
The Arthur trace formula and spectral theory on
locally symmetric spaces

Werner Müller

University of Bonn
Institute of Mathematics

Banff, May 19, 2008



Introduction

The Selberg trace formula establishes a close relation between
spectral and geometric data for finite volume locally symmetric
spaces of rank 1.
For a general reductive group G over a number field F , Arthur,
driven by Langlands’ functoriallity conjectures, developed a trace
formula for adelic quotients G (F )\G (A).
The key issue in Arthur’s work is the comparison of the trace
formulas of two different groups. However, it can also be used to
study spectral problems on a single space. Such applications lead
to new analytic problems related to the trace formula itself.



1. The Selberg trace formula

I G semisimple real Lie group with finite center of non-compact
type

I K ⊂ G maximal compact subgroup

I Γ ⊂ G lattice

I RΓ right regular representation of G in L2(Γ\G ), defined by

(RΓ(g)f )(g ′) = f (g ′g), f ∈ L2(Γ\G ).

Main goal: Study of the spectral resolution of (RΓ, L
2(Γ\G )).

a) Γ uniform lattice

Gelfand, Graev, Piateski-Shapiro: RΓ decomposes discretely

RΓ =
⊕
π∈bG

mΓ(π)π.



Let f ∈ C∞
c (G ). Define

RΓ(f ) =

∫
G

f (g)RΓ(g) dg .

Then RΓ(f ) is an integral operator

(RΓ(f )ϕ) (g) =

∫
Γ\G

Kf (g , g ′)ϕ(g ′) dg ′, ϕ ∈ L2(Γ\G ),

with kernel
Kf (g , g ′) =

∑
γ∈Γ

f (g−1γg ′).

Since Γ\G is compact, RΓ(f ) is a trace class operator and

Tr RΓ(f ) =

∫
Γ\G

Kf (g , g) dg =

∫
Γ\G

∑
γ∈Γ

f (g−1γg) dg .



I break the sum over γ into conjugacy classes {γ} of Γ.

Let Γγ and Gγ be the centralizer of γ in Γ and G , respectively.
The contribution of a conjugacy class {γ} is∫

Γγ\G
f (g−1γg) dġ = vol(Γγ\Gγ)I (γ, f ),

where I (γ, f ) is the orbital integral

I (γ, f ) =

∫
Gγ\G

f (g−1γg) dġ , f ∈ C∞
c (G ).

Thus we get

Tr RΓ(f ) =
∑
{γ}

vol(Γγ\Gγ)I (γ, f ).



On the other hand, by the result of Gelfand, Graev, and
Piatetski-Shapiro, we get

Tr RΓ(f ) =
∑
π∈bG

mΓ(π) Tr π(f ).

Comparing the two expressions, we obtain

Trace formula (1. version):∑
π∈bG

mΓ(π) Tr π(f ) =
∑
{γ}

vol(Γγ\Gγ)I (γ, f ).

spectral side = geometric side

I I (γ, f ) and Tr π(f ) are invariant distributions on G , i.e.,
invarinat under f → f g , where f g (g ′) = f (g−1g ′g).

I Fourier inversion formula can be used to express I (γ, f ) in
terms of characters.



The rank one case.

To make the trace formula useful, one has to understand the
distributions I (γ, f ) and Tr π(f ) and to express them in differential
geometric terms. This is possible if the R-rank of G is 1.

We specialize to: G = SL(2, R), K = SO(2).

I H = G/K upper half-plane, Γ ⊂ G co-compact.

Let

f ∈ C∞
c (G//K ) = {f ∈ C∞

c (G ) : f (k1gk2) = f (g), k1, k2 ∈ K}.

Then Tr π(f ) = 0, unless π has a K -fixed vextor. Hence

Tr π(f ) 6= 0 ⇔ ∃ s ∈ iR ∩ [−1, 1] : π = πs .

Let

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
, x + iy ∈ H.

I hyperbolic Laplaceoperator on H.



I ∆ has discrete spectrum in L2(Γ\H).

σ(∆): 0 = λ0 < λ1 < λ2 < · · · → ∞.

I m(λj) multiplicity of λj .

Frobenius reciprocity: m(πs) = m((1− s2)/4) for s ∈ iR ∪ [−1, 1].

