THE WEYL CHARACTER FORMULA

ATIYAH-SINGER INDEX THEOREM

Abstract. Let U be a compact connected semisimple Lie group and $T \subset U$ be its maximal torus. Further let W the Weyl group of U, i.e.,

$$
W=\text { Normalizer of } T \text { in } U / \text { Centralizer of } T \text { in } U
$$

Let $R(U)$ be the representation ring of U and Λ be the weight lattice. Let $\mathbb{Z}[\Lambda]$ be the group algebra of the group Λ with coefficients in \mathbb{Z}; by definition $\mathbb{Z}[\Lambda]$ has a basis $\left\{e^{\lambda} \mid \lambda \in \Lambda\right\}$, such that $e^{\lambda} \cdot e^{\lambda^{\prime}}=e^{\lambda+\lambda^{\prime}}$. Define a character homomorphism

$$
\chi: R(U) \rightarrow \mathbb{Z}[\Lambda], \quad \chi_{V}=\chi_{\pi}=\sum \operatorname{dim} V_{\lambda} e^{\lambda}
$$

where $V_{\lambda}=\left\{v \in V \mid \pi(t) v=e^{\lambda}(t) v \quad \forall t \in T\right\} \neq\{0\}$ is the corresponding weight space of (π, V) for to the weight λ.
Theorem (Weyl formula (1925)). Let V be a finite dimensional irreducible representation of U and χ_{V} its character. Then

$$
\chi_{V} \upharpoonright_{T}=\frac{1}{\prod_{\alpha \in \Phi^{+}} e^{\alpha / 2}-e^{-\alpha / 2}} \sum_{w \in W} \operatorname{sign}(w) e^{w(\lambda+\rho)}
$$

1. Holomorphic Lefschetz formula

Let X be a compact complex manifold of dimension $\operatorname{dim}_{\mathbb{C}} X=n$. The complex cotangential bundle splits into a direct sum of holomorphic and antiholomorphic cotangential bundle

$$
\begin{equation*}
T^{*} X \otimes \mathbb{C}=\left(T^{1,0} X\right)^{*} \oplus\left(T^{0,1} X\right)^{*} \tag{1}
\end{equation*}
$$

Corresponding to this decomposition the bundle of the complexified de Rham complex decompose into the tensor product $\Lambda^{*}\left(T^{*} X \otimes \mathbb{C}\right)=\Lambda^{*}\left(T^{1,0} X\right)^{*} \otimes \Lambda^{*}\left(T^{0,1} X\right)^{*}$, so that

$$
\begin{equation*}
\Lambda^{r} T^{*} X \otimes \mathbb{C}=\bigoplus_{p+q=r} \Lambda^{p}\left(T^{1,0} X\right)^{*} \otimes \Lambda^{q}\left(T^{0,1} X\right)^{*}=: \bigoplus_{p+q=r} \Lambda^{p, q} . \tag{2}
\end{equation*}
$$

The exterior derivative $\mathrm{d}: \Lambda^{r}(X) \rightarrow \Lambda^{r}(X)$ decompose correspondingly to (11) into a direct sum $\partial+\bar{\partial}$, where

$$
\partial: \Lambda^{p, q}(X) \rightarrow \Lambda^{p+1, q}(X) \text { and } \bar{\partial}: \Lambda^{p, q}(X) \rightarrow \Lambda^{p, q+1}(X)
$$

Let $V \rightarrow X$ be a holomorphic vector bundle and

$$
\Lambda^{p, q}(X, V)=\Gamma\left(\Lambda^{p}\left(T^{1,0} X\right)^{*} \otimes \Lambda^{q}\left(T^{0,1} X\right)^{*} \otimes V\right)
$$

Date: Juni, 2004.

Let $\Omega \subset X$ be a trivialization chart of $V \rightarrow X$, i.e. there is a biholomorphic map ψ such that $\psi: V \upharpoonright_{\Omega} \stackrel{\cong}{\leftrightarrows} \Omega \times \mathbb{C}^{k}$. Let e_{1}, \ldots, e_{k} be a local holomorphic frame: $\left\{e_{i} \mid 1 \leq i \leq k\right\} \in$ $\Gamma_{\text {hol }}\left(V \upharpoonright_{\Omega}\right)$ such that $e_{1}(x), \ldots, e_{k}(x) \in V_{x}$ is a basis for all $x \in \Omega$. Then $\Lambda^{p, q}\left(\Omega, V \upharpoonright_{\Omega}\right) \cong$ $\Lambda^{p, q}\left(\Omega, \mathbb{C}^{k}\right)$ and $\omega \in \Lambda^{p, q}\left(\Omega, V \upharpoonright_{\Omega}\right)$ have the following local form

$$
\omega=\sum_{i=1}^{k} \omega_{i} \otimes e_{i}
$$

Let $\bigcup_{j} \Omega_{j}$ be a good covering of X and $\left\{\chi_{j}\right\}$ the assoziated partion of unity. We define $\omega \in \Lambda^{p, q}(X, V)$ by gluing the local (p, q)-forms $\omega^{j}=\omega \upharpoonright_{\Omega_{j}} \in \Lambda^{p, q}\left(\Omega_{j}, V \upharpoonright_{\Omega_{j}}\right)$ via χ_{j} :

$$
\omega=\sum_{j} \chi_{j} \omega^{j}=\sum_{j} \chi_{j}\left(\sum_{i=1}^{k} \omega_{i}^{j} \otimes e_{i}\right) .
$$

By assumption is the transformation map ϕ of local frames e_{1}, \ldots, e_{k} and $e_{1}^{\prime}, \ldots, e_{k}^{\prime}$ holomorphic, so we define an elliptic complex

$$
\begin{equation*}
0 \rightarrow \Lambda^{p, 0}(X, V) \xrightarrow{\bar{\sigma}} \Lambda^{p, 1}(X, V) \xrightarrow{\bar{\sigma}} \cdots \xrightarrow{\bar{\sigma}} \Lambda^{p, n}(X, V) \rightarrow 0, \tag{3}
\end{equation*}
$$

where $\bar{\partial} \omega=\sum_{i}\left(\bar{\partial} \omega_{i}\right) \otimes e_{i}$.
Let $\mathcal{O}(V)$ be the sheaf of germs of holomorphic sections of V. On the sheaf level there is a fine resolution of $\mathcal{O}(V)$:

$$
0 \rightarrow \mathcal{O}(V) \rightarrow \mathcal{A}^{0,0}(V) \rightarrow \mathcal{A}^{0,1}(V) \rightarrow \cdots \rightarrow \mathcal{A}^{0, n}(V) \rightarrow 0
$$

where $\mathcal{A}^{0, q}(V)$ is sheaf of germs of sections of $\Lambda^{0, q} \otimes V$, such that $H^{0, q}(X ; V) \cong H^{q}(X ; \mathcal{O}(V))$ and by (2) $H^{p, q}(X ; V) \cong H^{q}\left(X ; \mathcal{O}\left(\wedge^{p, 0} \otimes V\right)\right)$.

