

We also discuss the question of formality of the derived endomorphisms for the

sheaf ι∗OL in Section 7.4. Moreover, it follows from recent results of Mladenov [36]

that for many simple sheaves on atomic Lagrangians the Ext algebra is of topological

nature, that is, there is a ring isomorphism

Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C).

This implies, in particular, that the Ext algebra is graded-commutative. As is shown

in Proposition 7.7, this compares nicely with the case of simple objects E ∈ Db(S)

on K3 surfaces S, where we always have

Ext∗(E , E) ∼= H∗(C,C)

for some Riemann surface C. We expect this topological nature to remain true

for simple atomic objects on higher dimensional hyper-Kähler manifolds, see also

Conjecture B for a weaker version of this statement.

1.7. Spherical sheaves and objects. To study the interplay between the di�erent
obstruction maps alluded to in Section 1.4, we study how the Mukai vector v(E) of

an object E forces restrictions on the Ext algebra Ext∗(E , E). We re�ne this study in

the appendix, which is logically independent from the rest of the paper. The general

structural result is Theorem A.2.
Recall that a sheaf or an object E is called spherical, if there is a ring isomorphism

Ext∗(E , E) ∼= H∗(SdimX ,C).

One of the consequences of the above result is the following, which has been expected,

but a proof has been missing in the literature.

Theorem 1.9. There exist no spherical sheaves on a hyper-Kähler manifold X of

dimension greater than two. Moreover, if X is of K3[n] with n > 1 or OG10-type,

then Db(X) contains no spherical objects.

In general, we show that spherical objects on hyper-Kähler manifolds, if existent,

are severely restricted. For example, their Mukai vectors must be contained in a

subspace of the subspace annihilated by the LLV algebra, see Remark A.6.

1.8. Organization of results. We provide in the next section results about Hochschild

(co)homology, polyvector �elds and the LLV algebra that we will employ throughout

the paper.
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In Section 3 we deduce consequences and properties from De�nition 1.1 for atomic

objects. The relation between atomic objects and the di�erent obstruction maps is

discussed in Section 4.
The next two sections are devoted to the study of vector bundles on hyper-Kähler

manifolds and their deformation theory. Section 7 discusses the structure of atomic

Lagrangians such as formality aspects, obstruction maps and Yoneda multiplication.

The last section discusses examples of atomic sheaves and complexes. We also

discuss further properties of atomic objects such as an sl2-action on its extension

groups. In the appendix, we establish the above mentioned restriction results for

spherical objects on higher-dimensional hyper-Kähler manifolds.

1.9. Relation to other work. We independently obtained the notion of atomic

sheaves and complexes naturally from a thorough inspection of our work [5, Sec. 4].

In [35], Markman studies sheaves and complexes on hyper-Kähler manifolds whose

obstruction map or cohomological obstruction map has a one-dimensional image.

The notion of atomicity appears implicitely in [35, Thm. 6.13] and is related to the

obstruction maps under the extra assumption v(E)SH 6= 0.

However, in [35] being atomic is seen as a consequence of (cohomologically) 1-

obstructed objects. On the other hand, we see atomicity as the central notion. We

show in Theorem 1.2 that being atomic and having a one-dimensional cohomological

obstruction map is equivalent, which, a posteriori, also strengthens some results of

[35]. Nevertheless, we remark that [35] helped us in shaping our exposition and

directing our attention.

As has been mentioned at a few places in the introduction, a few of our results

have appeared in weaker forms in [35] for (cohomologically) 1-obstructed objects.

It is the notion of atomicity and making use of the full force of the LLV algebra in

combination with Theorem 1.2 which allows us to give independent proofs of our

stronger results which are more general and need less assumptions.

Acknowledgements. I am grateful for my supervisor Daniel Huybrechts for his

constant support and feedback on a preliminary version of this text. The content

of this paper has been presented in October 2021 in the Amsterdam Algebraic Ge-

ometry Seminar as well as in November 2021 in the SAG in Bonn. I thank the

participants for ample feedback. I have greatly bene�ted from conversations with

Pieter Belmans, Yajnaseni Dutta, Shengyuan Huang, Emanuele Macrì, Eyal Mark-

man, Mirko Mauri, Denis Nesterov, Georg Oberdieck, Andrey Soldatenkov, Jieao

Song, Lenny Taelman, and Till Wehrhan.

Conventions. We will work throughout over the complex numbers.

2. Recollections

2.1. Hochschild (co)homology. We brie�y recall the notions of Hochschild ho-

mology and cohomology and related results relevant for our purposes. For more

details we refer to [10�12].
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Let X be a smooth projective variety of dimension n. The Hochschild cohomology

HH∗(X) and Hochschild homology HH∗(X) of X are de�ned as

HH∗(X) := Ext∗X×X(∆∗OX ,∆∗OX), HH∗(X) := Ext∗X×X(∆∗ω
−1
X [−n],∆∗OX)

with ∆: X ↪→ X × X the diagonal embedding. Composition of morphisms turns

HH∗(X) into a graded ring and HH∗(X) into a module over HH∗(X). Elements

in the Hochschild (co)homology can be interpreted as natural transformations and,

therefore, be evaluated at elements E ∈ Db(X). The Hochschild�Konstant�Rosenberg

(HKR) isomorphisms identify the Hochschild cohomology of X with the ring of

polyvector �elds

IHKR : HH∗(X) ∼= HT∗(X) :=
⊕
p+q=∗

Hq(X,ΛpTX)

as well as the Hochschild homology of X with the de Rham cohomology

IHKR : HH∗(X) ∼= HΩ∗(X) :=
⊕
q−p=∗

Hq(X,Ωp
X),

see [10, Cor. 4.2]. If these are twisted by the square root of the Todd class td1/2,

the graded isomorphisms

IK : HH∗(X)
IHKR

−−−→ HT∗(X)
td−1/2y_−−−−−−→ HT∗(X)

IK : HH∗(X)
IHKR−−−→ HΩ∗(X)

td1/2∧_−−−−−→ HΩ∗(X)

respect the ring and module structure [9]. We will often use implicitly the degener-

ation of the Hodge�de Rham spectral sequence to identify non gradedly HΩ∗(X) ∼=
H∗(X,Ω∗X) ∼= H∗(X,C).

Let now X be a hyper-Kähler manifold of dimension 2n. The choice of a non-

degenerate symplectic form σ ∈ H0(X,Ω2
X) yields a generator σn ∈ HΩ−2n(X)

realizing HH∗(X) as a free HH∗(X)-module of rank one [42, Lem. 2.5]. Moreover,

the symplectic form induces an isomorphism σ : Ω1
X
∼= TX such that the composite

isomorphism

(2.1) HH∗(X)
IK−→ HT∗(X)

σ−→ HΩ∗(X)
∼=−→ H∗(X,C)

is a graded ring isomorphism, where the last isomorphism comes from the degener-

ation of the Hodge�de Rham spectral sequence.

For an object E ∈ Db(X) C ld raru [11] introduced the Hochschild Chern char-

acter chHH(E) ∈ HH0(X). It is uniquely de�ned by satisfying the equality

(2.2) TrX×X(µ ◦ chHH(E)) = TrX(µE)

for all µ ∈ HH∗(X), where TrX×X and TrX are the trace morphisms on X × X
and X obtained from the Serre duality pairing. It is shown in [10, Thm. 4.5] that

the HKR isomorphism identi�es the Hochschild Chern character with the classical
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Chern character, i.e. IHKR(chHH(E)) = ch(E) ∈ H∗(X,C). Therefore, we also have

IK(chHH(E)) = v(E) ∈ H∗(X,C).

2.2. Hyper-Kähler cohomology and LLV algebra. Let X be a hyper-Kähler

manifold of complex dimension 2n, i.e. a simply connected compact Kähler mani-

fold such that H0(X,Ω2
X) is generated by an everywhere non-degenerate holomor-

phic two-form. The second cohomology H2(X,Z) possesses an integral primitive

quadratic form q = qX called the Beauville�Bogomolov�Fujiki (BBF) form and has

rank b2(X). We associate to X its Mukai lattice

(H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ, q̃)

which is a quadratic space with a grading and Hodge structure. More precisely, the

quadratic form q̃ restricts on H2(X,Q) to the BBF form q and α and β are isotropic

elements orthogonal to H2(X,Q) and satisfy q̃(α, β) = −1. The elements α and β

are of degree −2 and 2 respectively and carry the trivial rational Hodge structure.

The space H2(X,Q) has degree zero and carries the corresponding Tate twist of its

usual Hodge structure. See [5, Sec. 2.2] for more details.

Looijenga�Lunts [33] and Verbitsky [44] introduced the Looijenga�Lunts�Verbitsky

(LLV) algebra g(X) naturally associated to the cohomology H∗(X,Q) of a hyper-

Kähler manifold. For another account, see [17].

We denote by h ∈ End(H∗(X,Q)) the cohomological grading operator acting on

Hk(X,Q) via (k−2n)id. To an element ω ∈ H2(X,Q) we associate the operator eω =

ω ∪ _ ∈ End(H∗(X,Q)) of cupping with ω. We say that ω has the Hard Lefschetz

property if there exists an operator Λω ∈ End(H∗(X,Q)) such that (eω, h,Λω) forms

an sl2-triple.

The LLV algebra g(X) ⊂ End(H∗(X,Q)) is the Lie subalgebra generated by all

such sl2-triples for all ω having the Hard Lefschetz property. The main result of

Looijenga�Lunts and Verbitsky is then the Lie algebra isomorphism

g(X) ∼= so(H̃(X,Q)).

The g(X)-structure of H̃(X,Q) is de�ned by the conditions eω(α) = ω, eω(µ) =

q(ω, µ)β and eω(β) = 0 for all classes ω, µ ∈ H2(X,Q).

Let SH(X,Q) be the Verbitsky component, i.e. the graded subalgebra of H∗(X,Q)

generated by H2(X,Q). Verbitsky [7,44] proved the existence of a graded morphism

ψ : SH(X,Q)→ Symn(H̃(X,Q)) sitting in a short exact sequence

(2.3) 0→ SH(X,Q)
ψ−→ Symn(H̃(X,Q))

∆−→ Symn−2(H̃(X,Q))→ 0.

Here, the map ∆ is the Laplacian operator de�ned on pure tensors via

v1 · · · vn 7→
∑
i<j

q̃(vi, vj)v1 · · · v̂i · · · v̂j · · · vn.
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The map ψ is uniquely determined (up to scaling) by the condition that it is a

morphism of g(X)-modules.

The n-th symmetric power Symn(H̃(X,Q)) inherits the structure of a g(X)-

module by letting g(X) act by derivations. The inclusion realizes SH(X,Q) as

an irreducible Lefschetz module [44]. We �x once and for all a choice of ψ by set-

ting ψ(1) = αn/n!. The orthogonal projection onto the subspace SH(X,Q) will be

denoted by

T : Symn(H̃(X,Q))→ SH(X,Q).

2.3. Hochschild LLV algebra. The two previous subsections have a common

ground which will be frequently used.

Let us consider the Hodge grading operator h′ ∈ End(H∗(X,C)) de�ned via

h′|Hp,q(X) = (q − p)id,

i.e. the graded pieces of H∗(X,C) induced from the grading given by h′ agree with

the columns of the Hodge diamond. We will say that an element x is of Hodge type

if h′(x) = 0, i.e. if

x ∈
⊕
p

Hp,p(X).

An element µ ∈ HT2(X) induces an operator eµ := µy_ ∈ End(H∗(X,C)) by

contraction. As before, we say that µ has the Hard Lefschetz property, if there exists

an operator Λµ such that (eµ, h
′,Λµ) forms a complex sl2-triple.

Analogously to the previous case, we can consider the complex Lie subalgebra

g′(X) ⊂ End(H∗(X,C)) generated by all sl2-triples for all µ having the Hard Lef-

schetz property. The following is [42, Prop. 2.8], see also [46, Sec. 9] for an earlier

account, where the result is essentially already proved.

Theorem 2.1 (Taelman, Verbitsky). There is an equality

g(X)C = g′(X) ⊂ End(H∗(X,C))

of complex Lie subalgebras.

This result sheds new light on the LLV algebra. For example, the operators in

g(X)C having degree two for the grading given by h′ are exactly given by contraction

with elements in HT2(X). Throughout the paper, we will frequently use the above

identi�cation and switch between the gradings h and h′.

3. Atomic objects

We discuss De�nition 1.1 and general results about atomic objects. We �x a

hyper-Kähler manifold X of dimension 2n > 2.
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3.1. Lie theoretic properties. Let E be a sheaf on X or an object in Db(X).