Let

A(f )(t) =

∫
R

f

((
et/2 x

0 e−t/2

))
dx

be the Abel transform of f . Then A defines an isomorphism

A : C∞
c (G//K ) → C∞

c (R)even.

Moreover A(f ) is closely related to the orbital interal of f :

I (at , f ) =
1

|et − e−t |
A(f )(2t), at =

(
et 0
0 e−t

)
.



Let h = A(f ). Then

ĥ(r) =

∫
G

f (g)φ1/2+ir (g) dg ,

is the spherical Fourier transform of f , where φλ is the spherical
function.
f can be recovered from h by Plancherel inversion:

f (e) =

∫
R

ĥ(r)r tanh(r) dr .

Moreover, using the polar decomposition G = KAK , it follows that

ĥ(r) = Tr π2ir (f ).



Assumption: Γ torsion free

I γ ∈ Γ− {e} is hyperbolic,

I {γ} corresponds to unique closed geodesic τγ in Γ\H.

I `(γ) = length(τγ).

Let γ ∼
(

et/2 0

0 e−t/2

)
. Then `(γ) = t.

Write the eigenvalues of ∆ as

λj =
1

4
+ r2

j , rj ∈ R ∩ i [−1/2, 1/2].

Each γ can be uniquely written as γ = γk
0 , k ∈ N, where γ0 is

primitive. Then
vol(Γγ\Gγ) = `(γ0).



Selberg’s trace formula (K-invariant form):∑
j

m(λj)ĥ(rj) =
Area(Γ\H)

2π

∫
R

ĥ(r)r tanh(πr) dr

+
∑
{γ}6=e

`(γ0)

e`(γ)/2 − e−`(γ)/2
h(`(γ)).

I The kernel function f ∈ C∞
c (G//K ) has been eliminated from

the formula.

I h ∈ C∞
c (R).



b) Γ non-uniform

We assume that vol(Γ\G ) < ∞ and Γ\G non-compact.

I RΓ(f ) is not trace class

I RΓ does not decompose discretely.

Langlands’s theory of Eisenstein series provides a decomposition
into invariant subspaces

L2(Γ\G ) = L2
d(Γ\G )⊕ L2

ac(Γ\G ),

where
Rd

Γ =
⊕
π∈bG

mΓ(π)π,

and L2
d(Γ\G ) is the maximal invariant subspace, in which RΓ

decomposes discretely.

I L2
ac(Γ\G ) is described in terms of Eisenstein series.



Theorem. (Ji, Mü, ’98): For each f ∈ C∞
c (G ), Rd

Γ (f ) is a trace
class operator.

Therefore
Tr Rd

Γ (f ) =
∑
π∈bG

mΓ(π) Tr π(f ).

I In higher rank, there is no trace formula within this framework.

The rank one case: G = SL(2, R), Γ ⊂ G a non-uniform lattice.

I ∆ has continuous spectrum: [1/4,∞),

I possible eigenvalues of ∆: 0 = λ0 < λ1 < · · · ,
I the only obvious eigenfunction is the constant function for

which λ = 0.

I continuous spectrum is described by Eisenstein series.



A hyperbolic surface with 3 cusps.

The surface X can be compactified by adding m points a1, ..., am:

X = X ∪ {a1, ..., am}.
I X is a closed Riemann surface.

I The points a1, ..., am are called cusps. They correspond to
parabolic fixed points p1, ..., pm ∈ R ∪ {∞} of Γ.

I ak 7→ Ek(z , s), Eisenstein series attached to ak .



Example: Γ = SL(2, Z).

I Γ\H has a single cusp ∞.

I Eisenstein series attached to ∞:

E (z , s) =
∑

γ∈Γ∞\Γ

Im(γz)s =
∑

(m,n)=1

y s

|mz + n|2s
, Re(s) > 1.

Properties:

I E (γz , s) = E (z , s), γ ∈ SL(2, Z).

I E (z , s) admits a meromorphic extension to s ∈ C,

I E (z , s) is holomorphic on Re(s) = 1/2,

I ∆E (z , s) = s(1− s)E (z , s).

It follows that r ∈ R 7→ E (z , 1/2 + ir) is a generalized
eigenfunction.