We consider now a holomorphic map $f: X \rightarrow X$. The natural lifting of f to $\Lambda^{*}(X)$ is then compatible with $\bar{\partial}$ and therefore induces endomorphisms $\Lambda^{p, *} f$ in each complex $\Lambda^{p, *}(X)$. To lift f to the complex $\Lambda^{*}(X, V)$, one only needs a holomorphic bundle homomorphism $\varphi: f^{*} V \rightarrow V$. In terms of it

$$
\Lambda^{0, q} f \otimes \varphi: f^{*}\left(\Lambda^{0, q} \otimes V\right) \rightarrow \Lambda^{0, q} \otimes V \quad(0 \leq q \leq n)
$$

The coresponding endomorphism in the sheaf cohomology $H^{q}(X ; \mathcal{O}(V)) \cong H^{0, q}(X ; V)$ will be denoted by $(f \otimes \varphi)$! so that the Lefschetz numbers of $\Lambda^{0, q} f \otimes \varphi$ are given by:

$$
L\left(\Lambda^{0, *} f \otimes \varphi\right)=\sum_{q=0}^{n}(-1)^{q} \operatorname{Tr}\left((f \otimes \varphi)!\upharpoonright H^{0, q}(X ; V)\right)
$$

Theorem 1. Let X be a compact complex manifold and let $V \rightarrow X$ a holomorphic vector bundle. Further let $f: X \rightarrow X$ be a holomorphic map with simple fixed points and $\varphi: f^{*} V \rightarrow V$ a holomorphic bundle homomorphism. Then the Lefschetz number $L\left(\Lambda^{0, *} f \otimes \varphi\right)$ of $H^{*}(X ; \mathcal{O}(V))$ is:

$$
\begin{equation*}
L\left(\Lambda^{0, *} f \otimes \varphi\right)=\sum_{z \in \operatorname{Fix}(f)} \frac{\operatorname{Tr}_{\mathbb{C}} \varphi_{z}}{\operatorname{det}_{\mathbb{C}}\left(\mathbb{1}-\partial f_{z}\right)} \tag{4}
\end{equation*}
$$

2. GEOMETRIC METHODS IN REPRESENTATION THEORY

A Lie algebra \mathfrak{g} is semisimple if it can be written as a direct sum of simple ideals.
Remark. One can consider a linear reductive Lie algebra \mathfrak{g}, which generalizes the consideration of semisimple Lie algebras, since \mathfrak{g} may be written as a direct sum of ideals

$$
\mathfrak{g}=Z_{\mathfrak{g}} \oplus[\mathfrak{g}, \mathfrak{g}]
$$

with $Z_{\mathfrak{g}}$ is the centre of \mathfrak{g} and $[\mathfrak{g}, \mathfrak{g}]$ is semisimple Lie algebra. For the reason of simplicity i will consider only semisimple Lie algebra.

Maximal compact subgroups and Cartan decomposition. Let G be a connected semisimple Lie group. We denote by $K \subset G$ a maximal compact subgroup. The maxiamal compact subgroups of G have the following properties:

1) any two maximal compact subgroups of G are conjugate by an element of G;
2) the normalizer of K in G coincides with K, i.e., $N_{G}(K)=K$.

Let \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K respectively and K acts on \mathfrak{g} via the restriction of the adjoint representation $\operatorname{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g}), \operatorname{Ad}(g)(Y)=g^{-1} Y g$.

Let $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$ be a Cartan involution of \mathfrak{g}, i.e., there exists a unique K-invariant linear complement $\mathfrak{p}=\mathcal{E}(\theta ;-1)$ of $\mathfrak{k}=\mathcal{E}(\theta ; 1)$ in \mathfrak{g} :

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \tag{5}
\end{equation*}
$$

with the following property $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$ and $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$.
Example. The group $G=\mathrm{SL}(n, \mathbb{R})$ contains $K=\mathrm{SO}(n)$ a maximal compact subgroup. In this situation

$$
\begin{aligned}
& \mathfrak{g}=\left\{Y \in \operatorname{End}\left(\mathbb{R}^{n}\right) \mid \operatorname{tr}(Y)=0\right\}, \\
& \mathfrak{k}=\left\{Y \in \operatorname{End}\left(\mathbb{R}^{n}\right) \mid Y^{\top}+Y=0, \quad \operatorname{tr}(Y)=0\right\} \\
& \mathfrak{p}=\left\{Y \in \operatorname{End}\left(\mathbb{R}^{n}\right) \mid Y^{\top}-Y=0, \quad \operatorname{tr}(Y)=0\right\}
\end{aligned}
$$

On the Lie algebra level a Cartan involution is $\theta(Y)=-Y^{\top}$ and on the group level $\theta(g)=\left(g^{\top}\right)^{-1}$. The group K can be described as the fix point set of θ, i.e., $K=\{g \in G \mid$ $\theta(g)=g\}$.

Complexifications of linear groups. Let G be a connected linear Lie group and let $\mathfrak{g}=$ Lie (G) be its Lie algebra. Like any linear Lie Group, G has a complexification - a complex Lie group $G^{\mathbb{C}}$, with Lie algebra $\mathfrak{g}_{\mathbb{C}}:=\mathfrak{g} \otimes \mathbb{C}$ containing $G \hookrightarrow G^{\mathbb{C}}$ as a Lie subgroup, such that $\mathfrak{g} \hookrightarrow \mathfrak{g}_{\mathbb{C}}, Y \mapsto Y \otimes 1$. When $G^{\mathbb{C}}$ is a complexification of G, one calls G a real form of $G^{\mathbb{C}}$. One can complexify the Cartan decomposition (5) : $\mathfrak{g}_{\mathbb{C}}=\mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$, where $\mathfrak{k}_{\mathbb{C}}=\mathfrak{k} \otimes \mathbb{C}$ and $\mathfrak{p}_{\mathbb{C}}=\mathfrak{p} \otimes \mathbb{C}$. The complexification $G^{\mathbb{C}}$ of G contains naturally $K^{\mathbb{C}}=\operatorname{Exp}(\mathfrak{k})$ as complex Lie subgroup.
Remark. A complexification $K^{\mathbb{C}}$ of K can not be compact unless $K=\{e\}$, which does not happen unless G is abelian. Indeed, any non-zero $Y \in \mathfrak{k}$ is diagonalizable over \mathbb{C}, with pure imaginary eigenvalues. So the complex one-parameter subgroup $\{z \mapsto \exp (z Y)\}$ of $K^{\mathbb{C}}$ is unbounded.

By construction, the Lie algebras $\mathfrak{g}, \mathfrak{k}$ its complexifications and the corresponding Lie groups satisfy the following containments:

Since $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$ and $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$,

$$
\mathfrak{u}:=\mathfrak{k} \oplus \mathfrak{i p}
$$

is a real Lie subalgebra of $\mathfrak{g}_{\mathbb{C}}$. Let U denote Lie subgroup of $G^{\mathbb{C}}$ with Lie algebra \mathfrak{u}. Since G is a semisimple Lie group by assumption we know that U is compact. Thus U lies in a maximal compact subgroup of $G^{\mathbb{C}}$, which we denote also by U. Since $\mathfrak{g}_{\mathbb{C}} \cong \mathfrak{u} \oplus \dot{\mathfrak{i}} \mathfrak{u}$ a maximal compact subgroup U is a real form of $G^{\mathbb{C}}$ and $K=U \cap G^{\mathbb{C}}$. Thus we call U also a compact real form of $G^{\mathbb{C}}$.
Example. Let $G=\mathrm{SL}(n, \mathbb{R}), K=\mathrm{SO}(n)$. The complexifications are: $G^{\mathbb{C}}=\mathrm{SL}(n, \mathbb{C})$ and $K^{\mathbb{C}}=\operatorname{SO}(n, \mathbb{C})$. The corresponding compact real form of $G^{\mathbb{C}}$ is then $U=\mathrm{SU}(n)$.