Recall that the property of E being atomic is a condition on the Lie subalgebra

Ann(v(E)).

Proposition 3.1. An object E ∈ Db(X) is atomic if and only if Ann(v(E)) ⊂
g(X) is a Lie subalgebra of codimension b2(X) + 1 which is the smallest positive

codimension possible.

Proof. If E is atomic, then Ann(v(E)) = Ann(ṽ) for some non-zero ṽ ∈ H̃(X,Q).

Recall that g(X)C ∼= so(b2(X) + 2). If q̃(ṽ) 6= 0, we immediately get that Ann(ṽ) ∼=
so(b2(X) + 1). It follows from a straightforward calculation that the condition on

the codimension remains valid also in the case q̃(ṽ) = 0, see also the proof of the

lemma below.
Let us now assume that Ann(v(E)) ⊂ g(X) has codimension b2(X) + 1. We will

study the cohomological obstruction map

obsE : HT2(X)→ H∗(X,Ω∗X), µ 7→ µyv(E).

Since v(E) is of Hodge type, we have h′ ∈ Ann(v(E)). If obsE would vanish iden-

tically, i.e. Ker(obsE) = HT2(X), we would know from Theorem 2.1 that for all

µ ∈ HT2(X) we have eµ ∈ Ann(v(E))C.

In particular, for any such µ having the Hard Lefschetz property with respect to

h′, we would have

(3.1)

0 = h′(v(E)) = [eµ,Λµ](v(E)) = eµ(Λµ(v(E)))− Λµ(eµ(v(E))) = eµ(Λµ(v(E))).

Since eµ is injective when restricted to HΩ−2(X), we deduce that Λµ(v(E)) = 0 for

all such µ ∈ HT2(X). However, as by Theorem 2.1 g(X)C is generated by all sl2-

triples associated to all µ ∈ HT2(X) having the Hard Lefschetz property, we would

deduce that Ann(v(E))C = g(X)C which contradicts our assumption.

Hence, the cohomological obstruction map obsE does not vanish identically. If

W = Ker(obsE) ⊂ HT2(X) has codimension one, then the arguments above imply

that for all Hard Lefschetz elements µ ∈W we have that eµ,Λµ ∈ Ann(v(E))C. The

Lie subalgebra h ⊂ g(X)C generated by h′ and all eµ,Λµ for all µ ∈ W having the

Hard Lefschetz property has dimension (b2(X)2+b2(X))/2 as follows from [17, Thm.

2.7]. Moreover, from (3.1) we infer the inclusion h ⊂ Ann(v(E))C of Lie algebras.

The assumption on the codimension of Ann(v(E))C ⊂ g(X)C yields that the inclusion

h ⊂ Ann(v(E))C must already be an equality.

Furthermore, let us consider the pairing

HT2(X)×
(
Cα⊕ H̃1,1(X,C)⊕ Cβ

)
→ Cσ̄, (µ, x) 7→ µyx

obtained from considering H̃(X,C) as a g(X)C-module. Since this pairing is non-

degenerate, see for example [35, Lem. 6.3], we obtain that there is an element ṽ ∈
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Cα⊕ H̃1,1(X,C)⊕Cβ unique up to scaling with the property that it pairs trivially

with the subspace W . Since h′(ṽ) = 0, the above discussion shows Ann(v(E))C =

h ⊂ Ann(ṽ). We claim that the inclusion is an equality.

Indeed, we know by assumption that there exists an element µ ∈ HT2(X) having

the Hard Lefschetz property such that eµ is not contained in Ann(v(E))C. More-

over, the dual operator Λµ to eµ satisfying [eµ,Λµ] = h′ is by (3.1) as well not

contained in Ann(v(E))C. Furthermore, the b2(X)− 1-dimensional subspace of op-

erators generated as a vector space by [eτ ,Λµ] for all τ ∈W intersects the subspace

Ann(v(E))C ⊂ g(X)C trivially. This implies that the inclusion

Ann(ṽ) ⊂ g(X)C

has codimension at least b2(X)+1, which is exactly the codimension of the inclusion

Ann(v(E))C ⊂ g(X). This yields the assertion.

From Lemma 3.2 we can now deduce that ṽ is already de�ned over Q and E is,

therefore, atomic.

The case of Ker(obsE) ⊂ HT2(X) having higher codimension can be excluded

using the same line of arguments. We leave the details to the reader. �

Lemma 3.2. If h ⊂ g(X) is a Lie subalgebra and ṽ ∈ H̃(X,C) is such that hC =

Ann(ṽ) ⊂ g(X)C, then ṽ ∈ H̃(X,Q).

Proof. We extend the beautiful argument from the proof of [35, Lem. 6.9].

Consider the natural map

ϕ : P(H̃(X,C))→ Gr

((
b2(X) + 1

2

)
, g(X)C

)
, ` 7→ Ann(`) ⊂ g(X)C.

This morphism is well-de�ned, i.e. for each 0 6= ` ∈ H̃(X,C) the Lie subalgebra

Ann(`) ⊂ g(X)C has codimension b2(X) + 1. Indeed, if q̃(`) 6= 0, then we have the

natural isomorphism

Ann(`) ∼= so(`⊥) ∼= so(b2(X) + 1).

In the case q̃(`) = 0, the natural map of Lie groups

Fix(`)� SO(`⊥/〈`〉) ∼= SO(b2(X))

reveals that the Lie subgroup Fix(`) ⊂ SO(b2(X) + 2) splits as a semidirect prod-

uct. A straightforward calculation shows that the other factor consists of unipotent

matrices acting trivially on `⊥/〈`〉 and ` and is of dimension b2(X).

Since ϕ is injective as well as de�ned over Q, we obtain the assertion. �

As shown in the proof of Proposition 3.1, if E is atomic, then its annihilator

Ann(v(E)) ⊂ g(X) is the largest non-trivial proper Lie subalgebra of the LLV algebra

of the form Ann(v) for an element v ∈ H∗(X,Q) with h′(v) = 0.

The annihilator Ann(v(E)) measures, in some sense, the complexity of the Mukai

vector v(E). For example, if E is atomic, to its Mukai vector one can associate
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a vector ṽ ∈ H̃(X,Q) inside the much smaller vector space H̃(X,Q) still encoding

most information about the vector. In that sense, the annihilator Ann(v(E)) ⊂ g(X)

having low codimension corresponds to the Mukai vector of E having low complexity.

However, it is not in general true that one can recover (the Q-line spanned by)

v(E) from the knowledge of Ann(v(E)) even if E is atomic. The naive idea would

be to consider H∗(X,Q) as a representation of Ann(v(E)) and study its trivial rep-

resentations. However, viewing H∗(X,Q) as a module over the larger Lie algebra

g(X), there can already be (many) trivial representations.

On the positive side, the Mukai vector of an atomic object is still severely re-

stricted, as we will demonstrate now. As alluded to in the introduction, if we

restrict for E atomic the action of Ann(v(E)) to the Verbitsky component, there

exists a unique one-dimensional trivial representation.

Proposition 3.3. Let E be an atomic object and ṽ ∈ H̃(X,Q) an element such

that Ann(v(E)) = Ann(ṽ). Consider the Verbitsky component SH(X,Q) as an

Ann(v(E))-module. This representation has a unique trivial subrepresentation, which

is spanned by T (ṽn) ∈ SH(X,Q) and v(E)SH ∈ Q〈T (ṽn)〉.

Proof. It is easy to see that 0 6= T (ṽn) ∈ SH(X,Q) is annihilated by Ann(ṽ) =

Ann(v(E)). Moreover, the �rst part of the assertion then also gives v(E)SH ∈
Q〈T (ṽn)〉, because v(E) is annihilated by Ann(v(E)).

Hence, let us prove that there is a unique trivial subrepresentation. This state-

ment is independent of the complex structure for which v(E) remains algebraic.

Furthermore, it is invariant under an integrated automorphism of g(X) acting on

SH(X,Q) and respecting the Hodge structure. We can therefore assume that ṽ in

De�nition 1.1 is of the form

ṽ = α+ kβ

for k ∈ Q.
Let x ∈ SH(X,Q) be an element being annihilated by Ann(v(E)). Since h′ ∈

Ann(ṽ) = Ann(v(E)), we know that h′(x) = 0. Moreover, for any element µ ∈
H1(X, TX) we have

µyṽ = 0

by bidegree reasons and, therefore, applying Theorem 2.1 we have µyx = 0. In

particular, the element x is of Hodge type for all possible complex structures of

X. By [33, Prop. 2.14], the subalgebra of elements satisfying these properties is

generated by powers q2
i of the dual of the BBF form q2 ∈ SH4(X,Q).

It remains to determine the coe�cients in front of each q2
i. For ω ∈ H2(X,Q)

having the Hard Lefschetz property for the grading operator h we have

Λω(β) =
2

q(ω)
ω ∈ H̃(X,Q).
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This implies that 2keω−q(ω)Λω ∈ Ann(ṽ) = Ann(v(E)). Moreover, using that td1/2

projects non-trivially to the Verbitsky component and [28, Cor. 3.20] we deduce

0 6= Λωq2
i+1 ∈ Q〈q2i ∧ ω〉

which immediately yields that up to scaling x = T (ṽn). �

Remark 3.4. In [5, Sec. 4] we assigned to certain coherent sheaves E or, more

generally, certain objects E ∈ Db(X) a so-called extended Mukai vector ṽ(E) ∈
H̃(X,Q). More precisely, we asked for the existence of a non-zero rational number

a such that

(3.2) v(E)SH = aT (ṽ(E)n) ∈ SH(X,Q).

The proposition shows that atomic objects ful�ll this de�nition.

The proof and, therefore, conclusion of the proposition remains true for all irre-

ducible representations Vλ ⊂ H∗(X,Q) of the LLV algebra of the form Vλ = V(k) =

Vkε1 where we use the notation of [17, App. A].

We note that the branching rules discussed in [17, App. B.2] immediately yield

the same result for atomic objects E ∈ Db(X) such that the associated elemet

ṽ ∈ H̃(X,Q) satis�es q̃(ṽ) 6= 0. The branching rules also imply the following.

Proposition 3.5. Let E be an atomic object with q̃(ṽ) 6= 0. Then v(E) projects

trivially to all irreducible representations which are not of the form V(k) with k ∈ Z≥0.

We expect the conclusion of the proposition to remain true for all atomic com-

plexes.

The last two propositions imply that for an atomic object with q̃(ṽ) 6= 0 the

number of trivial Ann(v(E)) representations of H∗(X,Q) is the number of irreducible

g(X)-representations of the form V(k) for k ∈ Z≥0. This shows that the Mukai vector

v(E) of an atomic object is severly restricted.

Remark 3.6. The de�nition of the extended Mukai vector in [5] was inspired by

the commutativity of the diagram

(3.3)

Db(S) Db(S′)

H∗(S,Z) H∗(S′,Z)

Φ

v v

ΦH

for derived equivalences between K3 surfaces. That is, we wanted to study complexes

for which this diagram had a higher-dimensional counterpart. For this, restricting

to the Verbitsky component was su�cient.

Inspecting the decomposition (1.2) leads naturally to De�nition 1.1, i.e. of atomic

sheaves and complexes. While studying atomic complexes and their properties we

came to the conclusion that these are complexes on higher dimensional hyper-Kähler

manifolds which behave much like stable respectively simple sheaves on K3 surfaces.

In what follows, we want to convey the reader this intuition.
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3.2. Mukai vector and general properties of atomic objects. In this subsec-

tion we discuss general properties of atomic objects that follow easily from [5].

Lemma 3.7. Let E be a non-zero sheaf. Then 0 6= v(E)SH ∈ SH(X,Q).

Proof. The Verbitsky component exhausts the subspaces of degree 0, 2, 4n − 2 and

4n of the cohomology H∗(X,Q). Therefore, if the Mukai vector does not project

trivially to these subspaces, the assertion is proven.

In general, let us consider the decomposition of the support

supp(E) =
⋃
i

Zi

of the sheaf E into irreducible components. Let j be an index such that Vj has

maximal dimension k in the above decomposition. For a Kähler class ω ∈ H1,1(X)

we have ∫
X

[Zi]ω
2n−k ≥ 0,

∫
X

[Zj ]ω
2n−k > 0.

In particular, 0 6= v(E)ω2n−k ∈ H4n(X,R) which proves the assertion. �

We believe that all simple atomic objects E ∈ Db(X) satisfy v(E)SH 6= 0.

