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Introduction

Harmonic analysis on locally symmetric spaces Γ\G/K of finite
volume is closely related to the modern theory of automorphic
forms and has deep connections to number theory. Of particular
interest are quotients of symmetric spaces G/K by arithmetic
groups Γ. In many cases, these quotients are non-compact, which
implies that the Laplace operator has a large continuous spectrum.
This is where scattering theory comes into play. The study of the
continuous spectrum has important consequences for the theory of
automorphic forms. On the other hand, the arithmetic nature of
the underlying spaces has great influence on the structure of the
continuous spectrum and the distribution of resonances. The
purpose of this talk is to discuss some aspects of this relation
between harmonic analysis and number theory.



General set up

I. Automorphic forms

i) Symmetric spaces

I G semisimple real Lie group with finite center of non-compact
type

I K ⊂ G maximal compact subgroup

I S = G/K Riemannian symmetric space of non-positive
curvature, equipped with G -invariant Riemannian metric g .

I geodesic inversion about any x ∈ S is a global isometry.

Examples. 1. Hn hyperbolic n-space

Hn =
{
(x1, ..., xn) ∈ Rn : xn > 0

} ∼= SO0(n, 1)/ SO(n).

The invariant metric is given by

ds2 =
dx2

1 + · · ·+ dx2
n

x2
n

.



1. General set up

2. S space of positive definite n × n-matrices of determinant 1.

S =
{
Y ∈ Matn(R) : Y = Y ∗, Y > 0, det Y = 1

}
∼= SL(n, R)/ SO(n)

I Invariant metric: ds2 = Tr(Y−1dY · Y−1dY ).

I G = SL(n, R) acts on S by Y 7→ g tYg , g ∈ G .



Locally symmetric spaces

ii) Locally symmetric spaces
I Γ ⊂ G a lattice, i.e., Γ is a discrete subgroup of G and

vol(Γ\G ) < ∞
I Γ acts properly discontinuously on S .
I X = Γ\S = Γ\G/K locally symmetric space

Example: SL(2, R)/ SO(2) ∼= H2 = {z ∈ C : Im(z) > 0}.
For N ∈ N let

Γ(N) =
{
γ ∈ SL(2, Z) : γ ≡ Id mod N

}
.

I principal congruence subgroup of SL(2, Z) of level N. It acts
on H2 by fractional linear transformations:

γ(z) =
az + b

cz + d
,

(
a b
c d

)
∈ Γ(N).

I Γ(N)\H2 Riemann surface, non-compact,
Area(Γ(N)\H2) < ∞.



A hyperbolic surface with 3 cusps.



Fundamental domain

A discrete group can be visualized by its fundamental domain.

The standard fundamental domain of the modular group SL(2, Z).



Harmonic analysis

iii) Harmonic analysis

I D(S) := ring of G–invariant differential operators on S, i.e.,

D : C∞(S) → C∞(S), D ◦ Lg = Lg ◦ D, ∀g ∈ G ,

where Lg f (x) = f (gx), g ∈ G .

∆ = − div ◦ grad = − 1√
det(gij)

∑
i ,j

∂

∂xi

(
g ij

√
det(gij)

∂

∂xj

)

I Laplace operator of S , ∆ ∈ D(S).

Harish-Chandra: D(S) is commutative and finitely generated,
r = rank(S) minimal number of generators.

I D ∈ D(S) ⇒ D∗ ∈ D(S), D(S) commutative algebra of
normal operators.

Problem: Study the spectral resolution of D(S) in L2(Γ\S).



Automorphic forms

Definition: φ ∈ C∞(S) is called automorphic form, if it satisfies
the following conditions:

1) φ(γx) = φ(x), γ ∈ Γ;

2) Dφ = λDφ, ∀D ∈ D(S);

3) φ is of moderate growth.

I Every joint eigenfunction of D(S) which is in L2(Γ\S), is an
automorphic form.

Example: X = Γ\H2, Γ ⊂ SL(2, R) lattice.

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
, z = x + iy ,

hyperbolic Laplace operator, D(H2) = C[∆].



Harmonic analysis

Maass automorphic form: φ ∈ C∞(H2) such that

1) φ(γz) = φ(z), γ ∈ Γ;
2) ∆φ = λφ;
3)

∫
X |φ(z)|2 dA(z) < ∞.

Let ∆̄ be the closure of ∆: C∞
c (Γ\H2) → L2(Γ\H2). Solutions λ

of 1) – 3) are in the point spectrum of ∆̄.

