Mathematisches Institut

Prof. Dr. Herbert Koch Dr. Christian Zillinger Sommersemester 2016

Einführung in die partiellen Differentialgleichungen

Übungsblatt Nr. 10

Abgabe vor der Vorlesung am 01.07.2016

Aufgabe 1

Bestimmen Sie die Greensche Funktion G(t, x, y) der Wärmeleitungsgleichung:

$$\begin{split} \partial_t u - \Delta u &= f \text{ in } \Omega_T, \\ u &= g \text{ auf } \Gamma_T, \\ u &= u_0 \text{ auf } \{0\} \times \Omega, \end{split}$$

für die Gebiete

a)
$$H = \mathbb{R}^{n-1} \times (0, \infty), n \ge 2$$
,

- b) $(0, \infty)^n$,
- c) $(0,1)^n$.

Hinweis: Betrachten Sie im dritten Fall eine periodische Fortsetzung.

Aufgabe 2

Es sei t>0 und für $x\in\mathbb{R}^n$

$$\Phi(t,x) = \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right).$$

Zeigen Sie, dass für s,t>0

$$\Phi(s+t,x) = \int_{\mathbb{R}^n} \Phi(t,x-y) \Phi(s,y) dy.$$

Aufgabe 3

Es sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $f \in C^0(\Omega_T)$, $g \in C^0(\Gamma_T)$. Ferner seien $u, v_1, v_2 \in C^2_1(\Omega_T) \cap C^0(\overline{\Omega_T})$, so dass

$$\partial_t u - \Delta u = f \text{ in } \Omega_T,$$

 $u = g \text{ auf } \Gamma_T,$

und

$$\partial_t v_1 - \Delta v_1 \le f \le \partial_t v_2 - \Delta v_2 \text{ in } \Omega_T,$$

 $v_1 < u < v_2 \text{ auf } \Gamma_T.$

Zeigen Sie, dass dann

$$v_1 \leq u \leq v_2 \text{ in } \overline{\Omega_T}.$$

Zeigen Sie als Anwendung, dass für $u \in C^2_1(\Omega_T) \cap C^0(\overline{\Omega_T})$ eine Lösung von

$$\partial_t u - \Delta u = 1 \text{ in } \Omega_T,$$

 $u = 0 \text{ auf } \Gamma_T,$

gilt, dass $0 \le u(x,t) \le t$ auf Ω_T .

Aufgabe 4

Es seien $c \in \mathbb{R}$, $d \in \mathbb{R}^n$ konstant und $u_0 \in C_b(\mathbb{R}^n)$, $f \in C_1^2((0,\infty) \times \mathbb{R}^n)$ mit $\operatorname{supp}(f)$, $\operatorname{supp}(u_0)$ kompakt, gegebene Funktionen. Finden Sie eine Lösung des Problems

$$\partial_t u - \Delta u + cu + d \cdot \nabla u = f \text{ in } (0, \infty) \times \mathbb{R}^n,$$

 $u = u_0 \text{ auf } \{0\} \times \mathbb{R}^n.$

Hinweis: Betrachten Sie $\exp(-x \cdot d)u(t,x)$.

Stellen Sie Ihre Überlegungen vollständig und nachvollziehbar dar.