Proposition 3.8. Let E be an atomic object such that rk(E) 6= 0 or c1(E) 6= 0.

Then there exists s ∈ Q such that ṽ from De�nition 1.1 can be assumed to be

ṽ = rk(E)α+ c1(E) + sβ ∈ H̃(X,Q).

Proof. The assumptions imply that in particular v(E)SH 6= 0. This is then the same

computation as in the proof of [5, Lem. 4.8(v)]. �

Hence, there is a particular element in the line spanned by ṽ which gives the

following.

De�nition 3.9. Let E ∈ Db(X) be an atomic object such that rk(E) 6= 0. Then its

Mukai vector ṽ(E) ∈ H̃(X,Q) is de�ned as

ṽ(E) = rk(E)α+ c1(E) + sβ ∈ H̃(X,Q)

for the unique s ∈ Q such that Ann(v(E)) = Ann(ṽ(E)) ⊂ g(X).

If E is an atomic sheaf, we know by Lemma 3.7 that v(E)SH 6= 0. From Propo-

sition 3.11 below, we know that if rk(E) = 0, then the support of E is a union of

Lagrangian subvarieties or points. In the former case, taking ṽ ∈ H̃(X,Q) asso-

ciated to E from De�nition 1.1, its projection λ ∈ H2(X,Q) to the component in

H2(X,Q) ⊂ H̃(X,Q) is non-zero. Normalize λ in such a way that q(λ, ω) > 0 for a

Kähler class ω and such that λ ∈ H2(X,Z)∨ ⊂ H2(X,Q) is a primitive element in

the dual lattice of H2(X,Z). We de�ne the corresponding multiple of ṽ to be the

Mukai vector ṽ(E) ∈ H̃(X,Q) of E .
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We note that in the rest of the text, the precise multiple of ṽ in De�nition 1.1

will not play a role. See [5, Sec. 4] for another discussion of the question which

element of the line Q〈ṽ〉 is a candidate for the Mukai vector ṽ(E) of an atomic sheaf

or complex E when its rank and determinant are zero.

Proposition 3.10. Let Φ: Db(X) ∼= Db(Y ) be a derived equivalence between projec-

tive hyper-Kähler manifolds and E ∈ Db(X). Then E is atomic if and only if Φ(E)

is. Similarly, for X → B a family of hyper-Kähler and E a B-perfect complex on X
we have for two points b, b′ ∈ B that Eb is atomic if and only if Eb′ is.

Proof. This is immediate from the de�nitions. �

To �nish this section let us mention one more property of atomic sheaves and

complexes similar to [5, Lem. 4.13(v)].

Proposition 3.11. Let E be an atomic object with v(E)SH 6= 0, e.g. E is a sheaf,

such that rk(E) = 0 or c1(E) = 0. Then all Chern classes of E are isotropic, that is

ci(E)σ = 0 for all i and σ a symplectic form.

Proof. This follows already from the de�nition of atomicity, see also [5, Sec. 4.4].

The vector ṽ as in De�nition 1.1 projects by assumption trivially onto the subspace

spanned by α ∈ H̃(X,Q). But for all such elements we have eσ(ṽ) = 0. This means

that eσ ∈ Ann(v(E)) from which the assertion immediately follows. �

We recall here that for E as in the proposition ch0(E) = 0 or ch1(E) = 0 already

implies that chi(E) = 0 for i < n, see [5, Lem. 4.8(v)]. If, moreover, chn(E) = 0,

then we have that chi(E) = 0 for i < 2n.

4. Obstruction Maps

In this section we will discuss the implications between the various obstruction

maps from the introduction and atomicity. In particular, we will prove Theorem 1.2

and Theorem 1.3.

4.1. Cohomological Obstruction map and Atomicity. We show here that be-

ing atomic is equivalent to having a cohomological obstruction map with kernel of

codimension one.

Proof of Theorem 1.2. Let us assume �rst that E is atomic. We know that

Ann(v(E)) = Ann(ṽ) ⊂ g(X)

for some ṽ ∈ H̃(X,Q). Since v(E) is algebraic and, therefore, h′(v(E)) = 0 we

conclude h′ ∈ Ann(ṽ). Thus, we �nd that h′(ṽ) = 0 which implies ṽ ∈ H̃1,1(X,Q).

An element µ ∈ HT2(X) induces the operator eµ ∈ g(X)C which has degree two

for the grading operator h′. Moreover, we have the perfect pairing

HT2(X)×
(
Cα⊕H1,1(X,C)⊕ Cβ

)
→ H0,2(X), (µ, x) 7→ eµ(x) = µyx
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obtained from viewing H̃(X,C) as a g(X)C-module. In particular, restricting the

perfect pairing to ṽ ∈ H̃(X,C) we see that under the embedding

HT2(X) ↪→ g(X)C, µ 7→ eµ

the intersection Ann(ṽ)C ∩ HT2(X) ⊂ g(X)C is b2(X) − 1-dimensional. Since

Ann(v(E))C ∩ HT2(X) equals the kernel Ker(obsE) of the cohomological obstruc-

tion map, the equality Ann(ṽ) = Ann(v(E)) shows that obsE has a one-dimensional

image.

For the converse implication let us reinspect the proof of Proposition 3.1. There,

we studied the codimension of Ann(v(E)) ⊂ g(X) in terms of the kernel of the

cohomological obstruction map. In particular, in the case of interest of us, that

is, the kernel having codimension one, we already deduced that E must be atomic,

which �nishes the proof. �

Remark 4.1. The statement and the proof of the above theorem are purely coho-

mological. That is, we actually proved the following for an element x ∈ H∗(X,Q) of

Hodge type, i.e. h′(x) = 0:

The annihilator Lie subalgebra Ann(x) ⊂ g(X) is equal to Ann(ṽ) ⊂ g(X) for a

non-zero element ṽ ∈ H̃(X,Q) if and only if the morphism

HT2(X)→ H∗(X,C), µ 7→ µyx

has a one-dimensional image.

In [24, Prop. 2.6] the authors have shown that for µ ∈ H1(X, TX) ⊕ H2(X,OX)

the vanishing

µyv(E) = 0

is equivalent to the vanishing

µych(E) = 0.

However, this does not remain true for the total space HT2(X), i.e. the cohomological

obstruction map having a one-dimensional image is not equivalent to the map

HT2(X)→ HΩ2(X), µ 7→ µych(E)

having a one-dimensional image. An example for this phenomenon is any complex

E ∈ Db(S[2]) in the derived category of the second Hilbert scheme S[2] for S a K3

surface such that ch(E) ∈ Q〈v(OS[2])〉.

4.2. Obstruction Map and Atomicity. Let us recall the observation [22, Lem.

3.2] which relates the obstruction and the cohomological obstruction map for E .

Lemma 4.2. Let E ∈ Db(X) be an object and γ ∈ HH2(X). Then 0 = χE(γ) =

γE ∈ Ext2(E , E) implies 0 = γ ◦ chHH(E) ∈ HH2(X). In particular,

IK(Ker(χE)) ⊂ Ker(obsE).
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The proof is an application of the de�ning property of the Hochschild Chern

character and the non-degeneracy of the Serre duality trace. We can use this and

the relation between the cohomological obstruction map and atomicity to give a

proof of Theorem 1.3.

Recall that Theorem 1.3 asserts a relationship between obstructions to �rst-order

(noncommutative) deformations of E and atomicity of E when the object E is 1-

obstructed. Employing Theorem 1.2 this is equivalent to establishing a relationship

between obstructions to �rst-order (noncommutative) deformations of E and ob-

structions to the Mukay vector v(E) of E staying of Hodge type.

Proof of Theorem 1.3. As recalled above we need to relate (the dimensions of the

vector spaces) Ker(χE) and Ker(obsE) for E 1-obstructed. This is done using Theo-

rem 1.2 and Lemma 4.2.
More precisely, Lemma 4.2 gives

IK(Ker(χE)) ⊂ Ker(obsE)

which implies that the cohomological obstruction map obsE must have one or zero-

dimensional image. If it is one-dimensional, Theorem 1.2 gives that E is atomic.

To conclude, it is left to show that the image of obsE is not zero-dimensional.

This follows from the lemma below. �

Lemma 4.3. The radical W ⊂ HΩ0(X) of the pairing

HT2(X)×HΩ0(X)→ HΩ2(X)

corresponds under the isomorphism H∗(X,Ω∗X) ∼= H∗(X,C) to the subspace spanned

by trivial representations of the LLV algebra.

Proof. Since by Theorem 2.1 the operator eµ for µ ∈ HT2(X) is contained in g(X)C

it is immediate that elements in the subspace spanned by trivial representations lie

in W .
For the converse inclusion, note that HΩ0(X) is by de�nition the subspace of

elements x satisfying h′(x) = 0. If x is contained in the radical W , we infer from

(3.1) that for all elements µ ∈ HT2(X) having the Hard Lefschetz property the

operators Λµ also satisfy Λµ(x) = 0. As the set of all these operators generate

g(X)C, we conclude that x is annihilated by the LLV algebra. �

We now discuss the converse implication of whether atomic sheaves and complexes

are 1-obstructed. The following shows that it does not always hold.

Example 4.4. Consider a K3 surface X and a non-trivial line bundle L ∈ Pic(X).

The bundle E = OX ⊕ L is atomic, but not 1-obstructed.

Indeed, any non-zero sheaf on a K3 surface is atomic. The Atiyah class AtE
decomposes

AtE = AtOX
+ AtL ∈ Ext1(OX ,OX ⊗ Ω1

X)⊕ Ext1(L,L ⊗ Ω1
X) ⊂ Ext1(E , E ⊗ Ω1

X)
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which can be simpli�ed using AtOX
= 0. Since L is non-trivial, there exists µ ∈

H1(X, TX) such that µyc1(L) 6= 0. In particular, the element

x := µyAtE ∈ Ext2(E , E)

projects non-trivially to the subspace Ext2(L,L) ⊂ Ext2(E , E), but trivially to the

subspace Ext2(OX ,OX) ⊂ Ext2(E , E). Moreover, any non-trivial µ′ ∈ H2(X,OX)

induces a non-trivial element

y := µ′yAt0
E ∈ Ext2(E , E)

which projects non-trivially to Ext2(OX ,OX) ⊂ Ext2(E , E) (more precisely, after

identifying Ext2(OX ,OX) ∼= H2(X,OX) we have that the projection of y equals

2µ′). This shows that x and y must be linearly independent.

Note, however, that every simple sheaf or complex on a K3 surface with non-zero

Mukai vector is 1-obstructed. A natural question therefore is whether this also holds

true in higher dimensions.

We state here the following.

Conjecture A. Let X be a hyper-Kähler manifold and E a simple atomic object. For

each γ ∈ HH2(X) with 0 6= χE(γ) = γE ∈ Ext2(E , E) there exists µ ∈ HH2n−2(X)

such that the composition 0 6= µE ◦ γE ∈ Ext2n(E , E).

Since E is assumed to be simple, this is equivalent to asking TrX(µE ◦γE) 6= 0. One

could formulate an even stronger conjecture by asking that for each γ ∈ HHk(X)

with 0 6= χE(γ) = γE ∈ Extk(E , E) there exists µ ∈ HH2n−k(X) such that TrX(µE ◦
γE) 6= 0. Using that X is Calabi�Yau and, therefore, Ext∗(E , E) is via Serre duality

equipped with a non-degenerate pairing, this could be rephrased by saying that the

this non-degenerate pairing on Ext∗(E , E) restricts to a non-degenerate pairing on

the image subalgebra Im(χE) ⊂ Ext∗(E , E).

The following concerns the reverse implication in Theorem 1.3 assuming Conjec-

ture A and establishes a complete relationship between the notion of 1-obstructedness

and atomicity.

Proof of Theorem 1.4. Recall the de�ning property of the Hochschild Chern charac-

ter chHH(E) ∈ HH0(X)

TrX×X(δ ◦ chHH(E)) = TrX(δE)

for all δ ∈ HH∗(X). For µ ∈ HT2(X) we have that

µyv(E) = 0

is equivalent to

(IK)−1(µ) ◦ (IK)−1(v(E)) = (IK)−1(µ) ◦ chHH(E) = 0.
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If we denote γ := (IK)−1(µ) ∈ HH2(X), then the above vanishing implies for arbi-

trary γ′ ∈ HH2n−2(X)

0 = TrX×X(γ′ ◦ γ ◦ chHH(E)) = TrX((γ′ ◦ γ)E) = TrX(γ′E ◦ γE).

Conjecture A now gives that we can deduce from this the vanishing γE = 0. This

gives

Ker(obsE) ⊂ IK(Ker(χE)).