Theorem(Selberg, 1954): L2(Γ\H2) = L2
pp(Γ\H2)⊕ L2

ac(Γ\H2),

1) σpp(∆̄) : 0 = λ0 < λ1 ≤ λ2 ≤ · · · , eigenvalues of finite
multiplicities,

2) σac(∆̄) = [1/4,∞),

3) L2
ac(Γ\H2) can be described in terms of Eisenstein series.

Thus all eigenvalues λi ≥ 1/4 are embedded into the continuous
spectrum. This makes it very difficult to study these eigenvalues.



Applications

Why should we study automorphic forms?

1) Automorphic L-functions – Langlands program

Example: Let Γ = SL(2, Z) and F ⊂ H2 the standard fundamental
domain. Let f ∈ C∞(H2) be a square integrable Γ-automorphic
form with eigenvalue λ = 1/4 + r2, r ≥ 0, i.e., f satisfies

f (γz) = f (z), γ ∈ Γ, ∆f = (1/4+r2)f ,

∫
F
|f (z)|2dA(z) < ∞.

In addition assume that f is symmetric w.r.t. to the reflection
x + iy 7→ −x + iy .
Since f satisfies f (z + 1) = f (z) it admits the following Fourier
expansion w.r.t. to x :

f (x + iy) =
∞∑

n=1

any
1/2Kir (2πny) cos(2πnx),

where



Automorphic L-functions

Kν(y) =

∫ ∞

0
e−y cosh t cosh(νt) dt

is the modified Bessel function. Let

L(s, f ) :=
∞∑

n=1

an

ns
, Re(s) > 1.

The modularity of f implies that L(s, f ) admits a meromorphic
extension to C, and satisfies a functional equation. Let

Λ(s, f ) = π−sΓ

(
s + ir

2

)
Γ

(
s − ir

2

)
L(s, f ).

Then the functional equation is Λ(s) = Λ(1− s).

I L(s, f ) is an example of an automorphic L-function.

I This construction can be generalized to automorphic forms
w.r.t. other semisimple (or reductive) groups.



Automorphic L-functions

Basic problem: Establish analytic continuation and functional
equation in the general case

Langlands’ functoriallity principle: Provides relation between
auotmorphic forms on different groups by relating the
corresponding L-functions.

Basic conjecture: All L-functions occurring in number theory and
algebraic geometry are automorphic L-functions.

I Leads to deep connections between harmonic analysis and
number theory.

Example. A. Wiles, proof of the Shimura-Taniyama conjecture:
The L-function of an elliptic curve is automorphic.

Langlands program: This theorem holds in much greater
generality. There is a conjectured correspondence{

irreducible n − dim.

repr ′s of Gal(Q/Q)

}
→

{
automorphic forms

of GL(n)

}



Mathematical physics

I Γ\H2 surfaces negative curvature, geodesic flow is ergodic.

I Γ\H2 models for quantun chaos

I Lp-estimates for eigenfunctions, “random wave conjecture”

I “Quantum unique ergodicity”



Superposition of random waves on the sphere, Eric Heller



For N ∈ N let

Γ(N) =
{
γ ∈ SL(2, Z) : γ ≡ Id mod N

}
.

Let X (N) = Γ(N)\H2. Let ∆φj = λjφj , {φj}j∈N an orthonormal

basis of L2
pp(X (N)). Existence: see Theorem 5.

L∞-conjecture: Fix K ⊂ X (N) compact. For ε > 0

‖ φj |K ‖∞�ε λε
j , j ∈ N.

I Implies Lindelöf hypothesis for ζ(s), and also for L(s, φj).

L(1/2 + it, φ) �ε (C (φ, t))ε.

where C (φ, t) is the analytic conductor of φ. For a Dirichlet
L-function L(s, χ), C (χ, t) = (|t|+ 1)(q + 1).
Seger, Sogge: L∞ bounds on general compact surfaces.

‖ φj ‖∞� λ
1/4
j .



Mathematical physics

Theorem (Iwaniec-Sarnak, 1995): φj on X (N).

‖ φj ‖∞� λ
5/24
j .

Let
µj = |φj(z)|2 dA(z).

µj is a probability measure on X (N).
Quantum unique ergodicity conjecture:

µj →
1

Area(X (N))
dA(z), j →∞.

The existence of infinitely many L2 eigenfunctions of ∆ on X (N) is
essential for these conjectures.