Since $\mathfrak{g}_{\mathbb{C}}=\mathfrak{u} \otimes \mathbb{C}$, these two Lie algebras have the same representations over \mathbb{C}. On the global level this means

$$
\left\{\begin{array}{c}
\text { holomorphic finite dimensional } \tag{6}\\
\text { representations of } G^{\mathbb{C}}
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { finite dimensional complex } \\
\text { representations of } U
\end{array}\right\}
$$

this bijection one calls Weyl unitary trick. Since on every compact group U there is a left invariant Haar measure $\mathrm{d} u$, any representation of U can be made unitary. This implies that:
finite dimensional representations of a compact group are completely reducible.
In particular, to understand the finite dimensional representations of U, it suffices to understand the finite dimensional, irreducible representations of U over \mathbb{C} up to a isomorphism, i.e., $\operatorname{Irr}_{\mathbb{C}}(U)$.

Complex semisimple Lie algebras. Let $\mathfrak{g}_{\mathbb{C}}$ be a complex Lie algebra, then by Cartan criterior for semisimplicity $\mathfrak{g}_{\mathbb{C}}$ is semisimple iff the Killing form $B\left(Y, Y^{\prime}\right):=\operatorname{Tr}\left(\operatorname{ad}(Y) \operatorname{ad}\left(Y^{\prime}\right)\right)$ on $\mathfrak{g}_{\mathbb{C}} \times \mathfrak{g}_{\mathbb{C}}$ is nondenegenerate. A Cartan subalgebra $\mathfrak{h}_{\mathbb{C}}$ is in this case a maximal abelian subspace of $\mathfrak{g}_{\mathbb{C}}$ in which every $\operatorname{ad}(Z)$ for $Z \in \mathfrak{h}_{\mathbb{C}}$ is diagonable.
The elements $\alpha \in \mathfrak{h}_{\mathbb{C}}^{*}=\operatorname{Hom}_{\mathbb{C}}\left(\mathfrak{h}_{\mathbb{C}}, \mathbb{C}\right)$ are roots and \mathfrak{g}^{α} are root spaces, the α being defined as the nonzero elements of $\mathfrak{h}_{\mathbb{C}}^{*}$ such that

$$
\mathfrak{g}_{\mathbb{C}}^{\alpha}=\left\{Y \in \mathfrak{g}_{\mathbb{C}} \mid \operatorname{ad}(Z)(Y)=[Z, Y]=\alpha(Z) Y \text { for all } Z \in \mathfrak{h}_{\mathbb{C}}\right\}
$$

is nonzero. Let Φ be the set of all roots.
Example. Let $\mathfrak{g}_{\mathbb{C}}=\mathfrak{s l}(n, \mathbb{C})=\left\{Y \in \operatorname{Mat}_{n}(\mathbb{C}) \mid \operatorname{tr}(Y)=0\right\}$. The Cartan subalgebra $\mathfrak{h}_{\mathbb{C}}$ is the space of diagonal matices in $\mathfrak{g}_{\mathbb{C}}$.

For a complex semisimple Lie algebra $\mathfrak{g}_{\mathbb{C}}$ there is a decompositions of the form

$$
\begin{equation*}
\mathfrak{g}_{\mathbb{C}}=\mathfrak{h}_{\mathbb{C}} \oplus \sum_{\alpha \in \Phi} \mathfrak{g}_{\mathbb{C}}^{\alpha} \tag{7}
\end{equation*}
$$

and have the following properties:

1) $\left[\mathfrak{g}_{\mathbb{C}}^{\alpha}, \mathfrak{g}_{\mathbb{C}}^{\beta}\right] \subseteq \mathfrak{g}_{\mathbb{C}}^{\alpha+\beta}$ and $\left[\mathfrak{g}_{\mathbb{C}}^{\alpha}, \mathfrak{g}_{\mathbb{C}}^{\beta}\right]=\mathfrak{g}_{\mathbb{C}}^{\alpha+\beta}$ if $\alpha+\beta \neq 0$;
2) $B\left(\mathfrak{g}_{\mathbb{C}}^{\alpha}, \mathfrak{g}_{\mathbb{C}}^{\beta}\right)=0$ for $\alpha, \beta \in \Phi \cup\{0\}$ and $\alpha+\beta \neq 0$;
3) $B \upharpoonright_{\mathfrak{h}_{\mathbb{C}} \times \mathfrak{h}_{\mathbb{C}}}$ is nondegenerate. Define Z_{α} to be the element of $\mathfrak{h}_{\mathbb{C}}$ paired with α;
4) If α is in Φ, then $\operatorname{dim}_{\mathbb{C}} \mathfrak{g}_{\mathbb{C}}^{\alpha}=1$;
5) The real subspace \mathfrak{h} of $\mathfrak{h}_{\mathbb{C}}$ on which all roots are real is a real form of $\mathfrak{h}_{\mathbb{C}}$, and $B \upharpoonright_{\mathfrak{h} \times \mathfrak{h}}$ is an inner product.
The centralizer $H=Z_{G^{\mathbb{C}}}\left(\mathfrak{h}_{\mathbb{C}}\right)$ is a Cartan subgroup of $G^{\mathbb{C}}$. It is connected since $G^{\mathbb{C}}$ is complex, define

$$
\widehat{H} \stackrel{\text { def }}{=} \operatorname{Hom}_{\mathbb{C}}\left(H, S^{1}\right)
$$

the group of holomorphic homomorphisms from H to the multiplicative group $S^{1}=\{z \in$ $\mathbb{C}||z|=1\}$. It is an abelian group, which we identify with the weight lattice $\Lambda \subset \mathfrak{h}_{\mathbb{C}}^{*}$, i.e., the lattice of linear functionals on $\mathfrak{h}_{\mathbb{C}}^{*}$ whose values on the unit lattice

$$
L=\left\{Z \in \mathfrak{h}_{\mathbb{C}} \mid \exp (Z)=e\right\}
$$

are integral multiples of $2 \pi \mathrm{i}$. Explicitly, the identification $\Lambda \cong \widehat{H}$ is given by

$$
\lambda \stackrel{1: 1}{\longleftrightarrow} e^{\lambda},
$$

with $e^{\lambda}(\exp (Z))=e^{\langle\lambda, Z\rangle}$ for $Z \in \mathfrak{h}_{\mathbb{C}}$; here $\langle\lambda, Z\rangle$ refers to the canonical pairing between $\mathfrak{h}_{\mathbb{C}}^{*}$ and $\mathfrak{h}_{\mathbb{C}}$ induced by the Killing form restricted to a Cartan subalgebra.