Combined with Lemma 4.2 we therefore obtain the equality

(4.1) IK(Ker(χE)) = Ker(obsE)

which, together with Theorem 1.2 yields the assertion. �

Note that the above also strengthens Theorem 1.3. Namely, assuming that an

object E satis�es Conjecture A, one concludes that E is atomic without the condition

on its Mukai vector not lying in the subspace generated by trivial representations of

the LLV algebra. That is, Conjecture A implies that Mukai vectors of 1-obstructed

objects cannot cannot be annihilated by the LLV algebra as the equality (4.1) forces

a non-trivial radical.

Remark 4.5. The obstruction map

χE : HH2(X)→ Ext2(E , E)

measures the obstruction to deform E to �rst order along the �rst order deformation

corresponding to the element in HH2(X).

On the other hand, the cohomological obstruction map

obsE : HT2(X)→ HΩ2(X)

concerns only the Mukai vector of the corresponding object and measures whether

the Mukai vector stays of Hodge-type along the given �rst order deformation.

From this viewpoint, Theorem 1.4 says that under a certain condition, if the

Mukai vector stays algebraic along a given �rst order deformation direction, then

the object can be lifted to this �rst order deformation.

The following is evidence supporting Conjecture A.

Proposition 4.6. Let E ∈ Db(X) be a simple 1-obstructed object such that its Mukai

vector is not annihilated by the LLV algebra, e.g. E is a sheaf. Then E satis�es the

conclusion of Conjecture A.

Proof. Since E is 1-obstructed we only need to show Conjecture A for one non-zero

representative of the image of χE in Ext2(E , E). This means we need to �nd one

element in the image of

χE : HH2n−2(X)→ Ext2n−2(E , E)

which pairs non trivially with the one-dimensional subspace of Ext2(E , E) given by

the image of χE .
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By assumption, v(E) is not annihilated by the LLV algebra g(X). As demon-

strated in the proof of Proposition 3.1 this means that there exists µ ∈ HT2(X)

such that eµ(v(E)) = µyv(E) 6= 0. Using (2.1), [42, Lem. 2.5] and the fact that

the intersection pairing on H∗(X,C) is non-degenerate, we see that there exists

γ ∈ HT2n−2(X) such that 0 6= γyeµ(v(E)) = (γ ∧ µ)yv(E) ∈ H2n(X,OX).

De�ning τ = (IK)−1(γ∧µ) and employing the de�ning property of the Hochschild

Chern character we obtain

0 6= TrX×X(τ ◦ chHH(E)) = TrX(τE) = TrX((IK)−1(γ)E ◦ (IK)−1(µ)E).

This proves the proposition. �

Thus, 1-obstructed sheaves satisfy Conjecture A by Lemma 3.7. Moreover, if the

1-obstructed object E satis�es the conclusion of Conjecture A, then by Theorem 1.4

its Mukai vector v(E) does not lie inside the subspace of trivial representations of

the LLV algebra.

We get the following consequence.

Corollary 4.7. Let E ∈ Db(X) be a simple atomic object. Then E is 1-obstructed

if and only if it satis�es the conclusion of Conjecture A.

In particular, for a simple object E consider the three properties: E is atomic, E is
1-obstructed, E satis�es Conjecture A. Then any two of these properties imply the

remaining one.

5. Vector bundles and torsion-free sheaves

We will recall the notion and relevant results of Verbitsky concerning (projec-

tively) hyperholomorphic bundles. This will be applied in the next section to study

the deformation theory of slope (poly)stable bundles. We will compare this notion

as well as the notion of a modular sheaf of O'Grady with being atomic.

5.1. Hyperholomorphicity. Let E be a vector bundle on a hyper-Kähler manifold

X. For every Kähler class ω in the Kähler cone KX there exists by Yau's solution to

Calabi's conjecture [19, Thm. 23.5] a unique hyper-Kähler metric g on the underlying

real manifold such that ω = [ωI ], where ωI = g(I(_),_). We denote the complex

structures corresponding to the hyper-Kähler metric g by I, J,K. We denote the

resulting twistor deformation by π : X → P1
ω.

De�nition 5.1. A Hermitian connection ∇ on E is called (ω)-hyperholomorphic, if

∇ is integrable with respect to each complex structure induced by the hyper-Kähler

metric g.

The three complex structures I, J,K induce naturally an SU(2)-action on the

cohomology H∗(X,C). Note that the associated Lie algebra su(2) is contained in

the LLV algebra g(X)C and its action has degree zero with respect to the grading

given by h. A cohomology class x ∈ H∗(X,C) is SU(2)-invariant if and only if it is

of type (p, p) for all Hodge structures induced by all complex structures obtained
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from the hyper-Kähler metric g (for more see [45, Sec. 1]). Here are several results

related to hyperholomorphic bundles which we will need later on:

• Every ω-hyperholomorphic bundle E is ω-slope polystable1 [45, Thm. 2.3].

For the induced curvature Θ we have Λω(Θ) = 0.

• A Hermitian connection∇ on a holomorphic bundle E is ω-hyperholomorphic

if and only if its curvature Θ is SU(2)-invariant. Furthermore, a polystable

bundle E is hyperholomorphic if and only if c1(E) and c2(E) are SU(2)-

invariant [47, Thm. 3.9].

• The pullback of a hyperholomorphic bundle E to the associated twistor line

admits a holomorphic structure over the twistor space π : X → P1
ω [32, Lem.

1.1]. A bundle E is hyperholomorphic if and only if there exists a holomorphic

bundle F on the twistor space X such that the restriction to X of F is E ,
see [25, Def. 2.2] and the paragraph afterwards.

De�nition 5.2. A bundle E is called (ω-)projectively hyperholomorphic, if the trace-

less curvature Θtl is SU(2)-invariant for the induced hyper-Kähler structure.

Equivalently, E is projectively hyperholomorphic if and only if End(E) is hyperholo-

morphic [45, Prop. 11.1].

5.2. Comparison of notions for bundles on hyper-Kähler manifolds. We

recall here the element

κ(E) := ch(E) exp

(
−c1(E)

r

)
∈ H∗(X,Q)

for a torsion-free sheaf E of rank rk(E) = r and its discriminant

∆(E) := −2rch2(E) + ch1(E)2.

In [39], O'Grady proposed a notion of modular sheaves.

De�nition 5.3. A torsion-free sheaf E is modular if the projection of ∆(E) to the

Verbitsky component is a multiple of the dual of the BBF form q2 ∈ SH4(X,Q).

Let us compare the notions of atomicity, (projective) hyperholomorphicity and

modularity for a bundle E .

Lemma 5.4. Let E be a torsion-free atomic sheaf. Then κ(E) and ∆(E) remain of

Hodge type for all Kähler deformations of X. If E is a vector bundle, the same is

true for ch(E ⊗ E∨).

Proof. The sheaf E is atomic and by Proposition 3.8 there exists ṽ(E) ∈ H̃(X,Q)

such that

Ann(v(E)) = Ann(ṽ(E)) ⊂ g(X).

1Sum of slope stable bundles with the same slope.
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Note that κ(E) is of type Hodge type if and only if the class

κ̃(E) := ch(E)td1/2 exp

(
−c1(E)

r

)
= v(E) exp

(
−c1(E)

r

)
∈ H∗(X,Q)

is of Hodge type. The isometry given by multiplication with exp(−c1(E)/r) is the

integrated action of the operator e−c1(E)/r given by cup product with the class

−c1(E)/r ∈ H1,1(X,Q). We therefore obtain the equality

Ann(κ̃(E)) = Ann

(
v(E) exp

(
−c1(E)

r

))
= Ann

(
ṽ(E) exp

(
−c1(E)

r

))
.

From Proposition 3.8 we infer

ṽ := ṽ(E) exp

(
−c1(E)

r

)
= rα+ tβ ∈ H̃(X,Q)

for some t ∈ Q. In particular, for every possible complex structure I and associated

Weil operator WI we have WI ∈ Ann(ṽ) = Ann(κ̃(E)). This proves that κ(E)

remains of Hodge type. The assertion for ∆(E) follows from the identity

−2rκ(E)4 = ∆(E),

where κ(E)4 ∈ H4(X,Q) is the degree four component of κ(E).

If E is a vector bundle, we use

ch(E ⊗ E∨) = ch(E)ch(E∨) =

(
ch(E) exp

(
−c1(E)

r

))(
ch(E∨) exp

(
c1(E)

r

))
.

By what we have already proven, the right hand side is the product of two classes

which are of Hodge type for all Kähler deformations. This �nishes the proof. �

For an object E ∈ Db(X) which is atomic the proof also shows that the class

ch(E ⊗L RHom(E ,OX)) stays algebraic for all possible complex structures.

The lemma immediately implies Proposition 1.5 which is a strengthening of [35,

Thm. 3.4]. We can also now proof the relationship with projectively hyperholomor-

phic bundles alluded to in the introduction.

Proof of Proposition 1.6. Since E is ω-polystable so is the bundle End(E), i.e. End(E)

decomposes into the direct sum of indecomposable ω-slope stable bundles of the

same slope. Now E is ω-projectively hyperholomorphic if and only if End(E) is

ω-hyperholomorphic [45, Prop. 11.1]. By [45, Thm. 2.5] we know that End(E) is

hyperholomorphic if and only if c1(End(E)) and c2(End(E)) remain of Hodge type

(p, p) for all complex structures induced by the twistor space associated to ω. This

follows from Lemma 5.4. �

The converse in the above statements does not hold. A counterexample is given

by the tangent bundle TX on higher-dimensional hyper-Kähler manifolds X, see

Proposition 8.3.
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We obtain also the following which is similar to [35, Thm. 3.4] where the statement

is also essentially proved under stronger assumptions.

Proposition 5.5. Let E be a slope stable atomic bundle. Then P(E) deforms over

the whole moduli space of Kähler deformations of X.

Proof. From what has just been proven we know that E is also modular as well

as projectively hyperholomorphic. By [39, Sec. 3] we know that there is an open

subcone of the ample cone for which E remains slope stable and projectively hy-

perholomorphic. Moreover, from Lemma 5.4 we know that the traceless curvature

Θtl is of type (2, 2) for all possible complex structures. The result follows now from

[25, Prop. 2.3] and the fact that each two points in the moduli space are connected

by twistor lines, see [44, Thm. 3.2]. �

We note that in the proof of Proposition 1.6 we did not use the condition of E
being atomic explicitly, but only the consequence that all Chern classes (we only

needed c2) of End(E) stay of Hodge type. This leads to the following.

Proposition 5.6. A modular vector bundle E is ω-projectively hyperholomorphic if

and only if E is ω-slope polystable and the projection of c2(E) to the complement

SH(X,Q)⊥ of the Verbitsky component stays of type (2, 2) for all induced complex

structures of the hyper-Kähler structure.

For example if E is a ω-slope polystable modular vector bundle such that c2(E) ∈
SH(X,Q), then E is ω-projectively hyperholomorphic.

6. Deformation theory of stable atomic vector bundles

Let X be a hyper-Kähler manifold of dimension 2n. Throughout this section we

�x an H-projectively hyperholomorphic vector bundle E on X which is slope stable

for some ample line bundle H. In particular, E is simple, i.e. Hom(E , E) = Cid. In

this section we want to study the deformation theory of the bundle E on X.

6.1. Deformation theory. We introduce the functor and notions we want to study.

For more details we refer to [40].

The deformation functor we consider is the covariant functor

DefE : Art/C→ Sets

from Artinian local C-algebras with residue �eld C to sets which assigns to A ∈
Art/C the isomorphism classes of pairs (F , t), where F is a coherent sheaf on X ×
Spec(A) �at over Spec(A) and t is an isomorphism between the restriction of F
to X × Spec(C) and E . The deformation functor DefE has a tangent-obstruction

theory given by T 1 = Ext1(E , E) and T 2 = Ext2(E , E)0, where Ext2(E , E)0 denotes

the kernel of the natural trace morphism

Tr: Ext2(E , E)→ H2(X,OX).
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One can de�ne a formal map

κ = κ2 + κ3 + . . . : ̂Ext1(E , E)→ Ext2(E , E)0,

called Kuranishi map, whose scheme-theoretic �bre κ−1(0) is the base space of the

formal semiuniversal deformation of E . The quadratic part κ2 is the usual Yoneda

pairing.

6.2. Formality. The main result of this section is the following, which will also

imply Theorem 6.1 from the introduction.

