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10.1 Introduction and some History

Today we want to talk about about the relations between Dirac operators or more precisely the induced
Laplacian on a compact riemannian manifold and its geometry, i.e. the curvature and the Betti numbers
of the manifold.
The methods I want to talk about were introduced by the jewish mathematician Solomon Bochner
and is sometimes called the Bochner method.
Bochner was born in 1899 in Krakòv in Austria-Hungary (now Poland) and died in 1982 in Houston
(Texas, USA). Solomon Bochner studied at the University of Warsaw. His Ph.D. from the University of
Berlin in 1921 was on orthogonal systems of complex analytic functions. It was supervised by Schmidt.
Bochner worked with Harald Bohr, Hardy and Littlewood in Copenhagen, Oxford and Cambridge
respectively. Much of this work was on the zeta function. Bochner lectured in Munich from 1924
to 1933 and developed major results in harmonic analysis. His work developed into the theory of
distributions. Driven out of Germany in 1933 he accepted a position at Princeton where he remained
until he retired. He worked at this time on summation of Fourier series and was considered as one of
the greatest experts on Fourier analysis. Bochner worked jointly with von Neumann for a while. His
major books include Harmonic Analysis and the Theory of Probability (1955). In the 1960s he worked
on the history and philosophy of mathematics. 1

Using harmonic theory Bochner was thereby able to show that certain Betti numbers of X are vanishing
under certain estimates on the curvature of a compact riemannian manifold. We are using in the first
part the methods of Bochner. In the second part we will consider the formula by André Lichnerowicz
(1915-1998) who follows Bochners way to compute the geometry of manifolds. The main part of the
work of Lichnerowicz is about mathematical physics and riemannian geometry but he pusblished in
different other areas, too.
There are a lot of different works continuing the work of Bochner. For example there are similar
(stronger) results for non compact complete manifold with Ric ≥ 0 by Cheeger and Gromov. Today I

1Source: http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Bochner.html
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want to give an outlook to these methods.

10.2 Notation and Basic Properties

10.2.1 Notations

X compact smooth riemannian manifold
E −→ X any hermitian vector bundle on X with metric connection

∇ its associated covariant derivative
Γ(E) smooth sections of E

Γ0(E) smooth sections of E with compact support
e1, e2, . . . local orthonormal tangent frame field

S any Dirac bundle over X (see p. 112 [Mic89])
D : Γ(S) −→ Γ(S) Dirac operator

D =
∑n

j=1 ej · ∇ej

10.2.2 Curvature

I want to recall some definitions and relations from differential geometry without proof. Let V,W ∈ TX,
we define an associated invariant 2nd derivative

∇2
V,W : Γ(E) −→ Γ(E)

ϕ 7−→ ∇V∇Wϕ−∇∇V Wϕ (10.1)

This operator depends at any point x ∈ X only on the values Vx and Wx and we have:

∇2
V,W −∇2

W,V = RV,W (10.2)

If ϕ ∈ Γ(E), then we see ∇2
.,.ϕ ∈ Γ(T ∗ ⊗ T ∗ ⊗E), that is, at each point it defines a bilinear form on

the tangent space with values in E.

Definition 10.1 (Connection Laplacian). The connection laplacian is defined by

∇∗∇ : Γ(E) −→ Γ(E)
∇∗∇ϕ ≡ − trace

(
∇2

.,.ϕ
)

(10.3)

Definition 10.2 (Parallel Sections). A section σ ∈ Γ(E) is parallel if σ satisfies ∇σ = 0

We know the following properties of ∇∗∇.

Lemma 10.3. The connection laplacian ∇∗∇ : Γ(E) −→ Γ(E) is non-negative and formally self-
adjoint. In particular

(∇∗∇ϕ,ψ) = (∇ϕ,∇ψ) ∀ϕ,ψ ∈ Γ0(E) (10.4)

The principal symbol of ∇∗∇ is σξ(∇∗∇) = ‖ξ‖2.
If the manifold X is compact, then ∇∗∇ϕ = 0 if and only if ∇ϕ ≡ 0, i.e. if and only if ϕ is a globally
parallel section. The operator ∇∗∇ is essentially self-adjoint on a complete riemannian manifold and
hence there exists a unique self-adjoint extension on L2(E). In this case the kernel of ∇∗∇ consists of
all parallel sections of E.

