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Recall that H ∼= SL2(R)/SO(2). We have introduced classical automorphic
forms as functions

f : SL2(R)/SO(2)→ C

which have a certain transformation behaviour under the action from the left
of a discrete subgroup Γ ⊂ SL2(R). If this behaviour were invariance, then
we could consider these functions as functions on

Γ \ SL2(R)/SO(2)

Since the transformation behaviour is not invariance, automorphic forms are
not quite the same as functions on this quotient. They can be viewed as
”multi-valued functions” or, more precisely, as global sections of line bundles
on this quotient. This we saw in Jörn’s talk. Another thing we saw in
his talk was an important redefinition of the notion of automorphic form.
Instead it being a function on SL2(R)/SO(2) transforming under Γ from
the left, an automorphic form was defined to be a function on Γ \ SL2(R),
transforming under SO(2) from the right. This new notion permits powerful
generalizations, which include for example Maass forms.

Today we will take the latter definition of an automorphic form and will yet
again generalize it to a new notion, which is the one used in the current
theory. For this purpose we need to introduce the ring of adeles of Q.
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1 The p-adic numbers and the ring of adeles

In this section we will give a quick definition of Qp and A, stating only some
of the most important facts and omitting most proofs. These can be read in
almost any book on algebraic number theory, as f.e. [Ne] or [Mi].

Recall that an crucial property of the group Γ is that it is a discrete subgroup
of SL2(R). This comes from the fact that Z is a discrete subset of R. We
want to find an object, which we call A, with the property that Q is a discrete
subset of A. This object will be the ring of adeles of Q.

1.1 The p-adic numbers

The completions of Q.
It is well known that R is the complition of Q with respect to the topology of
Q defined by the absolute value x 7→ |x|. The absolute value satisfies three
important properties

1. |x| > 0 for x 6= 0

2. |xy| = |x||y|

3. |x + y| ≤ |x|+ |y|

A map Q → R with these properties is called an absolute value. The
standard absolute value is not the only one on Q. For any prime p we can
write a rational number x ∈ Q uniquely as pvp(x) a

b
, where a and b are coprime

and not divisible by p, and we can define the map

ordp : Q→ Z, x = pvp(x)a

b
7→ vp(x)

which is called the ”order of p in x”. Then one easily checks that

| |p : Q→ R, x 7→ p−ordp(x)

is an absolute value on Q.

Now we have an absolute value | |p for any prime p. We denote the standard
absolute value by | |∞ (for reasons which we do not want to explain). It is of
course reasonable to consider two absolute values equivalent, if they induce
the same topology on Q. The following theorem tells us that we have just
enlisted all absolute values of Q up to equivalence

Theorem (Ostrowski): If | | is a non-trivial absolute value on Q then | | is
equivalent to either | |∞ or to | |p for a prime p.
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We denote the completion of Q with respect to | |p by Qp and sometimes we
would refer to R as Q∞.

Properties of | |p.
The absolute values | |p have two important features which distinguish them
from | |∞. First, instead of the triangle inequality |x+y| ≤ |x|+|y| they satisfy
the stronger inequality |x + y| ≤ max(|x|, |y|). This property, immediately
obvious from the definition of ordp, gives | |p the name nonarchimedian
valuation, because one immediately sees that for m ∈ Z

|m|p = |1 + 1 + · · ·+ 1|p ≤ |1|p = 1

which has the effect that the Archimedian axiom

∀a, b ∈ Q ∃n ∈ Z |a| ≤ |nb|

is no longer valid.

Second, the image of | |p is a discrete subset of R (it is the discrete set
im(ordp) = Z mapped under the continous map x 7→ p−x). This propery
gives | |p the name discrete valuation. It has a crucial effect on the topol-
ogy of Qp – it is totally disconnected, which means that every point has a
neighbourhood basis of sets which are both open and closed. Consider for
example the point 0 ∈ Qp. A neighbourhood basis is given by the sets

Un = {x ∈ Qp| |x|p ≤ p−n}︸ ︷︷ ︸
closed

= {x ∈ Qp| |x|p < p−n+ 1
2}︸ ︷︷ ︸

open

and the equality of the two terms comes from the fact that | |p takes no
value between p−n and p−n+1. We see that the topology of Qp is completely
different from the topology on R, which has all the connectedness properties
one could wish for. Yet, it has two very important features: It is Hausdorff,
which makes limits of Caychy sequences unique and it is locally compact,
which gives us a unique Haar measure.

An algebraic construction of Qp.
So far we have defined the fields Qp as completions of Q with respect to
the topology induced by the valuations | |p. This of course gives us the well
known construction of a completion of a topological space – it is the set of all
Cauchy series modulo those converging to zero. We want to reformulate this
construction in algebraic terms. This will give us a better understanding of
the fields Qp and will allow us to perform computations very easily.

We define the set

Zp = {x ∈ Qp| |x|p ≤ 1} = {x ∈ Qp| ordp(x) ≥ 0}
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observe that this set is a ring, thanks to the non-archimedian property of | |p.
This ring is called the ring of p-adic integers. Its units are the set

Up = {x ∈ Qp| |x|p = 1} = {x ∈ Qp| ordp(x) = 0}

It is obvious that the set

m = {x ∈ Qp| |x|p < 1} = {x ∈ Qp| ordp(x) > 0}

is an ideal in Zp and since it contains all elements except the units, it is a
unique maximal ideal (i.e. Zp is a local ring). Because our valuation | |p is
discrete, every element x ∈ m has |x|p ≤ p−1, which implies x = px̃ with
|x̃|p ≤ 1 and we see that the ideal m is a principal ideal generated by the
element p ∈ Zp. The ring Zp is an example of a discrete valuation ring.

Now we have the following

Proposition: Choose a set S of representatives for Zp/pZp
∼= Z/pZ (f.e.

0, 1, 2, ...p− 1). Then the series

a−np
−n + · · ·+ a0 + a1p + · · ·ampm + · · ·, ai ∈ S

is a Cauchy series, and every Cauchy series is equivalent to exactly one of
this form.

