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First I want to recall some definitions and notations that were introduced last time:
We denote by Cn = C(Rn,−x2

1−· · ·−x2
n) the Clifford algebra of the n-dimensional negativ

definit real form and by Cc
n = C(Cn, z2

1 + · · ·+ z2
n) its complexification.

We have seen that Cn is a Z2-graded algebra: Cn = C0
n ⊕ C1

n

The group Pin(n) ⊂ Cn is generated (multiplicatively) by the elements of Sn−1 ⊂ Rn and
we define Spin(n) = Pin(n) ∩ C0

n (i.e. it consists of all elements of Pin(n) with an even
number of factors). There is a surjective group homomorphism λ : Pin(n) → O(n) with
λ−1(SO(n)) = Spin(n) and ker(λ) = {±1}.
∆n := C2k

for n = 2k, 2k + 1 is the space of complex n-spinors. It is a module over Cc
n

because we have the spinor representation

κn : Cc
n

∼−→ End(∆n) for n even, resp.

κn : Cc
n

∼−→ End(∆n)⊕ End(∆n)
pr1−→ End(∆n) for n odd

Since Spin(n) ⊂ Cn ⊂ Cc
n by restriction we get a representation of the group Spin(n):

κ := κn|Spin(n) : Spin(n) → Aut(∆n)

Proposition: The spinor representation is a faithful representation of the group Spin(n).

Proof: For n = 2k this is trivial, for n = 2k + 1 we have ∆2k+1 = ∆2k (as vector spaces)
and the diagram

Spin(2k)
κ2k−−−→ GL(∆2k)y y

Spin(2k + 1)
κ2k+1−−−→ GL(∆2k+1)

(where the vertical arrows denote the inclusion resp. the identity) commutes. Let H :=
ker(κ2k+1) and h ∈ H ∩ Spin(2k), then it follows from the commutativity that κ2k(h) = 1,
hence h = 1 (since κ2k is injective), i.e. the intersection is trivial.
λ is surjective and therefore the subgroup λ(H) is normal in SO(2k + 1) (general fact).
Moreover one has (by a similar argument as above) λ(H) ∩ SO(2k) = {E}, and we show
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now λ(H) = {E}: For an element A of this group there exists a vector v0 satisfying
A(v0) = v0 (in odd dimensions there always exists a real eigenvalue, and here it has to be
one), and a B ∈ SO(2k+1), such that BAB−1 ∈ SO(2k). Since λ(H) is normal, it follows
that BAB−1 ∈ λ(H) ∩ SO(2k), hence BAB−1 = E and finally A = E.
We have seen that λ is a twofold covering, and so the only remaining possibilities are
H = {1} or H = {1,−1}. But the element −1 ∈ Spin(2k + 1) clearly isn’t in the kernel of
the spinor representation. qed

The Clifford multiplication

Since Rn ⊂ Cn ⊂ Cc
n we can regard a vector x ∈ Rn as an endomorphism of ∆n and get the

so called Clifford multiplication of vectors and spinors as a linear map

µ : Rn ⊗R ∆n → ∆n,

defined by µ(x⊗ ψ) = κn(x)(ψ) =: x · ψ.

This multiplication can be extended to a homomorphism

µ : Λ(Rn)⊗R ∆n → ∆n.

For an element w =
∑

i1<...<ik

wi1...ikei1 ∧ . . . ∧ eik we set:

w · ψ =
∑

i1<...<ik

wi1...ikei1 · . . . · eik · ψ.

A direct calculation yields the formula (x∧w) ·ψ = x · (w ·ψ)+ (xyw) ·ψ, where y denotes
the so called inner multiplication, defined by

xy(ei1 ∧ . . . ∧ eik) =
k∑

j=1

(−1)j−1〈x, ej〉ei1 ∧ . . . ∧ êij ∧ . . . ∧ eik

Spin(n) acts on Rn via λ, and we extend this action to Λ(Rn) in the natural way. Then
we have:

Proposition: The Clifford multiplication is equivariant w.r.t. the action of Spin(n), i.e.
for all g ∈ Spin(n), w ∈ Λ(Rn) and ψ ∈ ∆n we have

κ(g)(w · ψ) = (λ(g)w) · (κ(g)ψ).