Definition 10.4 (Curvature Tensor/Operator). Let RV,W : Ex −→ Ex be the curvature trans-
formation. The curvature tensor 〈RV1,V2V3, V4〉 is antisymmetric in the pairs (V1, V2) and (V3, V4)
and symmetric under interchange of these pairs(lemma 10.5). R can be considered as a symmetric
endomorphism R : Λ2(X) −→ Λ2(X). We want to call the operator R curvature operator. R is
positive (non-negative) if all eigenvalues of R are < 0 (≤ 0).
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Lemma 10.5 (Bianchi Identities). Let R be the curvature tensor of a riemanian manifold X. Then
R satisfies the following identities:

RU,V W +RV,WU +RW,UV = 0 (10.5)

〈RU,V W,Y 〉 = 〈RW,Y U, V 〉 (10.6)

This is proved in several book on differential geometry.

Definition 10.6 (Ricci Curvature). The Ricci transform of T (X) = Λ1(X) is defined by the formula

Ric(ϕ) ≡ −
n∑

j=1

Rej ,ϕ(ej) (10.7)

where R is the curvature transformation of T (X). This determines a symmetric bilinear form

Ric(ϕ,ψ) = 〈Ric(ϕ), ψ〉 (10.8)

which is called Ricci curvature form.

Definition 10.7 (Scalar Curvature). The scalar curvature κ : X −→ R is defined by

κ ≡ trace(Ric) = −2 trace(R) (10.9)

If we have an orthonormal tangent frame (e1, . . . , en) at a point x ∈ X we have for κ

κ = −
n∑

i,j=1

〈
Rei,ej

(ei), ej

〉
(10.10)

If X has dimension 2, then κ coincides with the classical Gauss curvature.

10.3 The Bochner Formulas/Method

We want to define a canonical section R ∈ Γ(Hom(S, S)) by the following formula

R(ϕ) :=
1
2

n∑
j,k=1

ej · ek ·Rej ,ek
(ϕ) (10.11)

Where · is the Clifford multiplication.

Theorem 10.8 (General Bochner Identity). Let S be any Dirac bundle and D the Dirac operator.
Let ∇∗∇ be the connection laplacian for S. Then

D2 = ∇∗∇+ R (10.12)

Proof. Fix x ∈ X and choose a local orthogonal frame field (e1, . . . , en) such that (∇ej)x = 0 for all
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j. Then using equation 10.2 we have at x that

D2 =
n∑

j,k=1

ej · ∇ej
(ek · ∇ek

) because D =
n∑

ν=1

eν · ∇eν

=
∑
j,k

ej · ek · ∇ej
∇ek

Eq. 10.1
=

∑
j,k

ej · ek · (∇2
ej ,ek

−∇∇ej
ek︸ ︷︷ ︸

=0

)

=
∑
j,k

ej · ek · ∇2
ej ,ek

= −
∑

j

∇2
ej ,ej︸ ︷︷ ︸

=∇∗∇

+
∑
j<k

ej · ek ·
(
∇2

ej ,ek
−∇2

ek,ejk

)
︸ ︷︷ ︸

Eq.10.2
= Rej,ek︸ ︷︷ ︸

Eq.10.11
= R

= ∇∗∇+ R (10.13)

qed

Now we want to apply this theorem to the bundle S = Cl(X). For this we need the following lemma
and lemma 10.5.

Lemma 10.9. There is a canonical bundle mapping

L : Cl(X) −→ Cl(X)

ϕ 7−→ −
n∑

j=1

ejϕej (10.14)

for any orthonormal basis e1, . . . , en of Tx(X). L has the following properties

1. L is globally diagonalizable and yields the bundle decomposition Cl(X) =
⊕n

p=0 Λp(X)

2. L = (−1)p(n− 2p) on Λp(X) for p = 0, . . . , n

3. L considered as a section in hom(Cl(X),Cl(X)) is globally parallel, i.e. [∇, L] = 0

4. For a Dirac operator D and ∆ = D2 we have [∆, L] = 0.

Proof. See [Mic89] (p. 128 formula 5.20-22 and p.130 lemma 5.18 and corollary 5.21) qed

Lemma 10.10 (Weitzenböck). Let ∆ be the Hodge laplacian and ∇∗∇ the connection laplacian of
the tangent bundle T (X). Then

∆ = ∇∗∇+ Ric (10.15)

Proof. Consider Cl(X) ⊃ Λ1(X) = T (X) = S, so we have on the right hand side D2 = ∆ for vectors
ϕ ∈ Λ1(X). We have from the previous lemma that [∆, L] = [∇, L] = 0. Furthermore L preserves
the subbundle Λ1(X). Hence ∆ and ∇∗∇ preserve Λ1(X) = T (X) and because of the decomposition
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D2 = ∇∗∇+ R (corollary 10.10) R preserves T (X), too.