Proof: Let sN =
∑i=N

i=−n aip
i be the partial sums of the series. First for

M > N
|sM − sN |p ≤ pN+1

which shows that this is indeed a Cauchy series. Next let x ∈ Qp. Then
there exists an N with x = pNy with y ∈ Zp. Now by the choice of S there
is an a0 ∈ S s.t. a0 + pZp = y + pZp. So

y = a0 + py1

with y1 ∈ Zp. Playing the same game with y1 gives us y1 = a1 + py2 or

y = a0 + pa1 + p2y2

Iterating this process gives us for y the series expansion

y =
∞∑
i=0

aip
i

and thus

x =
∞∑

i=−N

ai+Npi

For the uniqueness suppose there were two series of this type converging to
x. Then their difference is again of this type and converges to zero. But
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the p-adic norm of such a series is equal to pN where N is the first (possibly
negative) index with aN 6= 0. This means that the only sequence with norm
zero is the trivial sequence.

�

This proposition tells us, that the elements of Qp are in 1−1 correspondence
with such series. Expressing elements of Qp in terms of this series gives a very
easy way of computing. Addition and multiplication of elements translates
into addition and multiplication of series. The order of an element is N ,
where N is the smallest integer with aN 6= 0. This means that the elements
of Zp are exactly the limits of those series which have no negative powers of
p, and the elements of m = pZp are those elements in Zp for which a0 = 0.

Another very important property, which is obvious from the series, is that
every x ∈ Qp has the form

x = p−ord(x)x̃, x̃ ∈ Up

For this reason one calls the set {pn|n ∈ Z} the ”spine” of Qp. It is now
obvious that Qp is the quotient field of Zp (observe that Zp is a domain,
because it admits a valuation) and we can write it as

Qp =
∞⋃

n=0

p−nZp =
n=+∞⋃
n=−∞

pnUp

Now we want to use the 1 − 1 correspondence between elements of Zp and
Cauchy series

∑∞
i=0 aip

i to give an algebraic construction of the ring Zp. Let
x ∈ Zp and consider the unique Cauchy series

∑
aip

i whose limit x is. If
we write the partial sums sn =

∑n
i=0 aip

i then x = limn→∞ sn. Note that
all sn are integers, but their limit x of course need not be. The element x
is uniquely identified by the sequence (si)i∈N whose limit it is. Any of the
partial sums sn can be mapped to Z/pmZ for an arbitrary m. If m > n,
then the image of sn in Z/pmZ is different from the image of the n-th partial
sum of any other Cauchy sequence of this type. Thus it uniquely identifies
sn. This is in particular true for the image of sn in Z/pn+1Z. But this image
carries even more information. For n′ < n there is a natural projection
Z/pn′Z← Z/pnZ and if we map sn to Z/pn+1Z and then project it down to
Z/pn′+1Z we get the same element as if we map sn′ directly to Z/pn′+1Z. In
other words, the image of sn in Z/pm+1Z coincides with the image of sm in
Z/pm+1Z for all m < n. One could visualize the process of projecting down
one step as removing the highest power of p from the series

∑n
i=0 aip

i.

We just saw that the beginning s0, ..., sn of the sequence {si}i∈N corresponds
uniquely to a sequence s̄0, ..., s̄n−1 with the properties

1. s̄i ∈ Z/piZ
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2. the image of s̄i in Z/pjZ is sj for j < i

It is also very easy to see that the converse is also true, namely any such se-
quence comes from the first n partial sums s1, ...sn of a Cauchy series

∑
aip

i.
The argument is the same as in the proof of the above proposition. Now it
is clear that an infinite sequence {s̄i} with the above properties corresponds
uniquely to the sequence {si} of partial sums of a Cauchy series. Thus the
ring Zp can be identified with the ring of sequences {s̄i}. This ring is called
the projective limit of the system

Z/pZ← Z/p2Z← · · ·Z/pnZ← · · ·

where the arrows are the natural projections.

Haar measures.
From the algebraic construction we immediately see that the space Zp is
compact (Tychonoff’s theorem). The same is of course true for pnZp. Thus
the groups Qp and Q×

p are locally compact, because every element x in each
of these groups has a basis of compact neighbourhood given by x + pnZp.
By a general theorem we know that on each of these groups there exists an
invariant Haar measure, which we will call dx and d∗x respectivelly. It is
immediate that dx = |x|d∗x up to a constant. We normalize dx such that
the volume of the compact subgroup Zp is 1.

An example from geometry.
Consider a compact Riemann surface X with its fields of meromorphic func-
tions K. For each x ∈ X we have an additive discrete valuation ordx : K× →
Z which gives the order of the pole or zero an element of K has at the point x.
This valuation is obviously trivial on the field of constant functions C ⊂ K
and it can be shown that any such valuation coincides (up to a constant)
with ordx for some x ∈ X. To every valuation ordx we have the discrete
valuation ring Ox ⊂ K consisting of those functions which are holomorphic
at x. The field K is the quotient field of Ox. Note that the rings Ox are not
complete, because they only contain power series with positive convergence
radius.

This example explains some of the terminology used when dealing with num-
ber fields and their adele rings. The valuations of K correspond 1− 1 to the
points x ∈ X. This has given them the name ”places”. The field K alge-
braically encodes the analytic information of the whole object X and is called
a ”global field”. The completions Ôx and their quotient fields are called ”lo-
cal rings” and ”local fields”, because they contain only information at the
point x. This analogy can be made very precise using algebraic geometry.
One can view the ring Z as a curve with points given by the prime numbers.
The field Q is then the field of ”meromorphic” functions on this curve and the
valuations ordp are an exact copy of the valuations ordx above. A function
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q ∈ Q has a zero at a point p on the curve Z if p divides the numerator of q
and it has a pole if p divides the denominator. The ”holomorphic” functions
are then obviously the elements of the ring Z itself.

1.2 The ring of adeles

Now we want to put all completions of Q in one object. This object will
carry the local data of the global field Q. One could take the product over
all completions, but this object would be too large. Instead, one considers
what is called the restricted product over all completions:

AS :=
∏
p∈S

Qp ×
∏
p/∈S

Zp

A :=
∏
p≤∞

′
Qp :=

⋃
S

AS

where S goes over all finite sets of places with ∞ ∈ S. Elements in A are
vectors (x∞, x2, x3, ...) with xp ∈ Qp where all but finitely many xp lie in Zp

(this is analogous to allowing finitely many poles). One says that A is the
product over all Qp restricted with respect to Zp. The set A is a ring under
componentwise addition and multiplication.

