Spin Representations

Anna Engels

Seminar on Dirac Operators and Riemannian Geometry WS 2003/2004

First I want to recall some definitions and notations that were introduced last time:
We denote by $\mathcal{C}_{n}=C\left(\mathbb{R}^{n},-x_{1}^{2}-\cdots-x_{n}^{2}\right)$ the Clifford algebra of the n-dimensional negativ definit real form and by $\mathcal{C}_{n}^{c}=C\left(\mathbb{C}^{n}, z_{1}^{2}+\cdots+z_{n}^{2}\right)$ its complexification.
We have seen that \mathcal{C}_{n} is a \mathbb{Z}_{2}-graded algebra: $\mathcal{C}_{n}=\mathcal{C}_{n}^{0} \oplus \mathcal{C}_{n}^{1}$
The group $\operatorname{Pin}(n) \subset \mathcal{C}_{n}$ is generated (multiplicatively) by the elements of $S^{n-1} \subset \mathbb{R}^{n}$ and we define $\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap \mathcal{C}_{n}^{0}$ (i.e. it consists of all elements of $\operatorname{Pin}(n)$ with an even number of factors). There is a surjective group homomorphism $\lambda: \operatorname{Pin}(n) \rightarrow O(n)$ with $\lambda^{-1}(S O(n))=\operatorname{Spin}(n)$ and $\operatorname{ker}(\lambda)=\{ \pm 1\}$.
$\Delta_{n}:=\mathbb{C}^{2^{k}}$ for $n=2 k, 2 k+1$ is the space of complex n-spinors. It is a module over \mathcal{C}_{n}^{c} because we have the spinor representation

$$
\begin{aligned}
& \kappa_{n}: \mathcal{C}_{n}^{c} \xrightarrow{\sim} \operatorname{End}\left(\Delta_{n}\right) \quad \text { for } n \text { even, resp. } \\
& \kappa_{n}: \mathcal{C}_{n}^{c} \xrightarrow{\sim} \operatorname{End}\left(\Delta_{n}\right) \oplus \operatorname{End}\left(\Delta_{n}\right) \xrightarrow{p r_{1}} \operatorname{End}\left(\Delta_{n}\right) \quad \text { for } n \text { odd }
\end{aligned}
$$

Since $\operatorname{Spin}(n) \subset \mathcal{C}_{n} \subset \mathcal{C}_{n}^{c}$ by restriction we get a representation of the group $\operatorname{Spin}(n)$:

$$
\kappa:=\left.\kappa_{n}\right|_{\operatorname{Spin}(n)}: \operatorname{Spin}(n) \rightarrow \operatorname{Aut}\left(\Delta_{n}\right)
$$

Proposition: The spinor representation is a faithful representation of the group $\operatorname{Spin}(n)$.
Proof: For $n=2 k$ this is trivial, for $n=2 k+1$ we have $\Delta_{2 k+1}=\Delta_{2 k}$ (as vector spaces) and the diagram

(where the vertical arrows denote the inclusion resp. the identity) commutes. Let $H:=$ $\operatorname{ker}\left(\kappa_{2 k+1}\right)$ and $h \in H \cap \operatorname{Spin}(2 k)$, then it follows from the commutativity that $\kappa_{2 k}(h)=1$, hence $h=1$ (since $\kappa_{2 k}$ is injective), i.e. the intersection is trivial.
λ is surjective and therefore the subgroup $\lambda(H)$ is normal in $S O(2 k+1)$ (general fact). Moreover one has (by a similar argument as above) $\lambda(H) \cap S O(2 k)=\{E\}$, and we show
now $\lambda(H)=\{E\}$: For an element A of this group there exists a vector v_{0} satisfying $A\left(v_{0}\right)=v_{0}$ (in odd dimensions there always exists a real eigenvalue, and here it has to be one), and a $B \in S O(2 k+1)$, such that $B A B^{-1} \in S O(2 k)$. Since $\lambda(H)$ is normal, it follows that $B A B^{-1} \in \lambda(H) \cap S O(2 k)$, hence $B A B^{-1}=E$ and finally $A=E$.
We have seen that λ is a twofold covering, and so the only remaining possibilities are $H=\{1\}$ or $H=\{1,-1\}$. But the element $-1 \in \operatorname{Spin}(2 k+1)$ clearly isn't in the kernel of the spinor representation.
qed

The Clifford multiplication

Since $\mathbb{R}^{n} \subset \mathcal{C}_{n} \subset \mathcal{C}_{n}^{c}$ we can regard a vector $x \in \mathbb{R}^{n}$ as an endomorphism of Δ_{n} and get the so called Clifford multiplication of vectors and spinors as a linear map

$$
\mu: \mathbb{R}^{n} \otimes_{\mathbb{R}} \Delta_{n} \rightarrow \Delta_{n}
$$

defined by $\mu(x \otimes \psi)=\kappa_{n}(x)(\psi)=: x \cdot \psi$.
This multiplication can be extended to a homomorphism

$$
\mu: \Lambda\left(\mathbb{R}^{n}\right) \otimes_{\mathbb{R}} \Delta_{n} \rightarrow \Delta_{n}
$$

