Analysis 2

03.05.2018

Prof. Dr. H. Koch Dr. F. Gmeineder

Abgabe: 07.05.2018 in der Vorlesung

Übungsblatt 4

Aufgabe 1: 10 Punkte

Für $c \ge 0$ sei der Weg $L_c: [0, \infty) \to \mathbb{R}^2$ gegeben durch $L_c(t) := (e^{-ct} \cos(t), e^{-ct} \sin(t)), t \in [0, \infty).$

- (a) Bestimmen Sie, ob L_c eine endliche Länge hat und bestimmen Sie letztere gegebenenfalls. Welchen Einfluss hat der Parameter c auf den Weg?
- (b) Zeichnen Sie die Bahn des Weges für c=1 in ein kartesisches Koordinatensystem ein.

Aufgabe 2: 10 Punkte

Es sei $n \geq 2$ beliebig und es seien $\gamma_1 \colon [0,1] \to \mathbb{R}^n$ und $\gamma_2 \colon [1,2] \to \mathbb{R}^n$ zwei Wege mit $\gamma_1(1) = \gamma_2(1)$. Wir bezeichnen mit

$$\gamma_3(t) := \begin{cases} \gamma_1(t) & \text{für } t \in [0, 1], \\ \gamma_2(t) & \text{für } t \in [1, 2] \end{cases}$$

den zusammengeklebten Weg. Zeigen Sie, dass für seine Länge $L(\gamma_3) = L(\gamma_1) + L(\gamma_2)$ gilt.

Helpdesk zur Analysis 2: Montags, 13-16 Uhr & Donnerstags, 10-13 Uhr, Raum N1.002, Endenicher Allee 60 (Nebengebäude, 1. Stock)