We topologize A with the restricted product topology: A topology basis on
AS is given by ∏

p∈S

Wp ×
∏
p/∈S

Vp

where Wp is open in Qp, Vp is open in Zp and Vp = Zp for almost all p. A set
U ⊂ A is open if U ∩ AS is open for every S. In terms of convergence this
means that the sequence a(n) converges towards a iff

1. a
(n)
p converges towards ap for all p (componentwise convergence)

2. There exisits N > 0 s.t. for n > N and all p <∞ a
(n)
p − ap ∈ Zp

It is quite obvious what the units in A are. They are the product over all
Q×

p restricted with respect to Z×p .

I :=
∏
p≤∞

′
Q×

p :=
⋃
S

∏
p∈S

Q×
p ×

∏
p/∈S

Z×p


Again we take the restricted product topology for I (and not the subspace
topology induced from A).
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The group I = A× is called the idele group of Q. The name idele comes from
the abbreviation id.el. standing for ”ideal element”. The motivation for this
name comes from algebraic number theory and is similar to the motivation
for the name of an ”ideal” of a ring. The name adele comes from ”additive
idele”.

Observe that we have the diagonal embeddings

Q ↪→ A, q 7→ (q, q, q, q, ...)

Q× ↪→ I, q 7→ (q, q, q, q, ...)

Both of these are well defined, because for any x ∈ Q, x 6= 0 there are only
finitely many primes p which divide either the numerator or the denominator
of x. For all other primes q x ∈ Z×q . Now we have the following important
theorems

Theorem The image of Q in A is discrete and

A/Q ∼= [0, 1]×
∏
p<∞

Zp

In particular the quotient A/Q is compact.

Theorem The image of Q× in I is discrete and

I/Q× ∼= (0,∞)×
∏
p<∞

Z×p = R×
>0 ×

∏
p<∞

Z×p

We want to finish this section with the remark that the adele ring A and the
idele group I can be definied not only for Q, but for an arbitrary number field.
Then the finite places come from prime ideals instead of prime numbers, and
there might be more than one infinite place (those come from embeddings
into R or C).

Haar measures.
The spaces AS are locally compact, because

∏
p∈S Qp is a finite product of

locally compact spaces and
∏

p/∈S Zp is compact by Tychonoff’s theorem.
Thus the space A is a locally compact space. The same holds for I. Again we
get measures dx and d∗x and we normalize dx so that the volume of

∏
p<∞ Zp

is 1.

1.3 Characters

In this section we will take a look at the characters of Qp and A. They will be
important for us when we look at Fourier expansions of automorphic forms.
The proofs of some statements will be presented here.
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We begin by recalling the following

Definition: Let G be a group. The group

Ĝ = Hom(G, S1)

is called character group or dual group of G. Note that if G is a topo-
logical group then one takes the Hom-functor in the category of topological
groups. A group G is called self-dual if there is an isomorphism G ∼= Ĝ.

Let us first examine the characters of Qp.

Fact: The group R is self-dual. All its characters are given by x 7→ e2πixy

with y ∈ R.

The proof of this is very simple – any continuous function f : R → S1 can
be written as e2πih with a continuous h : R→ R and if f is a character than
h has to be a homomorphism of (R, +), but all continuous homomorphisms
of (R, +) are of the form x 7→ cx with c ∈ R.

Now we want to define a similar ”exponential” function b 7→ e2πib on Qp. We
notice that its real counterpart is trivial on Z, and since Z is dense in Zp we
are led to demand that it be trivial on Zp. Let now b ∈ Qp. We write

b =
∞∑

i=−N

bip
i =

i=−1∑
i=−N

bip
i

︸ ︷︷ ︸
b′

+
∞∑
i=0

bip
i

︸ ︷︷ ︸
b′′

and define formally
e2πib = e2πib′e2πib′′

But b′′ ∈ Zp so the second factor is trivial, and b′ = p−Na with a ∈ Z and
the first factor makes sense. This gives us a good definition for b 7→ e2πib and
this is obviously a character on Qp.

Proposition: The group Qp is self-dual. All its characters are given by
b 7→ e2πiba with a ∈ Qp.

Proof: Let χ : Qp → S1 be a character of Qp. Choose a small neighbourhood
U of 1 in S1. By continuity there is an m s.t. χ(pmZp) ⊂ U . But χ(pmZp)
is a subgroup of S1 contained in U and as such must be trivial. Choose m
to be the smallest integer with χ(pmZp) = 1 and let χ1 : Qp → S1, χ1(b) =
χ(pmb). By construction χ1 is trivial on Zp and we claim that χ1(b) = e2πiba

with a ∈ Zp. First, by the same argument used in the construction of e2πib

it is obvious that χ1 is determined by its values on p−m for all positive
integers m. Let’s call these values ym. Each ym is a pm-th root of unity
(1 = χ1(1) = pmχ1(p

−m) = ypm

m ), so ym = e2πi am
pm . From yp

m+1 = ym it follows
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that am+1 ≡ am mod pm. Thus a = (a1, a2, ...) ∈ Zp and χ1(b) = e2πiba.
�

Next we will look at the characters of A.

We choose for every p < ∞ the character τp(b) = e2πib on Qp and for the
infinite place τ∞(x) = e−2πix. Then

τ : A→ S1, x 7→
∏
p≤∞

τp(xp)

is a character on A, well defined because xp ∈ Zp for almost all p and we
claim

Proposition: The group A is self-dual. All its characters are given by
τa(x) = τ(ax) for a ∈ A.

This is very easy to see: Let χ be a character on A. For every p ≤ ∞ the
map xp 7→ χ(0, 0, ..., xp, 0, ...) is a character on Qp and by the self-duality of
Qp there is an ap ∈ Qp s.t. χ(0, 0, ..., xp, 0, ...) = τp(apxp). Again from the
fact that there are no subgroups of S1 contained in a small neighbourhood of
1 we see that there exists a subgroup of A of the form

∏
p∈S pmpZp

∏
p/∈S Zp

on which χ must be trivial. This implies ap = 1 for p /∈ S i.e. the collection
(ap) is an element of A and χ(x) = τ(ax).