For an element $w=\sum_{i_{1}<\ldots<i_{k}} w_{i_{1} \ldots i_{k}} e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}$ we set:

$$
w \cdot \psi=\sum_{i_{1}<\ldots<i_{k}} w_{i_{1} \ldots i_{k}} e_{i_{1}} \cdot \ldots \cdot e_{i_{k}} \cdot \psi
$$

A direct calculation yields the formula $(x \wedge w) \cdot \psi=x \cdot(w \cdot \psi)+(x\lrcorner w) \cdot \psi$, where \lrcorner denotes the so called inner multiplication, defined by

$$
x\lrcorner\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}\right)=\sum_{j=1}^{k}(-1)^{j-1}\left\langle x, e_{j}\right\rangle e_{i_{1}} \wedge \ldots \wedge \hat{e_{i_{j}}} \wedge \ldots \wedge e_{i_{k}}
$$

$\operatorname{Spin}(n)$ acts on \mathbb{R}^{n} via λ, and we extend this action to $\Lambda\left(\mathbb{R}^{n}\right)$ in the natural way. Then we have:

Proposition: The Clifford multiplication is equivariant w.r.t. the action of $\operatorname{Spin}(n)$, i.e. for all $g \in \operatorname{Spin}(n), w \in \Lambda\left(\mathbb{R}^{n}\right)$ and $\psi \in \Delta_{n}$ we have

$$
\kappa(g)(w \cdot \psi)=(\lambda(g) w) \cdot(\kappa(g) \psi)
$$

Proof: We proceed by induction over the degree k of w. Let first be $k=1$ und $w=x \in \mathbb{R}^{n}$, then one has:

$$
\begin{aligned}
\kappa(g)(x \cdot \psi) & =\kappa(g) \kappa_{n}(x) \psi=\kappa(g) \kappa_{n}(x) \kappa\left(g^{-1}\right) \kappa(g) \psi=\kappa_{n}\left(g x g^{-1}\right) \kappa(g) \psi \\
& =\kappa_{n}(\lambda(g) x)(\kappa(g) \psi)=(\lambda(g) x) \cdot(\kappa(g) \psi)
\end{aligned}
$$

(recall: $\lambda(g) x=g x \gamma(g)$ and $\gamma(g)=g^{-1}$ for $g \in \operatorname{Spin}(n)$)
Now we assume that the formula holds for all elements $w \in \Lambda\left(\mathbb{R}^{n}\right)$ of degree $\leq k$ and consider $w^{k+1}:=x \wedge w^{k}$:

$$
\begin{aligned}
\kappa(g)\left(\left(x \wedge w^{k}\right) \cdot \psi\right) & \left.=\kappa(g)\left(x \cdot\left(w^{k} \cdot \psi\right)\right)+\kappa(g)\left((x\lrcorner w^{k}\right) \cdot \psi\right) \\
& \left.=(\lambda(g) x) \cdot\left(\kappa(g)\left(w^{k} \cdot \psi\right)\right)+\lambda(g)(x\lrcorner w^{k}\right) \cdot \kappa(g) \psi \\
& \left.=(\lambda(g) x) \cdot\left(\left(\lambda(g) w^{k}\right) \cdot \kappa(g) \psi\right)+(\lambda(g) x\lrcorner \lambda(g) w^{k}\right) \cdot \kappa(g) \psi \\
& =\left((\lambda(g) x) \wedge\left(\lambda(g) w^{k}\right)\right) \cdot \kappa(g) \psi=\left(\lambda(g) w^{k+1}\right) \kappa(g) \psi
\end{aligned}
$$

Now consider the case $n=2 k$: Then the element $e_{1} \ldots e_{2 k}$ lies in the centre of the algebra \mathcal{C}_{n}^{0} (since $Z\left(\mathcal{C}_{2 k}^{0}\right)=\mathbb{R} \oplus \mathbb{R}\left[e_{1} \ldots e_{2 k}\right]$, as we have seen last time) and so commutes in particular with all elements of $\operatorname{Spin}(n) \subset \mathcal{C}_{n}^{0}$. Therefore the endomorphism

$$
f=i^{k} \kappa\left(e_{1} \ldots e_{2 k}\right): \Delta_{2 k} \rightarrow \Delta_{2 k}
$$

is an automorphism of the spinor representation, i.e. $f(\kappa(g) \psi)=\kappa(g) f(\psi)$. Moreover f is an involution, because of the relation $\left(e_{1} \ldots e_{2 k}\right)^{2}=(-1)^{k}$, and so has eigenvalues ± 1. We decompose $\Delta_{2 k}$ into the eigenspaces of f :

$$
\Delta_{2 k}=\Delta_{2 k}^{+} \oplus \Delta_{2 k}^{-} \quad \text { where } \Delta_{2 k}^{ \pm}=\left\{\psi \in \Delta_{2 k}: f(\psi)= \pm \psi\right\}
$$

Definition: The elements of the spaces $\Delta_{2 k}^{ \pm}$are called (positive resp. negative) Weyl spinors.