Theorem 6.1. Let E be an H-projectively hyperholomorphic vector bundle on a

hyper-Kähler manifold which is H-slope stable. Then the dg algebra RHom(E⊕k, E⊕k)
is formal for all k > 0.

Recall that a dg algebra is formal if it is quasi-isomorphic to its cohomology

algebra.

For K3 surfaces, the study of formality of the endomorphism algebra goes back to

work of Kaledin�Lehn [30] and Kaledin�Lehn�Sorger [31]. They proved the result

for direct sums of ideal sheaves of zero-dimensional subvarieties. Zhang [49] and

later Budur�Zhang [8] extended it to all slope polystable sheaves on K3 surfaces.

The main ingredient in all of the proofs is the following result of Kaledin [29, Thm.

4.2].

Theorem 6.2. Let A• be a dg algebra of quasi-coherent and �at sheaves on an

integral scheme X and denote by B• its cohomology algebra. Assume that the sheaves

B• are coherent and �at on X and that for all i, l ∈ Z the degree l component

HHil(B•) of the i-th Hochschild cohomology sheaf HHi(B•) is also coherent and �at.

(i) For X a�ne, formality of A•x over a generic point x ∈ X implies formality

for all points x ∈ X.

(ii) If HH2
l (B•) has no global sections for all l ≤ −1, then the dg algebra A•x is

formal for all x ∈ X.

We will also apply this statement to prove the main result. Our proof follows

roughly the arguments of [30, Prop. 3.1] and [49, Thm. 1.3] with the necessary

modi�cations.

Proof of Theorem 6.1. We consider the induced hyper-Kähler metric on X and the

induced twistor line π : X → P1. We can lift the bundle End(E⊕k, E⊕k) to a holo-

morphic bundle F on X [32, Thm. 5.12]. Consider the sheaf of dg algebras

RHomX/P1(OX ,F) = Rπ∗RHom(OX ,F)

on P1 and the sheaf of algebras B• = Ext
•
X/P1(OX ,F) associated to the dg algebra

by taking cohomology.

Verbitsky [47, Prop. 6.3] proved that

(6.1) Riπ∗(F) ∼= OP1(i)⊗C Hi(X,F)
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for all i ∈ Z. Since Bi = Riπ∗(F), we conclude that the sheaves of algebras B• are
coherent and �at. Moreover, (6.1) shows that B• is locally constant as a sheaf of

algebras. This implies that its Hochschild cohomology sheaves HH•(B•) are locally
trivial and we can apply Theorem 6.2. The proof proceeds now as the proof of

[30, Prop. 3.1]. �

Using Proposition 1.6 we see that Theorem 6.1 also proves Theorem 1.7 from the

introduction.

6.3. Moduli spaces. For a slope stable projectively hyperholomorphic vector bun-

dle E Verbitsky showed that E satis�es the quadraticity property [45, Thm. 6.2,

11.2]. That is, the scheme-theoretic �bre κ−1(0) of the Kuranishi map is isomorphic

to the �bre κ−1
2 of its quadratic part.

Note that formality for the dg algebra RHom(E , E) implies formality of the dg Lie

algebra associated to RHom(E , E). If a dg Lie Algebra has trivial di�erential d = 0,

then it is well-known that the equations de�ning the versal deformation space are

quadratic [16]. In particular, if RHom(E , E) is formal, then its versal deformation

space is cut out by quadrics. Hence, we recover the above result of Verbitsky.

Corollary 6.3. Let E be a slope stable projectively hyperholomorphic vector bundle.

Then its associated versal deformation space κ−1(0) is isomorphic to κ−1
2 (0) and has

at most quadratic singularities.

Thus, to study (locally) the moduli space of slope stable atomic vector bundles E
one is lead to the study of the pairing

Ext1(E , E)× Ext1(E , E)→ Ext2(E , E)

whose induced quadratic map Ext1(E , E)→ Ext2(E , E) yields κ2. We state here the

following.

Conjecture B. Let E be a slope stable atomic vector bundle. Then the pairing

Ext1(E , E)× Ext1(E , E)→ Ext2(E , E)

is skew-symmetric.

Conjecture B implies that the moduli space of slope stable torsion-free sheaves

with Mukai vector v = v(E) is smooth at the point [E] ∈M(v) corresponding to the

stable atomic bundle E .
We could prove formality using the concept of (projective) hyperholomorphicity.

Considering Conjecture A we see that the bundle E in Conjecture B is speculated to

be 1-obstructed. We believe that this property could enable one to prove smoothness

at the point [E ] of the moduli space corresponding to the stable atomic bundle.

We note here the following.

Corollary 6.4. Let X be a hyper-Kähler manifold and E a projectively hyperholo-

morphic bundle such that Ext2(E , E) ∼= C. Then E satis�es Conjecture B.
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Proof. By assumption the trace morphism

TrE : Ext2(E , E)→ H2(X,OX)

is an isomorphism in this case and the composition

Exti(E , E)× Extj(E , E)
◦−→ Exti+j(E , E)

TrE−−→ Hi+j(X,OX)

is well-known to be graded-commutative. �

For more evidence for Conjecture B see Proposition 7.6.

7. Atomic Lagrangian

Lagrangian submanifolds inside hyper-Kähler manifolds are an active part of cur-

rent research. We recommend [23] for an account of some of the known results and

questions. We want to discuss in this section Lagrangian submanifolds with a view

towards atomicity.

7.1. De�nition and structural result. We make the following de�nition.

De�nition 7.1. We call a connected Lagrangian submanifold ι : L ⊂ X atomic if

ι∗OL is an atomic sheaf.

The main goal of this section is to prove Theorem 1.8 from the introduction which

completely determines when a Lagrangian submanifold is atomic.

In what follows, we will frequently implicitly use a result due to Voisin [48, Lem.

1.5]. It says that the kernel Ker(ι∗) ⊂ H2(X,Q) of the pullback morphism

ι∗ : H2(X,Q)→ H2(L,Q)

is equal to the kernel of the composition

ι∗[L] ∧_ : H2(X,Q)
ι∗−→ H2(L,Q)

ι∗−→ H2n+2(X,Q)

given by cupping with the fundamental class ι∗[L] ∈ H2n(X,Q) for a Lagrangian

submanifold L ⊂ X.

Proposition 7.2. Let ι : L ⊂ X be a connected Lagrangian submanifold and denote

by W ⊂ HT2(X) the kernel of the contraction morphism

HT2(X)→ H∗(X,C), µ 7→ µyι∗[L]

acting on the fundamental class ι∗[L] ∈ H2n(X,Q). Then, there is an isomorphism

W ∼= Ker(ι∗)

of vector spaces with the kernel Ker(ι∗) ⊂ H2(X,C) of the pullback morphism

ι∗ : H2(X,C)→ H2(L,C).
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Proof. First, observe that the subspace H2(X,OX) is naturally contained in HT2(X)

as well as H2(X,C) and the action given by contraction agrees with the cup product.

Since L is Lagrangian, we therefore have

W ⊃ H2(X,OX) ⊂ Ker(ι∗).

Moreover, for a symplectic form σ ∈ H0(X,Ω2
X) there is an sl2-triple

(eσ, hσ,Λσ) ⊂ g(X)C,

where eσ = σ ∧_ is the operator given by cupping with σ and hσ |Hp,q = (p− n)id,

see [15] and [42, Sec. 2]. The action of H0(X,∧2TX) on H∗(X,C) via contraction

agrees with the action of Λσ up to a constant.

Indeed, both operators are contained in the LLV algebra g(X)C and the subspace

of the LLV algebra consisting of operators sending Hp,q(X) to Hp−2,q(X) is one-

dimensional. That is, up to scaling, there exists a unique operator having degree

−2 for the grading given by h and degree 2 for the grading given by h′.

Since L ⊂ X is Lagrangian we have eσ(ι∗[L]) = 0. This yields

(7.1)

0 = hσ(ι∗[L]) = [eσ,Λσ](ι∗[L]) = eσ(Λσ(ι∗[L]))− Λσ(eσ(ι∗[L])) = eσ(Λσ(ι∗[L])).

As eσ has the Hard Lefschetz property for the grading given by hσ, we conclude that

eσ(Λσ(ι∗[L])) = 0 is equivalent to Λσ(ι∗[L]) = 0.

It remains to identify H1(X,Ω1
X)∩Ker(ι∗) and H1(X, TX)∩W . The image of the

contraction map

H1(X, TX)→ H2n(X,C), µ 7→ µyι∗[L]

is contained in Hn−1,n+1(X). As recalled above, the operator eσ is injective when

restricted to the subspace Hn−1,n+1(X). Hence, the subspace H1(X, TX) ∩ W is

equal to the kernel of the morphism

(7.2) H1(X, TX)→ Hn+1,n+1(X), µ 7→ eσ(eµ(ι∗[L]))

where as before eµ ∈ g(X)C denotes the operator given by contraction with µ. Since

L is Lagrangian we have that

[eσ, eµ](ι∗[L]) = eσ(eµ(ι∗[L]))

which means that the kernel of (7.2) is equal to the kernel of the morphism

(7.3) H1(X, TX)→ Hn+1,n+1(X), µ 7→ [eσ, eµ](ι∗[L]).

Lemma 7.3 below shows that the symplectic form σ induces the isomorphism

(7.4) [eσ,_] : H1(X, TX) ∼= H1(X,Ω1
X), µ 7→ −µyσ,

where we identi�ed the spaces H1(X, TX) and H1(X,Ω1
X) with the operators they

induce inside g(X)C.
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In particular, this implies that the kernel of (7.3), which is equal toW∩H1(X, TX),

is via (7.4) identi�ed with the kernel of

H1(X,Ω1
X)→ Hn+1,n+1(X), ω 7→ ω ∧ ι∗[L].

Recalling the result due to Voisin alluded to above �nishes the proof. �

Lemma 7.3. Consider a symplectic form σ ∈ H0(X,Ω2
X) and let us identify the

subspaces H1(X, TX) and H1(X,Ω1
X) with the subspaces

H1(X, TX) ↪→ g(X)C, µ 7→ eµ and H1(X,Ω1
X) ↪→ g(X)C, ω 7→ eω

via the corresponding operators they induce. Then, the morphism

[eσ,_] : g(X)C → g(X)C, f 7→ [eσ, f ]

induces the isomorphism

H1(X, TX) ∼= H1(X,Ω1
X), µ 7→ −µyσ.

Proof. Note �rst that the morphism is well-de�ned, as the operator [eσ, eµ] has

degree 2 for the grading given by h and degree 0 for the grading given by h′ and is,

therefore, contained in H1(X,Ω1
X) ⊂ g(X)C. Moreover, this subspace acts faithfully

on the fundamental class 1 ∈ H0(X,C). Thus, we can compute

[eσ, eµ](1) = eσ(eµ(1))− eµ(eσ(1)) = −µyσ ∈ H1(X,Ω1
X)

which yields the assertion. �

With these preparations we are now ready to give the promised proof of the main

result of this section.

Proof of Theorem 1.8. Step 1. Let us �rst show that the conditions in the theorem

are su�cient for a connected Lagrangian submanifold to be atomic.

By Proposition 3.1 the sheaf ι∗OL is atomic if and only if Ann(v(ι∗OL)) has

the right dimension. An element ω ∈ H1,1(X,Q) yields an operator eω ∈ g(X)

which can be integrated to the isomorphism exp(ω). Moreover, the Lie subalge-

bras Ann(v(ι∗OL)) and Ann(v(ι∗OL) exp(ω)) are adjoint to each other and have,

therefore, the same dimension.

By assumption, there exists ω ∈ H1,1(X,Q) with the property that ι∗(ω) =

−c1(L)/2. From Lemma 7.4 below we infer

v(ι∗OL) exp(ω) = ι∗[L].

Using Theorem 1.2 and Remark 4.1 the above discussion shows that E is atomic if

and only if the map

HT2(X)→ HΩ2(X), µ 7→ µyι∗[L]

has a one-dimensional image. This follows by assumption employing Proposition 7.2.
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Step 2. Conversely, let us assume that ι∗OL is atomic. The degree 2n component

of v(ι∗OL) is equal to ι∗[L]. Therefore, as ι∗OL is atomic, the b2(X)−1-dimensional

kernel of the cohomological obstruction map obsι∗OL
is contained in the kernel of

ϕ : HT2(X)→ HΩ2(X), µ 7→ µyι∗[L].

Note that the kernel Ker(ϕ) ⊂ HT2(X) of ϕ has codimension at least one, because

ϕ|H1(X,TX) : H1(X, TX)→ H2n(X,C), µ 7→ µyι∗[L]

is non-trivial by Lemma 7.5 below. Using Proposition 7.2 we see that the image

Im(ι∗) of the pullback morphism is one-dimensional.

