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First I want to recall some definitions and notations that were introduced last time:

We denote by C, = C(R", —x? —- - - —22) the Clifford algebra of the n-dimensional negativ
definit real form and by CS = C(C", 2} + - - - + z?2) its complexification.

We have seen that C, is a Zy-graded algebra: C, = C° @ C}

The group Pin(n) C C, is generated (multiplicatively) by the elements of S"~! C R" and
we define Spin(n) = Pin(n) N CY (i.e. it consists of all elements of Pin(n) with an even
number of factors). There is a surjective group homomorphism A : Pin(n) — O(n) with
A1(SO(n)) = Spin(n) and ker(\) = {&1}.

A, = C? for n = 2k,2k + 1 is the space of complex n-spinors. It is a module over C{
because we have the spinor representation

~

kn 1 Co — End(A,) for n even, resp.
fin 0 CC = End(A,) ® End(A,) 25 End(A,)  for n odd
Since Spin(n) C C,, C CS by restriction we get a representation of the group Spin(n):
K = Kp|Spin(n) : SPIn(n) — Aut(A,)
Proposition: The spinor representation is a faithful representation of the group Spin(n).

Proof: For n = 2k this is trivial, for n = 2k + 1 we have Ay, 1 = Ay (as vector spaces)
and the diagram

Spin(2k)  —2  GL(Ag)

! l

Spin(2k + 1) =% GL(Agki1)

(where the vertical arrows denote the inclusion resp. the identity) commutes. Let H :=
ker(kor+1) and h € H N Spin(2k), then it follows from the commutativity that rox(h) = 1,
hence h = 1 (since kg is injective), i.e. the intersection is trivial.

A is surjective and therefore the subgroup A(H) is normal in SO(2k + 1) (general fact).
Moreover one has (by a similar argument as above) N\(H) N SO(2k) = {E}, and we show
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now A\(H) = {F}: For an element A of this group there exists a vector vy satisfying
A(vg) = vg (in odd dimensions there always exists a real eigenvalue, and here it has to be
one), and a B € SO(2k+1), such that BAB~! € SO(2k). Since A\(H) is normal, it follows
that BAB™! € A\(H) N SO(2k), hence BAB™! = F and finally A = E.

We have seen that A\ is a twofold covering, and so the only remaining possibilities are
H = {1} or H = {1,—1}. But the element —1 € Spin(2k + 1) clearly isn’t in the kernel of
the spinor representation. qed

The Clifford multiplication

Since R™ C C,, C C;, we can regard a vector x € R" as an endomorphism of A,, and get the
so called Clifford multiplication of vectors and spinors as a linear map

,U‘:Rn®RAn_>ATL7
defined by p(z ® ¥) = k,(x)(Y) =: x - 1.

This multiplication can be extended to a homomorphism

w: AR @r A, — A,

For an element w = Y  wy, s.€,; A...Ae;, we set:
11 <...<if
E Wiy i, €iy " -+ €4y~ Y.
11 <...<tp

A direct calculation yields the formula (x Aw) -1 = x- (w- ) + (xow) -1, where s denotes
the so called inner multiplication, defined by

M»

raley N Ney,) = ]1:cej Yei, N A€ N Ne,

J:1

Spin(n) acts on R™ via A, and we extend this action to A(R") in the natural way. Then
we have:

Proposition: The Clifford multiplication is equivariant w.r.t. the action of Spin(n), i.e.
for all g € Spin(n),w € A(R") and ¢ € A,, we have

r(g)(w - ¢) = (Mg)w) - (k(g)¢)-

Proof: We proceed by induction over the degree k of w. Let first be k = 1 und w = x € R,
then one has:

k() (@ 0) = K(g)kn(2)Y = K(g)kn(z)k(g " )K(9)0 = Kn(gzg™")r(g)
= rn(M9)z)(K(9)Y) =



(recall: A(g)x = gzy(g) and v(g) = g~ ! for g € Spin(n))
Now we assume that the formula holds for all elements w € A(R"™) of degree < k and
consider w*! := 2 A w*:

r(g)((x Awh) ) = k(g)
) + Alg) (zaw®) - K (g)

-K(9)0) + (A(@)xaA(g)w®) - k(g)¥
(A(g)x) A (Mg)w®)) - w(g)e = (M(g)w*)r(g)

qged

Now consider the case n = 2k: Then the element e; . .. ey lies in the centre of the algebra Cg
(since Z(C3) = RDR[e; ... eq), as we have seen last time) and so commutes in particular
with all elements of Spin(n) C C. Therefore the endomorphism

f=i"k(er... em): Aoy — Ay

is an automorphism of the spinor representation, i.e. f(x(g)v) = k(g)f(v). Moreover f is
an involution, because of the relation (e; ... es)* = (—1)*, and so has eigenvalues +1. We
decompose Ay into the eigenspaces of f:

Agr = A, @A, where AT, = {1 € Ay, 1 () = £}

Definition: The elements of the spaces A3, are called (positive resp. negative) Weyl
spinors.