Proposition:

1. $\operatorname{dim}_{\mathbb{C}} \Delta_{2 k}^{+}=\operatorname{dim}_{\mathbb{C}} \Delta_{2 k}^{-}=2^{k-1}$
2. If $x \in \mathbb{R}^{2 k}$ and $\psi^{ \pm} \in \Delta_{2 k}$, then the spinor $x \cdot \psi^{ \pm}$lies in $\Delta_{2 k}^{\mp}$. Therefore the Clifford multiplication induces homomorphisms

$$
\mu: \mathbb{R}^{2 k} \otimes_{\mathbb{R}} \Delta_{2 k}^{ \pm} \rightarrow \Delta_{2 k}^{\mp}
$$

Proof: From the relation $x\left(e_{1} \ldots e_{2 k}\right)=-\left(e_{1} \ldots e_{2 k}\right) x$ in the algebra \mathcal{C}_{n} it follows that $f(x \cdot \psi)=-x \cdot f(\psi)$, i.e. f and the Clifford multiplication with a vector x anti-commute. Therefore multiplication with $x \neq 0$ maps $\Delta_{2 k}^{ \pm}$bijectively to $\Delta_{2 k}^{\mp}$. This proves both assertions, since we know $\operatorname{dim}_{\mathbb{C}} \Delta_{2 k}=2^{k}$.

Irreducibility of the spinor representations

First we need some preparations:
Proposition: For all $n \in \mathbb{N}$ there is an algebra isomorphism $\mathcal{C}_{n} \cong \mathcal{C}_{n+1}^{0}$.
Proof: Choose an o.n.b. e_{1}, \ldots, e_{n+1} of \mathbb{R}^{n+1} and let $\mathbb{R}^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$. Define a map $f: \mathbb{R}^{n} \rightarrow \mathcal{C}_{n+1}^{0}$ by setting $f\left(e_{i}\right)=e_{n+1} e_{i}$ and extending linearly. One easily checks that f extends to an algebra homomorphism $\tilde{f}: \mathcal{C}_{n} \rightarrow \mathcal{C}_{n+1}^{0}$ and that this is an isomorphism. qed

Lemma: If V, W are two complex vector spaces with $\operatorname{dim} V>\operatorname{dim} W$, then every homomorphism of algebras $f: \operatorname{End}(V) \rightarrow \operatorname{End}(W)$ is trivial.

This follows immediately from the following

Theorem: The endomorphisms of a complex vector space form a simple algebra, i.e. there are no proper ideals.

Proof: Let V be a n dimensional complex vector space and $\mathcal{A}:=\operatorname{End}(V)$. If $\mathcal{I} \neq\{0\}$ is an ideal in \mathcal{A}, there exist $\phi \in V$ and $a \in \mathcal{I}$, so that $a \phi=\psi \neq 0$. Since \mathcal{I} is a two-sided ideal, for every two vectors $\phi_{1}, \phi_{2} \in V$ with $\phi_{1} \neq 0$ there is an element $b \in \mathcal{I}$ that maps ϕ_{1} to ϕ_{2}.
Now choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V and $a_{i} \in \mathcal{I}$ so that $a_{i} e_{i}=e_{i}$. Let $P_{i} \in \mathcal{A}$ be defined by $P_{i}\left(e_{k}\right)=\delta_{i k} e_{k}$, then $a_{i} P_{i} \in \mathcal{I}$ and $a_{i} P_{i}=P_{i}$, therefore $P_{i} \in \mathcal{I}$. But the sum of the P_{i} is 1 and $1 \in \mathcal{I}$ implies $\mathcal{I}=\mathcal{A}$.
qed
Proposition: The representations $\Delta_{2 k}^{ \pm}$of $\operatorname{Spin}(2 k)$ are irreducible.
Proof: Lets assume that there exists a $\operatorname{Spin}(2 k)$-invariant subspace $0 \neq W \varsubsetneqq \Delta_{2 k}^{+}$. Consider the inclusions

$$
\operatorname{Spin}(2 k) \subset\left(\mathcal{C}_{2 k}^{c}\right)^{0} \subset \mathcal{C}_{2 k}^{c}=\operatorname{End}\left(\Delta_{2 k}^{+} \oplus \Delta_{2 k}^{-}\right)
$$