Scattering matrix

Fourier expansion of E (z , s):

E (x + iy , s) = y s + C (s)y1−s + O
(
e−cy

)
as y →∞. Sommerfeld radiation condition

I y1/2+ir incoming plane wave, y1/2−ir outgoing plane wave,
E (z , 1/2 + ir) the distorted plane wave.

I S(r) = C (1/2 + ir) scattering matrix,

I C (s) analytic continuation of the scattering matrix,

General case: Ek(z , s), k = 1, ...,m, Eisenstein series. Fourier
expansion of Ek(z , s) in the cusp al gives scattering matrix:

C (s) = (Ckl(s))
m
k,l=1.



Let φ(s) = det C (s).

1

4π

∫
R

ĥ(r)
φ′

φ
(1/2 + ir) dr

contribution of the Eisenstein series to the trace formula.

I Γ has now parabolic elements

Parabolic contribution: ∫
R

ĥ(r)
Γ′

Γ
(1 + ir) dr .



Selberg trace formula for non-uniform lattices:∑
j

ĥ(rj)−
1

4π

∫ ∞

−∞
ĥ(r)

φ′

φ
(1/2 + ir) dr +

1

4
φ(1/2)h(0)

=
Area(Γ\H)

4π

∫
R

ĥ(r)r tanh(πr) dr +
∑
{γ}6=e

`(γ0)

e`(γ)/2 − e−`(γ)/2
h(`(γ))

− m

2π

∫ ∞

−∞
ĥ(r)

Γ′

Γ
(1 + ir)dr +

m

4
ĥ(0)−m ln 2 h(0).

I Can be understood as relative trace formula



II. Applications of the trace formula

1) Weyl’s law and the existence of cups forms

Rank one case: G = SL(2, R), Γ ⊂ G non-uniform lattice.
Let 0 = λ0 < λ1 ≤ · · · be the eigenvalues of ∆, C (s) scattering
matrix, φ(s) = det C (s). Put

NΓ(λ) = #{j : λj ≤ λ2}, MΓ(λ) = − 1

4π

∫ λ

−λ

φ′

φ
(1/2 + ir) dr .

Theorem 1 (Selberg): As λ →∞, we have

NΓ(λ) + MΓ(λ) =
Area(Γ\H)

4π
λ2 + O(λ log λ).

proof: (without remainder term)

I kt kernel of the heat operator e−t e∆ on H.

I kt ∈ C1(G//K ) (bi-K-invariant, integrable, rapidely decraesing
functions).

I Selberg trace formula can be applied to kt .



Let ht = A(kt) be the Abel transform. Then

ht(x) =
1√
4πt

e−t/4−x2/(4t), ĥt(r) = e−(1/4+r2)t .

If we insert ht in the trace formula, we get∑
j

e−tλj − 1

4π

∫
R

e−(1/4+r2)t φ′

φ

(
1

2
+ ir

)
dr ∼ Area(X )

4π
t−1

as t → 0+.

I For λ � 0, the winding number MΓ(λ) is monotonic
increasing.

I Tauberian theroem ⇒ Theorem.

A more sophisticated use of the trace formula gives an estimation
of the remainder term.
First step is to estimate the number of eigenvalues in an interval.
Hörmander’s method.



The scattering matrix for arithmetic groups

I In general, NΓ(λ) and MΓ(λ) can not be separated.

I For the principal congruence subgroup Γ(N), the entries of the
scattering matrix can be expressed in terms of known
functions of analytic number theory.

Huxley: For Γ(N) we have

φ(s) = (−1)lA1−2s

(
Γ(1− s)

Γ(s)

)k ∏
χ

L(2− 2s, χ̄)

L(2s, χ)
,

where k, l ∈ Z, A > 0, χ Dirichlet character mod k, k|N, L(s, χ)
Dirichlet L-function with character χ.
Especially, for N = 1 we have

φ(s) =
√

π
Γ(s − 1/2)ζ(2s − 1)

Γ(s)ζ(2s)
,

where ζ(s) denotes the Riemann zeta function.



Thus for Γ(N) we get∣∣∣∣φ′φ (1/2 + ir)

∣∣∣∣ � logk(|r |+ 1), r ∈ R,

and therefore
MΓ(N)(λ) = O(λ log λ).