Proof: We proceed by induction over the degree k of w. Let first be k = 1 und w = x ∈ Rn,
then one has:

κ(g)(x · ψ) = κ(g)κn(x)ψ = κ(g)κn(x)κ(g−1)κ(g)ψ = κn(gxg−1)κ(g)ψ

= κn(λ(g)x)(κ(g)ψ) = (λ(g)x) · (κ(g)ψ)
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(recall: λ(g)x = gxγ(g) and γ(g) = g−1 for g ∈ Spin(n))
Now we assume that the formula holds for all elements w ∈ Λ(Rn) of degree ≤ k and
consider wk+1 := x ∧ wk:

κ(g)((x ∧ wk) · ψ) = κ(g)(x · (wk · ψ)) + κ(g)((xywk) · ψ)

= (λ(g)x) · (κ(g)(wk · ψ)) + λ(g)(xywk) · κ(g)ψ
= (λ(g)x) · ((λ(g)wk) · κ(g)ψ) + (λ(g)xyλ(g)wk) · κ(g)ψ
= ((λ(g)x) ∧ (λ(g)wk)) · κ(g)ψ = (λ(g)wk+1)κ(g)ψ

qed

Now consider the case n = 2k: Then the element e1 . . . e2k lies in the centre of the algebra C0
n

(since Z(C0
2k) = R⊕R[e1 . . . e2k], as we have seen last time) and so commutes in particular

with all elements of Spin(n) ⊂ C0
n. Therefore the endomorphism

f = ikκ(e1 . . . e2k) : ∆2k → ∆2k

is an automorphism of the spinor representation, i.e. f(κ(g)ψ) = κ(g)f(ψ). Moreover f is
an involution, because of the relation (e1 . . . e2k)

2 = (−1)k, and so has eigenvalues ±1. We
decompose ∆2k into the eigenspaces of f :

∆2k = ∆+
2k ⊕∆−

2k where ∆±
2k = {ψ ∈ ∆2k : f(ψ) = ±ψ}

Definition: The elements of the spaces ∆±
2k are called (positive resp. negative) Weyl

spinors.

Proposition:

1. dimC ∆+
2k = dimC ∆−

2k = 2k−1

2. If x ∈ R2k and ψ± ∈ ∆2k, then the spinor x · ψ± lies in ∆∓
2k. Therefore the Clifford

multiplication induces homomorphisms

µ : R2k ⊗R ∆±
2k → ∆∓

2k.

Proof: From the relation x(e1 . . . e2k) = −(e1 . . . e2k)x in the algebra Cn it follows that
f(x · ψ) = −x · f(ψ), i.e. f and the Clifford multiplication with a vector x anti-commute.
Therefore multiplication with x 6= 0 maps ∆±

2k bijectively to ∆∓
2k. This proves both asser-

tions, since we know dimC ∆2k = 2k. qed
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Irreducibility of the spinor representations

First we need some preparations:

Proposition: For all n ∈ N there is an algebra isomorphism Cn
∼= C0

n+1.

Proof: Choose an o.n.b. e1, . . . , en+1 of Rn+1 and let Rn = 〈e1, . . . , en〉. Define a map
f : Rn → C0

n+1 by setting f(ei) = en+1ei and extending linearly. One easily checks that f

extends to an algebra homomorphism f̃ : Cn → C0
n+1 and that this is an isomorphism. qed

Lemma: If V,W are two complex vector spaces with dimV > dimW , then every homo-
morphism of algebras f : End(V ) → End(W ) is trivial.

This follows immediately from the following

Theorem: The endomorphisms of a complex vector space form a simple algebra, i.e. there
are no proper ideals.