R(ϕ) =
1
2

∑
i,j

eiejRei,ej
(ϕ)

=
1
2

∑
i,j,k

eiej

〈
Rei,ej

(ϕ), ek

〉
ek Split the sum and use symmetry properties of R

=
1
6

∑
i 6=j 6=k 6=i

〈
Rei,ej (ek) +Rej ,ek

(ei) +Rek,ei(ej), ϕ
〉︸ ︷︷ ︸

Eq.10.5
= 0

eiejek

+

part for k=i︷ ︸︸ ︷
1
2

∑
i,j

eiej

〈
Rei,ej

(ϕ), ei

〉
ei +

part for k=j︷ ︸︸ ︷
1
2

∑
i,j

eiej

〈
Rei,ej

(ϕ), ej

〉
ej

=
1
2

∑
i,j

eiej︸︷︷︸
=−1

〈
Rei,ej

(ϕ), ei

〉
ei +

1
2

∑
i,j

eiej︸︷︷︸
=−1

〈
Rei,ej

(ϕ), ej

〉
ej R is antisymmetric in some arguments

= −
∑
i,j

〈
Rei,ej

(ϕ), ej

〉
ei eq. 10.6

= −
∑
i,j

〈
Rϕ,ej

(ei), ej

〉
ei

antisymmetry
= −

∑
i,j

〈
Rej ,ϕ(ej), ei

〉
ei = −

∑
j

Rej ,ϕ(ej)

= Ric(ϕ) (10.16)

qed

10.4 Bochner’s Formulas and the Betti Numbers

As consequence we get the following important theorem of Bochner

Theorem 10.11 (Bochner). Let X be a compact riemannian manifold with ∂X = ∅. If Ric > 0,
then the first Betti number b1(X) := dimH1(X,R) = 0. The conlusion also holds if Ric ≥ 0 and
Ric > 0 at one point.

Proof. Suppose b1(X) = dimH1(X,R) > 0. Then there exists a non-zero harmonic 1-form ϕ ∈ H1 ∼=
H1(X,R) (by Hodge - De Rham theory). By lemma 10.3 and lemma 10.10 we have∫

X

Ric(ϕ,ϕ) = −(∇∗∇ϕ,ϕ)
eq.10.4

= −‖∇ϕ‖2 (10.17)

If Ric ≥ 0 we can conclude that ∇ϕ ≡ 0 (i.e. ϕ is parallel). This means that ‖ϕ‖ is constant. If
Ric > 0 at one point the integral does not vanish. Hence we have a contradiction. qed

Note: We also proved that if Ric ≥ 0 every harmonic 1-form is parallel. We can conclude the following
because under the metric correspondence T ∗X ∼= TX parallel 1-forms become parallel vectorfields.

Theorem 10.12. Let X be a compact riemannian manifold of non negative Ricci curvature. Then
b1(X) equals the dimension of the space of parallel vectorfields. Thus in particular

b1(X) ≤ dim(X) (10.18)

with equality if and only if X is a flat torus.

Proof.

part 1 Let k = b1(X). Then by the argument above, there are k linearly independent parallel vec-
torfields on X. We know that parallel vector fields are linearly independent if and only if they
are linearly independent at each point. It follows from a theorem in linear algebra that then
k ≤ dim(X).
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part 2 Equality holds if and only if X has a globally parallel framing. X has to be a flat torus, we will
see it as follows. Choose parallel vector fields which are pointwise orthonormal. Since

[Ei, Ej ] = ∇EiEj −∇EjEi = 0 ∀i, j (10.19)

these vectorfields generate a free Rk-action. Since k = dim(X), we see that X is an orbit of
this action. So we can write X ∼= Rk/Λ where Λ is a lattice in Rk. X is flat because the metric
agrees with the canonical flat metric on Rk.

qed

With some different assumptions (curvature,...) one can also prove results for higher Betti numbers. I
want to give one example.

Theorem 10.13 (Gallot,Meyer). Let X be a compact riemannian manifold of dimension n without
boundary. Assume that the curvature operator R is positive at every point of the manifold. Then all
Betti numbers bp(X) = 0 for p = 1 . . . n− 1, i.e. X is a homology sphere. The same conclusion holds
if the operator is non-negative everywhere and positive at one point.

For the proof we need the following lemma.

Lemma 10.14. Let ϕ ∈ Λp(Rn) ⊂ Cl(Rn) for p = 1 . . . n− 1. If adξ(ϕ) = 0 for al ξ ∈ Λ2(Rn), then
ϕ = 0.