Theorem 2 (Selberg, 1956):

NΓ(N)(λ) =
Area(Γ(N)\H)

4π
λ2 + O(λ log λ), λ →∞.

I For Γ(N), L2-eigenfunctions of ∆ with eigenvalue λ ≥ 1/4
( = Maass automorphic cusp forms) exist in abundance.

I For Γ(1) = SL(2, Z) no eigenfunction with eigenvalue λ > 0
can be constructed explicitly.



2) Distribution of Hecke eigenvalues

Sk(Γ(1)) space of cusp forms of weight k.

Tn : Sk(Γ(1)) → Sk(Γ(1))

the n-th Hecke operator.

I Sk the set of all normalized Hecke eigenforms f ∈ Sk(Γ(1)).

Then
Tnf = af (n)f , f ∈ Sk .

Put λf (n) = n(1−k)/2af (n).
Deligne: λf (p) ∈ [−2, 2] for p prime.

Conjecture ( Serre): For each h ∈ C ([−2, 2])

1

π(x)

∑
p≤x

h(λf (p)) → 1

2π

∫ 2

−2
h(t)

√
4− t2 dt, x →∞.



Sato-Tate conjecture for modular forms.

Theorem (H. Nagoshi, 2006): Suppose that k = k(x) satisfies
log k
log x →∞ as x →∞. Then for every h ∈ C ([−2, 2]), we have

1

π(x)#Sk

∑
p≤x
f ∈Sk

h(λf (p)) → 1

2π

∫ 2

−2
h(t)

√
4− t2 dt, x →∞.

4) Limit multiplicities

a) Γ ⊂ G uniform lattice

I Γ = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γn ⊃ · · · tower of normal subgroups of
finte index, ∩jΓj = {e}.

RΓj
=

⊕̂
π∈bGm(Γj , π)π.



I S ⊂ Ĝ open, relative compact, regular for the Plancherel
measure µPL.

Put

µj(S) =
1

vol(Γj\G )

∑
π∈S

m(Γj , π).

deGeorge-Wallach, Delorme: limj→∞ µj(S) = µPL(S).
b) Γ ⊂ G non-uniform lattice
Savin: π ∈ Ĝd .

lim
j→∞

µj({π}) = d(π).

Clozel: weak version.

lim inf
j→∞

µj({π}) > ε > 0.



5) Low lying zeros of L-functions
f ∈ Sk , L(s, f ) L-function attached to f , φ test function

D(f , φ) =
∑

γ

φ(γ),

where γ ranges over normalized zeros of L(s, f ). F(Q) family of
L-functions depending on parameter Q.

E (F(Q), f ) =
1

|F(Q)|
∑

f ∈F(Q)

D(f , φ).

Behavior as Q →∞.

5) Jacquet-Langlands
Correspondence between automorphic forms of a quarternion
algebra and GL(2).

(Γ\H) ↔ (Γ′\H)

{λj , tp,j} ↔ {λ′j , t ′p,j}



Γ′\H is a compact Riemann surface attached to a congruence
quaternion group Γ′, Γ\H non-compact congruence surface.



III. Higher rank

I S = G/K , ∆ Laplace operator on Γ\S .

I L2
cus(Γ\S) ⊂ L2(Γ\S) closure of the span of the space of cusp

forms.

I ∆ has discrete spectrum in L2
cus(Γ\S).

L2
dis(Γ\S) = L2

cus(Γ\S)⊕ L2
res(Γ\S).

Ncus
Γ (λ), Nres

Γ (λ) counting function of cuspidal and residual
spectrum, resp.

General results:

Theorem (Donnelly, ’82): Let d = dim S .

lim sup
λ→∞

Ncus
Γ (λ)

λd/2
≤ vol(Γ\S)

(4π)d/2Γ
(

d
2 + 1

) .



Theorem (Mü, ’89): Nres
Γ (λ) � λ2d , λ ≥ 1.

Conjecture 1 (Sarnak): rank(S) > 1. Then Ncus
Γ (λ) satisfies

Weyl’s law.

Conjecture 2: Nres
Γ (λ) � λ(d−1)/2.