Maximal Tori and the weight lattice. Let U be a connected compact semisimple Lie group defined as above and $T \subset U$ be a maximal torus. Since any two maximal tori in U are conjugated by an element of U, we fix a maximal torus T of U and denote by \mathfrak{t} its Lie algebra. Since T is abelian and connected, the exponential map exp: $\mathfrak{t} \rightarrow T$ is a surjective homomorphism, moreover this map is locally bijective, hence a covering homomorphism

$$
\exp : \mathfrak{t} / L_{T} \xrightarrow{\cong} T,
$$

where $L_{T}=\{Z \in \mathfrak{t} \mid \exp Z=e\} \subset \mathfrak{t}$ a discrete cocompact subgroup, i.e., the unit lattice. Let \widehat{T} denote the group of characters, i.e., the group of homomorphisms from T to the unit circle S^{1}. Then the weight lattice $\Lambda \subset$ it

$$
\Lambda:=\left\{\lambda \in \mathfrak{i t}^{*} \mid\left\langle\lambda, L_{T}\right\rangle \subset 2 \pi \mathrm{i} \mathbb{Z}\right\} \stackrel{\cong}{\rightrightarrows} \widehat{T}, \quad \lambda \mapsto e^{\lambda},
$$

with $e^{\lambda}: T \rightarrow S^{1}$ defined by $e^{\lambda}(\exp (Z))=\mathrm{e}^{\langle\lambda, Z\rangle}$ for any $Z \in L_{T}$ is the dual lattice of the unit lattice $L_{T} \subset \mathfrak{t}$.

The space of roots $\Phi=\Phi(U)$ of U are by definition the characters of the irredicible representation into which the tangent space of U / T at the coset $e T \in U / T$ decomposes under the left action of T, i.e., in Lie algebra terms we have with the identification $\Lambda \cong \widehat{T}$

$$
\begin{equation*}
(\mathfrak{u} / \mathfrak{t}) \otimes \mathbb{C} \cong \sum_{\alpha} E_{\alpha} \stackrel{(\mathbb{T V})}{=} \sum_{\alpha \in \Phi} \mathfrak{g}_{\mathbb{C}}^{\alpha} \tag{8}
\end{equation*}
$$

Since $\Phi \subset \Lambda-\{0\} \subset \dot{i} \mathfrak{t}^{*} \subset \mathfrak{h}_{\mathbb{C}}^{*}$, roots take pure imaginary values on the real Lie algebra \mathfrak{t}, which implies $\overline{\mathfrak{g}_{\mathbb{C}}^{\alpha}}=\mathfrak{g}_{\mathbb{C}}^{\bar{\alpha}}=\mathfrak{g}_{\mathbb{C}}^{-\alpha}$. For this reason every root α occurs with the inverse $-\alpha$, so
that it is natural to partion Φ into a positive set of roots Φ^{+}und their inverse into negative set of roots $\Phi=\Phi^{+} \sqcup \Phi^{-}$. Of course this choise is to be made with some compatibility relative to the Lie structure of $\mathfrak{u} \otimes \mathbb{C}=\mathfrak{g}_{\mathbb{C}}$; that is, one would like the relation

$$
\begin{equation*}
\left[E_{\alpha}, E_{\beta}\right] \subseteq E_{\alpha+\beta} \tag{9}
\end{equation*}
$$

to hold whenever α, β and $\alpha+\beta$ are in Φ^{+}. Weyl shows that such choise of Φ^{+}do exists and in fact that they are in 1:1 correspondence with the dominant Weyl chambers into which the action of the Weyl group

$$
W=N_{U}(T) / Z_{U}(T)=N_{U}(T) / T
$$

breaks up \mathfrak{t}.
The compatibility condition (9) one can interpret in its more geomerical form, namely as an integrability condition for a homogeneous complex structure on U / T. Indeed a choise of Φ^{+}induces an almost complex structure on U / T by declaring that the $E_{\alpha}, \alpha>0$, generate the holomorphic part of the tangent space of U / T at $o:=e T \in U / T$, i.e. $T_{o}^{1,0}(U / T)$. By the group action one translate this subspace to the holomorphic part of the tangent space of U / T at $\mathfrak{x} \in U / T$.

A fundamental fact in the theory of compact groups is the following extension of the spectral theorem:

$$
\text { Every } u \in U \text { is conjugated to an element of } T \text {. }
$$

It follows that functions f on U are determinated by their values $\iota^{*} f$ on T alone (where $\iota: T \hookrightarrow U)$ and it therefore stands to reason that if $\mathrm{d} u$ denotes the left invariant Haar measure on U, then there must be a measure $\mathrm{d} \mu$ on T with the prorerty

$$
\int_{U} f \mathrm{~d} u=\int_{T} \iota^{*} f \mathrm{~d} \mu
$$

for all integrable functions f on U. H. Weyl now finds an expilicit formula for $\mathrm{d} \mu$ in terms of the positive roots and the Weyl group

$$
\mathrm{d} \mu=\frac{1}{\# W}|D|^{2} \mathrm{~d} t
$$

with $D=\prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)$. Furthermore this D is not only well defined, but is antisymmetric as regards the action of W on Λ, and so can also be described in the followig way:

$$
D=\sum_{w \in W} \operatorname{sign}(w) e^{w(\rho)}
$$

where $\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$ and $\operatorname{sign}(w)=D^{w} / D \in\{ \pm 1\}$.
Remark. To compute the Weyl denominator D in this way one needs the assumption $G^{\mathbb{C}}$ to be simply connected. This condition is of course equvalent to the assumption U to be simply connected, since $U \hookrightarrow G^{\mathbb{C}}$ is a deformations retract by global Cartan decompostion, so $\pi_{1}\left(G^{\mathbb{C}}\right)=\pi_{1}(U)$. Then only in this case $\rho=\sum_{\alpha \in \Phi^{+}} \alpha$ lies in Λ, such that the product of positive roots $\prod_{\alpha \in \Phi^{+}} e^{\alpha}$ have a square root, which is given by $e^{\rho}=e^{\frac{1}{2} \sum_{\alpha \in \Phi^{+}}{ }^{\alpha}}$.

At this moment one can see the deeper reason why the character of a finite dimensional complex irreducible representation can be compute by restriction on a maximal torus T of U. Consider the charcter of a finite dimensional complex irreducible representation as an element of $C^{0}(U)=\{f: U \rightarrow \mathbb{C} \mid f$ continous $\}$ defined by

$$
U \ni x \mapsto \operatorname{Tr}(\pi(x)) .
$$

Now since $\operatorname{Tr}(\pi(x))=\operatorname{Tr}\left(\pi\left(g x g^{-1}\right)\right)$ for any $g \in U$, and since every $u \in U$ is conjugated to an element of T we conclude, that $\operatorname{Tr} \pi=\operatorname{Tr} \pi \upharpoonright_{T}$

Highst weight theorem and $\operatorname{Irr}_{\mathbb{C}}(\mathfrak{g})$. An element $\lambda \in \mathfrak{h}_{\mathbb{C}}^{*}$ is said to be singular, if $\langle\alpha, \lambda\rangle=0$ for some $\alpha \in \Phi$, ond otherwise regular. The set of regular elements in it t^{*} breacks up into a finite, disjoint union of open, convex cones, the so-called Weyl chambers. The Weyl chamber C can be recovered from the system of positive roots Φ^{+}, which we call dominant Weyl chamber,

$$
C=\{Z \in \dot{i} \mathfrak{t} \mid\langle\alpha, Z\rangle>0\} \stackrel{1: 1}{\longleftrightarrow} \Phi^{+} .
$$