Proof: Let V be a n dimensional complex vector space and A := End(V ). If I 6= {0} is
an ideal in A, there exist φ ∈ V and a ∈ I, so that aφ = ψ 6= 0. Since I is a two-sided
ideal, for every two vectors φ1, φ2 ∈ V with φ1 6= 0 there is an element b ∈ I that maps φ1

to φ2.
Now choose a basis {e1, . . . , en} of V and ai ∈ I so that aiei = ei. Let Pi ∈ A be defined
by Pi(ek) = δikek, then aiPi ∈ I and aiPi = Pi, therefore Pi ∈ I. But the sum of the Pi is
1 and 1 ∈ I implies I = A. qed

Proposition: The representations ∆±
2k of Spin(2k) are irreducible.

Proof: Lets assume that there exists a Spin(2k)-invariant subspace 0 6= W $ ∆+
2k. Con-

sider the inclusions

Spin(2k) ⊂ (Cc
2k)

0 ⊂ Cc
2k = End

(
∆+

2k ⊕∆−
2k

)
.

The products ei · ej with i < j are in Spin(2k) und so leave W invariant, on the other hand
they generate the algebra (Cc

2k)
0 multiplicatively. Consequently we get a representation

f : (Cc
2k)

0 → End(W ).

By the above proposition we have (Cc
2k)

0 ∼= Cc
2k−1 = End(∆2k−1) ⊕ End(∆2k−1) and since

dimW < dim ∆+
2k = 2k−1 = dim ∆2k−1 the representation f has to be trivial (according to

the lemma above), but that’s a contradiction. qed

With a similar argument one sees:

Proposition: The representation ∆2k+1 of Spin(2k + 1) is irreducible.
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Proof: Here one has the inclusions

Spin(2k + 1) ⊂
(
Cc

2k+1

)0 ⊂ Cc
2k = End (∆2k+1)⊕ End (∆2k) .

and we assume that 0 6= W $ ∆2k+1 is a Spin(2k)-invariant subspace. Like before we get
a representation

f :
(
Cc

2k+1

)0 → End(W ),

which has to be trivial, because
(
Cc

2k+1

)0 ∼= Cc
2k = End(∆2k) and dimW < dim ∆2k+1 =

dim ∆2k. Again that’s a contradiction. qed

Unitarity

Proposition: In ∆n there exists a positive definite hermitean inner product with the
additional property

(x · ψ, ϕ) + (ψ, x · ϕ) for x ∈ Rn, ϕ, ψ ∈ ∆n.

The representation κ : Spin(n) → GL(∆n) is a unitary representation with respect to this
inner product.

Proof: The group Pin(n) is a compact topological group, and so any finite dimensional
representation is unitary w.r.t. a suitable inner product. If the representation is irreducible,
this product is determined uniquely up to a scalar factor. Let 〈., .〉 be such a product for
the spinor representation of Pin(n). For x ∈ Sn−1 we have κ(x)∗ = κ(x)−1 = −κ(x), and
by linearity the relation κ(x)∗ = −κ(x) holds also for all x ∈ Rn. The claimed formula
follows. Because of the uniqueness it doesn’t matter that we startet with Pin(n) instead
of Spin(n). qed

Proposition: For n ≥ 3 the representation κ : Spin(n) → U(∆n) is a representation
in the special unitary group SU(∆n) of the space of n-spinors, i.e. det(κ(g)) = 1 for all
g ∈ Spin(n).

Proof: That is not a special property of the representation, but follows from properties
of the group Spin(n) itself. Consider the group homomorphism

f : Spin(n) → S1, f(g) = det(κ(g)).

Since Spin(n) is simply connected, there exists a lift F : Spin(n) → R (universal covering of
S1), which is also a group homomorphism, and f(g) = e2πiF (g). Since Spin(n) is compact,
the subgroup F (Spin(n)) ⊂ R is contained in a bounded interval and so has to be trivial.
Hence F ≡ 0 and f ≡ 1. qed
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