Theorem (Lindenstrauss,Venkatesh): G split adjoint semisimple
group over Q, G = G(R), Γ ⊂ G(Q) a congrunece group,
d = dim S . Then

Ncus
Γ (λ) ∼ vol(Γ\S)

(4π)d/2Γ(d/2 + 1)
λd/2, λ →∞.

I Confirms the conjectur of Sarnak in these cases.

Previous results:
S. Miller: G = SL(3, R), Γ = SL(3, Z),
Mü: G = SL(n, R), Γ = Γ(N).



Estimation of the remainder term

Theorem (Lapid, Mü, 2007): Let Sn = SL(n, R)/ SO(n),
d = dim Sn, N ≥ 3. Then

Ncus
Γ(N)(λ) =

vol(Γ(N)\S)

(4π)d/2Γ(d/2 + 1)
λd/2 +O

(
λ(d−1)/2(log λ)max (n,3)

)
.

Method: Combination of Hörmander’s method and Arthur’s trace
formula.

Mœglin, Waldsburger, 1989: Description of the residual spectrum
of GL(n).

Combined with Donnelly’s estimate, we get

Theorem (Mœglin, Waldsburger, 1989): Sn = SL(n, R)/ SO(n),
d = dim Sn.

Nres
Γ(N)(λ) � λd/2−1.



Multidimensional version

I G = NAK Iwasawa decomposition, a = Lie(A), H : G → a,
H(nak) = log a, W = W (G ,A).

I D(S) ring of invariant differential operators on S .

Harish-Chandra: D(S) ∼= S(aC)W .
Thus, if

χ : D(S) = S(a∗C)W → C

is a character. Then

χ = χλ ↔ λ ∈ a∗C/W .

For λ ∈ a∗C let

Ecus(λ) =
{
ϕ ∈ L2

cus(Γ\S) : Dϕ = χλ(D)ϕ, D ∈ D(S)
}

Lwt mcus(λ) = dim Ecus(λ). Then the cuspidal spectrum is defined
as

Λcus(Γ) = {λ ∈ a∗C/W : m(λ) > 0}.



I Λcus(Γ) ∩ ia∗/W is the tempered spectrum

I Λcus(Γ)− (Λcus(Γ) ∩ ia∗/W ) the complementary spectrum.

Theorem (Lapid, Mü, 2007): Let Sn = SL(n, R)/ SO(n) and
dn = dim Sn, Ω ⊂ ia∗ a bounded open subset with piecewise C 2

boundary, β(λ) be the Plancherel measure. Then as t →∞∑
λ∈Λcus(Γ(N)),λ∈tΩ

m(λ) =
vol(Γ(N)\Sn)

|W |

∫
tΩ

β(λ) dλ

+ O
(
tdn−1(log t)max(n,3)

)
and ∑

λ∈Λcus(Γ(N))
λ∈Bt(0)\ia∗

m(λ) = O
(
tdn−2

)
.

Duistermaat, Kolk, Varadarajan, 1979: This results holds for G
arbitrary, and Γ ⊂ G a uniform lattice.



IV. Problems

1) Generalize the results of Duistermaat-Kolk-Varadarajan on
spectral asymptotics for compact locally symmetric spaces Γ\S to
non-compact quotients where Γ is a congruence subgroup. In
particular, establish Weyl’s law with a remainder term.

2) Analyze the spectral asymptotics for the Bochner-Laplace
operator acting on the sections of a locally homogeneous vector
bundle over Γ\S (i.e. automorphic forms with a given K∞-type).

3) Study the distribution of Hecke eigenvalues.

4) Study the distribution of low-lying zeros of L-functions of Hecke
eigenforms of SL(n, Z)\SL(n, R)/ SO(n) with large eigenvalues.

5) Study the limiting behavior of the Laplace spectrum for towers
Γ1 ⊃ Γ2 ⊃ · · · .



V. The Arthur trace formula

I The Arthur trace formula is the main tool to study these
problems in the higher rank case.

I General reductive group needs adelic framwork.

G reductive algebraic group over Q, A =
∏′

v Qv ring of adels of
Q, G (A) =

∏′
v G (Qv ).

We study now the spectral resolution of the regular representation

R : G (A) → Aut(L2(G (Q)\G (A))).