Definition. An element $\lambda \in \dot{\mathfrak{i} \mathfrak{t}^{*}}$ is said to be dominant if $\langle\lambda, \alpha\rangle \geq 0$ for all $\alpha \in \Phi^{+}$.
Via the identification $\dot{i} \mathfrak{t}^{*} \cong \mathfrak{i t}$ by the Killing form, the set of all dominant regular $\lambda \in \mathfrak{i t} \boldsymbol{t}^{*}$ corresponds precisely to the dominant Weyl chamber C. Since the Weyl group W acts simply transitively on the set of Weyl chambers, every regular $\lambda \in \mathbb{i t} \mathfrak{t}^{*}$ is W-conjugated to exactly one dominant regular $\lambda^{\prime} \in \dot{i} t^{*}$. The action of W preseves the weight lattice Λ, hence every $\lambda \in \Lambda$ is W-conjugate to a unique dominant $\lambda^{\prime} \in \Lambda$, in other words

$$
\{\lambda \in \Lambda \mid \lambda \text { is dominant }\} \cong W \backslash \Lambda .
$$

Now by the theorem of the hights weight, which says that for every $\pi \in \operatorname{Irr}_{\mathbb{C}}(U)$ there is exactly one weight λ, such that $\lambda+\alpha$ is not a weight for any $\alpha \in \Phi^{+}$, the highest weight of π. The heightst weight is dominant, has the multiplicity one, i.e., $\operatorname{dim}_{\mathbb{C}} V_{\lambda}=1$, and determinates the representation π up to an isomorphism. Every dominant $\lambda \in \Lambda$ aries as the highst weight of an irreducible representation π.

In effect, the theorem parametrize the isomorphism classes of irreducible finite dimensional representation over \mathbb{C} in terms of their heighst weights:

$$
\operatorname{Irr}_{\mathbb{C}}(U) \stackrel{1: 1}{\longleftrightarrow}\{\lambda \in \Lambda \mid \lambda \text { is dominant }\} \stackrel{1: 1}{\longleftrightarrow} W \backslash \Lambda
$$

3. Geometric Realization of $\operatorname{Irr}_{\mathbb{C}}(U)$

A Borel subalgebra \mathfrak{b} is a maximal solvable subalgebra of $\mathfrak{g}_{\mathbb{C}}$ of the form $\mathfrak{b}=\mathfrak{h}_{\mathbb{C}} \oplus \mathfrak{n}$, where \mathfrak{n} is $\sum_{\alpha \in \Phi+} \mathfrak{g}^{-\alpha}, \Phi^{+}$is a system of positive roots of $\mathfrak{h}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$. Any two Borel subalgebras are $\operatorname{Ad}(G)$-conjugated. To define the notion of Borel subgroups, let us consider a particular Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}_{\mathbb{C}}$. Its normalizer in G,

$$
B=N_{G^{\mathbb{C}}}(\mathfrak{b})=\left\{g \in G^{\mathbb{C}} \mid \operatorname{Ad}(g) \mathfrak{b} \subseteq \mathfrak{b}\right\}
$$

is connected and has Lie algebra \mathfrak{b}. Groups of this type are called Borel subgroups of $G^{\mathbb{C}}$. It should be remarked that the connectedness of Borel subgroups depends crucially on the assumption that the ambient group $G^{\mathbb{C}}$ is complex. As a set, the flag variety X of $\mathfrak{g}_{\mathbb{C}}$ is the collection of all Borel subalgebras of $\mathfrak{g}_{\mathbb{C}}$. The solvable subalgebras of a given dimension
constitute a closed subvariety in a Grassmannian for $\mathfrak{g}_{\mathbb{C}}$, hence X has a natural structure of complex projective variety. Since any two Borel subalgebras are conjugate via $\mathrm{Ad}, G^{\mathbb{C}}$ acts transitively on X, with isotropy group $B=N_{G^{\mathbb{C}}}(\mathfrak{b})$ at the point at \mathfrak{b}. Consequently we may make the identification $X \cong G^{\mathbb{C}} / B$. Every complex algebraic variety is smooth (i.e., nonsingular) outside a proper subvariety. But $G^{\mathbb{C}}$ acts transitively on X, so the flag variety cannot have any singularities: it is a smooth complex projective variety.
Example. Let $\mathfrak{g}_{\mathbb{C}}=\mathfrak{s l}(n, \mathbb{C})$. Then X is (naturally isomorphic to) the variety of all complete flags in \mathbb{C}^{n}, i.e., nested sequences of linear subspaces of \mathbb{C}^{n}, one in each complex dimension, i.e., $\operatorname{dim}_{\mathbb{C}}\left(F_{j} / F_{j-1}\right)=1$:

$$
X \cong\left\{\left(F_{j}\right) \mid 0 \subset F_{1} \subset \cdots \subset F_{n}=\mathbb{C}^{n} \text { and } \operatorname{dim} F_{j}=j\right\}
$$

To see this, we assign to the complete flag $\left(F_{j}\right)$ its stabilizer in $\mathfrak{s l}(n, \mathbb{C})$, which turns out to be a Borel subalgebra \mathfrak{b}; this can be checked by looking at any particular flag $\left(F_{j}\right)$, since any two are conjugate under the action of $G^{\mathbb{C}}=\operatorname{SL}(n, \mathbb{C})$. Using the transitivity of the $G^{\mathbb{C}}$-action on the set of complete flags once more, we get the identification between this set and $G^{\mathbb{C}} / N_{G^{\mathbb{C}}}(\mathfrak{b}) \cong G^{\mathbb{C}} / B \cong X$.

Each member e^{λ} of \widehat{H} lifts to a holomorphic character $e^{\lambda}: B \rightarrow \mathbb{C}^{\times}$via the isomorphism $H \cong B^{\mathrm{ab}}=B /[B, B]$. Consider the fiber bundle product

$$
L_{\lambda}=G^{\mathbb{C}} \times_{B} \mathbb{C}_{\lambda}
$$

where \mathbb{C}_{λ} denotes \mathbb{C}, equipped with the B-action via the character e^{λ}. By definition, the fiber product L_{λ} is the quotient $G^{\mathbb{C}} \times \mathbb{C}_{\lambda} / \sim$ under the equvalence relation

$$
(g b, z) \sim\left(g, e^{\lambda}(b) z\right)
$$

The natural projection $G^{\mathbb{C}} \times{ }_{B} \mathbb{C}_{\lambda} \rightarrow G^{\mathbb{C}}$ induces a well defined $G^{\mathbb{C}}$-equivariant holomorphic map $L_{\lambda} \rightarrow G^{\mathbb{C}} / B \cong X$, which exihibits L_{λ} as a $G^{\mathbb{C}}$-equivariant holomorphic line bundle over X, i.e., a holomorphic line bundle with a holomorphic $G^{\mathbb{C}}$-action (by bundle maps) that lies over the action of $G^{\mathbb{C}}$ on the base space X. Let us summerize the previuos results

$$
\widehat{T} \cong\left\{\begin{array}{c}
\text { holomorphic } \\
\text { characters on } H
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { holomorphic } \\
\text { characters on } B
\end{array}\right\} \cong\left\{\begin{array}{c}
\text { holomorphic } G^{\mathbb{C}} \text {-equivariant } \\
\text { line bundles over } X \cong G^{\mathbb{C}} / B
\end{array}\right\}
$$

Identifying the dual group \widehat{T} with the weight lattice Λ as usual, we get a canonical isomorphism

$$
\Lambda \cong\left\{\begin{array}{c}
\text { group of holomorphic } G^{\mathbb{C}} \text {-equivariant } \\
\text { line bundles over } X \cong G^{\mathbb{C}} / B
\end{array}\right\}, \quad \lambda \stackrel{1: 1}{\longleftrightarrow} L_{\lambda} .
$$