Now recall the following

Definition: Let H ⊂ G. Then H⊥ =
{

χ ∈ Ĝ
∣∣ χ|H = 1

}
.

We have the following exact sequence

1→ H⊥ → Ĝ→ Ĥ → 1

Proposition: Q⊥ = Q.

Proof: Q⊥ =
{
τa : A→ S1

∣∣ τa|Q = 1
} ∼= {

a ∈ A
∣∣ τ(aQ) = 1

}
. The claim

is τ(aQ) = 1⇔ a ∈ Q.

Let us first see τ(Q) = 1. For a prime power pm we have τ( 1
pm ) = τ∞( 1

pm )
∏

τl(
1

pm ).

Since 1
pm ∈ Zl for l 6= p the characters τl are trivial and the product simplifies

to

τ∞(
1

pm
)τp(

1

pm
) = e−

2πi
pm e

2πi
pm = 1

Since τ is a character this extends to τ( a
pm ) = 1 for all a ∈ Z. But for any

rational number q we have a decomposition

q =
a1

pm1
+ ... +

an

pmn
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(partial fractions) which proves τ(Q) = 1 and this immediately implies

a ∈ Q⇒ τ(aQ) = 1

or in other words Q ⊂ Q⊥.

For the other direction we show Q⊥/Q = 0. Consider a ∈ A with τ(aQ) = 1.
In particular this means τ(a) = 1. We can find a r ∈ Q s.t. all components
of a′ = a + r for p < ∞ lie in Zp. But by our above argument τ(a′) = 1.
Since ap ∈ Zp for all p <∞ we get

1 = τ(a′) = τ∞(a′∞)

This shows a′∞ ∈ Z. Letting a′′ = a′ − a∞ we get a′′ = (0, a′′2, a
′′
3, ...) with

a′′p ∈ Zp. Now using τ(a′′Q) = 1 we see

1 = τ(a′′
1

pk
) = τp(a

′′
p

1

pk
)

for all k which implies a′′p = 0 for all p. Thus we have shown Q⊥/Q = {0}.
�

Corollary:

Q̂ = A/Q
ˆA/Q = Q

2 The group GL2(A)

For any commutative ring with unity R we can define the group GL2(R) by

GL2(R) = {A ∈ Mat(2, 2, R)| det A ∈ R×}

This gives us a definition of the group GL2(A). These are the 2× 2 matrices
with adelic coefficients, whose determinant is an adelic unit. We can also
consider the product of all GL2(Qp) restricted with respect to GL2(Zp)

∏
p≤∞

′
GL2(Qp) =

⋃
S

∏
p∈S

GL2(Qp)×
∏
p/∈S

GL2(Zp)


This group is isomorphic to GL2(A) via

GL2(A)→
∏
p≤∞

′
GL2(Qp),

(
(ap)p≤∞ (bp)p≤∞
(cp)p≤∞ (dp)p≤∞

)
7→
∏
p≤∞

(
ap bp

cp dp

)
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because the ring operations of A are defined componentwise. We will use
both notations interchangably by means of this isomorphism.

The same definition can be done for any subgroup of GL2 defined by algebraic
equations, as f.e. the group SL2 :

SL2(R) = {A ∈ GL2(R)| det A = 1}

Again this gives us a definition of SL2(A) and the above isomorphism is valid.

Note: In general one defines a linear algebraic group over Z to be a closed subgroup-
scheme of the group-scheme GLn/Z. We have just given two such schemes via their
functor of points, which is a functor {Z− algebras} → {groups}.

Recall that in the real theory, the group SL2(R) had the important subgroup
K∞ = SO(2), which was a maximal compact subgroup. This situation has
an analog in the p-adic theory. A maximal comapct subgroup of SL2(Qp) is
given by SL2(Zp). A maximal compact subgroup of SL2(A) is now given by
SO(2) ×

∏
p<∞ SL2(Zp). In GL2(Qp) a maximal compact subgroup is given

by GL2(Zp) and we will call it Kp.

The discrete embedding Q ↪→ A gives us a discrete embeddings SL2(Q) ↪→
SL2(A) and GL2(Q) ↪→ GL2(A). We have the following special case of strong
approximation:

Proposition

SL2(Q) \ SL2(A) /
∏
p<∞

SL2(Zp) ∼= SL2(Z) \ SL2(R)

Proof: An easy calculation shows that for a given prime p to any g ∈ SL2(Qp)
there is a γ ∈ SL2(Q) s.t.

1. γg ∈ SL2(Zp)

2. γ ∈ SL2(Zl) for all l 6= p

Now given a g ∈ SL2(A) there are finitely many primes p1, ..., pn s.t. gpi
∈

SL2(Qpi
) and for all other primes l the component gl lies in SL2(Zl). We can

now ”multiply away” the poles of g at the primes p1, ..., pn by selecting for
each pi an element γpi

with the above properties and forming the product
γp1 ...γpng. Each γpi

multiplies away the pole of g at pi by the first property
and does not introduce a new pole at any other prime by the second property.

Thus we see that in the quotient SL2(Q) \ SL2(A) each equivalence class
contains an element from SL2(R)×

∏
p<∞ SL2(Zp). How many such elements
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are there in a given equivalence class? Let g be such an element at let
γ ∈ SL2(Z). Then γg is another such element. On the other hand consider
two elements g1, g2 ∈ SL2(R) ×

∏
p<∞ SL2(Zp) from the same equivalence

class mod SL2(Q). Let γ ∈ SL2(Q) be s.t. γg1 = g2. Then γ = g−1
1 g2

and we see that γp ∈ Zp for all p. This means that no prime p divides the
denominators of the entries of γ which that they are integers. We see

SL2(Q) \ SL2(A) ∼= SL2(Z) \

(
SL2(R)×

∏
p<∞

SL2(Zp)

)

�

Corollary

GL2(Q) \GL2(A) /
∏
p<∞

GL2(Zp) ∼= SL2(Z) \GL+
2 (R)

Proof: Let g ∈ GL2(A). Then det(g) ∈ I and we can factorize det(g) = ru
with r ∈ Q× and u ∈ R×

>0 ×
∏

p<∞ Zp. This implies that g can be written as(
r 0
0 1

)
g1

(
u 0
0 1

)
with g1 ∈ SL2(A) and the above proposition can be applied.