This is related to the previous framework as follows. Let
Kf ⊂

∏
p<∞ G (Zp) be an open compact subgroup. Then

G (Q)\G (A)/Kf
∼=

⊔
j

(Γj\G (R)) .



G (A)1 =
⋂

χ∈X (G)Q

ker |χ|, G (A) = G (A)1 · AG (R)0.

The (non-invariant) trace formula is an identity of distributions on
G (A)1 ∑

χ∈X

Jχ(f ) =
∑
o∈O

Jo(f ), f ∈ C∞
0 (G (A)1)

spectral side = geometric side

I X set of cuspidal data; equivalence classes of (M, ρ), M Levi
factor of rational parabolic subgroup, ρ cuspidal automorphic
representation of M(A)1.

I O set of equivalence classes in G (Q), γ ∼ γ′, if γs and γ′s are
G (Q)-conjugate.



Spectral side

I Jχ is derived from the constant terms of Eisenstein series and
generalizes

1

4π

∫
R

ĥ(r)
φ′

φ
(1/2 + ir) dr

I P ⊂ G Q-parabolic subgroup, P = MPNP Levi decomposition

I AP ⊂ MP split component of the center of MP , aP = Lie(AP)

I A2(P) square integrable automorphic forms on
NP(A)MP(Q)\G (A)

I Q = MQNQ Q-parabolic subgroup of G , MP = MQ = M.

MQ|P(λ) : A2(P) → A2(Q), λ ∈ a∗P,C

intertwining operator, meromorphic function of λ, main ingredient
of Jχ.



I π ∈ Π(M(A)1) determines subspace A2
π(P) ⊂ A2(P) of

automorphic forms which transform according to π

I MQ|P(λ, π) restriction of MQ|P(λ) to A2
π(P).

I ρπ(P, λ) induced representation of G (A) in A2
π(P).

Let P be maximal parabolic and P the opposite parabolic group.
Then the following integral-series is part of the spectral side∑
π∈Πcus(M(A)1)

∫ ∞

−∞
Tr

(
MP|P(iλ, π)−1 d

dz
MP|P(iλ, π)ρπ(P, iλ, f )

)
dλ

Problem: Absolute convergence of the integral-series.



π = ⊗vπv , φ ∈ A2
π(P), φ = ⊗vφv . S finite set of places,

containing ∞, such that φv is fixed under G (Zp) for p 6∈ S .
There exist finite-dimensional representations r1, ..., rm of LM such
that

MP|P(s, π)φ =
⊗
v∈S

MP|P(s, πv )φv ⊗
⊗
v /∈S

φ̃v ·
m∏

i=1

LS(is, π, r̃i )

LS(1 + is, π, r̃i )
,

where
LS(s, π, r) =

∏
v /∈S

L(s, πv , rv ), Re(s) � 0,

is the partial automorphic L-function attached to π and r .

I This reduces the problem to the estimation of the number of
zeros of LS(s, π, r̃j) in a circle of radius T as T →∞.

I Need to control the constants in terms of π.



Lapid, Mü, 2008: In general, the study of the distribution Jχ can
be reduced to the study of integrals as above associated to
maximal parabolics in Levi subgroups.

Theorem (Lapid, Mü, 2008): For every reductive group G , the
spectral side of the trace formula is absolutely convergent.

Mü, Speh, Lapid, 2004: G = GL(n).

I This is a first step.

I The intended applications of the trace formula to spectral
problems require a finer analysis of the L-functions.

For GL(n) the relevant L-functions are the Rankin-Selberg
L-functions L(s, π1 × π2) attached to cuspidal automorphic
representations πi of GL(ni , A), i = 1, 2, n = n1 + n2.



Jacquet, Shahidi, Mœglin/Waldspurger, ...: completed L-function
Λ(s, π1 × π2) has at most simple poles at s = 0, 1,
s(1− s)Λ(s, π1 × π2) is entire of order 1, satisfies functional
equation.

Geometric side

The distributions Jo are given in terms weighted orbital integrals.
In general, they are difficult to define. A special case is∫

Gγ\G
f (g−1γg)w(g) dg ,

where w(g) is a certain weight function.

I Weighted orbital integrals are non-invariant distributions.