The action of $G^{\mathbb{C}}$ on X and L_{λ} determines a holomorphic, linear action on the space of global section $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)$ and, by functorality, also on the higher cohomology groups $H^{q}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right) \cong H^{0, q}\left(X ; L_{\Lambda}\right), q>0$. These groups are finite dimensional since X is compact. The Borel-Weil theorem describes the resulting representations of the compact real form $U \subset G^{\mathbb{C}}$, and in view of (${ }^{6}$), also as holomorphic representation of $G^{\mathbb{C}}$.
Theorem 2 (Borel-WEIL). If λ is a dominant weight, the representation of U on $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)$ is irreducible, of highst weight λ, and $H^{q}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)=0$ for $q>0$. If λ fails to be dominant, then $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)=0$.
3.1. Sketch of the Proof of Borel-Weil theorem. Let $U \hookrightarrow G^{\mathbb{C}}$ be a compact real form, i.e., a compact Lie subgroup with Lie algebra \mathfrak{u} such that $\mathfrak{g}=\mathfrak{u} \oplus \dot{\mathfrak{i}} \mathfrak{u}$. We can choose the Cartan subalgebra \mathfrak{h} of $\mathfrak{g}_{\mathbb{C}}$ so that it is the complexification of a subalgebra \mathfrak{t} of \mathfrak{u}; all we have to do is take \mathfrak{t} to be any maximal abelian subspace of \mathfrak{u}. Then $T=U \cap H$ is a Cartan subgroup of U, i.e., a maximal torus.

The U-orbit of the point \mathfrak{b} of X is a closed submanifold because U is compact, and it is open in X by a dimension count. Therefore U acts transitively on X. To compute the isotropy subgroup at \mathfrak{b}, we observe that $U \cap B=U \cap B \cap \bar{B}=U \cap H=T$, hence

$$
X \cong G^{\mathbb{C}} / B \cong U /(U \cap B)=U / T
$$

If we identify $X \cong U / T$, we see that L_{λ}, as U-equivariant complex C^{∞}-line bundle, is given by

$$
\begin{equation*}
L_{\lambda} \cong U \times_{T} \mathbb{C}_{\lambda}, \tag{10}
\end{equation*}
$$

here \mathbb{C}_{λ} is the one dimensional T-module on which T acts via the character e^{λ}. This leads to the following description of the space of C^{∞}-sections of L_{λ} :

$$
\begin{equation*}
C^{\infty}\left(X, L_{\lambda}\right) \cong\left\{f \in C^{\infty}(U) \mid f(g t)=e^{-\lambda}(t) f(g) \text { for all } t \in T\right\} \cong\left(C^{\infty}(U) \otimes \mathbb{C}_{\lambda}\right)^{T} \tag{11}
\end{equation*}
$$

here $\left(C^{\infty}(U) \otimes \mathbb{C}_{\lambda}\right)^{T}$ denotes the space of T-invariants in $C^{\infty}(U) \otimes \mathbb{C}_{\lambda}$, relative to the action by right translation on $C^{\infty}(U)$ and by e^{λ} on \mathbb{C}_{λ}. How can one characterize the holomorphic sections among the C^{∞}-sections - in other words, what are the Cauchy-Riemann equations? Suppose that $\Omega \subset X \cong U / T$ is open and that $\widetilde{\Omega} \subset U$ is its inverse image. Then

$$
\begin{equation*}
C^{\infty}\left(\Omega, L_{\lambda}\right) \cong\left\{f \in C^{\infty}(\widetilde{\Omega}) \mid f(g t)=e^{-\lambda}(t) f(g) \text { for } t \in T\right\} \tag{12}
\end{equation*}
$$

by specialization of the previous isomorphism to Ω, and our question is answered by:
Lemma 3. Under the isomorphism (12), a function f on $\widetilde{\Omega}$ corresponds to a holomorphic section of L_{λ} over Ω if and only if $R(\xi) f=0$ for all $\xi \in \mathfrak{n}$, where $R(\xi)$ denotes infinitesimal right translation on U by $\xi \in \mathfrak{g}_{\mathbb{C}}=\mathfrak{u} \oplus \dot{\mathfrak{u}}$.

The lemma is readily proved by starting from the Cauchy-Riemann equations on $G^{\mathbb{C}}$. Using it, we can identify the space of global holomorphic sections as

$$
H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right) \cong\left\{f \in C^{\infty}(U) \mid R(\mathfrak{n}) f=0 \text { and } f(g t)=e^{-\lambda}(t) f(g) \text { for } t \in T\right\}
$$

and this isomorphism is an isomorphism of representations of U. The space $C^{\infty}(U)$ is contained in $L^{2}(U)$, which we can identify by the Peter-Weyl theorem as a Hilbert space direct sum $\sum_{i \in \widehat{U}} V_{i} \widehat{\otimes} V_{i}^{*}$. Here U acts on V_{i} by left translation, and on V_{i}^{*} by right translation. The subspace of $C^{\infty}(U)$ corresponding to $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)$ is finite dimensional and U-invariant, hence contained in the algebraic direct sum $\bigoplus_{i \in \hat{U}} V_{i} \otimes V_{i}^{*}$. We conclude that

$$
\begin{aligned}
H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right) & \cong\left\{f \in \bigoplus_{i} V_{i} \otimes V_{i}^{*} \mid R(\mathfrak{n}) f=0 \text { and } f(g t)=e^{-\lambda}(t) f(g) \text { for } t \in T\right\} \\
& \cong \bigoplus_{i} V_{i} \otimes\left\{v \in\left(V_{i}^{*} \otimes \mathbb{C}_{\lambda}\right)^{T} \mid \mathfrak{n} v=0\right\}
\end{aligned}
$$

The condition $\mathfrak{n v}=0$ picks out the lowest weight space since \mathfrak{b} is built from the root spaces for the negative roots. Therefore the right side is

$$
\bigoplus_{\substack{* \\ \text { whas lowest } \\ \text { weight }-\lambda}} V_{i} \otimes\left(\text { lowest weight space in } V_{i}^{*}\right) .
$$

At this point, the description of $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)$ in Borel-Weil theorem can be deduced from the theorem of the highest weight and the vanishing of the higher cohomology groups is a consequence of the Kodaira vanishing theorem.
Remark. According to our convention, \mathfrak{b} is built from the root spaces for the negative roots. This has the effect of making the line bundle L_{λ} "positive" in the sense of complex analysis (see [Wel80, p. 223], for example) precisely when the parameter λ is dominant. The opposite convention, which uses the root spaces for positive roots, lets positive line bundles correspond to antidominant weights and makes $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)$, for antidominant λ, the $G^{\mathbb{C}}$-module with lowest weight λ.

We denote by ρ_{λ} the by e^{λ} induced irreducible highest weight representation of U :

$$
\begin{equation*}
\rho_{\lambda}=\operatorname{Ind}_{T}^{U}\left(e^{\lambda}\right): U \rightarrow \operatorname{GL}\left(H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)\right), \quad\left(\rho_{\lambda}(u) f\right)(x)=f\left(u^{-1} x\right) \tag{13}
\end{equation*}
$$

on the space of global holomorphic sections of L_{λ}, i.e., on $H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)$.