�

Corollary Let Z ⊂ GL2 be the center of GL2:

Z(R) =

{(
a 0
0 a

)
| a ∈ R×

}
Then

Z(A)GL2(Q) \GL2(A) /
∏
p<∞

GL2(Zp) ∼= SL2(Z) \ SL2(R)

Z(A)GL2(Q) \GL2(A) /SO(2)
∏
p<∞

GL2(Zp) ∼= SL2(Z) \H

Remark: Instead of taking
∏

p<∞ GL2(Zp) one could take
∏

p<∞KN
p where

KN
p =

{(
a b
c d

)
∈ GL2(Zp)

∣∣∣ c ≡ 0 mod N

}
If p - N then the condition is vacuous (because N is a unit in Zp) and
KN

p = GL2(Zp). If pv(N)||N then

KN
p =

{(
a b
c d

)
∈ GL2(Zp)

∣∣∣ c ∈ pv(N)Zp

}
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All of the above statements hold for
∏

Kp replaced by
∏

KN
p with SL2(Z)

replaced by

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N

}

3 Automorphic forms as functions on GL2(A)

In this section we will describe the classical automorphic forms as functions
on GL2(A). This new notion has two very important advantages – it allows
generalizations which include non-holomorphic cusp-forms or Maass wave-
forms, and it is the starting point for the use of representation theory in the
study of automorphic forms. For this section we follow [Ge] Chap. 3 very
closely.

Let G denote the group GL2.

3.1 Characterization and definition of automorphic forms
on GL2(A)

For f ∈ Sk(N) we define the function φf on G(A) by considering the decom-
position G(A) = G(Q)G(R)+

∏
KN

p and setting

φf (γg∞k) = f(g∞ · i)j(g∞, i)−k

We have already seen the same construction when we transfered the classical
cusp forms to functions on SL2(R). Indeed, if we regard the above function
as a function of g∞ alone then it coincides with the previous definition. In
particular this function of g∞ is invariant under Γ0(N) and since

G(Q) ∩G(R)+
∏

KN
p = Γ0(N)

it follows that the above function is well defined. Note further that although
the definition of φf involves only g∞ the function actually depends on all
components of g — if we were to take a g = γg∞k and change the component
gp for any p <∞ so that it lies outside of KN

p then there is a γ1 ∈ G(Q) s.t.
all p-components of γ1g lie in KN

p . But the ∞-component of this element is
now different from g∞ and thus the value of φf is also different.

Proposition The map

Sk(N)→ {φ : G(A)→ C}, f 7→ φf

is an isomorphism into the space of functions φ on G(A) satisfying the fol-
lowing conditions

14



1. φ(γg) = φ(g) for all γ ∈ G(Q)

2. φ(gk) = φ(g) for all k ∈
∏

KN
p

3. φ

(
g

(
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

))
= e−ikϑφ(g)

4. Viewed as a function of G(R)+ alone, φ satisfies the differential equation

4φ = −k

2
(
k

2
− 1)φ

5. φ(zg) = φ(g) for all z ∈ Z(A)

6. For every c > 0 and ω ⊂ G(A) compact there exist constants C and N
s.t.

φ(

(
a 0
0 1

)
g) ≤ C|a|N

for all g ∈ ω and a ∈ I with |a| > c.

7. ∫
Q\A

φ(

(
1 x
0 1

)
g)dx = 0

for almost every g.

Proof: We have already seen a very similar statement in Jörn’s talk. It is
obvious that φf satisfies 1, 2, 3, 5 and we know the calculation which shows
4. Furthermore we know that a φ which satisfies 1− 5 defines a holomorphic
function on Γ0(N) \H.

Condition 6 is the equivalent of the regularity of f at the cusps. We will
sketch how it translates into the similar condition

φ∞(x + iy, ϑ) < C|y|N

for φ∞ : G(R)→ C which was defined in Jörn’s talk. The latter is equivalent
to

φ∞(

(
y 0
0 1

)(
1 x
0 1

)(
c −s
s c

)
) < C|y|N

by definition of the coordinates x, y, ϑ and the invariance of φ∞ under the
center of G(R).

We fix g for convenience (it varies compactly anyway) and decompose

g = γg∞k2k3...

with γ ∈ G(Q), kp ∈ G(Zp). Then φf (g) = φf,∞(g∞). Let a ∈ I, a =

a∞a2a3..., a =

(
a 0
0 1

)
. We want to estimate the value of φf at the point

15



ag. To do this we need to figure out a decomposition ag = γ′g′∞k′2k
′
3.... There

are finitely many p with ordp(ap) 6= 0. Let qp = p−ordp(ap) for all p. Then
qp = 1 for almost all p and we can form q =

∏
qp. This is a rational number

and (qa)p ∈ Z×p for all p (we have multiplied away the poles of a). Thus(
qa 0
0 1

)
g = γ

(
qa∞ 0
0 1

)
g∞k′2k

′
3...

with the same γ from the decomposition of g. But by definition |q|∞ =∏
|qp|∞ =

∏
|ap|p and so |qa∞|∞ = |a|. Thus

φf (ag) = φf,∞(

(
qa∞ 0
0 1

)
g∞) < C|qa∞|N∞ = C|a|N

Condition 7 is equivalent to the cuspidality condition for f . We will show
this when we compute the Fourier coefficients of φf .

� (up to 7).

Proposition The space of functions satisfying the conditions 1 − 7 is a
subspace of L2(Z(A)G(Q) \G(A)).

Proof: This is immediately clear from the fact that

Z(A)G(Q) \G(A) /SO(2)
∏
p<∞

KN
p

∼= Γ0(N) \H

which implies∫
Z(A)G(Q)\G(A)

|φf (g)|2dg = C

∫
Z(A)G(Q)\G(A)/K

|φf (g)|2dg

= C

∫
Γ0(N)\H

|f(z)|2yk dxdy

y2
<∞

Here C refers to a general constant.
�

Now we generalize the conditions 1 − 7 to form the new definition of an
automorphic form

Definition: An automorphic form on GL2 is a function φ : GL2(A) → C
satisfying

1. φ(γg) = φ(g) for all γ ∈ G(Q)

2. φ(zg) = φ(g) for all z ∈ Z(A)

3. φ is right K-finite
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4. As a function of G(R) alone φ is z-finite (and smooth)

5. φ is slowly increasing in the sense of condition 6 above

If in addition φ satisfies the cuspidal condition (7 above) the φ is called a
cusp form. We shall call the space of these functions A0.