Step 3. It remains to show that c1(L) ∈ H2(L,Q) is contained in the image of ι∗.

This uses a variant of the proof of [41, Prop. B.2]. We �rst consider the case that

ι∗c1(L) = 0, which is a guideline for the general case.

Since L is Lagrangian, the operator eσ acts trivially on v(ι∗OL). Using that ι∗OL
is atomic, we know from Theorem 1.2 that there exists µ ∈ H1(X, TX) such that

Λσ − eµ ∈ Ker(obsι∗OL
) ⊂ HT2(X), where we used again that for a symplectic

form σ the action of the operator Λσ agrees up to a constant with the action of

H0(X,Λ2TX). By Lemma 7.4 this yields

Λσ(ι∗c1(L)2/8) = eµ(ι∗c1(L)/2.) = µyι∗c1(L)/2 ∈ Hn,n+2(X).

Since Λσ is injective when restricted to Hn+2,n+2(X) it immediately follows that

also ι∗c1(L)2 vanishes, because we assumed ι∗c1(L) = 0.

Consider now a Kähler class ω ∈ H1,1(X) which restricts to a Kähler class on L.

The projection formula yields

ι∗(c1(L) · ι∗ωn−1) = ι∗c1(L) · ωn−1 = 0

which, as ι∗ is injective restricted to H2n(L,C), implies that c1(L) is ι∗ω-primitive.

Applying once more the projection formula

ι∗(c1(L)2 · ι∗ωn−2) = ι∗c1(L)2 · ωn−2 = 0

together with the injectivity of ι∗ on top degree and the Hodge�Riemann bilinear

relations yields that c1(L) = 0 ∈ H2(X,Q).

Step 4. Let us now consider the case ι∗c1(L) 6= 0. The degree 2n+ 2-component

of the Mukai vector v(ι∗OL) of ι∗OL is by Lemma 7.4 equal to ι∗c1(L)/2. Since

ι∗OL is atomic, by Theorem 1.2 to a given symplectic form σ ∈ H0(X,Ω2
X) there

exists as above µ ∈ H1(X, TX) such that eµ − Λσ ∈ Ker(obsι∗OL
) ⊂ HT2(X). This

implies

eµ(ι∗[L]) = Λσ(ι∗c1(L)/2) 6= 0.

Applying eσ to this equality and noting once more that this operator has trivial

kernel restricted to Hn−1,n+1(X) we obtain the equality

eσ(eµ(ι∗[L])) = eσ(Λσ(ι∗c1(L)/2)).
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Since L is Lagrangian, we know eσ(ι∗c1(L)/2) = eσ(ι∗[L]) = 0. The above equality

can, therefore, be written as

[eσ, eµ](ι∗[L]) = [eσ,Λσ](ι∗c1(L)/2) = hσ(ι∗c1(L)/2) = ι∗c1(L)/2.

Lemma 7.3 shows that [eσ, eµ] is equal to eω for some ω ∈ H1(X,Ω1
X).

Step 5. We claim that we can assume that ±ω is a Kähler class.

Indeed, we have already proven that the image of the restriction morphism

ι∗ : H1(X,Ω1
X)→ H1(L,Ω1

L)

is one-dimensional. Hence, there exists a Kähler class ω̃ ∈ H1(X,Ω1
X) whose image

ι∗ω̃ is a Kähler class and generates Im(ι∗). Thus, there exists k ∈ C such that ι∗ω =

kι∗ω̃ for ω from above. Moreover, Lemma 7.3 shows that there exists µ̃ ∈ H1(X, TX)

such that

−µ̃yσ = −eµ̃(σ) = kω̃.

In particular, using once more Lemma 7.3 we obtain

[eσ, eµ](ι∗[L]) = eω(ι∗[L]) = ω ∧ ι∗[L] = kω̃ ∧ ι∗[L] = [eσ, eµ̃](ι∗[L]).

This shows that the element µ− µ̃ ∈ H1(X, TX) is contained in the kernel of obsι∗OL

and all the above arguments remain valid replacing µ with µ̃.

Step 6. Summing up the above discussion, we obtain the equality

eω(ι∗[L]) = ι∗[L] ∧ ω = ι∗([L] ∧ ι∗ω) = ι∗c1(L)/2(7.5)

for ω = −µyσ ∈ H1(X,Ω1
X) a (possibly negative) multiple of a Kähler class and

µ ∈ H1(X, TX) such that Λσ − eµ ∈ Ker(obsι∗OL
) ⊂ HT2(X).

Repeating this argument with the same ω and µ we get again by Lemma 7.4

Λσ(ι∗c1(L)2/8) = eµ(ι∗c1(L)/2).

As before, applying eσ we deduce

ι∗c1(L)2/4 = eω(ι∗c1(L)/2).(7.6)

One now concludes the proof as in the case ι∗c1(L) = 0. We sketch the argument.

First, c1(L)/2− ι∗ω is ι∗ω-primitive using (7.5). Moreover

(c1(L)/2− ι∗ω)2ι∗ωn−2 = (c1(L)2/4− ι∗ω ∧ c1(L) + ι∗ω2)ι∗ωn−2

vanishes by employing (7.6). Invoking the Hodge�Riemann bilinear relations yields

c1(L)/2 = ι∗ω. This �nishes the proof. �

It remains to prove the two lemmata used in the above proof.

Lemma 7.4. Let X be a smooth symplectic projective manifold and ι : L ⊂ X a

smooth Lagrangian submanifold. Then v(ι∗OL) = ι∗ exp(c1(L)/2).

Proof. It is well-known that the normal bundle sequence

0→ TL → TX |L → NL|X → 0
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combined with the isomorphism σ : TX ∼= ΩX , the short exact sequence

0→ N∨L|X → ΩX |L → ΩL → 0

and the fact that L is Lagrangian yield NL|X ∼= ΩL.

Using the Grothendieck�Riemann�Roch theorem we get

ch(ι∗(OL))td(X) = ι∗(ch(OL)td(L)) = ι∗td(L).

Multiplying the above equation by td(X)−1/2 we obtain

v(ι∗OL) = ι∗(td(L) · ι∗td(X)−1/2).

The previous paragraph yields

ι∗td(X) = td(TX |L) = td(L) · td(ΩL).

From this we obtain

(7.7) v(ι∗OL) = ι∗(td(L) · td(L)−1/2 · td(ΩL)−1/2) = ι∗(td(L)1/2 · td(ΩL)−1/2).

Recall that given the formal Chern roots ei of a bundle E its Todd class is the

product

td(E) =
∏
i

Q(ei)

where

Q(x) =
x

1− e−x
.

The assertion is now a consequence from the identity

x

1− e−x
·
(
−x

1− ex

)−1

=
x

1− e−x
· e

x − 1

x
=

ex − 1

1− e−x
= ex

applied to (7.7). �

Lemma 7.5. Let X be a hyper-Kähler manifold and ι : L ⊂ X a Lagrangian subva-

riety. Then the morphism

H1(X, TX)→ H∗(X,C), µ 7→ µyι∗[L]

is non-trivial.

Proof. The assertion can be deduced from results of Voisin [48, Sec. 1]. We want to

give another proof using the LLV algebra.

By assumption, as ι : L ⊂ X is Lagrangian, we know that

σ ∧ ι∗[L] = 0 = σ̄ ∧ ι∗[L] ∈ H∗(X,C)

for σ, σ̄ the (anti-)holomorphic two-form. Using again (7.1) we see that Λσ(ι∗[L]) =

0. Hence, assuming

H1(X, TX)→ H∗(X,C), µ 7→ µyι∗[L]

to be trivial implies that

HT2(X)→ H∗(X,C), µ 7→ µyι∗[L]
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is also trivial. As demonstrated in the proof of Proposition 3.1 this would imply

that ι∗[L] is annihilated by the LLV algebra. We obtain a contradiction, as there

exists a Kähler class ω ∈ H2(X,C) which restricts non-trivially to L and, therefore,

eω(ι∗[L]) 6= 0. �

The statement of the lemma can be interpreted by saying that no Lagrangian

subvariety can be deformed (cohomologically) along with to all Kähler deformations

of X.

7.2. 1-Obstructedness. Atomic Lagrangians ι : L ⊂ X and the sheaves ι∗L for

L ∈ Pic0(L) are a good testing ground for Conjecture A. By Corollary 4.7 it is

equivalent to study whether these sheaves are 1-obstructed. In this section, we

discuss the obstruction map for atomic Lagrangians. See also [35, Sec. 3.1] for a

related discussion.

Recall that by adjunction the group Ext2(ι∗OL, ι∗OL) decomposes into

Ext2(ι∗OL, ι∗OL) ∼= H2(L,OL)⊕H1(L,Ω1
L)⊕H0(L,Ω2

L).

Similarly, the degree two polyvector �elds HT2(X) decompose by de�nition as

HT2(X) = H2(X,OX)⊕H1(X, TX)⊕H0(X,Λ2TX).

Using these decompositions we want to re�ne the study of the obstruction map

_y
(
At0

ι∗OL
+ Atι∗OL

+ At2
ι∗OL

/2
)

: HT2(X)→ Ext2(ι∗OL, ι∗OL).

The fact that L is Lagrangian implies immediately that At0
ι∗OL
yσ̄ vanishes for σ̄ ∈

H2(X,OX). The induced map

H1(X, TX)→ H1(L,Ω1
L)

is induced by the morphism TX → NL|X together with the isomorphism NL|X ∼= Ω1
L.

Under the isomorphism Ω1
X
∼= TX the composition

H1(X,Ω1
X)→ H1(L,Ω1

L)

agrees (up to a constant) with the pullback map on cohomology.

The most di�cult piece is to study the induced map

ψ : H0(X,Λ2TX)→ H2(L,OL)⊕H1(L,Ω1
L)⊕H0(L,Ω2

L).

The morphism H0(X,Λ2TX)→ H0(L,Ω2
L) is again zero due to L being Lagrangian.

However, the map ψ is not equal to the projection to this component.

Indeed, Lemma 7.4 and Theorem 1.8 show that as soon as c1(ωL) ∈ H2(X,Q) is

non-trivial, then the degree 4n component of v(ι∗OL) is non-trivial. In particular,

the operator Λσ, whose action agrees with H0(X,Λ2TX) up to multiples, acts non-

trivially on v(ι∗OL). Lemma 4.2 then shows that ψ must also be non-zero.

From the proof of Theorem 1.8 we deduce that the image of the morphism ψ

projected onto the component H1(L,Ω1
L) should be a multiple of c1(L). This then
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would prove that the atomic sheaf ι∗OL is indeed 1-obstructed and, by Corollary 4.7,

would satisfy Conjecture A.

Note that in [35, Rem. 3.10] it is speculated that the map ψ is the zero morphism

for the atomic sheaf ι∗ω
1/2
L . From Lemma 7.4 we conclude that the Mukai vector

of ι∗ω
1/2
L is just ι∗[L] ∈ H2n(X,Q). In particular, the cohomological obstruction

map obs
ι∗ω

1/2
L

vanishes when restricted to H0(X,Λ2TX). This shows that ψ is zero

if and only if ι∗ω
1/2
L satis�es Conjecture A. This seems to be suggested from [13] as

discussed in [35, Rem. 3.10].

7.3. Graded Commutativity. The results from [36] imply that for an atomic

Lagrangian ι : L ⊂ X we have a graded multiplicative isomorphism

Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C).

In particular, for all line bundles L ∈ Pic(X) the above isomorphism remains valid

for the atomic sheaf ι∗ι
∗L. This leads to the following immediate consequence.

Proposition 7.6. Let ι : L ⊂ X be an atomic Lagrangian and L ∈ Pic(X). The

algebra structure of Ext∗(ι∗ι
∗L, ι∗ι∗L) is graded-commutative. If X is of dimen-

sion at most four, then for all M ∈ Pic(L) the algebra Ext∗(ι∗M, ι∗M) is graded-

commutative.

Proof. The �rst part follows from the above discussion. For the second part we

employ [36, Thm. 0.1.1] and the vanishing of H3(L,OL) which implies that in the

situation of loc. cit.

d1,1
2 : H1(L,Ω1

L)→ H3(L,OL)

is the zero map. �

We have stated Conjecture B only for vector bundles. The proposition shows that

(a stronger form of) its conclusion holds true for line bundles supported on atomic

Lagrangians.

Moreover, we see the above as evidence for Conjecture B. Let us elaborate how

one might be able to prove the conjecture employing the above in the case of K3

surfaces.