4. Proof of the Weyl character formula

Let $\pi: U \rightarrow U / T$ be the canonical projection. We start with the function $f: X \rightarrow X$ which have to be the left translation of each element of $\mathfrak{x} \in X$ by $g^{-1} \in U$ defined by

$$
l_{g^{-1}}: X \rightarrow X, \quad l_{g^{-1}}(\mathfrak{x})=g^{-1} \cdot \mathfrak{x}=g^{-1} \cdot \pi(x)=\pi\left(g^{-1} x\right)
$$

where $\mathfrak{x}=\pi(x)$ denotes a coset in U / T. Now let $\lambda \in \Lambda$ be a highest weight, \mathbb{C}_{λ} is the one dimensional T-module on which T acts via the character e^{λ}. Let L_{λ} be the associated homogeneous line bundle:

$$
L_{\lambda}=U \times_{T} \mathbb{C}_{\lambda} \rightarrow U / T
$$

where $U \times_{T} \mathbb{C}_{\lambda}=\left(U \times \mathbb{C}_{\lambda}\right) / \sim$ and the equvalence relation \sim is given by $(u t, z) \sim$ $\left(u, \mathrm{e}^{\lambda}(t) z\right)$. Let $L_{g}: U \rightarrow U$ be the left translation on U by $g \in U$. Clearly $L_{g} \times \mathbb{1}: U \times \mathbb{C}_{\lambda} \rightarrow$ $U \times \mathbb{C}_{\lambda}$ preserves the fibers of $U \times \mathbb{C}_{\lambda} \rightarrow L_{\lambda}$ and hence induces a map

$$
\varphi_{g}:=L_{g} \times_{T} \mathbb{1}: L_{\lambda} \rightarrow L_{\lambda},
$$

which maps the fiber over $l_{g^{-1}}(\mathfrak{x})=\pi\left(g^{-1} x\right)$ lineary into the fiber over $\mathfrak{x}=\pi(x)$, i.e.,

$$
\varphi_{g}:\left(L_{\lambda}\right)_{\pi\left(g^{-1} x\right)} \rightarrow\left(L_{\lambda}\right)_{\pi(x)}
$$

One may interpreted φ_{g} as a lifting of the map $l_{g^{-1}}$ on U / T to the associated homogeneuos line bundle L_{λ} over U / T, i.e., for $\left[g^{-1} x, z\right] \in\left(L_{\lambda}\right)_{\pi\left(g^{-1} x\right)}$:

$$
\varphi_{g}\left(\left[g^{-1} u, z\right]\right)=\left(L_{g} \times_{T} \mathbb{1}\right)\left(\left[g^{-1} x, z\right]\right)=\left[L_{g}\left(g^{-1} x\right), z\right]=[x, z] \in\left(L_{\lambda}\right)_{\pi(x)}
$$

Consider now a fixed point $\mathfrak{x} \in X$ of $l_{g^{-1}}$ ，i．e．，by definition that for each point x in the coset $\mathfrak{x}=\pi(x)$ we must have the relation

$$
\begin{equation*}
g^{-1} x=x h_{g}(x) \tag{14}
\end{equation*}
$$

for some $h_{g}(x) \in T$ ．Conversely if（14）holds for some $t \in T$ ，then $\pi(x)=\mathfrak{x}$ is a fixed point of $l_{g^{-1}}: U / T \rightarrow U / T$ ．Hence we get the following
Lemma 4．$l_{g^{-1}}$ has a fixed point iff g contained in the orbit of T under the conjugation action of G ，i．e．，

$$
g \in \bigcup_{x \in G} x T x^{-1}
$$

Observe that by as x varies over the coset of $\mathfrak{x} \in U / T, h_{g}(x)$ varies over a conjugacy class $h_{g}(\mathfrak{x}) \subset T$ ．Thus to every fixed point \mathfrak{x} of $l_{g^{-1}}$ corresponds a conjugacy class $h_{g}(\mathfrak{x}) \subset T$ ．
Lemma 5．1）Let \mathfrak{x} be a fixed point of $l_{g^{-1}}$ and let $t \in h_{g}(\mathfrak{x})$ ．Then

$$
\begin{equation*}
\operatorname{det}\left(\mathbb{1}-\mathrm{d} l_{g^{-1}}\right)_{\mathfrak{x}}=\operatorname{det}\left(\mathbb{1}-\operatorname{Ad}_{U / T}(t)\right) \tag{15}
\end{equation*}
$$

2）Further for the lifting φ_{g} of $l_{g^{-1}}$ to $L_{\lambda}=U \times_{T} \mathbb{C}_{\lambda}$ we have the relation

$$
\begin{equation*}
\operatorname{Tr} \varphi_{g}(x)=\operatorname{Tr} e^{\lambda}(t) \tag{16}
\end{equation*}
$$

Proof．1）Let x be an element in the coset \mathfrak{x} such that

$$
\begin{equation*}
g^{-1} x=x t \tag{*}
\end{equation*}
$$

The map $L_{g^{-1}} \circ R_{t^{-1}}: U \rightarrow U$ defined by $u \mapsto g^{-1} u t^{-1}$ then obviously still induces the map $l_{g^{-1}}: U / T \rightarrow U / T$ but also keeps $x \in U$ fixed：

$$
L_{g^{-1}} R_{t^{-1}}(x)=g^{-1} x t^{-1} \stackrel{\text { (⿴囗大 }}{=} x
$$

The relation $L_{g^{-1}} \circ R_{t^{-1}} \circ L_{x}=L_{x} \circ L_{t} \circ R_{t^{-1}}$ implies，that under the identification $\mathrm{d} L_{x} \circ$ $\mathrm{d} \pi: \mathfrak{u} / \mathfrak{t} \xrightarrow{\cong} T_{\mathfrak{x}}(U / T):$

$$
\left.\mathrm{d} l_{g^{-1}}\right|_{\mathfrak{x}}(Y)=\operatorname{Ad}_{U / T}(t)(Y)=t Y t^{-1}
$$

where $Y \in \mathfrak{u} / \mathfrak{t} \cong T_{o}(U / T)$ ．
2）To see（16）consider a linear isomorphism $j_{x}: \mathbb{C}_{\lambda} \rightarrow\left(L_{\lambda}\right)_{\pi(x)}$ defined by $j_{x}(z)=[x, z]$ ． Hence by definition of the lifting φ_{g} of $l_{g^{-1}}$ to L_{λ} we get the following relation

$$
\begin{array}{rlr}
\varphi_{g} \circ j_{x}(z) & =[g x, z]=\left[x x^{-1} g x, z\right] & \left((*) \Leftrightarrow x^{-1} g=t^{-1} x^{-1}\right) \\
& =\left[x t^{-1}, z\right]=\left[x, e^{\lambda}(t) z\right]=e^{\lambda}(t) j_{x}(z) .
\end{array}
$$

Consider first the case when τ is a generator of T ，i．e．，that the powers of τ generate T ．It follows that if \mathfrak{x} is fixed ander τ ，and x is in the coset \mathfrak{x} ，i．e．$\tau^{-1} x=x t$ ，then for all integers n

$$
x^{-1} \tau^{-n} x=t^{n}, \quad\left(t \in h_{\tau}(\mathfrak{x}) \subset T\right)
$$