Remark: One can use reduction theory to show that any cusp form (not
only the ones coming from classical cusp forms on H) is an element of
L2(Z(A)G(Q) \ G(A)). If we define L2

0(Z(A)G(Q) \ G(A)) to be the sub-
space of L2 of functions satisfying the cuspidality condition, then the space
A0 is the dense subspace of it consisting of K-finite and z-finite vectors. Thus
we shall use the term cusp form also for elements of L2

0.

3.2 The Fourier coefficients of an automorphic form on
GL2(A)

First we recall the following

Fact

• The group R is self-dual. All its characters are given by

τ∞,y : x 7→ e2πixy for y ∈ R

• The group Qp is self-dual. All its characters are given by

τp,b : x 7→ e2πi ... for b ∈ Qp

• The group A is self-dual. If we fix the characters τ∞ = τ∞,−1 and
τp = τp,1 then

τ(x) =
∏
p≤∞

τp(xp)

is a character on A and all characters on A are given by τa(x) = τ(ax)
for a ∈ A

• The dual group of Q \A is Q. The characters on Q \A are given by τξ

with ξ ∈ Q.

Now given a cusp form φ the function

x 7→ φ(

(
1 x
0 1

)
g)
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is a square-integrable function on the compact abelian group Q\A for almost
all g and we have the usual Fourier expansion (or Peter-Weyl theorem)

φ(

(
1 x
0 1

)
g) =

∑
ξ∈Q

φξ(g)τ(ξx)

where φξ(g) is the ξ-th Fourier coefficient of φ given by

φξ(g) =

∫
Q\A

φ(

(
1 x
0 1

)
g)τ(ξx)dx

It is now obvious that the cuspidal condition means exactly φ0(g) = 0. Fur-
thermore, if φ = φf for f ∈ Sk(N) then the Fourier expansion of φ contains
the Fourier expansions of f at all cusps.

We will show this for the case N = 1

Lemma: Let f ∈ Sk(1), φ = φf . For each y > 0

φξ(

(
y 0
0 1

)
) =

{
ane

2πny if ξ = n ∈ Z
0 otherwise

Thus

φ(

(
1 x
0 1

)(
y 0
0 1

)
) =

∑
ξ∈Q

φξ(

(
y 0
0 1

)
)τ(ξx) =

∑
n

ane
2πinz = f(z)

Remark: This lemma tells us in particular φ0(y) = 0 ⇔ a0 = 0 which
completes the proof of the proposition from the previous subsection.

Proof: Suppose first ξ /∈ Z. Then for some prime p and integer m > 0
ξ = αp−m with α ∈ Q relatively prime to p. Since y > 0 is real let us denote
it y∞. Now

φξ(

(
y∞ 0
0 1

)
) =

∫
Q\A

φ(

(
1 x
0 1

)(
y∞ 0
0 1

)
)τ(ξx)dx

We now that Q \ A ∼= [0, 1] ×
∏

Kp and we split x = x∞k with x∞ ∈ [0, 1]
and k ∈

∏
Kp. The function φ is right invariant under

∏
Kp so we get

φξ(

(
y∞ 0
0 1

)
) =

∫ 1

0

φ(

(
1 x∞
0 1

)(
y∞ 0
0 1

)
)τ(ξx∞)dx

Let t = (0, 0, ..., pm−1, 0, 0...) where the pm−1 is at the p-th place. Then(
1 t
0 1

)
∈
∏

Kp
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and ∫ 1

0

φ(

(
1 x∞
0 1

)(
y∞ 0
0 1

)
)τ(ξx∞)dx

=

∫ 1

0

φ(

(
1 x∞
0 1

)(
y∞ 0
0 1

)(
1 t
0 1

)
)τ(ξx∞)dx

=

∫ 1

0

φ(

(
1 x∞ + t
0 1

)(
y∞ 0
0 1

)
)τ(ξx∞)dx

=

∫ 1

0

φ(

(
1 x∞
0 1

)(
y∞ 0
0 1

)
)τ(ξ(x∞ − t))dx

= τ(ξt)

∫ 1

0

φ(

(
1 x∞
0 1

)(
y∞ 0
0 1

)
)τ(ξx∞)dx

= τ(ξt)φξ(

(
y∞ 0
0 1

)
)

But τ(ξt) = τ((0, 0, ..., αp−1, 0, ...)) 6= 1 by our choice of τ . Thus

φξ(

(
y∞ 0
0 1

)
) = 0

Now suppose ξ = n ∈ Z. Then

φξ(

(
y∞ 0
0 1

)
) =

∫ 1

0

φ(

(
y∞ x∞
0 1

)
)τ(nx∞)dx

=

∫ 1

0

f(x + iy)e−2πinx = ane
−2πny

�

Remark: Suppose the group Γ had another cusp s 6=∞ and let σ ∈ SL2(Z)
map ∞ to s. In Jörn’s talk we saw that the Fourier coefficients of an auto-
morphic form f for Γ around the cusp s are given by the integrals∫ 1

0

φf,∞(σ

(
1 hx
0 1

)
g)e−2πixdx

where h = h∞ is the width of the cusp, φf,∞ is the function on SL2(R)

defined by f and g = g∞ ∈ SL2(R). But if we set γ = σ

(
h∞ 0
0 1

)
∈ G(Q),

g′∞ =

(
h−1
∞ 0
0 1

)
g∞ ∈ G(R) and kp = σ ∈ G(Zp) then∫ 1

0

φf,∞(σ

(
1 hx
0 1

)
g)dx =

∫ 1

0

φf (σ

(
1 h∞x∞
0 1

)
g∞)dx∞

=

∫ 1

0

φf (γ

(
1 x∞
0 1

)
g′∞k2k3...)dx∞

= φξ(g
′
∞k)
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which shows us that the generalized Foruier expansion indeed contains the
Fourier expansions of f for all cusps.