Proposition:
1. dim¢ A;rk = dim¢ A;k = k-1

2. If z € R? and * € Ay, then the spinor z - ¢* lies in AJ,. Therefore the Clifford
multiplication induces homomorphisms

e R*F @p A3 — A

Proof: From the relation z(ey...ea) = —(e1...eq )z in the algebra C, it follows that
f(z-vY)=—x- f(¥), ie. f and the Clifford multiplication with a vector z anti-commute.
Therefore multiplication with x # 0 maps A;tk bijectively to AJ,. This proves both asser-
tions, since we know dimc Agy, = 2F. ged



Irreducibility of the spinor representations

First we need some preparations:

Proposition: For all n € N there is an algebra isomorphism C,, = CY, ;.

Proof: Choose an o.n.b. ey,...,e,,1 of R™! and let R™ = (ey,...,e,). Define a map
f:R" — CY, | by setting f(e;) = e,11€; and extending linearly. One easily checks that f
extends to an algebra homomorphism f : C,, — CJ,, and that this is an isomorphism. ged

Lemma: If VW are two complex vector spaces with dim V' > dim W, then every homo-
morphism of algebras f : End(V) — End(W) is trivial.

This follows immediately from the following
Theorem: The endomorphisms of a complex vector space form a simple algebra, i.e. there
are no proper ideals.

Proof: Let V' be a n dimensional complex vector space and A := End(V). If Z # {0} is
an ideal in A, there exist ¢ € V and a € 7, so that a¢ = 1) # 0. Since 7 is a two-sided
ideal, for every two vectors ¢, ¢ € V with ¢; # 0 there is an element b € Z that maps ¢,

to gbg.

Now choose a basis {e1,...,e,} of V and a; € Z so that a;e; = e;. Let P; € A be defined
by Pi(ex) = dixex, then a;P; € 7 and a;P; = P;, therefore P, € Z. But the sum of the P; is
land 1 € Z implies Z = A. qed

Proposition: The representations A3, of Spin(2k) are irreducible.

Proof: Lets assume that there exists a Spin(2k)-invariant subspace 0 # W & AJ,. Con-
sider the inclusions

Spin(2k) C (C5,)° C C5, = End (AF, © Az,) -

The products e; - ¢; with ¢ < j are in Spin(2k) und so leave W invariant, on the other hand
they generate the algebra (Cgk)o multiplicatively. Consequently we get a representation

f:(C5)" — End(W).
By the above proposition we have (C5,)° = CS,_, = End(Ag,_1) @ End(Ag,_;) and since
dim W < dim Aj, = 2""! = dim Ag_; the representation f has to be trivial (according to
the lemma above), but that’s a contradiction. qed

With a similar argument one sees:

Proposition: The representation Ay, of Spin(2k + 1) is irreducible.



Proof: Here one has the inclusions
Spm(?k + ].) C ( §k+1)0 C C;k = End (A2k+1) D End (Agk) .

and we assume that 0 # W ; Aogk11 is a Spin(2k)-invariant subspace. Like before we get
a representation

f (Coipn)” — End(W),

which has to be trivial, because (Cg,m)o = C5, = End(Agx) and dim W < dim Agyyq =
dim Asy. Again that’s a contradiction. qed

Unitarity

Proposition: In A, there exists a positive definite hermitean inner product with the
additional property

(-, )+ (Y,x-p) forxzeR™ ¢ 1pe,.

The representation x : Spin(n) — GL(A,) is a unitary representation with respect to this
inner product.

Proof: The group Pin(n) is a compact topological group, and so any finite dimensional
representation is unitary w.r.t. a suitable inner product. If the representation is irreducible,
this product is determined uniquely up to a scalar factor. Let (.,.) be such a product for
the spinor representation of Pin(n). For z € S"™! we have x(x)* = k(z)™! = —k(z), and
by linearity the relation k(z)* = —k(x) holds also for all x € R". The claimed formula
follows. Because of the uniqueness it doesn’t matter that we startet with Pin(n) instead
of Spin(n). ged

Proposition: For n > 3 the representation x : Spin(n) — U(A,) is a representation
in the special unitary group SU(A,) of the space of n-spinors, i.e. det(k(g)) = 1 for all

g € Spin(n).

Proof: That is not a special property of the representation, but follows from properties
of the group Spin(n) itself. Consider the group homomorphism

f:Spin(n) — S*, f(g) = det(x(g)).

Since Spin(n) is simply connected, there exists a lift ' : Spin(n) — R (universal covering of
S1), which is also a group homomorphism, and f(g) = e*™F(9). Since Spin(n) is compact,
the subgroup F'(Spin(n)) C R is contained in a bounded interval and so has to be trivial.
Hence F=0and f =1. qed