Scattering theory

II. Scattering theory

The existence of L2-automorphic forms is intimately related with
the structure of the continuous spectrum. The continuous
spectrum is described by Eisenstein series.

Stationary approach Selberg, Faddejev, Pawlow, ..., Langlands

i) Rank 1

Let X = Γ\H2, where Γ ⊂ SL(2, R) is a lattice. Then X has the
following structure

X = X0 t Y1 t · · · t Ym,

where X0 is a compact surface with boundary and

Yj
∼= [aj ,∞)× S1, g |Yj

∼= du2 + e−2udθ2, j = 1, ...,m.



A hyperbolic surface with 3 cusps.

The surface X can be compactified by adding m points a1, ..., am:

X = X ∪ {a1, ..., am}.
I X is a closed Riemann surface.
I The points a1, ..., am are called cusps. They correspond to

parabolic fixed points p1, ..., pm ∈ R ∪ {∞} of Γ.
I Each cusp ak has an associated generalized eigenfunction

which is explicitely contructed as Eisenstein series.



Eisenstein series

Example: Γ = SL(2, Z). Then Γ\H2 has a single cusp ∞. Recall
that on H2 the Laplace operator is given by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Thus, for s ∈ C, we have ∆y s = s(1− s)y s . Let

Γ∞ =
{
γ ∈ Γ: γ(∞) = ∞

}
=

{(
1 n
0 1

)
: n ∈ Z

}
.

Since Im(z + n) = Im(z), n ∈ Z, the function y s is invariant under
Γ∞. To get a Γ-invariant function, we need to average over Γ:

E (z , s) =
∑

γ∈Γ∞\Γ

Im(γz)s =
∑

(m,n)=1

y s

|mz + n|2s
, Re(s) > 1.



This is the Eisenstein series for Γ = SL(2, Z). It has the following
properties:

I E (γz , s) = E (z , s), γ ∈ SL(2, Z).

I E (z , s) admits a meromorphic extension to s ∈ C,

I E (z , s) is holomorphic on Re(s) = 1/2,

I ∆E (z , s) = s(1− s)E (z , s).

It follows that r ∈ R 7→ E (z , 1/2 + ir) is a generalized
eigenfunction. The map

f ∈ C∞
c (R+) 7→ 1

2π

∫ ∞

0
f (r)E (z , 1/2 + ir) dr

extends to an isometry E : L2(R+) → L2
ac(Γ\H2), and

E ∗(ϕ)(r) =

∫
X

ϕ(z)E (z , 1/2− ir) dµ(z), ϕ ∈ C∞
c (Γ\H2),

E ∗(∆ϕ)(r) = (1/4 + r2)E ∗(ϕ)(r), ϕ ∈ dom(∆).



Scattering matrix

Fourier expansion of E (z , s):

E (x + iy , s) = y s + C (s)y1−s + O
(
e−cy

)
as y →∞. Sommerfeld radiation condition

I y1/2+ir incoming plane wave, y1/2−ir outgoing plane wave,
E (z , 1/2 + ir) the distorted plane wave.

I S(r) = C (1/2 + ir) scattering matrix,

I C (s) analytic continuation of the scattering matrix,

General surface: ak 7→ Ek(z , s), k = 1, ...,m, Eisenstein series.
Scattering matrix: C (s) = (Ckl(s))

m
k,l=1.



Let
RX (s) = (∆− s(1− s))−1

Definition: The poles of RX (s) are called Resonances. Scattering
resonances := poles of C (s) = poles of RX (s) with Re(s) < 1/2.

The poles are distributed in a strip of the form −c < Re(s) ≤ 1.



Distribution of resonances

Put
NΓ(λ) = #

{
j : λj ≤ λ2

}
, φ(s) := det C (s).

Theorem 3 (Selberg): As λ →∞, we have

NΓ(λ)− 1

4π

∫ λ

−λ

φ′

φ

(
1

2
+ ir

)
dr ∼ Area(X )

4π
λ2.

proof: Selberg trace formula applied to the heat operator gives∑
j

e−tλj − 1

4π

∫
R

e−(1/4+r2)t φ′

φ

(
1

2
+ ir

)
dr ∼ Area(X )

4π
t−1

as t → 0+. Furthermore, for λ � 0, the winding number

− 1

4π

∫ λ

−λ

φ′

φ

(
1

2
+ ir

)
dr

is monotonic increasing. Tauberian theroem implies Theorem 3.