4 The Hecke operators in the adelic setting

In the previous section we considered the injection

Sk(N) ↪→ L2
0(Z(A)G(Q) \G(A)/

∏
KN

p )

Let p be a prime not dividing N . Then KN
p = Kp and we can consider the

operator

T̃ (p)φ(g) =

∫
Kp

 p 0
0 1

Kp

φ(gh)dh

which is the convolution of φ with the characteristic function of the double

coset Kp

(
p 0
0 1

)
Kp. It is very easy to see that this operator leaves the

image of Sk(N) invariant and we have the following proposition

Lemma:

Kp

(
p 0
0 1

)
Kp =

p−1⋃
t=0

(
p −t
0 1

)
Kp ∪

(
1 0
0 p

)
Kp

and the union is disjoint.

Proof: First we see that the union is disjoint. Suppose it were not, say(
p −t1
0 1

)
k =

(
p −t2
0 1

)
k′

for k, k′ ∈ Kp and t1 6= t2. But then(
1 p−1(t2 − t1)
0 1

)
= k′k−1 ∈ Kp

which is an obvious contradicition. The same argument shows that the last
part of the union is disjoint from the rest.

Next we see that the union is a subset of the double coset, because(
1 0
0 p

)
Kp =

(
0 1
1 0

)(
p 0
0 1

)(
0 1
1 0

)
Kp(

p −t
0 1

)
Kp =

(
1 −t
0 1

)(
p 0
0 1

)
Kp
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The last step is to see that every matrix k

(
p 0
0 1

)
k′′ falls in one of the

p + 1 right Kp-cosets. We can obviously forget k′′ and we try to find a k′

with

k

(
p 0
0 1

)
=

(
p −t
0 1

)
k′

which would put our matrix in one of the first p right Kp-cosets.

Let k =

(
a b
c d

)
. Then(

p−1 p−1t
0 1

)(
a b
c d

)(
p 0
0 1

)
=

(
a + tc p−1b + p−1td

pc d

)
!
= k′

The determinant of the candidate for k′ is obviously ad − bc ∈ Z×p which is
ok. Now we need that the entries come from Zp. We need to distinguish four
cases. If p|b ∧ p|d then we are ok. If p|b ∧ p - d then we can choose t = 0. If
p - b and p - d then both b and d are units in Zp and we can choose t = − b

d

which makes the problematic entry vanish. The problem is only if p - b∧p|d.
In this case we have another candidate for k′, namely(

1 0
0 p−1

)(
a b
c d

)(
p 0
0 1

)
=

(
pa b
c p−1d

)
which works out and puts our original matrix in the last coset.

�

We will give names for the matrices in the above decomposition to refer to
them more easily

ξb =

(
p −b
0 1

)
for b = 0, ..., p− 1 ξb =

(
1 0
0 p

)
for b = p

Proposition: Let f ∈ Sk(N). Then

p
k
2
−1T̃ (p)φf = φ

T (p)f

Proof: By the above decomposition and the right-invariance of φ = φf under
Kp we get

T̃ (p)φ(g) =

∫
Kp

(
p 0
0 1

)
Kp

φ(ghp)dhp

=

p−1∑
b=0

∫
(

p −b
0 1

)
Kp

φ(ghp)dhp +

∫
(

1 0
0 p

)
Kp

φ(ghp)dhp

=

p∑
b=0

φ(g[ξb]p)
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where

[ξb]p :=

1, 1, ..., ξb︸︷︷︸
p-th place

, 1, 1, ...

 ∈∏
l 6=p

KN
p ×GL2(Qp)

In order to evaluate the above sum we need to figure out the infinite com-
ponent of g[ξb]p in the decomposition G(Q)G(R)+KN . Let’s look at the case
ξb =

(
p −b
0 1

)
. Decompose g = γg∞k. Then g

(
p −b
0 1

)
p

= γg∞y where

yp = kp

(
p −b
0 1

)
and yl = kl for l 6= p. But γg∞y is not a decomposition we

can use because yp /∈ G(Zp). Obviously yp is an element of the double coset
and thus we can find a k′p ∈ G(Zp) s.t. either yp =

(
p −t
0 1

)
k′p for a suitable

t or yp =
(

1 0
0 p

)
k′p. We can’t directly see which of these will be the case,

but what we can directly see is that the two matrices

y1,p = kp

(
p −b1

0 1

)
and y2,p = kp

(
p −b2

0 1

)
where we have fixed kp and b1 6= b2 cannot fall in the same right Kp-coset.
Assuming this were the case, say

y1,p =

(
p −t
0 1

)
k1,p y2,p =

(
p −t
0 1

)
k2,p

we come to (
1 p−1(b2 − b1)
0 1

)
= y−1

2,py1,p = k−1
2,pk1,p ∈ G(Zp)

which is a contradiction. We can treat the case
(

1 0
0 p

)
in the same way and

arrive at the following statement:

All the matrices kp[ξb]p can be written as [ξt]pk
′
p and for two different b1 6= b2

we get two different t1 6= t2. Thus we get

p∑
b=0

φ(γg∞k[ξb]p) =

p∑
t=0

φ(γg∞[ξt]pk
′)

Now let

γ′t = γξt, g′∞ = ξ−1
t g∞, k′′p = k′p, k′′l = [ξt]

−1
l k′l for all l 6= p

Then γg∞[ξt]pk
′ = γ′g′∞k′′ and k′′ ∈ KN and setting z = g∞i we get

φ(γg∞[ξt]pk
′) = φ(γ′g′∞k′′) = f(g′∞ · i)j(g′∞, i) = f(ξ−1

t z)j(ξt, z)−kj(g∞, i)−k

For ξt =

(
p −t
0 1

)
we get

f(ξ−1
t z) = f(

z + t

p
), j(ξ−1

t , z)−k = p−
k
2
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and for ξt =

(
1 0
0 p

)
f(ξ−1

t z) = f(pz), j(ξ−1
t , z)−k = p

k
2

Consequently

p
k
2
−1T̃ (p)φ(g) = p−1

p−1∑
t=0

f(
z + t

p
)j(g∞, i)−k + pk−1f(pz)j(g∞, i)−k

= pk−1
∑
a>0
ad=p

d−1∑
b=0

f(
az + b

d
)d−kj(g∞, i)−k

= T (p)f(g∞ · i)j(g∞, i)−k

= φ
T (p)f

(g)

�

5 An outlook on representation theory

In this last section we want to give a general overview on how representation
theory enters the field of automorphic forms. Representation theory is ab-
solutely central in the modern treatment of automorphic forms and in this
way it is introduced into number theory in a very conceptual way by means
of the Langlands program.

