Analysis 2

17.05.2018

Prof. Dr. H. Koch Dr. F. Gmeineder

Abgabe: 07.06.2018 in der Vorlesung

Übungsblatt 7

Aufgabe 1:

7 + 3 = 10 Punkte

Sei $n \in \{1, 2, ...\}$ und $f: [0, \infty)^n \to \mathbb{R}$ definiert durch

$$f(x) := \frac{(x_1...x_n)^{\frac{1}{n+1}}}{1 + x_1 + ... + x_n}, \qquad x = (x_1, ..., x_n)^{\mathsf{T}} \in [0, \infty)^n.$$

Zeigen Sie, dass f sein globales Maximum in $(1, 1, ..., 1)^{\mathsf{T}}$ annimmt. Folgern Sie hieraus die Ungleichung des arithmetischen und geometrischen Mittels: Für alle $y_1, ..., y_{n+1} \in [0, \infty)$ gilt

$$(y_1y_2...y_{n+1})^{\frac{1}{n+1}} \le \frac{1}{n+1} \sum_{k=1}^{n+1} y_k.$$

Aufgabe 2:

6+4=10 Punkte

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch $f(x, y, z) := \sin(x) \cos(y) \exp(z), (x, y, z)^\mathsf{T} \in \mathbb{R}^3$. Bestimmen Sie

- (a) $T_2^{(0,0,0)^{\mathsf{T}}} f$, d.h., das Taylorpolynom von f vom zweiten Grad in $(0,0,0)^{\mathsf{T}}$.
- (b) weiters mit Beweis ein r > 0 derart, dass $|f T_2^{(0,0,0)^{\mathsf{T}}} f| < 10^{-5}$ auf $B((0,0,0)^{\mathsf{T}}, r)$ gilt.

Aufgabe 3: 10 Punkte

Es seien $b_1, b_2, b_3 \in \mathbb{R}$ so gewählt, dass die kubische Gleichung $X^3 - b_1 X^2 + b_2 X - b_3 = 0$ drei paarweise verschiedene Lösungen $a_1, a_2, a_3 \in \mathbb{R}$ besitzt. Zeigen Sie: Es gibt eine Umgebung $U \subset \mathbb{R}^3$ von $(b_1, b_2, b_3)^\mathsf{T}$, sodass die Lösungen $x_1, x_2, x_3 \in \mathbb{R}$ der Gleichungen $X^3 - y_1 X^2 + y_2 X - y_3 = 0$ stetig differenzierbar und bijektiv von $(y_1, y_2, y_3)^\mathsf{T} \in U$ abhängen.

Aufgabe 4: 10 Punkte

Sei $U \subset \mathbb{R}^d$ offen und konvex (d.h., sind $a, b \in U$, so gilt auch $\lambda a + (1 - \lambda)b \in U$ für alle $\lambda \in [0, 1]$). Sei weiters $f = (f_1, ..., f_d)^\mathsf{T} \colon \mathbb{R}^d \to \mathbb{R}^d$ stetig differenzierbar und gelte

$$\det \left(\begin{array}{ccc} \partial_1 f_1(c_1) & \dots & \partial_d f_1(c_1) \\ \vdots & \ddots & \vdots \\ \partial_1 f_d(c_d) & \dots & \partial_d f_d(c_d) \end{array} \right) \neq 0 \quad \text{für alle } c_1, \dots, c_d \in U.$$

Zeigen Sie, dass f dann in U injektiv und somit $f:U\to f[U]:=\{f(x)\colon x\in U\}$ bijektiv ist. Diskutieren Sie ferner,

- (a) wie diese Aussage mit dem lokalen Umkehrsatz aus der Vorlesung zusammenhängt (zum Beispiel unter Zuhilfenahme der Abbildung $(x, y) \mapsto (e^x \cos(y), e^x \sin(y))$) sowie
- (b) ob diese Aussage wahr bleibt, wenn man U nur als offen, aber nicht konvex annimmt.

Helpdesk zur Analysis 2: Montags, 13-16 Uhr & Donnerstags, 10-13 Uhr, Raum N1.002, Endenicher Allee 60 (Nebengebäude, 1. Stock)