Distribution of resonances

Let Nscre(λ) the number of scattering resonances in the circle of
radius λ, counted with multiplicities.
Theorem 4 (Selberg): As λ →∞,

− 1

2π

∫ λ

−λ

φ′

φ

(
1

2
+ ir

)
dr = Nscre(λ) + O(λ).

Note that
Nres(λ) := 2NΓ(λ) + Nscre(λ)

is the counting function of resonances. By the above it satisfies
Weyl’s law

Nres(λ) ∼ Area(XΓ)

2π
λ2, λ →∞.

Use of the full power of the trace formula gives an expansion



Nres(λ) =
Area(XΓ)

2π
λ2 + cλ log λ + O(λ), λ →∞.

This is one of the rare cases where the counting function of the
resonances has an asymptotic expansion.
In general, we know very little about the analytic properties of the
scattering matrix. For the principal congruence subgroup Γ(N),
however, the entries of the scattering matrix can be expressed in
terms of known functions of analytic number theory.
Huxley: For Γ(N) we have

det C (s) = (−1)lA1−2s

(
Γ(1− s)

Γ(s)

)k ∏
χ

L(2− 2s, χ̄)

L(2s, χ)
,

where k, l ∈ Z, A > 0, χ Dirichlet character mod k, k|N, L(s, χ)
Dirichlet L-function with character χ.



Arithmetic groups

Especially, for N = 1 we have

C (s) =
√

π
Γ(s − 1/2)ζ(2s − 1)

Γ(s)ζ(2s)
,

where ζ(s) denotes the Riemann zeta function.

Thus for Γ = SL(2, Z) we get{
scattering resonances

}
=

{
1

2
ρ : ζ(ρ) = 0, 0 < Re(ρ) < 1

}
.

A similar result holds for Γ(N). By standard facts of analytic
number theory, we get

Nscre(λ) = O(λ log λ).



Arithmetic groups

Theorem 5 (Selberg, 1956):

NΓ(N)(λ) =
Area(X (N))

4π
λ2 + O(λ log λ), λ →∞.

Thus for Γ(N), L2-eigenfunctions of ∆ with eigenvalue λ ≥ 1/4
( = Maass automorphic cusp forms) exist in abundance.

Conjecture (Phillips, Sarnak, 1986): Except for the Teichmüller
space of the once punctured torus, a generic Γ has only a finite
number of eigenvalues.

I Thus for generic Γ the scattering resonances are expected to
dominate in the counting function.

I What are the special properties of Γ(N) that imply the
existence of embedded eigenvalues ?
The existence of Hecke operators



The left figure shows the expected distribution of resonances for a
generic surfaces. The figure on the right shows the distribution of

resonances for the modular surface SL(2, Z)\H2, under the
assumption of the Riemann hypothesis. Except for the pole at

s = 1, the scattering resonances are on the line Re(s) = 1/4 and
the poles corresponding to eigenvalues are on the line Re(s) = 1/2.



Higher rank

ii) Higher rank
We consider now X = Γ\S = Γ\G/K with Rank(S) > 1.

Examples: 1) X = Γ1\H2 × · · · × Γm\H2, m > 1.

2) X = Γ\(H2 × · · · ×H2), Γ ⊂ SL(2, R)n irreducible, Hilbert
modular group, X has Q-rank 1, intermediate case.

3) G = SL(n, R), Sn = SL(n, R)/SO(n), n > 1, X = Γ(N)\Sn,
where

Γ(N) =
{
γ ∈ SL(n, Z) : γ ≡ Id mod N

}
.

Margulis: If Rank(G ) > 1, then every irreducible lattice in G is
arithmetic (with an appropriate defintion of arithmetic).

Serre: Let n > 2. Then any subgroup Γ ⊂ SL(n, Z) of finite index
is a congruence subgroup, i.e., there exists N such that Γ(N) ⊂ Γ.



The spectrum is now multidimensional. Let G = NAK be the
Iwasawa decompsotion, a = Lie(A), W the Weyl group. Then

D(S) ∼= S(a∗C)W .

Therefore
spec(D(S)) ⊂ a∗C/W ,

Eisenstein series are associated to rational parabolic subgroups
P ⊂ SL(n, R).
A standard parabolic subgroup P of SL(n, R) is a stabilizer of a flag

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ Rn.



Geometric interpretation

Can be described by the Borel-Serre compactification

X
BS

= X t{P} YP .

which is obtained by adding boundary faces YP at infinity.

I X
BS

is a compact manifold with corners.