Because of the time constraints of this talk we will present no proofs at all.

5.1 Old and new forms

We begin by recalling the classical notion of old and new forms. Choose an
integer N > 0. An f ∈ Sk(N) will be called an old form, if for m a proper
divisor of N and d a divisor of N

m
there exists a g ∈ Sk(m) with f(z) = g(dz).

It is called old because it comes from forms for Γ0(m) and in this sense is
not new for the group Γ0(N). Logically, a form f ∈ Sk(N) which does not
satisfy the above condition will be called a new form.

We will denote the space of new forms by S+
k (N) and the space of old forms

S−k (N). If f(z) = g(dz) is an old form, then

f(z) = g
∣∣( d 0

0 1

)
k
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and for p - N (
d 0
0 1

)
k

· T (p) = T (p) ·
(

d 0
0 1

)
k

For this reason the Hecke algebra (for p - N) preserves the space S−k (N) and
also the space S+

k (N) which is its orthogonal complement with respect to the
Petrson scalar product and we can choose a basis for Sk(N) of simultaneous
eigenfunctions for this algebra such that part of the basis elements are old
forms and the others are new forms.

Observe further that every old form comes from a new form, i.e. in the
equality f(z) = g(dz) the form g can be chosen to be a new form (this is
obvious). We will call the set of forms f(z) = g(dz) where g is a fixed new
form on Sk(m) and d varies among the divisors of N

m
an old class.

Why is the distinction between old and new forms important? It is because
of the fact that the space S+

k (N) has a basis of eigenfuctions for all Hecke
operators, not only for those with p - N . Thus a new form is completely char-
acterized (up to a scalar multiple) by its Hecke eigenvalues. More precisely
we have the following

Theorem

1. The space Sk(N) has a basis consisting of old forms and new forms

2. Each new form in this basis is an eigenfunction for all Hecke operators.
The eigenvalues for T (p) with p|N are independend of the new form.

They are 0 if p2|N and ±p
k
2
−1 if p||N .

3. Two elements of the given basis share the same eigenvalues for all T (p)
with p - N if and only if they are both old forms and come from the
same new form (i.e. lie in the same old class).

5.2 The representations generated by automorphic forms

We have already discussed the injection

Sk(N) ↪→ L2
0(Z(A)G(Q) \G(A)/KN

0 )

It can be shown that the space on the right decomposes as a discrete direct
sum of irreducible representations with finite multiplicities. The arguments
are essentially the same as the one used to show that L2

0(Γ0(N) \H) decom-
poses as a discrete direct sum. From now on we will use the short notation
L2

0 for L2
0(Z(A)G(Q) \G(A)/KN

0 ).

Theorem (Multiplicity one)
Every irreducible subrepresentation of L2

0 has multiplicity one.
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To a function f ∈ Sk(N) we can assign a representation of G(A) inside L2
0 by

taking the linear span of {g ·φf | g ∈ G(A)}. This is a unitary representation
of G(A) and we call it πf . We have the following theorem which describes
the relation between forms in Sk(N) and irreducible unitary representations
of G(A).

Theorem

1. Let f ∈ Sk(N) be an eigenfunction for all T (p) with p - N . Then πf is
irreducible.

2. Let π be an irreducible subrepresentation of L2
0. Define {fπ} to be the

set of functions fπ ∈ Sk(N) sharing the same eigenvalues for all T (p)
with p - N and the conductor of π and such that φfπ lie in the space of
π. Then the correspondence

{f} ↔ πf

is one to one

3. The map f 7→ πf is one-to-one on S+
k (N) and it is not one-to-one on

S−k (N).

This theorem tells us that to study automorphic forms we need to under-
stand the irreducible G(A)-submodules of L2

0(Z(A)G(Q) \ G(A)/KN
0 ). An

essential part in understanding such irreducible representations of G(A) lies
in understanding the irreducible unitary representations of the local groups
G(R) and G(Qp) as is shown by the following

Theorem
Every irreducible subrepresentation π of L2

0 factorizes as a restricted tensor
product of local irreducible unitary representations

π =
⊗
p≤∞

′
πp

Note: We deliberately omit the technical notion of admissibility for the
purposes of this overview.

Remark: We want to give a short explanation of what a restricted tensor
product means. The idea is the same as with the restricted direct product
we already saw. Let {πp} be a collection of local irreducible unitary repre-
sentations. We assume that for almost all p the representation πp contans
a vector ξ0

p which is fixed by Kp. Such a representation is called spherical
and the vector ξ0

p is called spherical vector. Fix once and for all a spherical
unit vector ξ0

p for almost all p. Then the space of ⊗′pπp is generated by the
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elements ⊗′pξp for which ξp = ξ0
p for almost all p. The action of the group

G(A) on this space is given componentwise. Note that for a g = (gp) ∈ G(A)
almost all components gp lie in Kp. Thus the action of such a g on ⊗′ξp

changes only finitely many components.

Given the above theorem one is lead to study irreducible unitary representa-
tions of G(R) and G(Qp). We have already discussed the case of SL2(R). The
case of GL2(R) is very similar. The theory for G(Qp) on the other hand is
quite different. One similarity is that one can define induced representations
from a parabolic subgroup and show a submodule theorem similar to the real
case. Yet this does not exhaust all possible representations. What is left are
the so called ”supercuspidal” representations which do not occur in the real
theory. Another difference is that the Lie-algebra plays no role in classify-
ing the representations. One uses the Hecke group algebra H(G) of locally
constant compactly supported functions on G(Qp). For the classification of
irreducible admissible representations of G(Qp) and unitarizability one can
refer to [Go].
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