Thus $\operatorname{Ad}\left(x^{-1}\right)$ keeps all of T invariant，i．e．，$x^{-1} T x \subset T$（since τ is generic in T ）so that the fixed points of τ correspond percisely to the cosets of the normalizer of T modulo
centralizer of T. The fixed points are therefore independet of the choise of a generator of T, and naturally form the Weyl group of U

$$
W:=N_{U}(T) / Z_{U}(T)=N_{U}(T) / T
$$

This finite group acts naturally on T by permuting the roots $\alpha \in \Phi$ and on \widehat{T} Hence by (16) one obtains the formula:

$$
\operatorname{Tr}\left(\tau \text { on } C^{\infty}\left(X ; L_{\lambda}\right)\right)=\sum_{\mathfrak{x} \in \operatorname{Fix}\left(l_{\tau^{-1}}\right)} \frac{\operatorname{Tr}\left(\varphi_{\tau}(x)\right)}{\left|\operatorname{det}\left(\mathbb{1}-\mathrm{d} l_{\tau^{-1}}\right)\right| \mathfrak{x} \mid}=\sum_{w \in W} \frac{e^{w(\lambda)}(\tau)}{\left|\operatorname{det}\left(\mathbb{1}-\mathrm{d} l_{\tau^{-1}}\right)\right|^{w}}
$$

From the formula (15) we have

$$
\left.\operatorname{det}\left(\mathbb{1}-\mathrm{d} l_{\tau^{-1}}\right)\right|_{\mathfrak{x}}=\operatorname{det}\left(\mathbb{1}-\operatorname{Ad}_{U / T}\left(x^{-1} \tau^{-1} x\right)\right),
$$

so that $\mathrm{d} l_{\tau^{-1}} \upharpoonright_{\mathfrak{x}}: T_{\mathfrak{x}}(U / T) \rightarrow T_{\mathfrak{x}}(U / T)$ just rotates the root spaces E_{α} by $\alpha(\tau)$, such that by (8) we obtain

$$
\left|\operatorname{det}\left(\mathbb{1}-\mathrm{d} l_{\tau^{-1}}\right)\right|^{w}=\left|\prod_{\alpha \in \Phi^{+}}\left(1-e^{\alpha}(\tau)\right)\right|^{2}=|D(\tau)|^{2}
$$

Further by (15) we have

$$
\left.\operatorname{det}_{\mathbb{C}}\left(\mathbb{1}-\mathrm{d} l_{\tau^{-1}}\right)\right|_{\mathfrak{x}}=\operatorname{det}_{\mathbb{C}}\left(\mathbb{1}-\operatorname{Ad}_{U / T}\left(x^{-1} \tau^{-1} x\right)\right)
$$

whence we obtain by (8) in the similar way:

$$
\left.\operatorname{det}_{\mathbb{C}}\left(\mathbb{1}-\mathrm{d} l_{\tau^{-1}}\right)\right|_{\mathfrak{x}}=\prod_{\alpha \in \Phi^{-}}\left(1-e^{\alpha}\right)\left(x^{-1} \tau^{-1} x\right)=\prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)^{w}(\tau)
$$

Consider elliptic complex

$$
0 \rightarrow \Lambda^{0,0}\left(L_{\lambda}\right) \xrightarrow{\bar{\sigma}} \Lambda^{0,1}\left(L_{\lambda}\right) \rightarrow \stackrel{\bar{\sigma}}{\rightarrow} \Lambda^{0, m}\left(L_{\lambda}\right) \rightarrow 0
$$

It has $\bar{\partial}^{2} \equiv 0$ and hence gives rise to cohomology group $H^{0, q}\left(U / T ; L_{\lambda}\right)$. Our group U acts naturally on $H^{0, q}\left(U / T ; L_{\lambda}\right)$ which are by elliplicity all finite dimensional. We apply the Lefschetz principle to this complex and get:

The character of the virtual module $\sum(-1)^{q} H^{0, q}\left(U / T ; L_{\lambda}\right)$ should equal that of the virtual module $\sum(-1)^{q} \Lambda^{0, q}\left(L_{\lambda}\right)$
The natural representation of T on $\mathbb{C}_{\lambda} \otimes \Lambda^{0, q}(\mathfrak{u} / \mathfrak{t})$ given by $\lambda \otimes \Lambda^{0, q}$ induce a representation $\Omega^{0, q}=\operatorname{Ind}_{T}^{U}\left(\mathrm{e}^{\lambda} \otimes \Lambda^{0, q}\right)$ on $H^{0, q}\left(U / T ; L_{\lambda}\right)$. One now obtains the relation:

$$
\begin{equation*}
\sum_{q}(-1)^{q} \operatorname{Tr}\left(\Omega_{\lambda}^{0, q} \upharpoonright H^{0, q}\left(X ; L_{\lambda}\right)(\tau)\right)=\sum_{w \in W}\left[\frac{e^{\lambda}}{\prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)}\right]^{w}(\tau) \tag{17}
\end{equation*}
$$

From the identity $\left(1-e^{-\alpha}\right)=e^{-1 / 2 \alpha}\left(e^{1 / 2 \alpha}-e^{-1 / 2 \alpha}\right)$ it follows, that

$$
\prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)=e^{-\frac{1}{2} \sum_{\alpha>0} \alpha} \prod_{\alpha \in \Phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)=e^{-\rho} D
$$

hence the right hand side of (17) is of the following form:

$$
\sum_{w \in W}\left[\frac{e^{\lambda}}{\prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)}\right]^{w}=\frac{1}{\prod_{\alpha \in \Phi^{+}} e^{\alpha / 2}-e^{-\alpha / 2}} \sum_{w \in W} \operatorname{sign}(w) e^{w(\lambda+\rho)}
$$

Finally the Borel-Weil theorem comes into play for th left hand side of (17), to complete the story. For a dominant weight λ all the higher terms in (17) vanishes, and $\Omega_{\lambda}^{0,0}$ turns to be the by e^{λ} induced irreducible highest weight representation $\rho_{\lambda}: U \rightarrow \operatorname{GL}\left(H^{0}\left(X ; \mathcal{O}\left(L_{\lambda}\right)\right)\right)$ defined by (13), such that

$$
\chi_{\lambda}=\operatorname{Tr}\left(\rho_{\lambda}\right)=\frac{1}{\prod_{\alpha \in \Phi^{+}} e^{\alpha / 2}-e^{-\alpha / 2}} \sum_{w \in W} \operatorname{sign}(w) e^{w(\lambda+\rho)}
$$

References

[AB68] M. F. Atiyah and R. Bott. A Lefschetz fixed point formula for elliptic complexes. II. Applications. Ann. of Math. (2), 88:451-491, 1968.
[Sch97] Wilfried Schmid. Discrete series. Notes by Vernon Bolton. In Bailey, T. N. (ed.) et al., Representation theory and automorphic forms. Proceedings of an instructional conference, Edinburgh, UK, March 17-29, 1996. Providence, RI: American Mathematical Society. Proc. Symp. Pure Math. 61, 83-113. 1997.
[Ser01] Jean-Pierre Serre. Complex semisimple Lie algebras. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2001. Translated from the French by G. A. Jones, Reprint of the 1987 edition.
[Wel80] R. O. Wells, Jr. Differential analysis on complex manifolds, volume 65 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1980.
E-mail address: wotzke@math.uni-bonn.de