Proof. (lemma)

Let e1, . . . , en be the standard basis of Rn. We write ϕ =
∑

|I|=p aIeI . By assumption, [eiej , ϕ] = 0
for all i < j. One can easily see that

[eiej , eI ] =

 0 if i ∈ I and j ∈ I
0 if i /∈ I and j /∈ I
2eiejeI otherwise

(10.20)

If i /∈ I and j ∈ I, then eiejeI = ±eI∪{i}−{j}. Therefore [eiej , ϕ] = 0 implies that aI = 0 whenever
either i ∈ I or j ∈ I . Applying this for all i < j shows that ϕ = 0, provided that p 6= 0 or p 6= n. qed

Proof. (Gallot, Meyer)It will be sufficient to prove that the positivity of the curvature operator implies
that

〈R(ϕ), ϕ〉 > 0 ϕ ∈ Λp(X)− {0}, p = 1, . . . , n− 1 (10.21)
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Now we proceed similarly to the proof of theorem 10.11. We have

〈R(ϕ), ϕ〉 =
1
2

n∑
i,j=1

〈
eiejRei,ej

(ϕ), ϕ
〉

=
∑
i<j

〈
eiejRei,ej

(ϕ), ϕ
〉

=
1
2

∑
i<j

〈
[eiej , Rei,ej

(ϕ)], ϕ
〉

Warum?

= −1
2

∑
i<j

〈
Rei,ej

(ϕ), [eiej , ϕ]
〉 adX Y :=[X,Y ]

= −1
2

∑
i<j

〈
Rei,ej

(ϕ), adeiej
(ϕ)

〉
We can write RV,W : Cl(X) −→ Cl(X)

RV,W (ϕ) =
1
2

∑
i<j

〈RV,W (ei), ej〉 adeiej (ϕ) Hence

= −1
4

∑
i<j,k<l

〈
Rei,ej

(ek), el

〉 〈
adeiej(ϕ), adekel(ϕ)

〉
= −1

4

∑
i<j,k<l

〈R(eiej), ekel〉
〈
adeiej

(ϕ), adekel
(ϕ)

〉
{eiej} form an onb of Λ2(X) ⊂ Cl(X). This expression is independent

of the choice of an onb. Let {ξα}α be any onb of Λ2(X) which

diagonalizes R. Set λα = 1

4
λ′α where the λ′α(< 0) are eigenvalues of R.

= −1
4

∑
α,β

〈R(ξα), ξβ〉
〈
adξα

(ϕ), adξβ
(ϕ)

〉
=

∑
α

λα ‖adξα
(ϕ)‖2 since λα > 0 ∀α

≥ 0 For the case of = 0 see lemma 10.14. Hence

> 0 (10.22)

qed

10.5 The Formula of Lichnerowicz

Now we want to consider the case of spinor bundles. So from now on let X be a compact spin manifold
with fixed spin structure on its tangent bundle and S be any spinor bundle on T (X) endowed with its
canonical metric connection.

Theorem 10.15 (A. Lichnerowicz). Let X be a spin manifold and suppose, that S is any bundle
of spinors over X endowed with the canonical riemannian connection. Let D/ denote the Atiyah-Singer
operator (i.e. the associated dirac operator) and ∇∗∇ the connection laplacian on S. Then

D/ 2 = ∇∗∇+
κ

4
(10.23)

Proof. In fact this proof is very similar to the proof of the Weitzenböck formula in theorem 10.10.
We have to compute the curvature term in equation 10.12 for the canonical spinor connection. In this
case for all V,W ∈ Tx(X) curvature transformation RS

V,W : Sx −→ Sx is given (see [Mic89] p. 110
theorem 4.15) by a slightly different formula

1
4

∑
k,l

〈RV,W (ek), el〉 ekel (10.24)
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where (e1, . . . , en) is any orthonormal base of Tx(X). So we get

R =
1
2

∑
i,j

eiejR
S
ei,ej

=
1
8

∑
i,j,k,l

〈RV,W (ek), el〉 eiejekel split sum

=
1
8

∑
l

 ∑
i 6=j 6=k 6=i

〈
Rei,ej (ek) +Rej ,ek

(ei) +Rek,ei(ej), el

〉︸ ︷︷ ︸
eq.10.5
= 0

eiejek

+

i=k︷ ︸︸ ︷∑
i,j

〈
Rei,ej

(ei), el

〉
eiejei +

j=k︷ ︸︸ ︷∑
i,j

〈
Rei,ej

(ei), el

〉
eiejej

 el

=
1
4

∑
i,j,l

〈
Rei,ej

(ei), el

〉
ejel

= −1
4

∑
j,l

Ric(ej , el)ejel =
κ

4
(10.25)

qed

This theorem has some important consequences. I want to talk about some of this.

Definition 10.16 (Harmonic Spinors). A spin manifold has no harmonic spinors if ker D/ = 0 for any
spinor bundle associated to T (X).

Korollar 10.17. Any compact spin manifold with κ > 0 (κ ≥ 0 and κ > 0 for at least one point)
admits no harmonic spinors.

Proof. The proof is similar to the one of theorem 10.11 of Bochner qed

Korollar 10.18. On a compact spin manifold with κ ≡ 0 evry harmonic spinor is globally parallel.
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