Proposition 7.7. Let S be a K3 surface with a hyperbolic plane U ⊂ Pic(S) and

[E ] ∈ MH(v) a generic point of a smooth moduli space corresponding to an H-slope

stable bundle. Then there exists a smooth curve C ⊂ S, a line bundle L ∈ Pic(C)

and a derived equivalence Φ ∈ Aut(Db(S)) such that Φ(E) ∼= ι∗L.

Proof. The assumption on the Picard group of S implies that there exists an isometry

of H̃(S,Z) with real spinor norm one sending v = v(E) to the class (0, [C], 0) for

C ⊂ S a smooth connected curve.
Indeed, we can write

H̃(S,Z)alg = U ⊕ U ⊕ L0
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where the �rst hyperbolic plane is spanned by α = 1 and β = p. Using [18, Prop.

3.3] we can modify the part of v which lies in the �rst two hyperbolic planes as

desired to have no contribution from the classes α and β.

From [26] we know that there exists an auto-equivalence Φ ∈ Aut(Db(S)) such

that the induced action on cohomology agrees with the above isometry. This yields

the isomorphism

Φ: MH(v) ∼= Mσ(0, [C], 0)

for some stability condition σ ∈ Stab†(S).

We consider now two cases. If v2 = −2, where we use the usual convention on K3

surfaces that we multiply the generalized Mukai pairing with −1, then MH(v) = [E ]

for the spherical bundle E . We apply [4, Prop. 6.8] as explained in [3, Rem. 6.10] to

obtain a derived equivalence Ψ acting trivially on cohomology and sending σ into

the Gieseker chamber. The composition therefore satis�es

Ψ ◦ Φ(E) ∼= OC(−1)

for the smooth rational curve C.

If v2 ≥ 0 we can employ [4, Thm. 1.1] to �nd an equivalence Ψ sending σ into the

Gieseker chamber such that the composition Ψ◦Φ induces a birational map between

MH(v) and MH(0, [C], 0). In particular, for a generic stable bundle [E ] ∈ MH(v)

the composition Ψ ◦ Φ sends [E ] to a generic stable sheaf in MH(0, [C], 0), which is

a line bundle supported on a curve with class [C]. �

The algebra structure of the Yoneda Ext algebra is invariant under derived equiv-

alences. Using Proposition 7.6 we get the multiplicative isomorphism

Ext∗(E , E) ∼= Ext∗(ι∗L, ι∗L) ∼= H∗(C,C).

This gives another argument for the (well-known) fact that Ext∗(E , E) is graded-

commutative. In particular, this reproves Conjecture B for the bundle E . Note that
if we start with a stable bundle E on an arbitrary projective K3 surface, we can

always deform the surface together with E via twistor lines such that a hyperbolic

plane is contained in its Picard group.

We expect that a similar approach could be pursued for higher-dimensional hyper-

Kähler manifolds. A promising candidate would be the case of the Hilbert scheme

of n points S[n] of a K3 surface using the results of [5].

Here is how this could be pursued. Using twistor lines and [47, Prop. 6.3] one can

deform a stable atomic bundle E on S[n] to a bundle E ′ on S′[n] such that U ⊂ Pic(S′)

without modifying the Ext algebra structure. Employing [5, Prop. 9.8] we �nd a

derived equivalence Φ mapping the Mukai vector ṽ(E ′) = rk(E ′) + c1(E ′) + sβ of E ′

in the Mukai lattice H̃(X,Q) to one of the form 0α + λ + kβ for λ ∈ H2(X,Q) the

dual of a smooth curve C ⊂ S′[n] and some k ∈ Q. However, the image Φ(E ′) might

be a priori an arbitrary complex. In the case of K3 surfaces, a solid knowledge of

the stability manifold was employed to conclude. In higher-dimensions, a further
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study of the equivalences involved to construct Φ via [5, Prop. 9.8] could potentially

shed more light on the situation.

7.4. Formality. We want to �nish this section by discussing formality for atomic

Lagrangians.

Employing [37, Thm. 0.1.2] and [8, Prop. 1.4] we get the following result.

Proposition 7.8. Let ι : L ⊂ X be an atomic Lagrangian and L ∈ Pic(X). Assume

that ωL admits a square root. Then RHom(ι∗(ω
1/2
L ⊗ ι∗L), ι∗(ω

1/2
L ⊗ ι∗L)) is formal.

Note that for a Lagrangian projective space Pn ⊂ X we know that by [21, Thm. A]

RHom(ι∗L, ι∗L) is formal for all line bundles L ∈ Pic(Pn). See Section 8 for further

cases of line bundles on atomic Lagrangian whose associated derived endomorphism

dg algebra is formal.

8. Examples and further properties

In this section, we discuss some example and further properties that are shared

by atomic sheaves and complexes.

8.1. Examples of atomic objects. We will study some examples of atomic objects

together with their properties. Recall that by Proposition 3.10 being atomic is

stable under derived equivalences as well as deformations. Therefore, every example

produces via these two operations many more examples.

8.1.1. Pn-objects. For the de�nition and properties of Pn-objects, see [27].
From Theorem 1.2 and Theorem 1.3 we deduce.

Proposition 8.1. If E ∈ Db(X) is a Pn-object, then E is atomic except if v(E) is

annihilated by the LLV algebra.

Again, if Conjecture A holds, the above implication that Pn-objects E are atomic

holds unconditionally and their Mukai vectors v(E) cannot be annihilated by g(X).

Moreover, Pn-objects E are simple by de�nition and the associated derived endo-

morphism dg algebra RHom(E , E) is formal as shown in [21, Thm. A]. Moreover,

they give further evidence for Conjecture A.

Corollary 8.2. Let E be an atomic Pn-object. Then E is 1-obstructed and satis�es

the conclusion of Conjecture A.

Proof. As Ext2(E , E) ∼= C, the kernel of the obstruction map Ker(χE) has at least

dimension b2(X) − 1. Lemma 4.2 shows that this kernel is contained under the

modi�ed HKR isomorphism in the kernel Ker(obsE) of the cohomological obstruction

map. By Theorem 1.2, this space is b2(X)− 1-dimensional, which implies that E is

1-obstructed. The second assertion now follows from Corollary 4.7. �

In particular, given an H-slope stable torsion free atomic sheaf E which is also a

Pn-object the connected component of the moduli space MH(v(E)) containing [E ] is
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a smooth point. In [39], it is shown that in some examples such moduli spaces are

connected.
Examples of atomic Pn-objects are line bundles and the sheaves ι∗OPn(k) for

ι : Pn ⊂ X. See also [39, Thm. 1.4] for many slope stable vector bundles on K3[2]-

type hyper-Kähler manifolds which are Pn-objects.

8.1.2. k(x)-orbit. Skyscraper sheaves of points k(x) for x ∈ X are also examples of

atomic sheaves. They have the property

Ext∗(k(x), k(x)) ∼=
∗∧

Ext1(k(x), k(x))

and, therefore, the Yoneda multiplication is again graded-commutative.

Another example of this kind are Lagrangian tori in hyper-Kähler manifolds.

Assume we are given a Lagrangian �bration π : X → Pn. A numerically trivial line

bundle L on a generic �bre ι : A = π−1(p) ⊂ X induces the atomic sheaf ι∗L ∈
Db(X). In [2] an example of a derived equivalence is being discussed, which extends

the �brewise Poincaré Fourier�Mukai transform. As explained in [5, Sec. 10.2] the

generic skyscraper sheaf k(x) for x ∈ X is being mapped to ι∗L. In particular, in

this situation the results of [36,37] as discussed in Section 7 extend to all numerically

trivial line bundles L on generic �bres A ⊂ X. That is, in these cases the local-to-

global Ext spectral sequence degenerates multiplicatively and the associated derived

endomorphism dg algebra is formal. Therefore, the irreducible component of the

moduli space M of slope stable sheaves containing ι∗L is in these cases generically

smooth and an open subset of M possesses a non-degenerate symplectic form.

For examples of sheaves with positive rank being derived equivalent to skyscraper

sheaves see [5, Prop. 10.1] or [35, Thm. 1.6].

8.1.3. Fano variety of lines on cubics. The Fano variety of lines F (Y ) of a smooth

cubic fourfold Y ⊂ P5 admits for every smooth hyperplane section Y ∩ H a La-

grangian surface ι : F (Y ∩H) ⊂ F (Y ). Powers Li ∈ Pic(F (Y ∩H)) of the Plücker

polarization yield atomic sheaves ι∗Li ∈ Db(F (Y )).

Indeed, the cohomology H∗(F (Y ),Q) agrees with the Verbitsky component in this

case and applying Remark 3.4 and the Grothendieck�Riemann�Roch Theorem, the

claim follows from a straightforward Chern character computation. See also [35, Sec.

13] for images of these atomic sheaves under derived equivalences for special cubic

fourfolds. Note that in this case we again have an isomorphism

Ext∗(ι∗Li, ι∗Li) ∼=
∗∧

Ext1(ι∗Li, ι∗Li) ∼= H∗(F (Y ∩H),C).

8.1.4. Lagrangian plane in double EPW sextics. In the case of K3 surfaces, the

structure of the Ext algebra of simple atomic objects only depends on one numerical

value, namely the self-intersection of the Mukai vector or, equivalently, the dimension

of the �rst extension group. The examples of atomic objects discussed above could

convey the impression that Ext algebras of atomic objects on higher-dimensional
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hyper-Kähler manifolds may be as well easy to understand. We therefore want to

give one more example where the Ext groups have interesting dimensions.

Let X be a double EPW sextic, see [14] for an overview of these varieties. The

natural antisymplectic involution has a connected Lagrangian surface ι : Z ⊂ X as

�xed locus, which is of general type [14, Cor. 2.9]. The relevant Hodge numbers are

h1,0 = 0, h2,0 = 45, h1,1 = 100,

see [14, Sec. 3.3]. In the proof of [14, Prop. 4.22] the following equalities

ι∗[Z] = 5h2 − c2(X)

3
, c3(ι∗ωZ) = 9h · ι∗[Z], c4(ι∗ωZ) = ι∗[Z]2 − 63h2 · ι∗[Z]

in H∗(X,Q) are obtained, where h is the canonical polarization on X obtained from

the description as a double cover. Using c1(Z) = −3ι∗h ∈ H2(Z,Q), it is straightfor-

ward to verify that the cohomological obstruction map has one-dimensional image

using Remark 3.4.

In particular, we have that ι : Z ⊂ X is an atomic Lagrangian and ι∗OZ is an

atomic sheaf. Via adjunction, we therefore have

Ext0(ι∗OZ , ι∗OZ) ∼= C, Ext1(ι∗OZ , ι∗OZ) = 0, Ext2(ι∗OZ , ι∗OZ) ∼= C190.

From [14, Sec. 3.3] we know that c1(Z) = −3ι∗h + τ ∈ H2(Z,Z) for a two-torsion

class τ . Especially, in this example we have that c1(Z) is not contained in the image

of the restriction map

ι∗ : H2(X,Z)→ H2(Z,Z)

with integer coe�cients, whereas this holds true with rational coe�cients by Theo-

rem 1.8.

8.2. Tangent bundle. The following is the most prominent example of a bundle

which is modular, slope stable and hyperholomorphic, but not atomic as soon as the

dimension of the manifold is greater than two.

Proposition 8.3. Let TX be the tangent bundle of a hyper-Kähler manifold X of

dimension 2n > 2 which is of K3[n],Kumn,OG6 or OG10-type, or an arbitrary

hyper-Kähler manifold of dimension four. Then TX is not atomic.

Proof. Let us assume that TX is atomic. The projection v(TX)SH ∈ SH(X,Q) is

non-zero and using Remark 3.4 we must have

v(TX)SH =

(
2n+

2n− 24

24
c2(X) +

120 + 7n

2880
c2(X)2 − 120 + n

720
c4(X) + . . .

)
SH

=
2n

n!
T (α+ kβ)n

(8.1)

for some k ∈ Q. From [5, Prop. 3.4] we know that there exists rX ∈ Q such that

(8.2) v(OX)SH =
1

n!
T (α+ rXβ)n.
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From equations (8.1) and (8.2) we infer that

(8.3) k =
2n− 24

2n
rX

by comparing coe�cients in degree four.

If now n = 2, we compare the coe�cients in front of T (β2) in (8.1) and (8.2) to

obtain the following equality in degree eight

100td
1/2
4 =

(
35

288
c2(X)2 − 5

72
c4(X)

)
=

(
67

1440
c2(X)2 − 61

360
c4(X)

)
= v(TX)4 ∈ H8(X,Q).