Each YP is a fibration

πP : YP → ΓP\SP

over a locally symmetric space ΓP\SP of lower dimension with
general fibre a compact nilmanifold (Γ ∩ NP)\NP .



I For X = Γ\H2, X
BS

is a compact surface with boundary,

∂(X
BS

) = tm
i=1S

1.

I The boundary ∂(X
BS

) “parametrizes” the continuous
spectrum.

Let φ ∈ L2(ΓP\XP) be an automorphic form, Λ ∈ a∗P,C,
Re(Λ) � 0, there is an associated Eisenstein series E (P, φ, Λ)

I E (P, φ, Λ) has a meromorphic extension to a∗P,C
I The asymptotic behavior of E (P, φ, Λ) near the boundary

components YP′ determines the scattering matrices.

I multichannel scattering problem similar to N-body problem.

Langlands-Shahidi: For congruence groups Γ, the entries of the
scattering matrices can be expressed in terms of automorphic
L-functions.



Example: X = SL(3, Z)\SL(3, R)/SO(3). ∂(X
BS

) has two
components of maximal dimension YP1 and YP2 , which are torus
fibrations

πi : YPi
→ SL(2, Z)\H2.

The associated scattering matrix cP2|P1
(s), s ∈ C, acts in the

space of automorphic cusp forms on SL(2, Z)\H2. Let
φ ∈ L2(SL(2, Z)\H2) be a non-constant even eigenfunction of ∆.
Then

φ(x + iy) =
∞∑

n=1

any
1/2Kir (2πny) cos(2πnx),

Let

L(s, φ) =
∞∑

n=1

an

ns
, Re(s) > 1,

be the L-function attached to φ and Λ(s, φ) the completed
L-function. Then

cP2|P1
(s)φ =

Λ(s, φ)

Λ(s + 1, φ)
φ.



Weyl’s law

Corollary: The automorphic L-functions occurring in the constant
terms of Eisenstein series have meromorphic extensions to C and
are of finite order.

Theorem 9 (Mü., 2007): For congruence subgroups of SL(n, Z),
n ≥ 2, the Eisenstein series and scattering matrices are
meromorphic functions of order 1.
Let Sn = SL(n, R)/ SO(n), n ≥ 2, and Γ ⊂ SL(n, R) a lattice. Let
0 = λ0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of ∆Γ in L2(Γ\Sn).

NΓ(λ) = #
{
j : λj ≤ λ2

}
.

Thoerem 10 (Lapid, Mü., 2007): Let d = dim Sn, N ≥ 3. Then

NΓ(N)(λ) =
Vol(Γ(N)\Sn)

(4π)d/2Γ(d/2 + 1)
λd + O(λd−1(log λ)max(n,3))

as λ →∞.



Method: Combination of Arthur’s trace formula, which replaces
the Selberg trace formula in the higher rank case, and Hörmanders
method to estimate the spectral function of an elliptic operator.



Tempered spectrum and Ramanujan-Selberg conjecture

Let φ ∈ L2(Γ\S), Dφ = χ(D)φ, D ∈ D(S), where

χ : D(S) = S(a∗C)W → C

is a character. Then
χ ↔ λ ∈ a∗C/W .

I φ tempered ⇔ λ ∈ ia∗/W .

An automorphic form φ is called cusp form, if φ is rapidly
decreasing.

Generalized Ramanujan-Selberg conjecture:
Every cusp form for GL(n) is tempered,

Let Λcus(Γ) ⊂ a∗C/W be the cuspidal spectrum.



Let Sn = SL(n, R)/ SO(n) and dn = dim Sn.

Theorem 11 Lapid, Mü, 2007): Let Ω ⊂ ia∗ be a bounded open
subset with piecewise C 2 boundary. Let β(λ) dλ be the Plancherel
measure. Then∑

λ∈Λcus(Γ(N)),λ∈tΩ

m(λ) =
vol(Γ(N)\Sn)

|W |

∫
tΩ

β(λ) dλ

+ O
(
tdn−1(log t)max(n,3)

)
and ∑

λ∈Λcus(Γ(N))
λ∈Bt(0)\ia∗

m(λ) = O
(
tdn−2

)

as t →∞.



Problems:

1) Develope common framework to deal with scattering theory
on locally symmetric spaces, N-body problem, and manifolds
with corners.

2) Extend Theorem 10 to other groups. This depends on the
analytic properties of the automorphic L-functions occurring
in the constant terms of Eisenstein series.