The products $e_{i} \cdot e_{j}$ with $i<j$ are in $\operatorname{Spin}(2 k)$ und so leave W invariant, on the other hand they generate the algebra $\left(\mathcal{C}_{2 k}^{c}\right)^{0}$ multiplicatively. Consequently we get a representation

$$
f:\left(\mathcal{C}_{2 k}^{c}\right)^{0} \rightarrow \operatorname{End}(W) .
$$

By the above proposition we have $\left(\mathcal{C}_{2 k}^{c}\right)^{0} \cong \mathcal{C}_{2 k-1}^{c}=\operatorname{End}\left(\Delta_{2 k-1}\right) \oplus \operatorname{End}\left(\Delta_{2 k-1}\right)$ and since $\operatorname{dim} W<\operatorname{dim} \Delta_{2 k}^{+}=2^{k-1}=\operatorname{dim} \Delta_{2 k-1}$ the representation f has to be trivial (according to the lemma above), but that's a contradiction. qed

With a similar argument one sees:
Proposition: The representation $\Delta_{2 k+1}$ of $\operatorname{Spin}(2 k+1)$ is irreducible.

Proof: Here one has the inclusions

$$
\operatorname{Spin}(2 k+1) \subset\left(\mathcal{C}_{2 k+1}^{c}\right)^{0} \subset \mathcal{C}_{2 k}^{c}=\operatorname{End}\left(\Delta_{2 k+1}\right) \oplus \operatorname{End}\left(\Delta_{2 k}\right)
$$

and we assume that $0 \neq W \varsubsetneqq \Delta_{2 k+1}$ is a $\operatorname{Spin}(2 k)$-invariant subspace. Like before we get a representation

$$
f:\left(\mathcal{C}_{2 k+1}^{c}\right)^{0} \rightarrow \operatorname{End}(W),
$$

which has to be trivial, because $\left(\mathcal{C}_{2 k+1}^{c}\right)^{0} \cong \mathcal{C}_{2 k}^{c}=\operatorname{End}\left(\Delta_{2 k}\right)$ and $\operatorname{dim} W<\operatorname{dim} \Delta_{2 k+1}=$ $\operatorname{dim} \Delta_{2 k}$. Again that's a contradiction.
qed

Unitarity

Proposition: In Δ_{n} there exists a positive definite hermitean inner product with the additional property

$$
(x \cdot \psi, \varphi)+(\psi, x \cdot \varphi) \quad \text { for } x \in \mathbb{R}^{n}, \varphi, \psi \in \Delta_{n}
$$

The representation $\kappa: \operatorname{Spin}(n) \rightarrow G L\left(\Delta_{n}\right)$ is a unitary representation with respect to this inner product.

Proof: The group $\operatorname{Pin}(n)$ is a compact topological group, and so any finite dimensional representation is unitary w.r.t. a suitable inner product. If the representation is irreducible, this product is determined uniquely up to a scalar factor. Let $\langle.,$.$\rangle be such a product for$ the spinor representation of $\operatorname{Pin}(n)$. For $x \in S^{n-1}$ we have $\kappa(x)^{*}=\kappa(x)^{-1}=-\kappa(x)$, and by linearity the relation $\kappa(x)^{*}=-\kappa(x)$ holds also for all $x \in \mathbb{R}^{n}$. The claimed formula follows. Because of the uniqueness it doesn't matter that we startet with $\operatorname{Pin}(n)$ instead of $\operatorname{Spin}(n)$.
qed
Proposition: For $n \geq 3$ the representation $\kappa: \operatorname{Spin}(n) \rightarrow U\left(\Delta_{n}\right)$ is a representation in the special unitary group $S U\left(\Delta_{n}\right)$ of the space of n-spinors, i.e. $\operatorname{det}(\kappa(g))=1$ for all $g \in \operatorname{Spin}(n)$.

Proof: That is not a special property of the representation, but follows from properties of the group $\operatorname{Spin}(n)$ itself. Consider the group homomorphism

$$
f: \operatorname{Spin}(n) \rightarrow S^{1}, f(g)=\operatorname{det}(\kappa(g))
$$

Since $\operatorname{Spin}(n)$ is simply connected, there exists a lift $F: \operatorname{Spin}(n) \rightarrow \mathbb{R}$ (universal covering of S^{1}), which is also a group homomorphism, and $f(g)=e^{2 \pi i F(g)}$. Since $\operatorname{Spin}(n)$ is compact, the subgroup $F(\operatorname{Spin}(n)) \subset \mathbb{R}$ is contained in a bounded interval and so has to be trivial. Hence $F \equiv 0$ and $f \equiv 1$.