Together with the relation
∫
X td = 3 involving c2(X)2 and c4(X) we obtain the

unique solution ∫
X

c2(X)2 = 576,

∫
X

c4(X) = −432

which violates the known bounds of Guan [20].

In the known examples, we proceed analogously making use of the fact that we

know the generalized Fujiki constants C(c2(X)2) and C(c4(X)) through knowing the

Riemann�Roch polynomial [6, Cor. 2.7]. Recall that the knowledge of the generalized

Fujiki constant C(γ) of a class γ ∈ H4s(X,Q) is precisely knowing the projection

γSH ∈ SH4s(X,Q) for a class γ which stays of type (2s, 2s) on all deformations.

From (8.2) we infer

C(td
1/2
4 )q4 =

1

n!

(
n

2

)
r2
xT (αn−2β2),

where q4 ∈ SH8(X,Q) is de�ned by the property∫
X
λ2n−4q4 = q(λ)n−2

for all λ ∈ H2(X,Q). Analogously to the four-dimensional case, using (8.1) and

(8.3) we get

C(v(TX)4)q4 =
2n

n!

(
n

2

)(
2n− 24

2n

)2

r2
XT (αn−2β2).

Combining these two equations, we obtain an equation involving C(c2(X)2) and

C(c4(X)) which is violated in all the known examples, see [6, Sec. 4]. �

Remark 8.4. In particular, in all of the above cases the tangent bundle is not 1-

obstructed. We know that the tangent bundle does deform along to all geometric

deformations coming from H1(X, TX). Together with Lemma 4.2 we infer that the

two noncommutative �rst order deformation directions, namely the gerby and the

Poisson deformations, yield di�erent obstructions in Ext2(TX , TX).
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8.3. Hard Lefschetz. We discuss here a possible sl2-structure on the Ext algebra

Ext∗(E , E) for simple atomic sheaves and complexes.

Recall the following result due to Verbitsky [45, Thm. 4.2A].

Theorem 8.5. Let E be a slope stable (projectively) hyperholomorphic bundle. The

image of σ̄ ∈ H2(X,OX) under the obstruction map yields an element f ∈ Ext2(E , E)

which has the Hard Lefschetz property for the algebra Ext∗(E , E).

The Hard Lefschetz property means that

f i ◦_ : Extn−i(E , E)→ Extn+i(E , E)

is an isomorphism for all i > 0. Note that Ext∗(E , E) ∼= H∗(End(E , E)) and

End(E , E) ∼= OX ⊕ End(E , E)0

via the trace morphism, where End(E , E)0 is the bundle of traceless endomorphisms.

The image of the subalgebra generated by the Hard Lefschetz element f corresponds

under this isomorphism to H∗(OX).

Using Proposition 1.6 we obtain.

Corollary 8.6. For a slope stable atomic bundle E there exists an element f ∈
Im(χE) of degree two which has the Hard Lefschetz property.

Assuming Conjecture A we have that the image of the obstruction map in degree

two is spanned by a Hard Lefschetz element.

Similarly, for atomic Lagrangians ι : L ⊂ X we can consider the multiplicative

isomorphism

(8.4) Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C)

alluded to in Section 7.3. By Theorem 1.8 and the discussion in Section 7.2, there

exists an element µ ∈ H1(X, TX) whose image under the obstruction map χι∗OL

followed by the isomorphism (8.4) and projected to H1(L,Ω1
L) yields an ample class.

From this we deduce.

Proposition 8.7. For an atomic Lagrangian ι : L ⊂ X the image of H1(X, TX)

under the obstruction map is spanned by an element f ∈ Ext2(ι∗OL, ι∗OL) having

the Hard Lefschetz property.

Again one can use auto-equivalences to obtain the same conclusion for a wider

range of atomic objects.

Let E be a simple atomic object. The Hard Lefschetz property for an element

χE(µ) = µE = f ∈ Ext2(E , E) in the image of χE in degree two in particular implies

that 0 6= µnE = fn ∈ Ext2n(E , E). Using once more the de�ning property of the

Hochschild Chern character we get

TrX×X(µn ◦ chHH(E)) = TrX(µnE) 6= 0.

Thus, there must exist an element γ ∈ HT2(X) such that γnyv(E) 6= 0. This implies

that the projection v(E)SH of v(E) to the Verbitsky component SH(X,Q) is non-zero,
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as the Verbitsky component is the irreducible representation exhausting H0,2n(X)

which contains γnyv(E). In all examples of simple atomic objects E we are aware

of, the condition v(E)SH 6= 0 is satis�ed. For example, if E is a sheaf or derived

equivalent to an object with non-zero rank, we know this holds true by Lemma 3.7.

Assuming Conjecture A, we expect that the generator of the image of χE in degree

two for a simple atomic object always has the Hard Lefschetz property when v(E)

projects non-trivially to the Verbitsky component.

Appendix A. Spherical objects on hyper-Kähler manifolds

In Section 4 we studied the interplay of the obstruction map and the cohomological

obstruction map. In the appendix, we want to further use the relationship between

topological properties of the Mukai vector v(E) of an object E ∈ Db(X) and its

extension groups Ext∗(E , E). Throughout this section X is a �xed projective hyper-

Kähler manifold of dimension 2n.
Let us de�ne the subalgebras

Ri ⊂ HH∗(X)

generated by all elements of degree at most i for 2 ≤ i ≤ 2n. Since the modi�ed HKR

isomorphism is graded as well as multiplicative there are analogous subalgebras

Wi := IK(Ri) ⊂ HT∗(X).

Recall that HΩ∗(X) is a free HT∗(X)-module of rank one with generator σn leading

to the isomorphism

ϕ : HT∗(X) ∼= HΩ∗(X), µ 7→ µyσn.

We denote Ui := ϕ(Wi). One can check that this equals the subalgebra of the de

Rham algebra H∗(X,Ω∗X) generated by elements of degree at most i. To illustrate

the above, for i = 2 we have

ϕ(W2) = U2 = SH(X,C) ⊂ H∗(X,Ω∗X) ∼= H∗(X,C).

Similar comparisons can be made for larger i.

Proposition A.1. Let E ∈ Db(X) be an object and µ ∈ Ri such that µ◦chHH(E) 6= 0.

Then there exists 2 ≤ j ≤ i such that 0 6= Extj(E , E).

Proof. The de�ning property of the Hochschild Chern character together with the

non-degeneracy of the Serre duality trace shows that there exists γ ∈ HH∗(X) such

that

0 6= TrX×X(γ ◦ µ ◦ chHH(E)) = TrX(γE ◦ µE).

In particular, 0 6= µE ∈ Ext∗(E , E).

Since µ ∈ Ri, we can write

µ =
∑
k

γ1
k ◦ · · · ◦ γrk
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and each γlk is contained in HHs(X) for 2 ≤ s ≤ i. Now, µE 6= 0 implies that there

must exist k such that

0 6= (γ1
k)E ◦ · · · ◦ (γrk)E ∈ Ext∗(E , E)

which implies that 0 6= (γlk)E ∈ Exts(E , E). �

We note that HT∗(X) is equipped with a non-degenerate pairing 〈_,_〉 given by

〈v, w〉 := prHT4n(X)(v ∧ w) ∈ HT4n(X) ∼= C,

i.e. one takes the normal product of two elements and projects it to the top degree

component HT4n(X). Note that under the multiplicative isomorphism

HT∗(X) ∼= H∗(X,C)

from (2.1) induced by the isomorphism TX ∼= Ω1
X coming from a symplectic form

(which is di�erent than the isomorphism ϕ), the non-degenerate pairing 〈_,_〉 cor-
responds to

(v, w) 7→
∫
X
vw

up to scaling. From Hard Lefschetz and the Hodge�Riemann bilinear relations we

deduce that for each i we have a orthogonal decomposition

(A.1) Wi ⊕W⊥i = HT∗(X)

with respect to 〈_,_〉 and, therefore, similarly

(A.2) Ui ⊕ U⊥i = HΩ∗(X),

where we de�ne U⊥i := ϕ(W⊥i ).

Theorem A.2. Let E ∈ Db(X) be an object such that v(E) projects non-trivially to

Ui. Then there exists 2 ≤ j ≤ i such that Extj(E , E) 6= 0.

Proof. Since the pairing 〈_,_〉 is non-degenerate when restricted to Wi there exists

by assumption an element µ ∈ Wi such that µyv(E) 6= 0. Using the modi�ed HKR

isomorphism we know there exists γ = (IK)−1(µ) ∈ Ri such that

γ ◦ ch(E) 6= 0.

Proposition A.1 yields now the assertion. �

This result is already su�cient to prove one part of Theorem 1.9.

Corollary A.3. Let X be a hyper-Kähler manifold of dimension greater than two

and E a non-zero sheaf. Then Ext2(E , E) 6= 0 and, in particular, E is not spherical.

Proof. We know from Lemma 3.7 that v(E)SH is non-zero. Theorem A.5 then implies

that Ext2(E , E) 6= 0. �



ATOMIC OBJECTS ON HYPER-KÄHLER MANIFOLDS 43

Remark A.4. We want to remark that there do exist non-zero objects in the

bounded derived category of a hyper-Kähler manifold satisfying Exti(E , E) = 0 for

all 0 < i < 2n. For example, on a four-dimensional hyper-Kähler manifold X the

object E de�ned as the cone of the natural morphism

OX → OX [2]

satis�es ch(E) = 0 and Exti(E , E) = 0 for 0 < i < 4. In this example E is also

simple, but not spherical, since Ext−1(E , E) 6= 0.

An important class of auto-equivalences of a K3 surface S is given by spherical

twists STE along spherical objects E ∈ Db(S). Recall that an object F ∈ Db(Y )

is spherical, if its Ext algebra Ext∗(F ,F) is isomorphic to the complex cohomology

H∗(SdimY ,C) of a sphere of dimension dim(Y ).

It is notoriously hard to construct examples of interesting derived equivalences

of higher-dimensional hyper-Kähler manifolds, see [1] for an account of some of the

known constructions. The following is a partial explanation for this di�culty.

Theorem A.5. Let X be a projective hyper-Kähler manifold of dimension 2n such

that its cohomology is generated by elements of degree less than 2n−1. Then Db(X)

contains no spherical objects.

Proof. If E ∈ Db(X) is a spherical object, then Exti(E , E) = 0 for 0 < i < 2n.

Theorem A.2 implies therefore that v(E) must project trivially to U2n−1.

Our assumptions imply that we have U2n−1 = H∗(X,Ω∗X) and therefore v(E) = 0.

This contradicts the equality

〈v(E), v(E)〉 = χ(E , E) =
∑
i

(−1)iexti(E , E) = 2,

where 〈_,_〉 denotes the generalized Mukai pairing on H∗(X,Ω∗X), see [12]. �

Proof of Theorem 1.9. The �rst part is proven in Corollary A.3. The second part of

the assertion is implied by Theorem A.5 and the fact that for these manifolds the

cohomology is generated by classes of degree less than 2n, see [34, Lem. 3.16] for

the case of K3[n]-type and [17, Thm. 1.2] for the case of OG10-type hyper-Kähler

manifolds. �

Remark A.6. (i) The proof of Theorem A.5 does not exclude the existence of

spherical objects on hyper-Kähler manifolds in total generality. Still, the proof

shows that for a potential spherical object E ∈ Db(X) one has that its Mukai vector

v(E) must be contained in the subspace U⊥2n−1 ⊂ H∗(X,Q), i.e. the orthogonal

complement of the subalgebra generated by elements of degree 2n−1. In particular,

this subspace is a subspace of Hn,n(X). Moreover, the LLV algebra g(X) acts

trivially on the subspace U⊥2n−1. Thus, the induced derived equivalence of a potential

spherical object would act trivially on all non-trivial representations of the LLV

algebra such as the Verbitsky component.
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(ii) Note that one can prove that if E is a spherical object, then its Mukai vec-

tor v(E) must be contained in SH(X,Q)⊥ ⊂ H∗(X,Q) without using Hochschild

(co)homology. Indeed, the induced action of STE on SH(X,Q) would be the re-

�ection along the vector v(E)SH ∈ SH(X,Q). However, there is no isometry in

O(H̃(X,Q)) inducing the re�ection along a one-dimensional subspace via [5, Eq.

(2.2)].

Motivated by the above, we �nish with the following.

Conjecture C. Let X be a projective hyper-Kähler manifold of dimension greater

than two. Then Db(X) contains no spherical objects.
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